

PCTEST Engineering Laboratory, Inc.

6660-B Dobbin Road • Columbia, MD 21045 • U.S.A.
TEL (410) 290-6652 • FAX (410) 290-6654
http://www.pctestlab.com

CERTIFICATE OF COMPLIANCE FCC Part 24 Certification

LG Information & Communications, Ltd. LG Kangseo B/D 36, Munlae-Dong, 6-Ga Youngdungpo-Gu, Seoul, 150-096, Korea

Attention: Mr. Yu-Sung, Sim, Approvals Engineer
Quality Engineering Dept. / Research Laboratory

Dates of Tests: January 10-13, 2000 Test Report S/N: 24.200110019.FFM Test Site: PCTEST Lab, Columbia MD U.S.A.

FCC ID

FFMLSP2000

APPLICANT

LG Information & Communications, Ltd.

Classification: Licensed Base Station for Part 24 (PCB)

FCC Rule Part(s): §24(E), §2

EUT Type: PCS CDMA WLL Phone
Trade Name/Model(s): LGIC LSP-2000, LSP-2001
Tx Frequency Range: 1851.25 ~ 1908.75 MHz
Rx Frequency Range: 1931.25 ~ 1988.75 MHz
Max. RF Output Power: 0.32 W EIRP (25.05 dBm)
Frequency Tolerance: 0.00025% (2.5 ppm)

Emission Designator: 1M25F9W

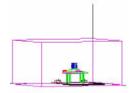
This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in §2.947 with the following remarks (Note Codes):

* (BC) The output power is continuously variable from the value listed in this entry to 5%-10% of the value listed.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

PCTEST certifies that no party to this application has been denied the FCC benefits pursuant to Section 5301 of the Anti-Drug Abuse Act of 1988, 21 U.S.C. 853(a).

Randy Ortanez President & Chief Engineer



200110019. FFM

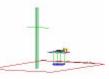

NVIA P

TABLE OF CONTENTS

ATTACHMENT A:	COVER LETTER(S)	
ATTACHMENT B:	ATTESTATION STATEMENT(S)	
ATTACHMENT C:	TEST REPORT	
1.1 SCOPE		1
2.1 INTRODUC	TION (SITE DESCRIPTION)	2
3.1 INSERTS P	ER §2.1033	3
4.1 DESCRIPTION	ON OF TESTS	4-5
5.1 TEST DATA	(Equivalent Isotropic Radiated Power)	6
6.1 TEST DATA	(RADIATED)	7-9
7.1 TEST DATA	(FREQUENCY STABILITY)	10-11
8.1 PLOTS OF	EMISSIONS	12
9.1 LIST OF TE	ST EQUIPMENT	13
10.1 SAMPLE (CALCULATIONS	14
11.1 CONCLUS	SION	15
ATTACHMENT D:	TEST PLOTS	
ATTACHMENT E:	FCC ID LABEL & LOCATION	
ATTACHMENT F:	TEST SETUP PHOTOGRAPHS	
ATTACHMENT G:	EXTERNAL PHOTOGRAPHS	
ATTACHMENT H:	INTERNAL PHOTOGRAPHS	
ATTACHMENT I:	BLOCK DIAGRAM(S)	
ATTACHMENT J:	SCHEMATIC DIAGRAM(S)	
ATTACHMENT K:	PARTS LIST/TUNE UP PROCEDURE	
ATTACHMENT L:	OPERATIONAL DESCRIPTION	
ATTACHMENT M:	USER'S MANUAL	
ATTACHMENT N:	SAR MEASUREMENT REPORT	
ATTACHMENT O:	SAR TEST DATA	
ATTACHMENT P:	SAR TEST SETUP PHOTOGRAPHS	

MEASUREMENT REPORT

1.1 Scope

Product Evaluation and determination of electromagnetic emissions (EME) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission.

§2.1033(d) General Information

Applicant Name: LG Information & Communications, Ltd.
Address: LG Kangseo B/D 36, Munlae-Dong, 6-Ga

Youngdungpo-Gu, Seoul, 150-096, Korea

Attention: Yu-Sung Sim, Approvals Engineer

Quality Engineering Dept. / Research Laboratory

FCC ID: FFMLSP2000

• Trade Name: LGIC

• Model(s): LSP-2000, LSP-2001

• Quantity: Quantity production is planned

• Emission Designator: 1M25F9W

Tx Freq. Range: 1851.25 – 1908.75 MHz
 Rx Freq. Range: 1931.25 – 1988.75 MHz

Equipment Class: Licensed Base Station for Part 24 (PCB)

• Equipment Type: PCS CDMA WLL Phone

Modulation: CDMA

Frequency Tolerance: ± 0.00025% (2.5 ppm)
 Max. RF Output Power: 0.32 W EIRP (25.05 dBm)

FCC Rule Part(s): §24(E), §2

AC/DC Charger: 120 VAC LG Model: PPS-100A (LSP-2000)

120 VAC LG Model: BPA-9.6W (LSP-2001)

Battery Pack: 6.0 VDC NiCD 1700 mAh

Dates of Tests: January 10-13, 2000

• Place of Tests: PCTEST Lab, Columbia, MD U.S.A.

Test Report S/N: 24.200110019.FFM

2.1 INTRODUCTION

These measurement tests were conducted at *PCTEST Engineering Laboratory, Inc.* facility in New Concept Business Park, Guilford Industrial Park, Columbia, Maryland. The site address is 6660-B Dobbin Road, Columbia, MD 21045. The test site is one of the highest points in the Columbia area with an elevation of 390 feet above mean sea level. The site coordinates are 39° 11'15" N latitude and 76° 49'38" W longitude. The facility is 1.5 miles North of the FCC laboratory, and the ambient signal and ambient signal strength are approximately equal to those of the FCC laboratory. There are no FM or TV transmitters within 15 miles of the site. The detailed description of the measurement facility was found to be in compliance with the requirements of § 2.948 according to ANSI C63.4 on October 19, 1992.

PCTEST Lab is recognized under the National Voluntary Laboratory Accreditation Program for satisfactory compliance with criteria established in Title 15, Part 285 Code of Federal Regulations. These criteria encompass the requirements of ISO/IEC Guide 25 and the relevant requirements of ISO 9002 (ANSI/ASQC Q92-1987) as suppliers of calibration or test results. The Scope of PCTEST Accreditation are for Electromagnetic Compatibility and Telecommunications and FCC.

2.2 PCTEST Location

The map at right shows the location of the PCTEST Lab, its proximity to the FCC Lab, the Columbia vicinity area, the Baltimore-Washington International (BWI) airport, and the city of Baltimore, and the Washington, D.C. area. (see Figure 1).

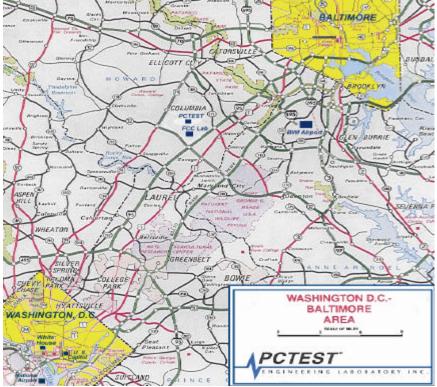


Figure 1. Map of the Greater Baltimore and Metropolitan Washington, D.C. area.

3.1 INSERTS PER §2.1033(d)

§2.1033(d) Function of Active Devices (Confidential)

The Function of active devices are shown in Attachment L.

§2.1033(d) Circuit Diagrams & Description (Confidential)

The circuit diagrams and description are shown in Attachment J.

§2.1033(d) Block Diagrams (Confidential)

The block diagrams are shown in Attachment I.

§2.1033(d) Operating Instructions

The instruction manual is shown in Attachment M.

§2.1033(d) Tune-Up Procedure (Confidential)

The tune-up procedure is shown in Attachment K.

§2.1033(d) Parts List (Confidential)

The parts list is shown in Attachment K.

§2.1033(d) Description of Freq. Stabilization Circuit (Confidential)

The description of frequency stabilization circuit is shown in Attachment L.

§2.1033(d)(Description for Suppression of Spurious Radiation, for Limiting Modulation, and Harmonic Suppression Circuits (Confidential)

The description of suppression stabilization circuits is shown in Attachment L.

4.1 DESCRIPTION OF TESTS

4.2 §24.238 Occupied Bandwidth Emission Limits

- (a) On any frequency outside a licensee's frequency block, the power of any emission shall be attenuated below the transmitter power (P) by at least 43 + 10 log (P) dB.
- (b) Compliance with these provisions is based on the use of measurement instrumentation employing a resolution bandwidth of 1 MHz or greater. However, in the 1 MHz bands immediately outside and adjacent to the frequency block, a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.
- (c) When measuring the emission limits, the nominal carrier frequency shall be adjusted as close to the licensee's frequency block edges, both upper and lower, as the design permits.
- (d) The measurement of emission power can be expressed in peak or average values, provided they are expressed in the same parameters as the transmitter power.

4.3 §2.1051 Spurious and Harmonic Emissions at Antenna Terminal

The level of the carrier and the various conducted spurious and harmonic frequencies are measured by means of a calibrated spectrum analyzer and microwave pre-amplifier. The spectrum is scanned from 10 MHz or the lowest frequency generated in the equipment up to 20 GHz. The transmitter is set to its maximum rated output power and modulated according to the manufacturer's supplied modulation characteristics.

BLOCK	Freq. Range (MHz) Transmitter (Tx)	Freq. Range (MHz) Receiver (Rx)
А	1850 - 1865	1930 - 1945
В	1870 - 1885	1950 - 1965
С	1895 - 1910	1975 - 1990
D	1865 - 1870	1945 - 1950
E	1885 - 1890	1965 - 1970
F	1890 - 1895	1970 - 1975

Table 1. Broadband PCS Service Frequency Blocks.

4.1 DESCRIPTION OF TESTS (CONTINUED)

4.4 §24.229 Frequencies

At the input terminals of the spectrum analyzer, an isolator (RF pad), and a high-pass filter are connected between the test transceiver (for conducted tests) or the receive antenna (for radiated tests), and the analyzer. The high-pass filter (signals below 2 GHz) is to limit the fundamental frequency from interfering with the measurement of low level spurious and harmonic emissions and to ensure that the preamplifier is not saturated.

4.5 §2.1053 Radiation Spurious and Harmonic Emissions

Radiation and harmonic emissions above 1 GHz is measured at out 3-meter indoor site. The EUT is placed on the turntable connected to a dummy load in normal operation using the intended power source. A receiving antenna located 3 meters from the turntable receives any signal radiated from the transmitter and its operating accessories. The antenna is varied from 1 to 4 meters and the polarization is varied (horizontal and vertical) to determine the worst-case emission level. To obtain actual radiated signal strength, a signal generator is adjusted in output until a reading identical to that obtained with the actual transmitter is obtained at the receiver. Signal strength is read directly from the generator and recorded on the attached table.

4.6 §24.135 Frequency Stability/Temperature Variation

The frequency stability of the transmitter is measured by:

- a.) Temperature: The temperature is varied from -30°C to +50°C using an environmental chamber.
- b.) **Primary Supply Voltage**: The primary supply voltage is varied from 85% to 115% of the voltage normally at the input to the device or at the power supply terminals if cables are not normally supplied.

Specification – The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block. The frequency stability of the transmitter shall be maintained within ± 0.0001 (± 1 ppm) of the center frequency.

NOTE: The EUT is tested down to the battery endpoint.

5.1 Test Data

5.2 § 24.232(b) Equivalent Isotropic Radiated Power (E.I.R.P.)

Radiated measurements at 3 meters

Supply Voltage: 6.0 VDC

Modulation: PCS CDMA

FREQ.	LEVEL (dBm)	AFCL (dB)	POL (H/V)	Height (m)	Azimuth (° angle)	F/S (μ ^{V/m)}	EIRP (dBm)	EIRP (W)
1851.25	-22.40	35.31	V	1.4	90.0	989691.9	24.68	0.295
1880.00	-22.20	35.48	V	1.4	90.0	1032761.4	25.05	0.320
1908.75	-22.70	35.65	V	1.4	90.0	994260.1	24.72	0.297

NOTES:

- 1. The bandwidth is set per §24.238 (RBW = 3MHz, VBW = 3MHz).
- 2. The spectrum was checked from 25 MHz up to the 10th harmonic.
- 3. All emissions not listed were found to be more than 20dB below the limit.
- 4. < -130dBm is below the floor of the spectrum analyzer.
- The EUT is manipulated through 3 orthogonal axis and the worst-case are reported.
- 6. The EUT is placed 3m. away from the receiving antenna and the EIRP is calculated using the formula:

EIRP (dBm) = 10 Log $_{10}$ (((r(mV/m)/1 x 10^6)² / 30.0/1 x 10^{-3})

EIRP (dBm) = 10 Log ₁₀ [$(3 \times FS/1 \times 10^6)^2 / (30.0) \times 1000$]

EIRP (Watts) = ${(3 \times FS)/1 \times 10^6}^2 / 30.0$

6.1 Test Data

Radiated Measurements

6.2 § 2.993 Field Strength of SPURIOUS Radiation

OPERATING FREQUENCY: 1851.25 MHz

CHANNEL: 0025 (Low)

MEASURED OUTPUT POWER: 25.05 dBm = 0.32 W

MODULATION SIGNAL: CDMA (Internal)

DISTANCE: 3 meters

LIMIT: $43 + 10 \log_{10} (W) = ___38.06$ dBc

FREQ.	LEVEL	AFCL	POL	F/S	EIRP	
(MHz)	(dBm)	(dB)	(H/V)	(µV/m)	(dBm)	(dBc)
3702.50	-80.0	44.4	V	3702.5	-23.86	48.9
5553.75	-96.4	49.7	V	1035.1	-34.93	60.0
7405.00	-107.0	53.7	V	484.2	-41.53	66.6
9256.25	-122.0	57.2	V	128.8	-53.03	78.1
11107.50	< -130					

NOTES:

- 1. The bandwidth is set per §24.238.
- 2. The spectrum was checked from 25 MHz up to the 10th harmonic.
- 3. All emissions not listed were found to be more than 20dB below the limit.
- 4. < -130dBm is below the floor of the spectrum analyzer.
- 5. The EUT is manipulated through 3 orthogonal axis and the worst-case are reported.
- 6. The EUT is placed 3m. Away from the receiving antenna and the EIRP is calculated using the formula:

EIRP (dBm) = $10 \text{Log}_{10}(((r(mV/m)/1 \times 10^6)^2/30.0/1 \times 10^{-3})^2)$

EIRP (dBm) = $10 \text{Log}_{10}[(3 \text{ x FS/1 x } 10^6)^2 / (30.0) \text{ x } 1000]$

EIRP (Watts) = $[3 \times FS)/1 \times 10^6]^2 / 30.0$

6.1 Test Data (Continued)

Radiated Measurements

6.3 § 2.993 Field Strength of SPURIOUS Radiation

OPERATING FREQUENCY: 1880.00 MHz

CHANNEL: 0600 (Middle)

MEASURED OUTPUT POWER: 25.05 dBm = 0.32 W

MODULATION SIGNAL: CDMA (Internal)

DISTANCE: 3 meters

LIMIT: $\overline{43 + 10 \log_{10} (W)} = 38.06$ dBc

FREQ.	LEVEL	AFCL	POL	F/S	EIRP	
(MHz)	(dBm)	(dB)	(H/V)	(µV/m)	(dBm)	(dBc)
3760.00	-81.0	44.7	V	3427.7	-24.53	49.6
5640.00	-108.2	49.9	V	272.3	-46.53	71.6
7520.00	-118.0	54.0	V	141.3	-52.23	77.3
9400.00	-122.5	57.4	V	124.5	-53.33	78.4
11280.00	< -130					

NOTES:

- 1. The bandwidth is set per §24.238.
- 2. The spectrum was checked from 25 MHz up to the 10th harmonic.
- 3. All emissions not listed were found to be more than 20dB below the limit.
- 4. < -130dBm is below the floor of the spectrum analyzer.
- 5. The EUT is manipulated through 3 orthogonal axis and the worst-case are reported.
- 6. The EUT is placed 3m. Away from the receiving antenna and the EIRP is calculated using the formula:

EIRP (dBm) = $10 \text{Log}_{10}(((r(mV/m)/1 \times 10^6)^2/30.0/1 \times 10^{-3})^2)$

EIRP (dBm) = $10 \text{Log}_{10}[(3 \text{ x FS/1 x } 10^6)^2 / (30.0) \text{ x } 1000]$

EIRP (Watts) = $[3 \times FS)/1 \times 10^6]^2 / 30.0$

6.1 Test Data (Continued)

Radiated Measurements

6.4 § 2.993 Field Strength of SPURIOUS Radiation

OPERATING FREQUENCY: 1908.75 MHz

CHANNEL: 1175 (High)

MEASURED OUTPUT POWER: 25.05 dBm = 0.32 W

MODULATION SIGNAL: CDMA (Internal)

DISTANCE: 3 meters

LIMIT: $43 + 10 \log_{10} (W) = 38.06$ dBc

FREQ.	LEVEL	AFCL	POL	F/S	EIRP	
(MHz)	(dBm)	(dB)	(H/V)	(µV/m)	(dBm)	(dBc)
3817.50	-97.0	45.0	V	562.3	-40.23	65.3
5726.25	-108.0	50.1	V	285.1	-46.13	71.2
7635.00	-118.8	54.2	V	131.8	-52.83	77.9
9543.75	-123.0	57.7	V	121.6	-53.53	78.6
11452.50	< -130					

NOTES:

- 1. The bandwidth is set per §24.238.
- 2. The spectrum was checked from 25 MHz up to the 10th harmonic.
- 3. All emissions not listed were found to be more than 20dB below the limit.
- 4. < -130dBm is below the floor of the spectrum analyzer.
- 5. The EUT is manipulated through 3 orthogonal axis and the worst-case are reported.
- 6. The EUT is placed 3m. Away from the receiving antenna and the EIRP is calculated using the formula:

EIRP (dBm) = $10 \text{Log}_{10}(((r(mV/m)/1 \times 10^6)^2/30.0/1 \times 10^{-3})^2)$

EIRP (dBm) = $10 \text{Log}_{10}[(3 \text{ x FS/1 x } 10^6)^2 / (30.0) \text{ x } 1000]$

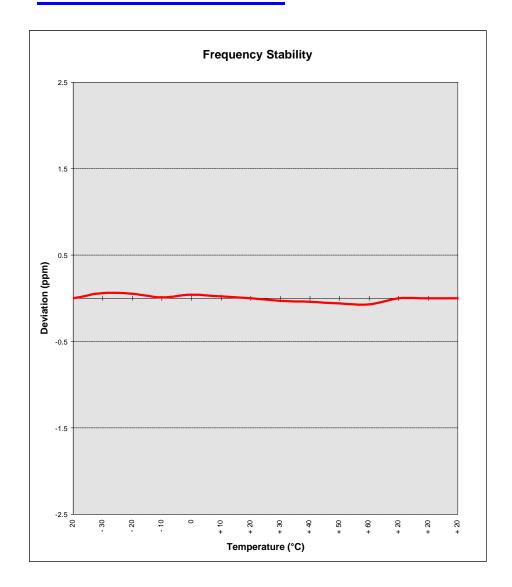
EIRP (Watts) = $[3 \times FS)/1 \times 10^6]^2 / 30.0$

7.1 Test Data

7.2 § 24.135 FREQUENCY STABILITY

OPERATING FREQUENCY: 1,880,000,008 Hz

CHANNEL: 600


REFERENCE VOLTAGE: 6.0 VDC

DEVIATION LIMIT: 0.00025 % or 2.5 ppm

VOLTAGE	POWER	TEMP	FREQ.	Deviation
(%)	(VDC)	(°C)	(Hz)	(%)
100 %	6.00	+ 20 (Ref)	1,880,000,008	0.00000
100 %		- 30	1,879,999,895	0.000006
100 %		- 20	1,879,999,914	0.000005
100 %		- 10	1,879,999,989	0.000001
100 %		0	1,879,999,933	0.000004
100 %		+ 10	1,879,999,970	0.000002
100 %		+ 20	1,880,000,008	0.000000
100 %		+ 30	1,880,000,064	-0.000003
100 %		+ 40	1,880,000,083	-0.000004
100 %		+ 50	1,880,000,121	-0.000006
100 %		+ 60	1,880,000,140	-0.000007
85 %	5.10	+ 20	1,880,000,008	0.000000
115 %	6.90	+ 20	1,880,000,008	0.000000
BATT. ENDPOINT	3.26	+ 20	1,880,000,008	0.000000

7.1 Test Data (Continued)

7.2 § 24.135 FREQUENCY STABILITY

8.1 PLOT(S) OF EMISSIONS

(SEE ATTACHMENT D)

Test Report S/N: 24.200110019.FFM Test Dates: January 10-13, 2000

9.1 TEST EQUIPMENT

9.2 Type	Model	Cal. Due Date	S/N
Microwave Spectrum Analyzer	HP 8566B (100Hz-22GHz)	08/15/00	3638A08713
Microwave Spectrum Analyzer	HP 8566B (100Hz-22GHz)	04/17/00	2542A11898
Spectrum Analyzer/Tracking Gen.	HP 8591A (100Hz-1.8GHz)	08/10/00	3144A02458
Signal Generator	HP 8640B (500Hz-1GHz)	06/03/00	2232A19558
Signal Generator*	HP 8640B (500Hz-1GHz)	06/03/00	1851A09816
Signal Generator*	Rohde & Schwarz (0.1-1000M	Hz) 09/11/00	894215/012
Ailtech/Eaton Receiver	NM 37/57A-SL (30-1000MF	-	0792-03271
Ailtech/Eaton Receiver	NM 37/57A (30-1000MHz)	03/11/00	0805-03334
Ailtech/Eaton Receiver	NM 17/27A (0.1-32MHz)	09/17/00	0608-03241
Quasi-Peak Adapter	HP 85650A	08/15/00	2043A00301
Ailtech/Eaton Adapter	CCA-7 CISPR/ANSI QP Adapt		0194-04082
Gigatronics Universal Power Meter	8657A		1835256
Gigatronics Power Sensor	80701A (0.05-18GHz)		1833460
Signal Generator	HP 8648D (9kHz-4GHz)		3613A00315
Amplifier Research	5S1G4 (5W, 800MHz-4.2GH.	7)	22322
Network Analyzer	HP 8753E (30kHz-3GHz)	7	JP38020182
Audio Analyzer	HP 8903B		3011A09025
Modulation Analyzer	HP 8901A		2432A03467
Power Meter	HP 437B		3125U24437
Power Sensor	нР 8482H (30µW-3W)		2237A02084
Harmonic/Flicker Test System	HP 6841A (IEC 555-2/3)		3531A00115
Broadband Amplifier (2)	HP 8447D		1145A00470, 1937A0334
Broadband Amplifier	HP 8447F		2443A03784
Horn Antenna	EMCO Model 3115 (1-18GHz)		9704-5182
Horn Antenna	EMCO Model 3115 (1-18GHz)		9205-3874
Horn Antenna	EMCO Model 3116 (18-40GHz)	· · · · · · · · · · · · · · · · · · ·	
Biconical Antenna (4)	Eaton 94455/Eaton 94455-		9203-2178 Design 1295 1332 0355
Log-Spiral Antenna (3)	Ailtech/Eaton 93490-1	"Singer 74435-1/00/11pilance	0608, 1103, 1104
Roberts Dipoles	Compliance Design (1 set)		0000, 1100, 1101
Ailtech Dipoles	DM-105A (1 set)		33448-111
EMCO LISN (6)	3816/2		1079
Microwave Preamplifier 40dB Gain	HP 83017A (0.5-26.5GHz)		3123A00181
Microwave Cables	MicroCoax (1.0-26.5GHz)		SIZONOCIOI
Ailtech/Eaton Receiver	NM37/57A-SL		0792-03271
Spectrum Analyzer	HP 8594A		3051A00187
Spectrum Analyzer (2)	HP 8591A		3034A01395, 3108A020
Microwave Survey Meter	Holaday Model 1501 (2.450G)	J7)	80931
Digital Thermometer	Extech Instruments 421305	14)	426966
Attenuator	HP 8495A (0-70dB) DC-4GF	-1 7	720700
Bi-Directional Coax Coupler Narda 3	· · · · · · · · · · · · · · · · · · ·	IL.	
Shielded Screen Room	RF Lindgren Model 26-2/2-0		6710 (PCT270)
Shielded Semi-Anechoic Chamber	Ray Proof Model S81		R2437 (PCT278)
JIIIGGGG JCHIFFIHCGIUIC GHAHIDEI	•	025 (Temperature/Humidity)	•

^{*} Calibration traceable to the National Institute of Standards and Technology (NIST).

10.1 SAMPLE CALCULATIONS

A. EIRP Calculation

Level
$$\mu$$
/Vm @ 3 meters = Log $_{10}^{-1} (dBm + 107 + AFCL)$
20

$$Log_{10}^{-1} \left(\frac{-14 + 107 + 31.7}{20} \right)$$

1717908.4 μ/Vm @ 3 meters

Sample Calculation (relative to a dipole)

EIRP (dBm) = 10 Log₁₀ ((($r(\mu V/m)1x10^6)^2/30.0/1x10^{-3}$)

EIRP (dBm) = $10 \log_{10}(((3(1717908.4)1x10^6)^2/30.0/1x10^{-3})$

EIRP (dBm) = 29.46

B. Emission Designator per §2.201

CDMA Sample

2M + 2DK

CDMA BW = 1.25 MHz

F = Frequency Modulation

9 = Composite Digital Info

W = Combination (Audio/Data)

Emission Designator = 1M25F9W

11.1 CONCLUSION

The data collected shows that the **LG Information & Communications**, **Ltd. PCS CDMA WLL Phone FCC ID: FFMLSP2000** complies with all the requirements of Parts 2 and 24 of the FCC rules.