

Report No.: BLA-EMC-202008-A12-01

FCC Report (Bluetooth)

Product Name TWS Bluetooth earphones

Trade mark **QCY** Model No. In2029

FCC ID RDR-IN2029

Report Number BLA-EMC-202008-A12-01

Date of sample receipt 2020/8/6

Date of Test 2020/8/6 to 2020/8/20

Date of Issue 2020/8/26

FCC CFR Title 47 Part 15 Subpart C Section Test standard

15.247

Test result **PASS**

Prepared for:

Dongguan Hele Electronics Co., Ltd Dalingya Industrial Zone, Daojiao Town, Dongguan City, Guangdong, China

Prepared by:

BlueAsia of Technical Services(Shenzhen) Co., Ltd.

IOT Test Centre of BlueAsia

No. 448 Bulong Road, Bantian Street, Longgang District, Shenzhen, China

TEL: +86-755-28682673

FAX: +86-755-28682673

Compile by: Review by: Approved by: Date:2020/8/26

BlueAsia of Technical Services(Shenzhen) Co., Ltd.

Report No. : BLA-EMC-202008-A12-01 Page 2 of 52

2 Version

Version No.	Date	Description
00	2020/8/26	Original

Report No.: BLA-EMC-202008-A12-01 Page 3 of 52

3 Contents

	Page
1 COVER PAGE	1
2 VERSION	2
3 CONTENTS	3
4 TEST SUMMARY	4
5 GENERAL INFORMATION	5
5.1 GENERAL DESCRIPTION OF EUT	
6 TEST INSTRUMENTS LIST	8
7 TEST RESULTS AND MEASUREMENT DATA	10
7.1 ANTENNA REQUIREMENT 7.2 CONDUCTED EMISSIONS 7.3 CONDUCTED PEAK OUTPUT POWER 7.4 20DB EMISSION BANDWIDTH 7.5 CARRIER FREQUENCIES SEPARATION 7.6 HOPPING CHANNEL NUMBER 7.7 DWELL TIME 7.8 PSEUDORANDOM FREQUENCY HOPPING SEQUENCE 7.9 BAND EDGE 7.9.1 Conducted Emission Method 7.9.2 Radiated Emission Method 7.10 SPURIOUS EMISSION 7.10.1 Conducted Emission Method 7.10.2 Radiated Emission Method 7.10.2 Radiated Emission Method	
8 TEST SETUP PHOTO	38
9 EUT CONSTRUCTIONAL DETAILS	40
10 APPENDIX	52

Report No. : BLA-EMC-202008-A12-01 Page 4 of 52

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna Requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(1)	Pass
20dB Occupied Bandwidth	15.247 (a)(1)	Pass
Carrier Frequencies Separation	15.247 (a)(1)	Pass
Hopping Channel Number	15.247 (a)(1)	Pass
Dwell Time	15.247 (a)(1)	Pass
Pseudorandom Frequency Hopping Sequence	15.247(b)(4)	Pass
Radiated Emission	15.205/15.209	Pass
Band Edge	15.247(d)	Pass

Pass: The EUT complies with the essential requirements in the standard.

Remark: Test according ANSI C63.10:2013

Measurement Uncertainty

Test Item	Frequency Range	Measurement Uncertainty	Notes
Radiated Emission	9kHz ~ 30MHz	± 4.34dB	(1)
Radiated Emission	30MHz ~ 1000MHz	± 4.24dB	(1)
Radiated Emission	1GHz ~ 26.5GHz	± 4.68dB	(1)
AC Power Line Conducted Emission	0.15MHz ~ 30MHz	± 3.45dB	(1)

Note (1): The measurement uncertainty is for coverage factor of k=2 and a level of confidence of 95%.

Report No.: BLA-EMC-202008-A12-01 Page 5 of 52

5 General Information

5.1 General Description of EUT

Product Name:	TWS Bluetooth earphones
Model No.:	In2029
Test Model No.:	In2029
Serial No.:	N/A
Sample(s) Status	Engineer sample
Hardware:	V1.0
Software:	V1.0
Operation Frequency:	2402MHz-2480MHz
Channel numbers:	79
Channel separation:	1MHz
Modulation type:	GFSK, π/4-DQPSK
Antenna Type:	Internal Antenna
Antenna gain:	0.4dBi
Power supply:	DC 3.7V (battry:0.15WH)

Report No. : BLA-EMC-202008-A12-01 Page 6 of 52

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	21	2422MHz	41	2442MHz	61	2462MHz
2	2403MHz	22	2423MHz	42	2443MHz	62	2463MHz
3	2404MHz	23	2424MHz	43	2444MHz	63	2464MHz
4	2405MHz	24	2425MHz	44	2445MHz	64	2465MHz
5	2406MHz	25	2426MHz	45	2446MHz	65	2466MHz
6	2407MHz	26	2427MHz	46	2447MHz	66	2467MHz
7	2408MHz	27	2428MHz	47	2448MHz	67	2468MHz
8	2409MHz	28	2429MHz	48	2449MHz	68	2469MHz
9	2410MHz	29	2430MHz	49	2450MHz	69	2470MHz
10	2411MHz	30	2431MHz	50	2451MHz	70	2471MHz
11	2412MHz	31	2432MHz	51	2452MHz	71	2472MHz
12	2413MHz	32	2433MHz	52	2453MHz	72	2473MHz
13	2414MHz	33	2434MHz	53	2454MHz	73	2474MHz
14	2415MHz	34	2435MHz	54	2455MHz	74	2475MHz
15	2416MHz	35	2436MHz	55	2456MHz	75	2476MHz
16	2417MHz	36	2437MHz	56	2457MHz	76	2477MHz
17	2418MHz	37	2438MHz	57	2458MHz	77	2478MHz
18	2419MHz	38	2439MHz	58	2459MHz	78	2479MHz
19	2420MHz	39	2440MHz	59	2460MHz	79	2480MHz
20	2421MHz	40	2441MHz	60	2461MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2441MHz
The Highest channel	2480MHz

Report No. : BLA-EMC-202008-A12-01 Page 7 of 52

5.2 Test mode

Transmitting mode

Keep the EUT in continuously transmitting mode with modulation. (hopping or non hopping mode,non hopping mode is worse case for RE.)

Remark: During the test, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

Full battery is used during all test except ac conducted emission, DH1, DH3, DH5 all have been tested, during the test, GFSK, Pi/4QPSK modulation were all pre-scanned only worse case is reported.

5.3 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC — Designation No.: CN1252

BlueAsia of Technical Services(Shenzhen) Co., Ltd has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files. Designation CN1252.

•ISED — CAB identifier No.: CN0028

BlueAsia of Technical Services(Shenzhen) Co., Ltd has been registered by Certification and Engineering Bureau of ISED for radio equipment testing with CAB identifier CN0028

5.4 Test Location

All tests were performed at:

All tests were performed at:

BlueAsia of Technical Services(Shenzhen) Co., Ltd.

IOT Test Centre of BlueAsia

No. 448 Bulong Road, Bantian Street, Longgang District, Shenzhen, China

Telephone: TEL: +86-755-28682673 FAX: +86-755-28682673

No tests were sub-contracted.

5.5 Other Information Requested by the Customer

None.

5.6 Description of Support Units

Manufacturer	Description	Model	Serial Number
UGREEN	Adapter	CD112	20358
Lenovo	Notebook computer	E470C	PF-10FB5C

BlueAsia of Technical Services(Shenzhen) Co., Ltd.

IOT Test Centre of BlueAsia,No. 448 Bulong Road, Bantian Street, Longgang District, Shenzhen, China Telephone: TEL: +86-755-28682673 FAX: +86-755-28682673

Report No.: BLA-EMC-202008-A12-01 Page 8 of 52

6 Test Instruments list

Radi	ated Emission:					
ltem	Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	3m SAC	SKET	9m*6 m*6m	966	06-10-2018	06-09-2023
2				00836	07-13-2019	07-12-2020
	Broadband Antenna	SCHWARZBECK	VULB9168	P:00227	07-13-2020	07-12-2021
3			0.4000	01892	07-13-2019	07-12-2020
J	Horn Antenna	SCHWARZBECK	9120D	P:00331	07-13-2020	07-12-2021
4	EMI Test Software	EZ	EZ	N/A	N/A	N/A
_					07-13-2019	07-12-2020
5	Pre-amplifier	SKET	N/A	N/A	07-13-2020	07-12-2021
6					07-13-2019	07-12-2020
0	Spectrum analyzer	Rohde & Schwarz	FSP40	100817	07-13-2020	07-12-2021
7					07-13-2019	07-12-2020
,	EMI Test Receiver	Rohde & Schwarz	ESR7	101199	07-13-2020	07-12-2021
8	Controller	SKET	N/A	N/A	N/A	N/A
9	Vector Signal Generator	Agilent	E4438C	MY45092582	05-24-2020	05-23-2021
10	Signal Generator	Agilent	E8257D	MY44320250	05-24-2020	05-23-2021
11	Coaxial Cable	BlueAsia	BLA-XC-02	N/A	N/A	N/A
12	Coaxial Cable	BlueAsia	BLA-XC-03	N/A	N/A	N/A
13	Coaxial Cable	BlueAsia	BLA-XC-01	N/A	N/A	N/A

Report No. : BLA-EMC-202008-A12-01 Page 9 of 52

Conducted Emission						
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	EMI Test Receiver	Rohde & Schwarz	ESPI3	101082	06-10-2020	06-09-2021
2	LISN	CHASE	MN2050D	1447	06-10-2020	06-09-2021
3	LISN	Rohde & Schwarz	ENV216	3560.6550.15	06-10-2020	06-09-2021
4	EMI Test Software	EZ	EZ	N/A	N/A	N/A
5	Temperature Humidity Chamber	Mingle	TH101B	N/A	07-19-2019	07-18-2020
	Grianibei				07-19-2020	07-18-2021
6	Coaxial Cable	BlueAsia	BLA-XC-05	N/A	N/A	N/A

RF Conducted Test:						
ltem	Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	Spectrum Analyzer	Agilent	N9030A	MY50510123	05-24-2020	05-23-2021
2	Spectrum analyzer	Rohde & Schwarz	FSP40	100817	05-24-2020	05-23-2021
3	MXA Signal Analyzer	Agilent	N9020A	MY49100060	12-18-2019	12-17-2020
4	Vector Signal Generator	Agilent	N5182A	MY49060650	12-18-2019	12-17-2020
5	Vector Signal Generator	Agilent	E4438C	MY45092582	05-24-2020	05-23-2021
6	Signal Generator	Agilent	E8257D	MY44320250	05-24-2020	05-23-2021
7	Power Sensor	D.A.R.E	RPR3006W	17I00015SNO27	05-24-2020	05-23-2021
8	Power Sensor	D.A.R.E	RPR3006W	17I00015SNO28	05-24-2020	05-23-2021
9	DC Power Supply		LP305DE	N/A	07-19-2019	07-18-2020
<i>9</i>	23 i awai auppiy	LODESTAR		14// 1	07-19-2020	07-18-2021
10	Temperature Humidity Chamber	Mingle	TH101B	N/A	07-19-2019	07-18-2020
					07-19-2020	07-18-2021

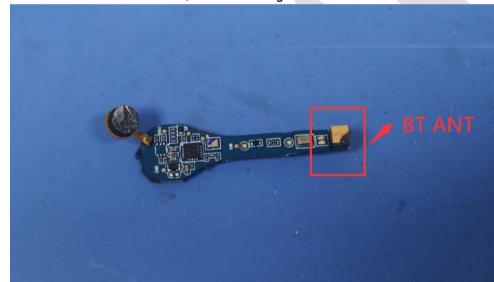
Report No. : BLA-EMC-202008-A12-01 Page 10 of 52

7 Test results and Measurement Data

7.1 Antenna requirement

Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:


An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The antenna is PCB antenna, the best case gain of the antenna is 0.4dBi

BlueAsia of Technical Services(Shenzhen) Co., Ltd.

IOT Test Centre of BlueAsia,No. 448 Bulong Road, Bantian Street, Longgang District, Shenzhen, China Telephone: TEL: +86-755-28682673 FAX: +86-755-28682673

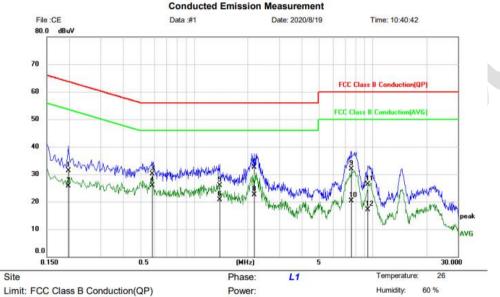
Report No. : BLA-EMC-202008-A12-01 Page 11 of 52

7.2 Conducted Emissions

Test Requirement:	FCC Part15 C Section 15.207					
Test Method:	ANSI C63.10:2013					
	150KHz to 30MHz					
Test Frequency Range:						
Class / Severity:	Class B					
Receiver setup:	RBW=9KHz, VBW=30KHz, Sv	· · · · · · · · · · · · · · · · · · ·				
Limit:	Frequency range (MHz)	Limit (c				
	Quasi-peak Average 0.15-0.5 66 to 56* 56 to 46*					
	0.15-0.5	56	46			
	5-30	60	50			
	* Decreases with the logarithm	n of the frequency.				
Test setup:	Reference Plane					
	AUX Filter AC power Equipment E.U.T Test table/Insulation plane Remark: E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m					
Test procedure:	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10:2013 on conducted measurement. 					
Test Instruments:	Refer to section 6.0 for details					
Test mode:	Refer to section 5.2 for details	i				
Test results:	Pass					

Measurement data:

Report No.: BLA-EMC-202008-A12-01 Page 12 of 52


Line:

EUT: Probe: L1 TWS Bluetooth earphones

Model: **Power Source:** AC120V/60Hz In2029

Mode: BT mode Test by: Eason

26°C/60%RH Temp./Hum.(%H):

EUT: TWS Bluetooth earphones

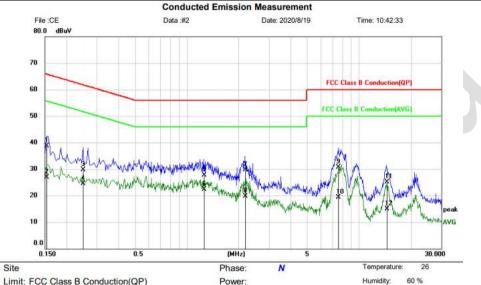
M/N: In2029 Mode: charging mode

Note:

No.	Mk.	Freq.	Reading Level	Correct	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1980	21.45	9.87	31.32	63.69	-32.37	QP	
2		0.1980	15.78	9.87	25.65	53.69	-28.04	AVG	
3		0.5820	20.42	9.74	30.16	56.00	-25.84	QP	
4		0.5820	16.16	9.74	25.90	46.00	-20.10	AVG	
5		1.3940	16.06	9.83	25.89	56.00	-30.11	QP	
6		1.3940	10.93	9.83	20.76	46.00	-25.24	AVG	
7		2.1700	22.66	9.82	32.48	56.00	-23.52	QP	
8		2.1700	12.73	9.82	22.55	46.00	-23.45	AVG	
9		7.5940	21.96	9.86	31.82	60.00	-28.18	QP	
10		7.5940	10.37	9.86	20.23	50.00	-29.77	AVG	
11		9.3900	16.29	9.93	26.22	60.00	-33.78	QP	
12		9.3900	7.13	9.93	17.06	50.00	-32.94	AVG	

BlueAsia of Technical Services(Shenzhen) Co., Ltd.

Report No.: BLA-EMC-202008-A12-01 Page 13 of 52


Neutral:

EUT: TWS Bluetooth earphones Probe: N

Model: In2029 Power Source: AC120V/60Hz

Mode: BT mode Test by: Eason

Temp./Hum.(%H): 26 °C/60%RH

EUT: TWS Bluetooth earphones

M/N: In2029 Mode: charging mode

Note:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1539	28.74	9.88	38.62	65.79	-27.17	QP	
2		0.1539	16.99	9.88	26.87	55.79	-28.92	AVG	
3		0.2500	19.80	9.84	29.64	61.76	-32.12	QP	
4		0.2500	14.59	9.84	24.43	51.76	-27.33	AVG	
5		1.2620	17.88	9.83	27.71	56.00	-28.29	QP	
6	*	1.2620	12.56	9.83	22.39	46.00	-23.61	AVG	
7		2.1860	19.85	9.86	29.71	56.00	-26.29	QP	
8		2.1860	9.92	9.86	19.78	46.00	-26.22	AVG	
9		7.5940	20.82	9.85	30.67	60.00	-29.33	QP	
10	1	7.5940	9.47	9.85	19.32	50.00	-30.68	AVG	
11		14.5140	15.15	10.01	25.16	60.00	-34.84	QP	
12		14.5140	4.99	10.01	15.00	50.00	-35.00	AVG	

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level +Correct Factor
- 4. Correct Factor = LISN Factor + Cable Loss

BlueAsia of Technical Services(Shenzhen) Co., Ltd.

Report No. : BLA-EMC-202008-A12-01 Page 14 of 52

7.3 Conducted Peak Output Power

Test Requirement:	FCC Part15 C Section 15.247 (b)(3)
Test Method:	ANSI C63.10:2013
Limit:	21dBm(for GFSK),21dBm(for EDR)
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test results:	Pass

Measurement Data

Reference to the AppendixC: Maximum conducted output power

Report No. : BLA-EMC-202008-A12-01 Page 15 of 52

7.4 20dB Emission Bandwidth

Test Requirement:	FCC Part15 C Section 15.247 (a)(2)
Test Method:	ANSI C63.10:2013
Limit:	N/A
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test results:	Pass

Measurement Data

Reference to the AppendixA: 20dBEmission Bandwidth

Report No. : BLA-EMC-202008-A12-01 Page 16 of 52

7.5 Carrier Frequencies Separation

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)
Test Method:	ANSI C63.10:2013
Receiver setup:	RBW=100KHz, VBW=300KHz, detector=Peak
Limit:	GFSK & Pi/4QPSK : 0.025MHz or 2/3 of the 20dB bandwidth (whichever is greater)
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test results:	Pass

Measurement Data

Reference to the AppendixD: Carrier frequency separation

Report No. : BLA-EMC-202008-A12-01 Page 17 of 52

7.6 Hopping Channel Number

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)
Test Method:	ANSI C63.10:2013
Receiver setup:	RBW=100kHz, VBW=300kHz, Frequency range=2400MHz-2483.5MHz, Detector=Peak
Limit:	15 channels
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test results:	Pass

Measurement Data:

Reference to the AppendixF: Number of hopping channels

Report No. : BLA-EMC-202008-A12-01 Page 18 of 52

7.7 Dwell Time

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)
Test Method:	ANSI C63.10:2013
Receiver setup:	RBW=1MHz, VBW=1MHz, Span=0Hz, Detector=Peak
Limit:	0.4 Second
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test results:	Pass

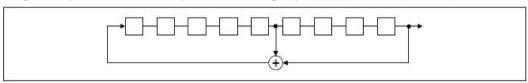
Measurement Data

Reference to the AppendixE: Time of occupancy

Report No.: BLA-EMC-202008-A12-01 Page 19 of 52

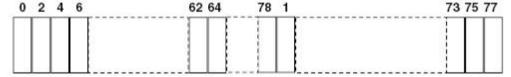
7.8 Pseudorandom Frequency Hopping Sequence

Test Requirement: FCC Part15 C Section 15.247 (a)(1) requirement:


Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Alternatively. Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

EUT Pseudorandom Frequency Hopping Sequence


The pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

- Number of shift register stages: 9
- Length of pseudo-random sequence: 29-1 = 511 bits
- Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

An example of Pseudorandom Frequency Hopping Sequence as follow:

Each frequency used equally on the average by each transmitter.

The system receivers have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

BlueAsia of Technical Services(Shenzhen) Co., Ltd.

Report No. : BLA-EMC-202008-A12-01 Page 20 of 52

7.9 Band Edge

7.9.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)
Test Method:	ANSI C63.10:2013
Receiver setup:	RBW=100kHz, VBW=300kHz, Detector=Peak
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test results:	Pass

Measurement Data

Reference to the AppendixG:Band edge measurements

BlueAsia of Technical Services(Shenzhen) Co., Ltd.

IOT Test Centre of BlueAsia,No. 448 Bulong Road, Bantian Street, Longgang District, Shenzhen, China Telephone: TEL: +86-755-28682673 FAX: +86-755-28682673 Email:marketing@cblueasia.com

Report No. : BLA-EMC-202008-A12-01 Page 21 of 52

7.9.2 Radiated Emission Method

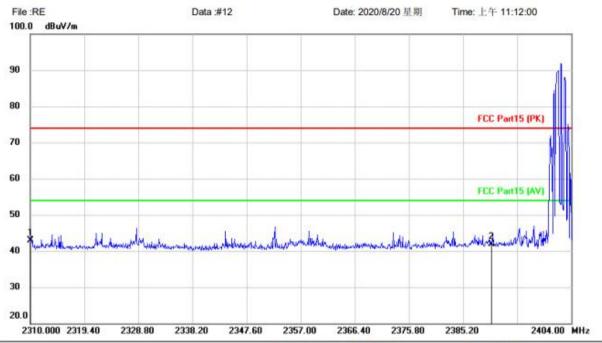
7.9.2 Radiated Emission We	tilou				
Test Requirement:	FCC Part15 C S	Section 15.209	and 15.205		
Test Method:	ANSI C63.10:20	013			
Test Frequency Range:	All restriction ba 2483.5MHz to 2				2390MHz,
Test site:	Measurement D	istance: 3m			
Receiver setup:	Frequency	Detector	RBW	VBW	Remark
	Above 1GHz	Peak	1MHz	3MHz	Peak Value
Limit:	Freque	Peak	1MHz Limit (dBuV/	10Hz /m @3m)	Average Value Remark
Lime		-	54.0		Average Value
	Above 1	IGHZ	74.0	0	Peak Value
	Turn Table	< 31 EUT-	Test Antenna < 1m 4m >	?	
Test Procedure:	ground at a 3 determine the 2. The EUT was antenna, whi tower. 3. The antenna ground to deshorizontal an measurement 4. For each sus and then the and the rotal maximum reasonable 5. The test-recesspecified Bares 6. If the emission limit specified EUT would be 10dB margin.	a meter cambe e position of the set 3 meters che was mount height is varied termine the made vertical polant. Spected emission antenna was table was turn ading. Ever system would be not be level of the d, then testing the position of the design of the ported. Other testing the position of the position	er. The table was away from the don the toped from one maximum valued in the toped from 0 decreased from 0 decreased from the EUT in peak could be stoped ested one by	was rotated diation. The interference of a variable of the field the antenna was arrangents from 1 regrees to 360 km Detect Full Mode. The mode was apped and the missions the one using proper sections of the diation of the mode was a solution of the missions the mode using proper section.	r meters above the distrength. Both are set to make the ed to its worst case meter to 4 meters 0 degrees to find the function and 10dB lower than the ne peak values of the nat did not have peak, quasi-peak or
Test Instruments:	Refer to section	6.0 for details	3		
Test mode:	Refer to section	5.2 for details	3		
Test results:	Pass				

BlueAsia of Technical Services(Shenzhen) Co., Ltd.

IOT Test Centre of BlueAsia,No. 448 Bulong Road, Bantian Street, Longgang District, Shenzhen, China Telephone: TEL: +86-755-28682673 FAX: +86-755-28682673

Report No.: BLA-EMC-202008-A12-01

Page 22 of 52


Remark:

1. During the test, pre-scan the GFSK, Pi/4QPSK modulation, and found the Pi/4QPSK modulation which it is worse case

Test channel: Lowest

Peak value:

Radiated Emission Measurement

Site

Limit: FCC Part15 (PK)

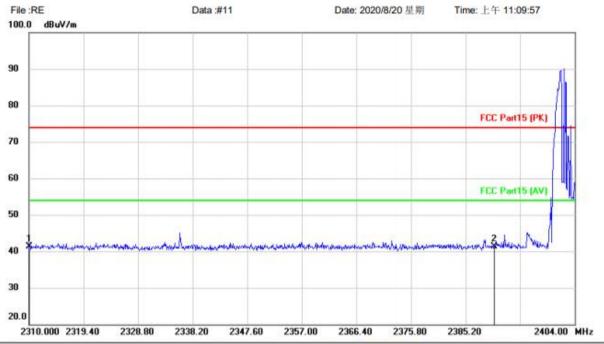
EUT: TWS Bluetooth earphones

M/N: In2029 Mode: TX-L Note: Polarization: Vertical Temperature:

Power: Humidity:

Distance: 3m

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	1000	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	*	2310.000	57.27	-14.30	42.97	74.00	-31.03	peak			
2		2390.000	55.82	-13.95	41.87	74.00	-32.13	peak			


BlueAsia of Technical Services(Shenzhen) Co., Ltd.

Report No.: BLA-EMC-202008-A12-01

Page 23 of 52

Radiated Emission Measurement

Site Polarization: Horizontal Temperature:

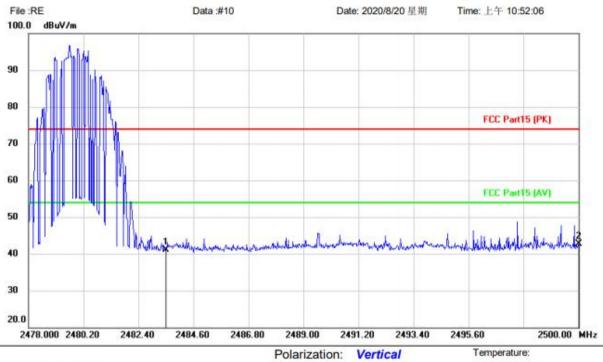
Limit: FCC Part15 (PK) Power: Humidity: 9

EUT: TWS Bluetooth earphones Distance: 3m

M/N: In2029 Mode: TX-L

Note:

No. Mk	. Freq.	_	Correct Factor	Measure- ment	Limit	Over		Antenna Height	2000 12-11-11-11	
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	2310.000	55.29	-14.01	41.28	74.00	-32.72	peak			
2 *	2390.000	54.93	-13.62	41.31	74.00	-32.69	peak			



Page 24 of 52 Report No.: BLA-EMC-202008-A12-01

Test channel: Highest

Peak value:

Radiated Emission Measurement

Humidity:

Site

Limit: FCC Part15 (PK)

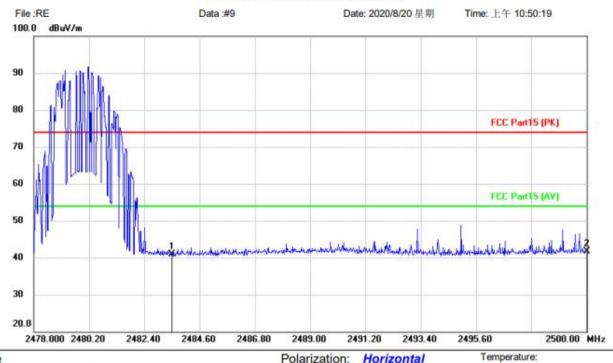
EUT: TWS Bluetooth earphones

M/N: In2029 Mode: TX-H

Note:

No. Mk	. Freq.		Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	2483.500	54.52	-13.50	41.02	74.00	-32.98	peak			
2 *	2500.000	56.16	-13.42	42.74	74.00	-31.26	peak			

Power:


Distance: 3m

Report No.: BLA-EMC-202008-A12-01

Page 25 of 52

Radiated Emission Measurement

Site Limit: FCC Part15 (PK)

EUT: TWS Bluetooth earphones

M/N: In2029 Mode: TX-H

Note:

(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)			
Power:	Humidity:	%	
D: 1 3m			

Distance: 3m

No. Mk. Fr	Freq.		Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		2483.500	54.09	-13.11	40.98	74.00	-33.02	peak			
2		2500.000	54.69	-13.02	41.67	74.00	-32.33	peak			

Remark:

- 1. Final Level =Receiver Read level + Correct factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 3. Correct factor= Antenna Factor + Cable Loss Preamplifier Factor

Report No.: BLA-EMC-202008-A12-01 Page 26 of 52

7.10 Spurious Emission

7.10.1 Conducted Emission Method

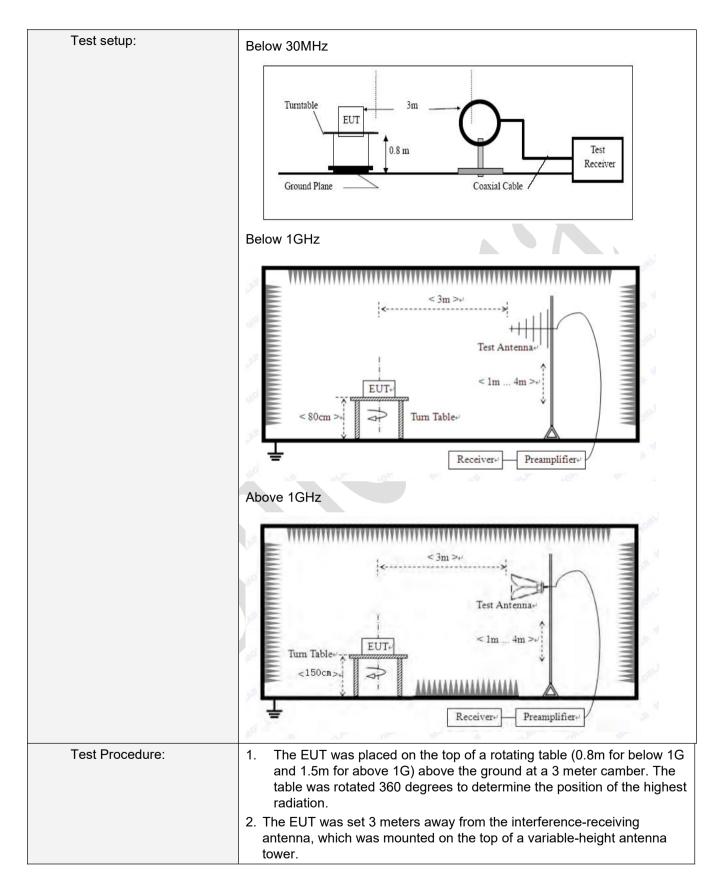
Test Requirement:	FCC Part15 C Section 15.247 (d)
Test Method:	ANSI C63.10:2013
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test results:	Pass

Measurement Data

Reference to the AppendixH:Conducted SpuriousEmission

BlueAsia of Technical Services(Shenzhen) Co., Ltd.

IOT Test Centre of BlueAsia,No. 448 Bulong Road, Bantian Street, Longgang District, Shenzhen, China Telephone: TEL: +86-755-28682673 FAX: +86-755-28682673 Email:marketing@cblueasia.com


Report No. : BLA-EMC-202008-A12-01 Page 27 of 52

7.10.2 Radiated Emission Method

Test Requirement:	FCC Part15 C Secti	on 15	5.209				
Test Method:	ANSI C63.10:2013						
Test Frequency Range:	9kHz to 25GHz						
Test site:	Measurement Distar	nce: (3m				
Receiver setup:	Frequency		Detector	RB	W	VBW	Value
	9KHz-150KHz	Qι	uasi-peak	200	Hz	600Hz	z Quasi-peak
	150KHz-30MHz	Qι	uasi-peak	9KI	Ηz	30KH:	z Quasi-peak
	30MHz-1GHz	Qι	uasi-peak	120k	ίΗz	300KH	z Quasi-peak
	Above 1GHz		Peak	1MI	Ηz	3MHz	Peak
	Above 1G112		Peak	1MI	Ηz	10Hz	Average
Limit: (Spurious Emissions)	Frequency		Limit (u\	//m)	V	′alue	Measurement Distance
	0.009MHz-0.490M	lHz	2400/F(F	(Hz)		QP	300m
	0.490MHz-1.705M	lHz	24000/F(KHz)		QP	30m
	1.705MHz-30MH	lz	30			QP	30m
	30MHz-88MHz		100			QP	
	88MHz-216MHz	<u>z</u>	150			QP	
	216MHz-960MH	Z	200			QP	3m
	960MHz-1GHz		500			QP	OIII
	Above 1GHz		500		Av	erage	
	ABOVE TOTIZ		5000)	F	Peak	
Limit: (band edge)	Emissions radiated harmonics, shall be fundamental or to the whichever is the less	atten e gei	uated by at neral radiat	t least :	50 dĒ	B below t	the level of the

Report No. : BLA-EMC-202008-A12-01 Page 28 of 52

BlueAsia of Technical Services(Shenzhen) Co., Ltd.

Report No.: BLA-EMC-202008-A12-01 Page 29 of 52

	3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
	4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.
	5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test results:	Pass

Measurement data:

Remark:

- 1. During the test, pre-scan the GFSK, Pi/4QPSK modulation, and found the Pi/4QPSK modulation which it is worse case.
- 2. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.
- 3. no emission found above 13G,so only show plots below13G

■ 9 kHz ~ 30 MHz

The low frequency, which started from 9 kHz to 30 MHz, was pre-scanned and the result which was 20 dB lower than the limit line per 15.31(o) was not reported.

Page 30 of 52 Report No.: BLA-EMC-202008-A12-01

Below 1GHz

Horizontal EUT: Polarziation: TWS Bluetooth earphones

AC120V/60Hz Model: **Power Source:** In2029

BT mode Eason Mode: Test by:

26°C/60%RH Temp./Hum.(%H):

Note:

File:RE Data:#8 Date: 2020/8/19 星期 Time: 下午 5:55:59 70.0 dBuV/m 60 50 40 30 10

Radiated Emission Measurement

Site Limit: FCC Part15 Class B

EUT: TWS Bluetooth earphones

M/N: In2029 Mode: BT mode

-10 30.000

Note:

										FCC F	art15	Class B		
ganerore.	destroi	1 Farman	Marya		Z. Company	hand hand	and the same of th	and any demonstrate of the same	and the state of t	Market Spirit	jaygaddiri	, Sand	unghringkil	
				wego/wyle										
40	50	60	70	80		(MHz)		300	400	500	600	700	1000.	000
15 Cla	iss B					Polariza Power:	tion:	Horizontal			nperati nidity:	ure: %	, ,	

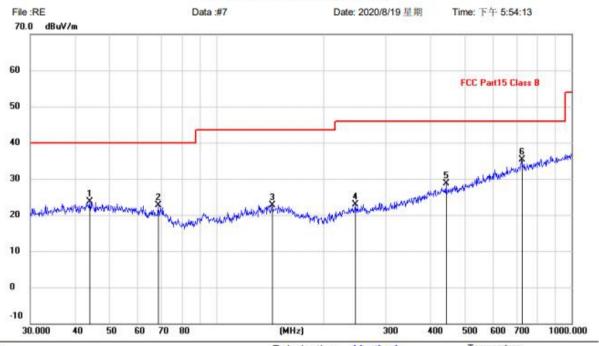
Distance: 3m

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		56.1974	-0.30	23.58	23.28	40.00	-16.72	QP			
2		97.1148	1.35	20.12	21.47	43.50	-22.03	QP			
3	1	141.3298	0.05	23.09	23.14	43.50	-20.36	QP			
4		243.3772	-0.06	22.93	22.87	46.00	-23.13	QP			
5		375.9385	0.62	26.23	26.85	46.00	-19.15	QP			
6	*	719.1995	1.76	33.13	34.89	46.00	-11.11	QP			

BlueAsia of Technical Services(Shenzhen) Co., Ltd.

Report No.: BLA-EMC-202008-A12-01 Page 31 of 52

EUT: Haylou Wireless Earbuds Polarziation: Vertical


Model: Power Source: AC120V/60Hz

Mode: BT mode Test by: Eason

Temp./Hum.(%H): 26 °C/60 %RH

Note:

Radiated Emission Measurement

Limit: FCC Part15 Class B

EUT: TWS Bluetooth earphones

M/N: In2029 Mode: BT mode

Note:

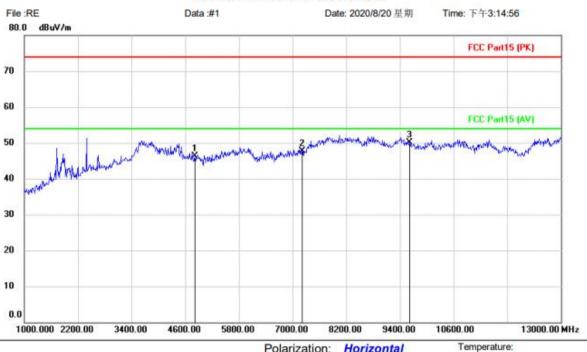
Polarization: Vertical Temperature:
Power: Humidity:

Distance: 3m

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		44.1202	-0.38	24.13	23.75	40.00	-16.25	QP			
2		68.6310	1.38	21.26	22.64	40.00	-17.36	QP			
3	Y	143.3261	-0.31	23.08	22.77	43.50	-20.73	QP			
4		246.8149	0.07	22.93	23.00	46.00	-23.00	QP			
5	- 4	443.2943	0.78	27.88	28.66	46.00	-17.34	QP			
6	*	721.7259	2.20	33.17	35.37	46.00	-10.63	QP			

BlueAsia of Technical Services(Shenzhen) Co., Ltd.

Report No.: BLA-EMC-202008-A12-01


Page 32 of 52

Above 1GHz

Test channel: Lowest

Peak value:

Radiated Emission Measurement

Site

Note:

Limit: FCC Part15 (PK)

EUT: TWS Bluetooth earphones

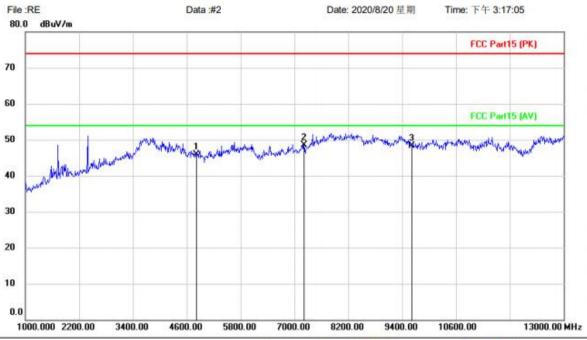
M/N: In2029 Mode: TX-L

Polarization: Horizontal

Power:

Humidity:

Distance: 3m


M	c. Freq	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	4808.32	8 50.79	-4.56	46.23	74.00	-27.77	peak			
2	7206.00	0 49.65	-2.02	47.63	74.00	-26.37	peak			
3 *	9608.00	0 49.55	0.62	50.17	74.00	-23.83	peak			

Report No.: BLA-EMC-202008-A12-01

Page 33 of 52

Radiated Emission Measurement

Site

Limit: FCC Part15 (PK)

EUT: TWS Bluetooth earphones

M/N: In2029 Mode: TX-L Note:

Polarization:	Vertical	Temperature:
Power:		Humidity:

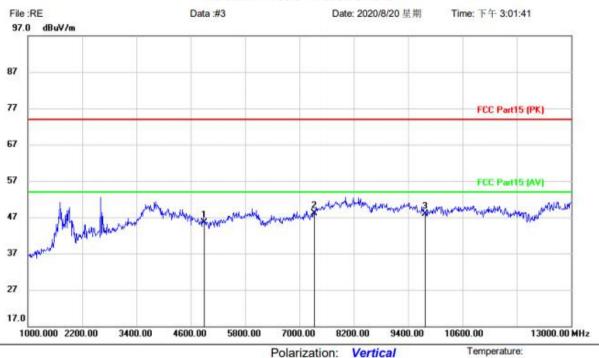
Distance: 3m

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		4808.328	50.44	-4.56	45.88	74.00	-28.12	peak			
2	*	7206.000	50.71	-2.27	48.44	74.00	-25.56	peak			
3		9608.000	47.51	0.81	48.32	74.00	-25.68	peak			

Remark:

- 1. Final Level =Receiver Read level + Correct factor
- 2. Correct factor = Antenna Factor + Cable Loss Preamplifier Factor
- 3. "*", means this data is the too weak instrument of signal is unable to test.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.

BlueAsia of Technical Services(Shenzhen) Co., Ltd.



Report No. : BLA-EMC-202008-A12-01 Page 34 of 52

Test channel: Middle

Peak value:

Radiated Emission Measurement

Humidity:

Site

Limit: FCC Part15 (PK)

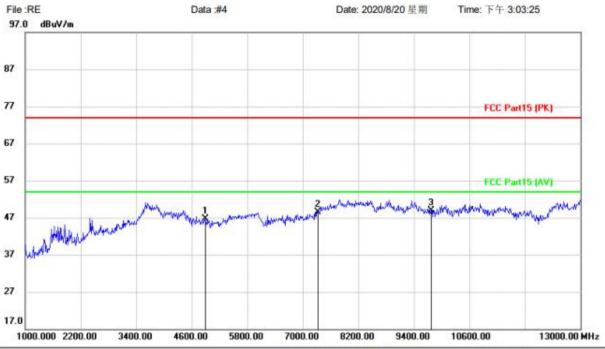
EUT: TWS Bluetooth earphones

M/N: In2029 Mode: TX-M

Note:

No. Mk. Freq.		Reading Level	Correct Factor	Measure- ment	Limit	Over			113	
	MHz dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment	
	4883.767	50.63	-5.08	45.55	74.00	-28.45	peak			
*	7323.000	49.56	-1.48	48.08	74.00	-25.92	peak			
	9764.000	47.00	0.91	47.91	74.00	-26.09	peak			
	*	MHz 4883.767	Mk. Freq. Level MHz dBuV 4883.767 50.63 * 7323.000 49.56	Mk. Freq. Level Factor MHz dBuV dB 4883.767 50.63 -5.08 * 7323.000 49.56 -1.48	Mk. Freq. Level Factor ment MHz dBuV dB dBuV/m 4883.767 50.63 -5.08 45.55 * 7323.000 49.56 -1.48 48.08	Mk. Freq. Level Factor ment Limit MHz dBuV dB dBuV/m dBuV/m 4883.767 50.63 -5.08 45.55 74.00 * 7323.000 49.56 -1.48 48.08 74.00	Mk. Freq. Level Factor ment Limit Over MHz dBuV dB dBuV/m dBuV/m dB 4883.767 50.63 -5.08 45.55 74.00 -28.45 * 7323.000 49.56 -1.48 48.08 74.00 -25.92	Mk. Freq. Level Factor ment Limit Over MHz dBuV dB dBuV/m dBuV/m dB Detector 4883.767 50.63 -5.08 45.55 74.00 -28.45 peak * 7323.000 49.56 -1.48 48.08 74.00 -25.92 peak	Mk. Freq. Level Factor ment Limit Over Height MHz dBuV dB dBuV/m dBuV/m dB Detector cm 4883.767 50.63 -5.08 45.55 74.00 -28.45 peak * 7323.000 49.56 -1.48 48.08 74.00 -25.92 peak	Mk. Freq. Level Factor ment Limit Over Height Degree MHz dBuV dB dBuV/m dB uV/m dB Detector cm degree 4883.767 50.63 -5.08 45.55 74.00 -28.45 peak * 7323.000 49.56 -1.48 48.08 74.00 -25.92 peak

Power:


Distance: 3m

Report No.: BLA-EMC-202008-A12-01

Page 35 of 52

Radiated Emission Measurement

Site Limit: FCC Part15 (PK)

EUT: TWS Bluetooth earphones

M/N: In2029 Mode: TX-M

Note:

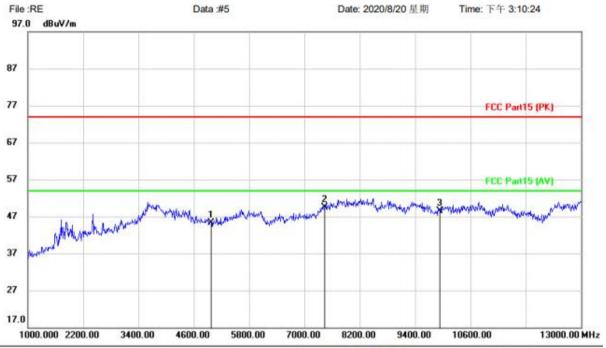
Polarization:	Horizontal	Temperature:			
Power:		Humidity:			

Distance: 3m

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		4883.767	51.81	-5.08	46.73	74.00	-27.27	peak			
2		7323.000	49.79	-1.34	48.45	74.00	-25.55	peak			
3	*	9764.000	47.96	0.94	48.90	74.00	-25.10	peak			

- 1. Final Level =Receiver Read level + Correct facto
- 2. Correct factor = Antenna Factor + Cable Loss Preamplifier Factor
- 3. "*", means this data is the too weak instrument of signal is unable to test.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.

BlueAsia of Technical Services(Shenzhen) Co., Ltd.



Report No.: BLA-EMC-202008-A12-01 Page 36 of 52

Test channel: Highest

Peak value:

Radiated Emission Measurement

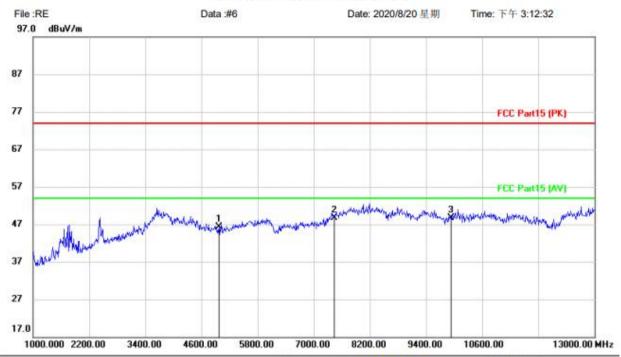
Site Limit: FCC Part15 (PK)

EUT: TWS Bluetooth earphones

M/N: In2029 Mode: TX-H Note:

Temperature: Polarization: Vertical Power: Humidity:

Distance: 3m


No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		4960.338	50.08	-4.84	45.24	74.00	-28.76	peak			
2	*	7440.000	50.64	-1.07	49.57	74.00	-24.43	peak			
3		9920.000	47.08	1.42	48.50	74.00	-25.50	peak			

Report No.: BLA-EMC-202008-A12-01

Page 37 of 52

Radiated Emission Measurement

Site Limit: FCC Part15 (PK)

EUT: TWS Bluetooth earphones

M/N: In2029 Mode: TX-H

Note:

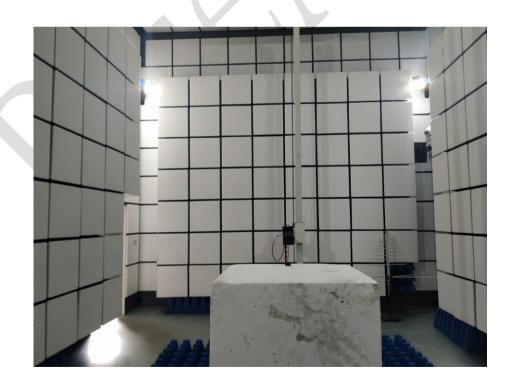
Polarization:	Horizontal	Temperature:			
Power:		Humidity:	0		

Distance: 3m

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		4960.338	51.07	-4.84	46.23	74.00	-27.77	peak			
2	*	7440.000	49.31	-0.56	48.75	74.00	-25.25	peak			
3		9920.000	47.34	1.30	48.64	74.00	-25.36	peak			

Remark:


- 1. Final Level =Receiver Read level + Correct factor
- 2. Correct factor = Antenna Factor + Cable Loss Preamplifier Factor
- 3. "*", means this data is the too weak instrument of signal is unable to test.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.



Report No. : BLA-EMC-202008-A12-01 Page 38 of 52

8 Test Setup Photo

Radiated Emission

Report No. : BLA-EMC-202008-A12-01 Page 39 of 52

Conducted Emission

Report No. : BLA-EMC-202008-A12-01 Page 40 of 52

9 EUT Constructional Details

Report No. : BLA-EMC-202008-A12-01 Page 41 of 52

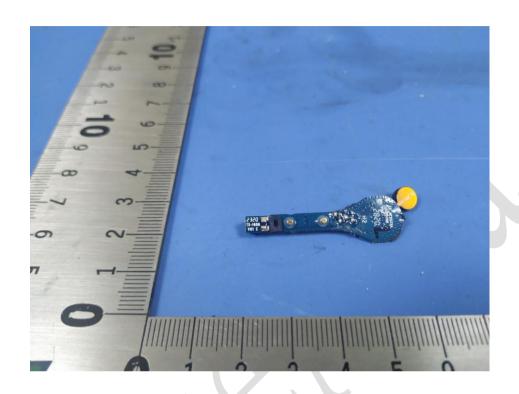
Page 42 of 52

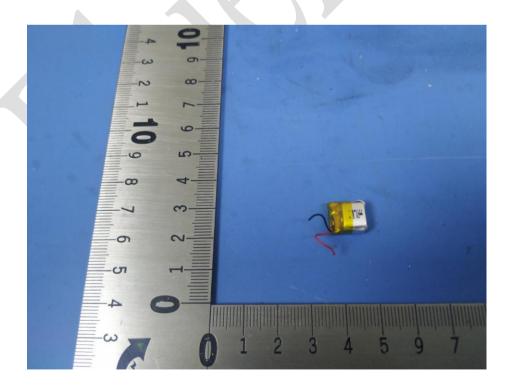
Report No. : BLA-EMC-202008-A12-01 Page 43 of 52

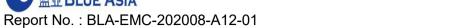
Page 44 of 52

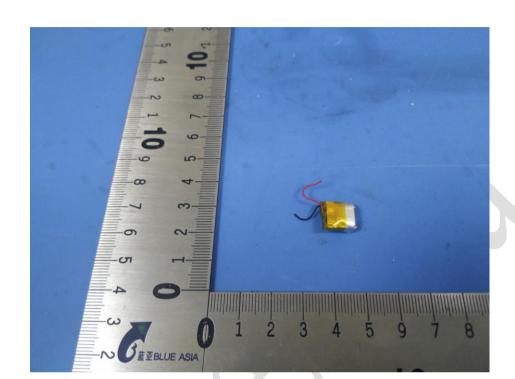
Page 45 of 52

Report No. : BLA-EMC-202008-A12-01 Page 46 of 52

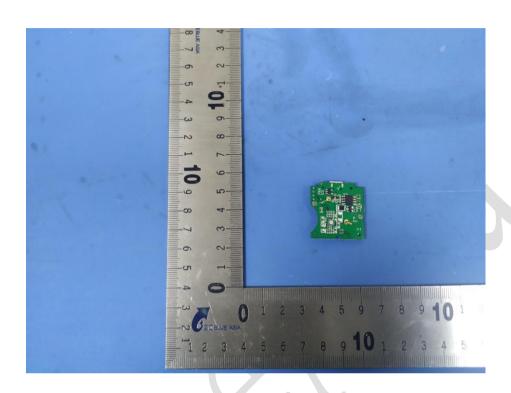

Page 47 of 52

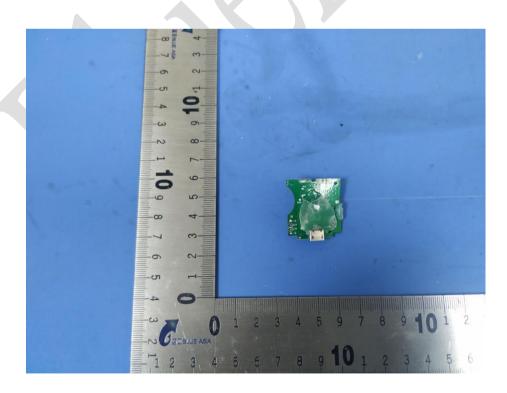


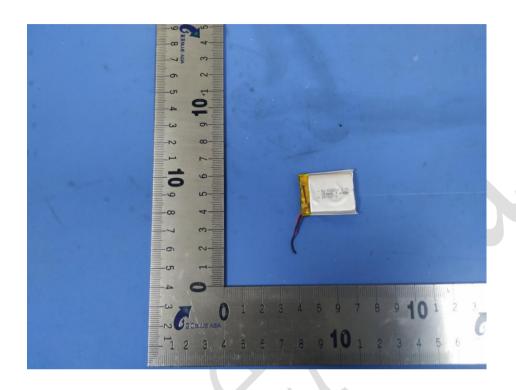


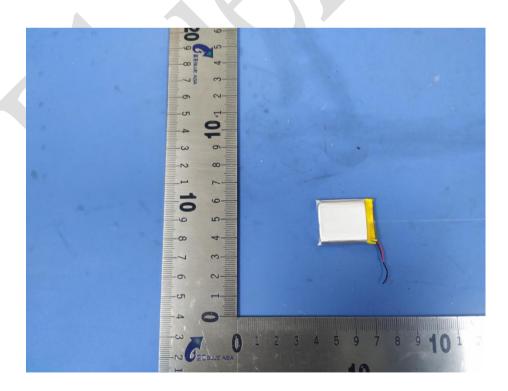

Report No. : BLA-EMC-202008-A12-01 Page 48 of 52

蓝亚BLUE ASIA




Page 49 of 52


Report No. : BLA-EMC-202008-A12-01 Page 50 of 52



Report No. : BLA-EMC-202008-A12-01 Page 51 of 52

Report No. : BLA-EMC-202008-A12-01 Page 52 of 52

10 Appendix

Refer to the following attachments.

*** End of Report ***

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of BlueAsia, this report can't be reproduced except in full.