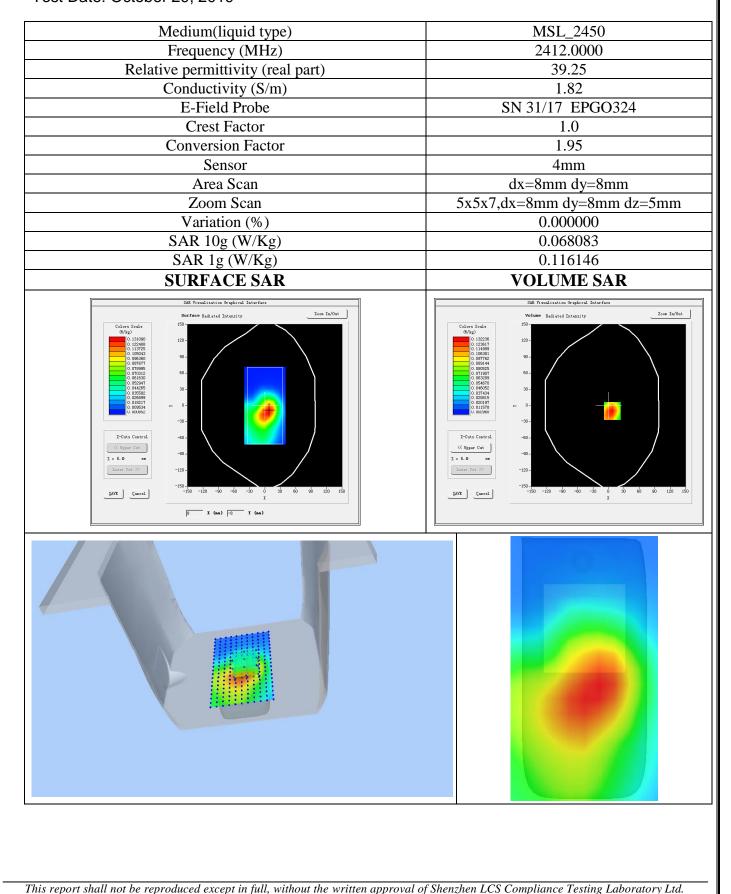
#17


Test Mode:802.11b(WiFi2.4G),Low channel (Head Left Cheek) Product Description: 5 inch 4G Smart Phone Model: L55A Test Date: October 29, 2019

Medium(liquid type)	HSL_2450
Frequency (MHz)	2412.0000
Relative permittivity (real part)	39.25
Conductivity (S/m)	1.82
E-Field Probe	SN 31/17 EPGO324
Crest Factor	1.0
Conversion Factor	1.91
Sensor	4mm
Area Scan	dx=8mm dy=8mm
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm
Variation (%)	-3.760000
SAR 10g (W/Kg)	0.043448
SAR 1g (W/Kg)	0.097538
SURFACE SAR	VOLUME SAR
588 Visualisation Graphical Interface	SAR Visualisation Graphical Interface
$\begin{bmatrix} C_{\text{clars Scale}} \\ 0 \\ D_{\text{clarb}} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} $

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 73 of 146

#18

Test Mode: Hotspot 802.11b(WiFi2.4G),Low channel (Body Rear Side) Product Description: 5 inch 4G Smart Phone Model: L55A Test Date: October 29, 2019

Page 74 of 146

5. ALIBRATION CERTIFICATES

5.1 Probe-EPGO324 Calibration Certificate

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 75 of 146

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.281.2.18.SATU.A

	Name	Function	Date	Signature
Prepared by :	Jérôme LUC	Product Manager	10/8/2018	JES
Checked by :	Jérôme LUC	Product Manager	10/8/2018	Jez
Approved by :	Kim RUTKOWSKI	Quality Manager	10/8/2018	thim putthowski

	Customer Name
Distribution :	Shenzhen LCS Compliance Testing Laboratory Ltd.

Issue	Date	Modifications
А	10/8/2018	Initial release

Page: 2/10

COMOSAR E-FIELD PROBE CALIBRATION REPORT

TABLE OF CONTENTS

1	Dev	ce Under Test	
2	Prod	uct Description	
	2.1	General Information	4
3	Mea	surement Method4	
	3.1	Linearity	4
	3.2	Sensitivity	
	3.3	Lower Detection Limit	5
	3.4	Isotropy	5
	3.5	Boundary Effect	5
4	Mea	surement Uncertainty	
5	Cali	oration Measurement Results6	
	5.1	Sensitivity in air	6
	5.2	Linearity	
	5.3	Sensitivity in liquid	7
	5.4	Isotropy	
6	List	of Equipment10	

Page: 3/10

COMOSAR E-FIELD PROBE CALIBRATION REPORT

1 DEVICE UNDER TEST

Device Under Test			
Device Type	COMOSAR DOSIMETRIC E FIELD PROBE		
Manufacturer	MVG		
Model	SSE2		
Serial Number	SN 31/17 EPGO324		
Product Condition (new / used)	New		
Frequency Range of Probe	0.15 GHz-6GHz		
Resistance of Three Dipoles at Connector	Dipole 1: R1=0.189 MΩ		
	Dipole 2: R2=0.203 MΩ		
	Dipole 3: R3=0.218 MΩ		

A yearly calibration interval is recommended.

2 PRODUCT DESCRIPTION

2.1 <u>GENERAL INFORMATION</u>

MVG's COMOSAR E field Probes are built in accordance to the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards.

Figure 1 – *MVG COMOSAR Dosimetric E field Dipole*

Probe Length	330 mm
Length of Individual Dipoles	2 mm
Maximum external diameter	8 mm
Probe Tip External Diameter	2.5 mm
Distance between dipoles / probe extremity	1 mm

3 MEASUREMENT METHOD

The IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards provide recommended practices for the probe calibrations, including the performance characteristics of interest and methods by which to assess their affect. All calibrations / measurements performed meet the fore mentioned standards.

3.1 <u>LINEARITY</u>

The evaluation of the linearity was done in free space using the waveguide, performing a power sweep to cover the SAR range 0.01W/kg to 100W/kg.

Page: 4/10

COMOSAR E-FIELD PROBE CALIBRATION REPORT

3.2 <u>SENSITIVITY</u>

The sensitivity factors of the three dipoles were determined using a two step calibration method (air and tissue simulating liquid) using waveguides as outlined in the standards.

3.3 LOWER DETECTION LIMIT

The lower detection limit was assessed using the same measurement set up as used for the linearity measurement. The required lower detection limit is 10 mW/kg.

3.4 ISOTROPY

The axial isotropy was evaluated by exposing the probe to a reference wave from a standard dipole with the dipole mounted under the flat phantom in the test configuration suggested for system validations and checks. The probe was rotated along its main axis from 0 - 360 degrees in 15 degree steps. The hemispherical isotropy is determined by inserting the probe in a thin plastic box filled with tissue-equivalent liquid, with the plastic box illuminated with the fields from a half wave dipole. The dipole is rotated about its axis (0°–180°) in 15° increments. At each step the probe is rotated about its axis (0°–360°).

3.5 BOUNDARY EFFECT

The boundary effect is defined as the deviation between the SAR measured data and the expected exponential decay in the liquid when the probe is oriented normal to the interface. To evaluate this effect, the liquid filled flat phantom is exposed to fields from either a reference dipole or waveguide. With the probe normal to the phantom surface, the peak spatial average SAR is measured and compared to the analytical value at the surface.

4 MEASUREMENT UNCERTAINTY

The guidelines outlined in the IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty associated with an E-field probe calibration using the waveguide technique. All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

Uncertainty analysis of the probe calibration in waveguide					
ERROR SOURCES	Uncertainty value (%)	Probability Distribution	Divisor	ci	Standard Uncertainty (%)
Incident or forward power	3.00%	Rectangular	$\sqrt{3}$	1	1.732%
Reflected power	3.00%	Rectangular	$\sqrt{3}$	1	1.732%
Liquid conductivity	5.00%	Rectangular	$\sqrt{3}$	1	2.887%
Liquid permittivity	4.00%	Rectangular	$\sqrt{3}$	1	2.309%
Field homogeneity	3.00%	Rectangular	$\sqrt{3}$	1	1.732%
Field probe positioning	5.00%	Rectangular	$\sqrt{3}$	1	2.887%

Page: 5/10

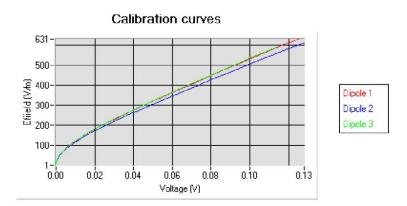
COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.281.2.18.SATU.A

Field probe linearity	3.00%	Rectangular	$\sqrt{3}$	1	1.732%
Combined standard uncertainty					5.831%
Expanded uncertainty 95 % confidence level k = 2					12.0%

5 CALIBRATION MEASUREMENT RESULTS

Calibration Parameters		
Liquid Temperature	21 °C	
Lab Temperature	21 °C	
Lab Humidity	45 %	

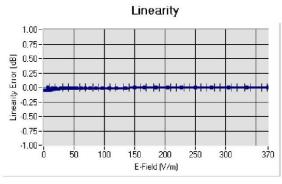

5.1 SENSITIVITY IN AIR

	Normy dipole $2 (\mu V/(V/m)^2)$	Normz dipole 3 $(\mu V/(V/m)^2)$
0.80	0.83	0.68

DCP dipole 1	DCP dipole 2	DCP dipole 3
(mV)	(mV)	(mV)
95	90	93

Calibration curves ei=f(V) (i=1,2,3) allow to obtain H-field value using the formula:

$$E = \sqrt{E_1^2 + E_2^2 + E_3^2}$$


Page: 6/10

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.281.2.18.SATU.A

5.2 LINEARITY

Linearity: I+/-1.13% (+/-0.05dB)

5.3 SENSITIVITY IN LIQUID

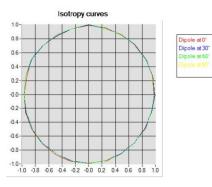
Liquid	<u>Frequency</u> (MHz +/-	Permittivity	Epsilon (S/m)	ConvF
	100MHz)			
HL450	450	42.17	0.86	1.56
BL450	450	57.65	0.95	1.60
HL750	750	40.03	0.93	1.45
BL750	750	56.83	1.00	1.50
HL850	835	42.19	0.90	1.55
BL850	835	54.67	1.01	1.59
HL900	900	42.08	1.01	1.54
BL900	900	55.25	1.08	1.60
HL1800	1800	41.68	1.46	1.65
BL1800	1800	53.86	1.46	1.68
HL1900	1900	38.45	1.45	1.86
BL1900	1900	53.32	1.56	1.93
HL2000	2000	38.26	1.38	1.83
BL2000	2000	52.70	1.51	1.89
HL2300	2300	39.44	1.62	1.95
BL2300	2300	54.52	1.77	2.01
HL2450	2450	37.50	1.80	1.91
BL2450	2450	53.22	1.89	1.95
HL2600	2600	39.80	1.99	1.89
BL2600	2600	52.52	2.23	1.94
HL5200	5200	35.64	4.67	1.50
BL5200	5200	48.64	5.51	1.56
HL5400	5400	36.44	4.87	1.44
BL5400	5400	46.52	5.77	1.47
HL5600	5600	36.66	5.17	1.48
BL5600	5600	46.79	5.77	1.53
HL5800	5800	35.31	5.31	1.50
BL5800	5800	47.04	6.10	1.55

LOWER DETECTION LIMIT: 9mW/kg

Page: 7/10

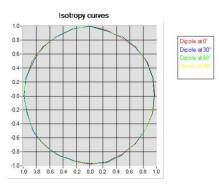
This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

1 nis report snau not de reproaucea except in juii, without the written approval of Snenznen LCS Compliance 1 esting Ladoratory Lta. Page 81 of 146


COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.281.2.18.SATU.A

5.4 <u>ISOTROPY</u>

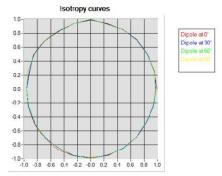

HL900 MHz

- Axial isotropy:	0.05 dB
- Hemispherical isotropy:	0.07 dB

HL1800 MHz

- Axial isotropy:	0.06 dB
- Hemispherical isotropy:	$0.07 \mathrm{dB}$

Page: 8/10


COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.281.2.18.SATU.A

HL5600 MHz

- Axial isotropy:
- Hemispherical isotropy:

0.06 dB 0.10 dB

Page: 9/10

COMOSAR E-FIELD PROBE CALIBRATION REPORT

6 LIST OF EQUIPMENT

Equipment Summary Sheet					
Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date	
Flat Phantom	MVG	SN-20/09-SAM71	Validated. No cal required.	Validated. No cal required.	
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No cal required.	
Network Analyzer	Rhode & Schwarz ZVA	SN100132	02/2016	02/2019	
Reference Probe	MVG	EP 94 SN 37/08	10/2017	10/2019	
Multimeter	Keithley 2000	1188656	01/2017	01/2020	
Signal Generator	Agilent E4438C	MY49070581	01/2017	01/2020	
Amplifier	Aethercomm	SN 046	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.	
Power Meter	HP E4418A	US38261498	01/2017	01/2020	
Power Sensor	HP ECP-E26A	US37181460	01/2017	01/2020	
Directional Coupler	Narda 4216-20	01386	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.	
Waveguide	Mega Industries	069Y7-158-13-712	Validated. No cal required.	Validated. No cal required.	
Waveguide Transition	Mega Industries	069Y7-158-13-701	Validated. No cal required.	Validated. No cal required.	
Waveguide Termination	Mega Industries	069Y7-158-13-701	Validated. No cal required.	Validated. No cal required.	
Temperature / Humidity Sensor	Control Company	150798832	11/2017	11/2020	

Page: 10/10

5.2 SID750Dipole Calibration Ceriticate

SAR Reference Dipole Calibration Report

Ref: ACR.287.3.14.SATU.A

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.

1F., XINGYUAN INDUSTRIAL PARK, TONGDA ROAD, BAO'AN BLVD BAO'AN DISTRICT, SHENZHEN, GUANGDONG, CHINA SATIMO COMOSAR REFERENCE DIPOLE **FREQUENCY: 750 MHZ**

SERIAL NO.: SN 07/14 DIP 0G750-302

Calibrated at SATIMO US 2105 Barrett Park Dr. - Kennesaw, GA 30144

Summary:

This document presents the method and results from an accredited SAR reference dipole calibration performed in SATIMO USA using the COMOSAR test bench. All calibration results are traceable to national metrology institutions.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 85 of 146

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD. FCC ID: 055553719

Report No.: LCS190923017AEB

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.287.3.14.SATU.A

	Name	Function	Date	Signature
Prepared by :	Jérôme LUC	Product Manager	10/14/2018	JES
Checked by :	Jérôme LUC	Product Manager	10/14/2018	JS
Approved by :	Kim RUTKOWSKI	Quality Manager	10/14/2018	thim thirthoushi

	Customer Name
Distribution :	Shenzhen LCS Compliance Testing
Distribution .	Laboratory Ltd.

Issue	Date	Modifications
Α	10/14/2018	Initial release

Page: 2/11

SAR REFERENCE DIPOLE CALIBRATION REPORT

TABLE OF CONTENTS

1	Intro	oduction	
2	Dev	ice Under Test4	
3	Proc	luct Description4	
	3.1	General Information	4
4	Mea	surement Method	
	4.1	Return Loss Requirements	5
	4.2	Mechanical Requirements	
5	Mea	surement Uncertainty	
	5.1	Return Loss	5
	5.2	Dimension Measurement	5
	5.3	Validation Measurement	5
6	Cali	bration Measurement Results	
	6.1	Return Loss and Impedance	6
	6.2	Mechanical Dimensions	6
7	Vali	dation measurement7	
	7.1	Head Liquid Measurement	7
	7.2	SAR Measurement Result With Head Liquid	7
	7.3	Body Liquid Measurement	9
	7.4	SAR Measurement Result With Body Liquid	
8	List	of Equipment	

Page: 3/11

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.287.3.14.SATU.A

1 INTRODUCTION

This document contains a summary of the requirements set forth by the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards.

2 DEVICE UNDER TEST

Device Under Test		
Device Type	COMOSAR 750 MHz REFERENCE DIPOLE	
Manufacturer	Satimo	
Model	SID750	
Serial Number	SN 07/14 DIP 0G750-302	
Product Condition (new / used)	New	

A yearly calibration interval is recommended.

3 PRODUCT DESCRIPTION

3.1 GENERAL INFORMATION

Satimo's COMOSAR Validation Dipoles are built in accordance to the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards. The product is designed for use with the COMOSAR test bench only.

Figure 1 – Satimo COMOSAR Validation Dipole

Page: 4/11

SAR REFERENCE DIPOLE CALIBRATION REPORT

4 MEASUREMENT METHOD

The IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards.

4.1 <u>RETURN LOSS REQUIREMENTS</u>

The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constucted as outlined in the fore mentioned standards.

4.2 MECHANICAL REQUIREMENTS

The IEEE Std. 1528 and CEI/IEC 62209 standards specify the mechanical components and dimensions of the validation dipoles, with the dimensions frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness.

5 MEASUREMENT UNCERTAINTY

All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

5.1 <u>RETURN LOSS</u>

The following uncertainties apply to the return loss measurement:

Frequency band	Expanded Uncertainty on Return Loss
400-6000MHz	0.1 dB

5.2 **DIMENSION MEASUREMENT**

The following uncertainties apply to the dimension measurements:

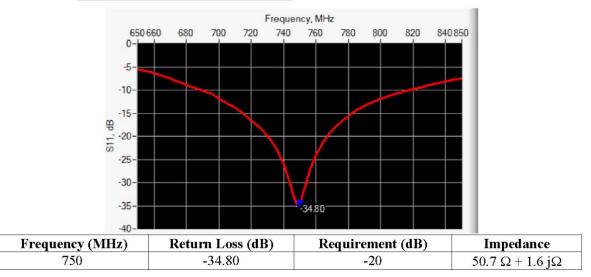
Length (mm)	Expanded Uncertainty on Length
3 - 300	0.05 mm

5.3 VALIDATION MEASUREMENT

The guidelines outlined in the IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty for validation measurements.

Scan Volume	Expanded Uncertainty
1 g	20.3 %
10 g	20.1 %

Page: 5/11



SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.287.3.14.SATU.A

6 CALIBRATION MEASUREMENT RESULTS

6.1 RETURN LOSS AND IMPEDANCE

6.2 MECHANICAL DIMENSIONS

Frequency MHz	Lmm		h mm		d mm	
	required	measured	required	measured	required	measured
300	420.0 ±1 %.		250.0 ±1 %.		6.35 ±1 %.	
450	290.0 ±1 %.		166.7 ±1 %.		6.35 ±1 %.	
750	176.0 ±1 %.	PASS	100.0 ±1 %.	PASS	6.35 ±1 %.	PASS
835	161.0 ±1 %.		89.8±1%.		3.6 ±1 %.	
900	149.0 ±1 %.		83.3±1%.		3.6 ±1 %.	
1450	89.1 ±1 %.		51.7 ±1 %.		3.6 ±1 %.	
1500	80.5 ±1 %.		50.0 ±1 %.		3.6 ±1 %.	
1640	79.0 ±1 %.		45.7 ±1 %.		3.6 ±1 %.	
1750	75.2 ±1 %.		42.9 ±1 %.		3.6 ±1 %.	
1800	72.0 ±1 %.		41.7 ±1 %.		3.6 ±1 %.	
1900	68.0 ±1 %.		39.5 ±1 %.		3.6 ±1 %.	
1950	66.3 ±1 %.		38.5 ±1 %.		3.6 ±1 %.	
2000	64.5 ±1 %.		37.5 ±1 %.		3.6 ±1 %.	
2100	61.0 ±1 %.		35.7 ±1 %.		3.6 ±1 %.	
2300	55.5 ±1 %.		32.6 ±1 %.		3.6 ±1 %.	
2450	51.5 ±1 %.		30.4 ±1 %.		3.6 ±1 %.	
2600	48.5 ±1 %.		28.8±1%.		3.6 ±1 %.	
3000	41.5 ±1 %.		25.0 ±1 %.		3.6 ±1 %.	
3500	37.0±1 %.		26.4 ±1 %.		3.6 ±1 %.	
3700	34.7±1 %.		26.4 ±1 %.		3.6 ±1 %.	

Page: 6/11