

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China

GV FU	C PART 15 SUBPART C TEST RE	PORT
	FCC PART 15.247	
		TESI
CC ID	CTA24120301201	
Compiled by		
	gnature): File administrators Xudong Zhang	Xuclory Zhaney
Supervised by position+printed name+sig	mature): Project Engineer Zoey Cao	ToegTAn E
Approved by (position+printed name+sig	gnature): RF Manager Eric Wang	Evic Long
Date of issue		TIM
Festing Laboratory Name	Shenzhen CTA Testing Technology	Co., Ltd.
	Room 106, Building 1, Yibaolai Industr Fuhai Street, Baoʻan District, Shenzhe	ial Park, Qiaotou Community,
Applicant's name	AGM MOBILE LIMITED	·
Address	FLAT/RM 2253 22/F HOI TAI FACTOR	RY ESTATE TSING YEUNG 6, CHINA
Test specification	TATES	NG
standard	FCC Part 15.247	TESTING
This publication may be rep Shenzhen CTA Testing Tec naterial. Shenzhen CTA Te iability for damages resultir	echnology Co., Ltd. All rights reserved. produced in whole or in part for non-commercial p chnology Co., Ltd. is acknowledged as copyright esting Technology Co., Ltd. takes no responsibili- ing from the reader's interpretation of the reproduc	owner and source of the ty for and will not assume
placement and context.		
	Smart Watch	
Equipment description		
Equipment description		
Equipment description Trade Mark Manufacturer		STIN
Equipment description Trade Mark Manufacturer Model/Type reference	N/A AGM MOBILE LIMITED	CTATESTIN
Equipment description Frade Mark Manufacturer Model/Type reference Listed Models		GTA CTATESTIN
Equipment description Trade Mark Manufacturer Model/Type reference Listed Models Modulation		GTA CTATESTIN
Equipment description Trade Mark Manufacturer Model/Type reference Listed Models Modulation Frequency		
Equipment description Trade Mark Manufacturer Model/Type reference Listed Models Modulation Frequency Ratings		
Equipment description Trade Mark Manufacturer Model/Type reference Listed Models Modulation Frequency		om external circuit
Equipment description Trade Mark Manufacturer Model/Type reference Listed Models Modulation Frequency Ratings		om external circuit
aquipment description rade Mark Manufacturer Nodel/Type reference isted Models Nodulation requency Ratings		

Report No.: CTA24120301201 TEST REPORT Equipment under Test : Smart Watch Model /Type : AGM Watch Legion	of 38
Equipment under Test : Smart Watch Model /Type : AGM Watch Legion	
Equipment under Test : Smart Watch Model /Type : AGM Watch Legion	
Equipment under Test : Smart Watch Model /Type : AGM Watch Legion	
Model /Type : AGM Watch Legion	
Listed Models : N/A	
Applicant : AGM MOBILE LIMITED	
Address : FLAT/RM 2253 22/F HOI TAI FACTORY ESTATE TSING YE CIRCUIT TUEN MUN NTHONG KONG, CHINA	UNG
Manufacturer : AGM MOBILE LIMITED	ATEST
Address : FLAT/RM 2253 22/F HOI TAI FACTORY ESTATE TSING YE	
CIRCUIT TUEN MUN NTHONG KONG, CHINA	
Test Result: PASS 5	

Contents

1	TEST STANDARDS	4
		<u> </u>
2	SUMMARY	
		TAL
2.1	General Remarks	5
2.2	Product Description*	5
2.3	Equipment Under Test	5 5 5 5 5 5 5 6 6 6
2.4	Short description of the Equipment under Tes	(FUT) 5
2.5	EUT configuration	
		5
2.6	EUT operation mode	0
2.7	Block Diagram of Test Setup	6
2.8	Related Submittal(s) / Grant (s)	6
2.9	Modifications	-ING 6
		-NTE-
<u>3</u>	TEST ENVIRONMENT	<u></u>
24	Address of the test loberatory	CTATES 7
3.1	Address of the test laboratory	CIN 7
3.2	Test Facility	7
3.3	Environmental conditions	
3.4	Summary of measurement results	8 8
3.5	Statement of the measurement uncertainty	8
3.6	Equipments Used during the Test	9
	TES	
<u>4</u>	<u>TEST CONDITIONS AND RESULTS</u>	<u>10</u>
	TAIL	CTATESTING 10 13 20 21
		CTINE
4.1	AC Power Conducted Emission	TES!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
4.2	Radiated Emissions and Band Edge	13
4.3	Maximum Peak Output Power	20
4.4	Power Spectral Density	21
4.5	6dB Bandwidth	23
4.6	Out-of-band Emissions	25
4.7	Antenna Requirement	29
:S'\"	•	
<u>5</u>	<u>TEST SETUP PHOTOS OF THE EU</u>	T30
<u> </u>	PHOTOS OF THE EUT	TATESTING
<u>6</u>	PH0105 OF THE EUT	
		TATES.
		TESI
		TAIL
		C C I
	CTATESTING CTATESTING	
	CTA -INC	
	-ESIN'	
	CTATES.	TATESTING

1 TEST STANDARDS

The tests were performed according to following standards:

<u>FCC Rules Part 15.247</u>: Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz. <u>ANSI C63.10-2013</u>: American National Standard for Testing Unlicensed Wireless Devices <u>KDB558074 D01 V05r02</u>: Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under §15.247

Systems (DTS) Operating Under §15.247

SUMMARY 2

2.1 **General Remarks**

CTATES				
2.1 General Remarks				
Date of receipt of test sample		Dec. 03, 2024		
Testing commenced on	Con-	Dec. 03, 2024	10-110	
Testing concluded on	:	Dec. 11, 2024		

2.2 Product Description*

Testing concluded on	: Dec. 11, 2024
2.2 Product Desc	ription*
Product Description:	Smart Watch
Model/Type reference:	AGM Watch Legion
Power supply:	DC 3.8V From battery and DC 5.0V From external circuit
Hardware version:	V1.1
Software version:	V1.0
Testing sample ID:	CTA241203012-1# (Engineer sample) CTA241203012-2# (Normal sample)
Bluetooth BLE	
Supported type:	Bluetooth low Energy
Modulation:	GFSK
Operation frequency:	2402MHz to 2480MHz
Channel number:	40
Channel separation:	2 MHz
Antenna type:	Internal antenna
Antenna gain:	0.52 dBi

2.3 Equipment Under Test

Power supply system utilised

Power supply system utilise	ed				CTATES
Power supply voltage	:	0	230V / 50 Hz) 120V / 60Hz
		Ο	12 V DC	C	24 V DC
ING			Other (specified in bl	ank below	/)

2.4 Short description of the Equipment under Test (EUT)

This is a Smart Watch. For more details, refer to the user's manual of the EUT.

2.5 EUT configuration

The following peripheral devices and interface cables were connected during the measurement:

- supplied by the manufacturer
- \bigcirc supplied by the lab

		Model: EP-TA20CBC
GIN	ESTINO	Input: AC 100-240V 50/60Hz
	ATES	Output: DC 5V 2A
e		TESTIN

2.6 EUT operation mode

The Applicant provides communication tools software(Engineer mode) to control the EUT for staying in continuous transmitting (Duty Cycle more than 98%) and receiving mode for testing. There are 40 channels provided to the EUT and Channel 00/19/39 were selected to test.

Channel	Frequency (MHz)
00	2402
01	2404
02	2406
19	2440
TEST III	:
37	2476
38	2478
39	2480
38	2478

2.7 Block Diagram of Test Setup

EUT

1G	DC 5.0V From adapter	
	GTA TESTI	

2.8 Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for filing to comply with Section 15.247 of the FCC Part 15, Subpart C Rules.

2.9 **Modifications**

No modifications were implemented to meet testing criteria. GA CTATESTING

TEST ENVIRONMENT 3

Address of the test laboratory 3.1

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China

3.2 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 517856 Designation Number: CN1318

Shenzhen CTA Testing Technology Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

A2LA-Lab Cert. No.: 6534.01

Shenzhen CTA Testing Technology Co., Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010.

Environmental conditions 3.3

During the measurement the environmental conditions were within the listed ranges: Radiated Emission:

Temperature:	23 ° C
	TES
Humidity:	44 %
Atmospheric pressure:	950-1050mbar

AC Main Conducted testing.

Temperature:	24 ° C			
- NG				
Humidity:	47 %			
Atmospheric pressure:	950-1050mbar			

	Aunospheric pressure.	930-1030mbai	
С	onducted testing:	TED	TING
	Temperature:	24 ° C	TESI
	Contraction of the second		(A)
	Humidity:	46 %	
	Atmospheric pressure:	950-1050mbar	

	Test Specification Test case clause		Test Mode	Test Channel	Re In	Test result	
	§15.247(e)	Power spectral density	BLE 1Mpbs	⊠ Lowest ⊠ Middle ⊠ Highest	BLE 1Mpbs	 ☑ Lowest ☑ Middle ☑ Highest 	complies
	§15.247(a)(2)	Spectrum bandwidth – 6 dB bandwidth	BLE 1Mpbs	⊠ Lowest ⊠ Middle ⊠ Highest	BLE 1Mpbs	 ☑ Lowest ☑ Middle ☑ Highest 	complies
	§15.247(b)(3)	Maximum output Peak power	BLE 1Mpbs	⊠ Lowest ⊠ Middle ⊠ Highest	BLE 1Mpbs	⊠ Lowest ⊠ Middle ⊠ Highest	complies
CTATE	§15.247(d)	Band edge compliance conducted	BLE 1Mpbs	⊠ Lowest ⊠ Highest	BLE 1Mpbs	⊠ Lowest ⊠ Highest	complies
6	§15.205	Band edge compliance radiated	BLE 1Mpbs	⊠ Lowest ⊠ Highest	BLE 1Mpbs	⊠ Lowest ⊠ Highest	complies
	§15.247(d)	TX spurious emissions conducted	BLE 1Mpbs	⊠ Lowest ⊠ Middle ⊠ Highest	BLE 1Mpbs	⊠ Lowest ⊠ Middle ⊠ Highest	complies
	§15.247(d)	TX spurious emissions radiated	BLE 1Mpbs	 ☑ Lowest ☑ Middle ☑ Highest 	BLE 1Mpbs	 ☑ Lowest ☑ Middle ☑ Highest 	complies
3	§15.209(a)	TX spurious Emissions radiated Below 1GHz	BLE 1Mpbs	-/-	BLE 1Mpbs	-/-	complies
	§15.107(a) §15.207	Conducted Emissions < 30 MHz	BLE 1Mpbs		BLE 1Mpbs	-/-	complies

3.4 Summary of measurement results

Remark: The measurement uncertainty is not included in the test result.

3.5 Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 2 " and is documented in the Shenzhen CTA Testing Technology Co., Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device. Hereafter the best measurement capability for Shenzhen CTA Testing Technology Co., Ltd. : TESTING

Test	Range	Measurement Uncertainty	Notes
Radiated Emission	9KHz~30MHz	3.02 dB	(1)
Radiated Emission	30~1000MHz	4.06 dB	(1)
Radiated Emission	1~18GHz	5.14 dB 🕥	(1)
Radiated Emission	18-40GHz	5.38 dB	(1)
Conducted Disturbance	0.15~30MHz	2.14 dB	(1)
Output Peak power	30MHz~18GHz	0.55 dB	(1)
Power spectral density	/	0.57 dB	(1)
Spectrum bandwidth	-NG	1.1%	(1)
Radiated spurious emission (30MHz-1GHz)	30~1000MHz	4.10 dB	(1)
Radiated spurious emission (1GHz-18GHz)	1~18GHz	4.32 dB	(1)
Radiated spurious emission (18GHz-40GHz)	18-40GHz	5.54 dB	(1)

RF Test Software

Tonscend

(1) This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

3.6 Equipments Used during the Test

Test Equipment	Manufacturer	Model No.	Equipment No.	Calibration Date	Calibration Due Date
LISN	R&S	ENV216	CTA-308	2024/08/03	2025/08/02
LISN	R&S	ENV216	CTA-314	2024/08/03	2025/08/02
EMI Test Receiver	R&S	ESPI	CTA-307	2024/08/03	2025/08/02
EMI Test Receiver	R&S	ESCI	CTA-306	2024/08/03	2025/08/02
Spectrum Analyzer	Agilent	N9020A	CTA-301	2024/08/03	2025/08/02
Spectrum Analyzer	R&S	FSU	CTA-337	2024/08/03	2025/08/02
Vector Signal generator	Agilent	N5182A	CTA-305	2024/08/03	2025/08/02
Analog Signal Generator	R&S	SML03	CTA-304	2024/08/03	2025/08/02
WIDEBAND RADIO COMMUNICATION TESTER	CMW500	R&S	CTA-302	2024/08/03	2025/08/02
Temperature and humidity meter	Chigo	ZG-7020	CTA-326	2024/08/03	2025/08/02
Ultra-Broadband Antenna	Schwarzbeck	VULB9163	CTA-310	2023/10/17	2026/10/16
Horn Antenna	Schwarzbeck	BBHA 9120D	CTA-309	2023/10/13	2026/10/12
Loop Antenna	Zhinan	ZN30900C	CTA-311	2023/10/17	2026/10/16
Horn Antenna	Beijing Hangwei Dayang	OBH100400	CTA-336	2023/10/17	2026/10/16
Amplifier	Schwarzbeck	BBV 9745	CTA-312	2024/08/03	2025/08/02
Amplifier	Taiwan chengyi	EMC051845B	CTA-313	2024/08/03	2025/08/02
Directional coupler	NARDA	4226-10	CTA-303	2024/08/03	2025/08/02
High-Pass Filter	XingBo	XBLBQ-GTA18	CTA-402	2024/08/03	2025/08/02
High-Pass Filter	XingBo	XBLBQ-GTA27	CTA-403	2024/08/03	2025/08/02
Automated filter bank	Tonscend	JS0806-F	CTA-404	2024/08/03	2025/08/02
Power Sensor	Agilent	U2021XA	CTA-405	2024/08/03	2025/08/02
Amplifier	Schwarzbeck	BBV9719	CTA-406	2024/08/03	2025/08/02
		C VI			STIN
Test Equipment	Manufacturer	Model No.	Version number	Calibration Date	Calibration Due Date
EMI Test Software	Tonscend	TS®JS32-RE	5.0.0.2	N/A	N/A
EMI Test Software	Tonscend	TS®JS32-CE	5.0.0.1	N/A	N/A
RF Test Software	S Tonscend	TS®JS1120-3	3.1.65	N/A	N/A

TS®JS1120

Shenzhen CTA Testing Technology Co., Ltd. Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China Tel:+86-755 2322 5875 E-mail:cta@cta-test.cn Web:http://www.cta-test.cn

3.1.46


N/A

N/A

TEST CONDITIONS AND RESULTS 4

AC Power Conducted Emission 4.1

TEST CONFIGURATION

TEST PROCEDURE

1 The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10-2013.

2 Support equipment, if needed, was placed as per ANSI C63.10-2013

3 All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10-2013

4 The EUT received power from adapter, the adapter received AC120V/60Hz and AC 240V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.

5 All support equipments received AC power from a second LISN, if any.

6 The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.

7 Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.

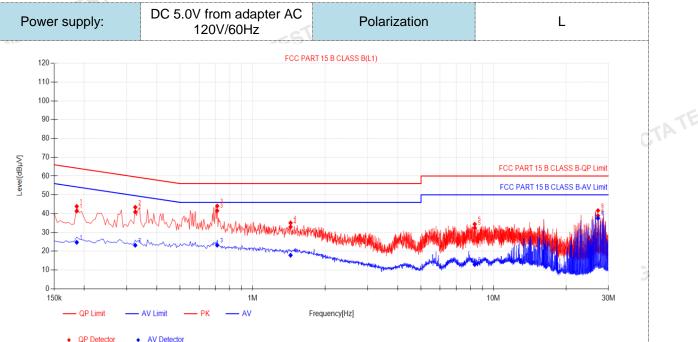
8 During the above scans, the emissions were maximized by cable manipulation.

AC Power Conducted Emission Limit

For intentional device, according to § 15.207(a) AC Power Conducted Emission Limits is as following :

Frequency range (MHz)	Limit (dBuV)						
Frequency range (Miriz)	Quasi-peak	Average					
0.15-0.5	66 to 56*	56 to 46*					
0.5-5	56	46					
5-30	G 60	50					
* Decreases with the logarithm of the frequency.							

TEST RESULTS


Remark:

1. BLE 1Mpbs was tested at Low, Middle, and High channel; only the worst result of BLE 1Mpbs High channel Shenzhen CTA Testing Technology Co., Ltd. Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China Tel:+86-755 2322 5875 E-mail:cta@cta-test.cn Web:http://www.cta-test.cn

TESTING

Page 11 of 38

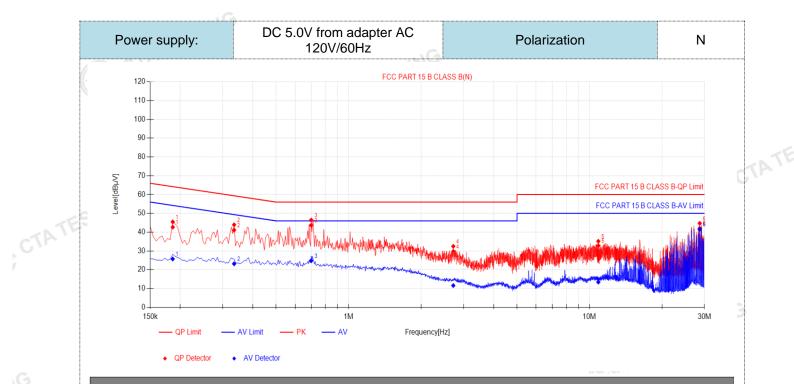
2. Both 120 VAC, 50/60 Hz and 240 VAC, 50/60 Hz power supply have been tested, only the worst result of 120 VAC, 60 Hz was reported as below:

Final Data List

NO.	Freq. [MHz]	Factor [dB]	QP Reading[dB µV]	QP Value [dBµV]	QP Limit [dBµV]	QP Margin [dB]	AV Reading [dBµV]	AV Value [dBµV]	AV Limit [dBµV]	AV Margin [dB]	Verdict
1	0.186	10.03	31.34	41.37	64.21	22.84	14.71	24.74	54.21	29.47	PASS
2	0.3255	9.91	31.00	40.91	59.57	18.66	13.26	23.17	49.57	26.40	PASS
3	0.7125	9.92	31.63	41.55	56.00	14.45	13.28	23.20	46.00	22.80	PASS
4	1.437	9.90	23.07	32.97	56.00	23.03	7.96	17.86	46.00	28.14	PASS
5	8.358	10.27	22.15	32.42	60.00	27.58	2.63	12.90	50.00	37.10	PASS
6	27.159	10.56	28.36	38.92	60.00	21.08	26.99	37.55	50.00	12.45	PASS
Note:1).QP Value (dBµV)= QP Reading (dBµV)+ Factor (dB)											
2)	. Factor (d	B)=inser	tion loss	of LISN ((dB) + Ca	able loss	(dB)				
21) (DP) م					1				

Note:1).QP Value $(dB\mu V) = QP$ Reading $(dB\mu V) +$ Factor (dB)

- 2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)
- 3). QPMargin(dB) = QP Limit (dB μ V) QP Value (dB μ V)
- 4). AVMargin(dB) = AV Limit (dB μ V) AV Value (dB μ V)


Shenzhen CTA Testing Technology Co., Ltd. Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China Tel:+86-755 2322 5875 E-mail:cta@cta-test.cn Web:http://www.cta-test.cn

CTATESTING

CTATE

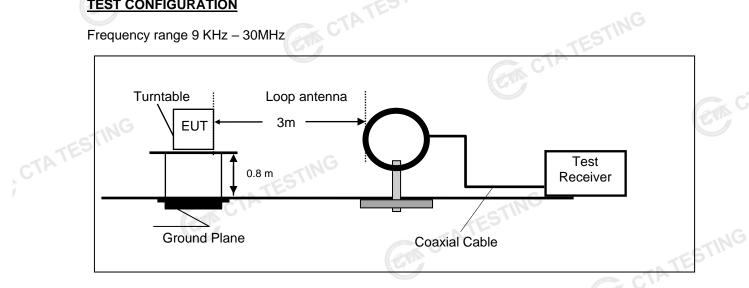
CTATE

Page 12 of 38

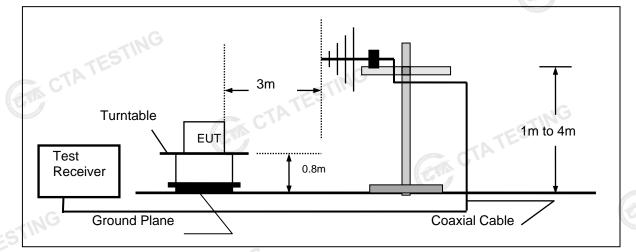
Einal Data L in

	NO.	Freq. [MHz]	Factor [dB]	QP Reading[dB µV]	QP Value [dBµV]	QP Limit [dBµV]	QP Margin [dB]	AV Reading [dBµV]	AV Value [dBµV]	AV Limit [dBµV]	AV Margin [dB]	Verdict	
	1	0.186	10.01	32.67	42.68	64.21	21.53	15.72	25.73	54.21	28.48	PASS	
2	2	0.3345	9.86	31.26	41.12	59.34	18.22	13.31	23.17	49.34	26.17	PASS	
	3	0.699	10.06	33.60	43.66	56.00	12.34	14.72	24.78	46.00	21.22	PASS	
	4	2.7195	10.17	19.59	29.76	56.00	26.24	1.42	11.59	46.00	34.41	PASS	
	5	10.8825	10.40	22.42	32.82	60.00	27.18	3.02	13.42	50.00	36.58	PASS	
	6	28.6845	10.81	31.25	42.06	60.00	17.94	30.69	41.50	50.00	8.50	PASS	
١	lote:1)).QP Value	e (dBµV)	= QP Re	ading (dl	BμV)+ Fa	actor (dB						505
2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)													
	3).	QPMargi	n(dB) = 0	QP Limit	(dBµV) -	QP Valu	ie (dBµV	')					
	4).	. AVMargir	n(dB) = A	V Limit (dBµV) -	AV Value	e (dBµV)						

- 2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)
- 3). QPMargin(dB) = QP Limit (dB μ V) QP Value (dB μ V)
- 4). AVMargin(dB) = AV Limit (dB μ V) AV Value (dB μ V) LIE-LIE-CTATESTING

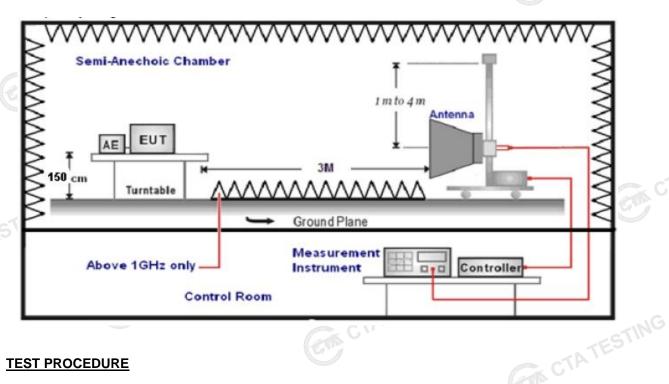

Shenzhen CTA Testing Technology Co., Ltd. Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China Tel:+86-755 2322 5875 E-mail:cta@cta-test.cn Web:http://www.cta-test.cn

CTATE



TEST CONFIGURATION

Frequency range 9 KHz – 30MHz



Frequency range 30MHz – 1000MHz

Frequency range above 1GHz-25GHz

Page 14 of 38

TEST PROCEDURE

- 1. The EUT was placed on a turn table which is 0.8m above ground plane when testing frequency range 9 KHz –1GHz; the EUT was placed on a turn table which is 1.5m above ground plane when testing frequency range 1GHz - 25GHz.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0°C to 360°C to acquire the highest emissions from EUT.
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- Repeat above procedures until all frequency measurements have been completed. 4.
- The EUT minimum operation frequency was 32.768KHz and maximum operation 5.
- frequency was 2480MHz.so radiated emission test frequency band from 9KHz to 25GHz. 6. The distance between test antenna and EUT as following table states:

Test Frequency range	Test Antenna Type	Test Distance						
9KHz-30MHz	Active Loop Antenna	3	Co-10					
30MHz-1GHz	Ultra-Broadband Antenna	3						
1GHz-18GHz	Double Ridged Horn Antenna	3	and the second second					
18GHz-25GHz	Horn Anternna	1						
Outline text and a sub-sub-sub-sub-sub-sub-text at text at the								

Setting test receiver/spectrum as following table states: 7.

	Test Frequency range	Test Receiver/Spectrum Setting	Detector
	9KHz-150KHz	RBW=200Hz/VBW=3KHz,Sweep time=Auto	QP
515	150KHz-30MHz	RBW=9KHz/VBW=100KHz,Sweep time=Auto	QP
	30MHz-1GHz	RBW=120KHz/VBW=1000KHz,Sweep time=Auto	QP
	and the second	Peak Value: RBW=1MHz/VBW=3MHz,	TING
	1GHz-40GHz	Sweep time=Auto	Peak
	19112-409112	Average Value: RBW=1MHz/VBW=10Hz,	I Cak
		Sweep time=Auto	P

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AG

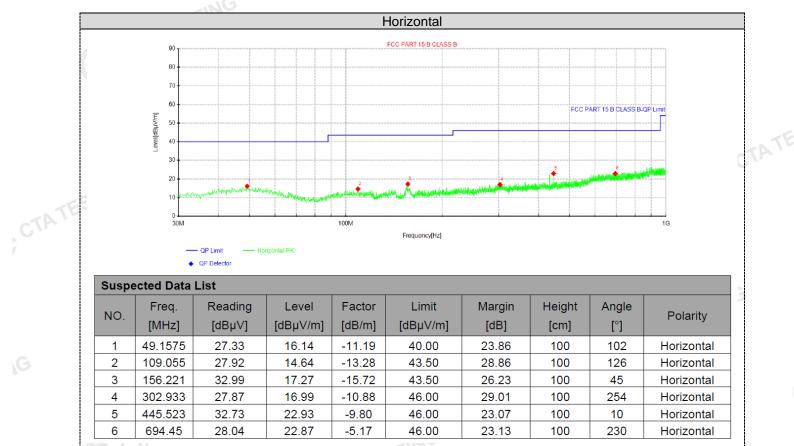
Where FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)	
RA = Reading Amplitude	AG = Amplifier Gain	
AF = Antenna Factor		TE
		Ar.
Shenzhen CTA Test	ing Technology Co., I td.	

Transd=AF +CL-AG

RADIATION LIMIT

For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emission from intentional radiators at a distance of 3 meters shall not exceed the following table. According to § 15.247(d), in any 100kHz bandwidth outside the frequency band in which the EUT is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of desired power.

The pre-test have done for the EUT in three axes and found the worst emission at position shown in test setup photos.

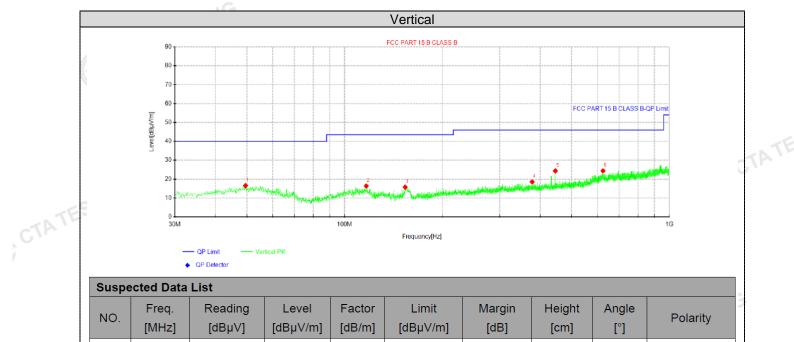

Frequency (MHz)	Distance (Meters)	Radiated (dBµV/m)	Radiated (µV/m)
0.009-0.49	3	20log(2400/F(KHz))+40log(300/3)	2400/F(KHz)
0.49-1.705	3	20log(24000/F(KHz))+ 40log(30/3)	24000/F(KHz)
1.705-30	3	20log(30)+ 40log(30/3)	30
30-88	3	40.05	100
88-216	3	43.5	150
216-960	3	46.0	200
Above 960	3	54.0	500

TEST RESULTS

Remark:

- 1. This test was performed with EUT in X, Y, Z position and the worse case was found when EUT in X position.
- 2. BLE 1Mpbs were tested at Low, Middle, and High channel and recorded worst mode at BLE 1Mpbs.
- Radiated emission test from 9 KHz to 10th harmonic of fundamental was verified, and no emission found 3. except system noise floor in 9 KHz to 30MHz and not recorded in this report. CTATESTING

For 30MHz-1GHz



Note:1).Level ($dB\mu V/m$)= Reading ($dB\mu V$)+ Factor (dB/m)

2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) - Pre Amplifier gain (dB)

CTA CTA

3). Margin(dB) = Limit (dB μ V/m) - Level (dB μ V/m)

NO.									Dolarity
NO.	[MHz]	[dBµV]	[dBµV/m]	[dB/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity
1	49.5212	27.73	16.56	-11.17	40.00	23.44	100	61	Vertical
2	116.572	30.09	16.38	-13.71	43.50	27.12	100	258	Vertical
3	153.553	31.40	15.78	-15.62	43.50	27.72	100	0	Vertical
4	377.866	28.93	18.54	-10.39	46.00	27.46	100	49	Vertical
5	445.523	34.21	24.41	-9.80	46.00	21.59	100	131	Vertical
6	624.125	30.14	24.42	-5.72	46.00	21.58	100	357	Vertical
						•			•

CTAT

Note:1).Level (dBµV/m)= Reading (dBµV)+ Factor (dB/m)

2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) - Pre Amplifier gain (dB)

3). Margin(dB) = Limit (dB μ V/m) - Level (dB μ V/m)