

RF Test Report

Applicant : Nippon POP Rivets & Fasteners Ltd.

Product Type : Power Tool

Trade Name : STANLEY

Model Number : PB2500 Smart

Applicable Standard : FCC 47 CFR PART 15 SUBPART C

ANSI C63.10:2013

Received Date : Nov. 27, 2019

Test Period : Jul. 03 ~ Jul. 04, 2020

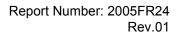
Issued Date : Jul. 15, 2020

Issued by

A Test Lab Techno Corp.

No. 140-1, Changan Street, Bade District, Taoyuan City 33465, Taiwan (R.O.C.)

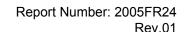
Tel: +886-3-2710188 / Fax: +886-3-2710190


<u>Taiwan Accreditation Foundation accreditation number: 1330</u>

Frequency Range: 9 kHz to 40 GHz

Test Firm MRA designation number: TW0010

Note:


- 1. The test results are valid only for samples provided by customers and under the test conditions described in this report.
- 2. This report shall not be reproduced except in full, without the written approval of A Test Lab Technology Corporation.
- 3. The relevant information is provided by customers in this test report. According to the correctness, appropriateness or completeness of the information provided by the customer, if there is any doubt or error in the information which affects the validity of the test results, the laboratory does not take the responsibility.

Revision History

Rev.	Issued Date	Revisions	Revised By
00	Jun. 03, 2020	Initial Issue	Nina Lin
01	Jul. 15, 2020	It is verified that the power difference is too large, so retest with a new case.	Tobey Cheng

Verification of Compliance

Applicant : Nippon POP Rivets & Fasteners Ltd.

Product Type : Power Tool

Trade Name : STANLEY

Model Number : PB2500 Smart

FCC ID : 2AWAW-PB2500SMART

EUT Rated Voltage : DC 20 V

Test Voltage : DC 20 V

Applicable Standard : FCC 47 CFR PART 15 SUBPART C

ANSI C63.10:2013

Test Result : Complied

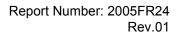
Performing Lab. : A Test Lab Techno Corp.

No. 140-1, Changan Street, Bade District,

Taoyuan City 33465, Taiwan (R.O.C.)

Tel: +886-3-2710188 / Fax: +886-3-2710190

Taiwan Accreditation Foundation accreditation number: 1330


http://www.atl-lab.com.tw/e-index.htm

A Test Lab Techno Corp. tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by A Test Lab Techno Corp. based on interpretations and/or observations of test results. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Approved By

(Manager)

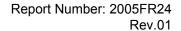

(Fly Lu)

TABLE OF CONTENTS

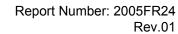
1	Gen	eral Information	5
	1.1.	Summary of Test Result	5
	1.2.	Measurement Uncertainty	5
2	EUT	Description	6
3	Test	: Methodology	7
	3.1.	Mode of Operation	7
	3.2.	EUT Test Step	7
	3.3.	Configuration of Test System Details	8
		Test Instruments	
	3.5.	Test Site Environment	9
4	Mea	surement Procedure	10
	4.1.	Radiated Emission Measurement	10
	4.2.	Maximum Conducted Output Power Measurement	14
	4.3.	6 dB RF Bandwidth Measurement	15
	4.4.	Maximum Power Density Measurement	16
	4.5.	Out of Band Conducted Emissions Measurement	17
	4.6.	Antenna Measurement	17
5	Test	Results	18
	Anne	ex A. Conducted Test Results	18
	Anne	ex B. Radiated Emission Measurement	25

1 General Information

1.1. Summary of Test Result

Standard	Item	Result	Remark
15.207	AC Power Conducted Emission	N/A	The EUT used DC Power source.
15.247(d)	Transmitter Radiated Emissions	PASS	
15.247(b)(3)	Max. Output Power	PASS	
15.247(a)(2)	6 dB RF Bandwidth	PASS	
15.247(e)	Maximum Power Spectral Density	PASS	
15.247(d)	Out of Band Conducted Spurious Emission	PASS	
15.203	Antenna Requirement	PASS	

Decision Rule


■ Uncertainty is not included.

□ Uncertainty is included.

Standard	Description	
CFR47, Part 15, Subpart C	Intentional Radiators	
ANSI C63. 10: 2013	American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices	
KDB 558074 D01 15.247 Meas Guidance v05r02	GUIDANCE FOR COMPLIANCE MEASUREMENTS ON DIGITAL TRANSMISSION SYSTEM, FREQUENCY HOPPING SPREAD SPECTRUM SYSTEM, AND HYBRID SYSTEM DEVICES OPERATING UNDER SECTION 15.247 OF THE FCC RULES	

1.2. Measurement Uncertainty

Test Item	Frequency Range	Uncertainty (dB)	
	9 kHz ~ 30 MHz	2.14	
	30 MHz ~ 1000 MHz	4.99	
Radiated Emission	1000 MHz ~ 18000 MHz	4.99	
	18000 MHz ~ 26500 MHz	4.23	
	26500 MHz ~ 40000 MHz	4.39	
Conducted Output Power	0.92 dB		
RF Bandwidth	4.79 %		
Power Spectral Density	0.92 dB		

2 EUT Description

Applicant	Nippon POP Rivets & Fasteners Ltd. Hosoda, Noyori-cho, Toyohashi-shi, Aichi, 441-8540, Japan			
Manufacturer	Nippon POP Rivets & Fasteners Ltd. Hosoda, Noyori-cho, Toyohashi-shi, Aichi, 441-8540, Japan			
Product Type	Power Tool			
Trade Name	STANLEY			
Model No.	PB2500 Smart			
FCC ID	2AWAW-PB2500SMART			
Frequency Range 2402 ~ 2480 MHz				
Modulation Type	GFSK			
Operate Temp. Range	0 ~ +40 ℃			
Antenna information	Туре	Max. Gain (dBi)		
Antenna iniomation	PCB antenna	2		
RF Output Power	ver 0.00080 W			

Rev.01

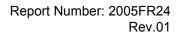
3 Test Methodology

3.1. Mode of Operation

Decision of Test ATL has verified the construction and function in typical operation. All the test modes were carried out with the EUT in normal operation, which was shown in this test report and defined as:

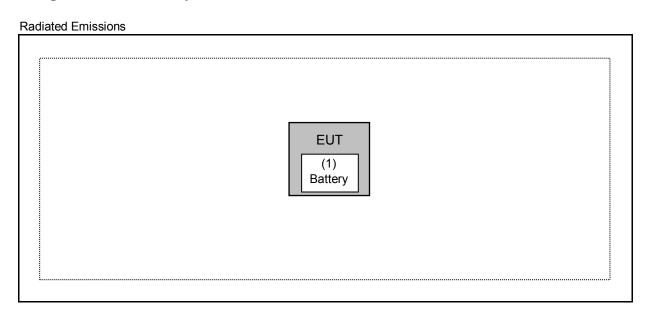
Test Mode
Mode 1: LE, GFSK Continuous TX Mode

Software used to control the EUT for staying in continuous transmitting mode was programmed.

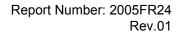

After verification, all tests were carried out with the worst case test modes.

By preliminary testing and verifying three axis (X and Y) position of EUT transmitted status, it was found that "Y axis" position was the worst, then the final test was executed the worst condition and test data were recorded in this report. Note: The EUT was programmed to be in continuously transmitting mode and the transmit duty cycle is not less than 98 %.

3.2. EUT Test Step


1	Setup the EUT shown on "Configuration of Test System Details".
2	Turn on the power of all equipment.
3	Turn on TX function.
4	EUT run test program.

Meas	Measurement Software					
No.	Description	Software	Version			
1	Radiated Emission	EZ EMC	1.1.4.4			



3.3. Configuration of Test System Details

	Devices Description						
	Product	Manufacturer	Model Number	Serial Number	Power Cord		
(1)	Battery	DEWALT	DCB203	N/A	N/A		

3.4. Test Instruments

For Radiated Emissions Test Period: Jul. 04, 2020

Testing Engineer: Ricky Liu, Marc Yeh

Equipment	Manufacturer	Model Number	Serial Number	Cal. Date	Cal. Period
Spectrum Analyzer (10 Hz~44 GHz)	Keysight	N9010A	MY52221312	01/13/2020	1 year
Pre Amplifier (1~26.5 GHz)	Agilent	8449B	3008A02456	03/25/2020	1 year
Pre Amplifier (100 kHz~1.3 GHz)	Agilent	8447D	2944A11119	01/15/2020	1 year
Horn Antenna (1~18 GHz)	SCHWARZBECK MESS-ELEKTRONIK	BBHA9120D	9120D-550	08/22/2019	1 year
Horn Antenna (18~40 GHz)	SCHWARZBECK MESS-ELEKTRONIK	BBHA9170	9170-320	08/14/2019	1 year
Loop Antenna	COM-POWER CORPORATION	AL-130	121014	03/27/2020	1 year
RF Cable	EMCI	EMC104-N-N-6000	TE01-1	02/20/2020	1 year
Microwave Cable	EMCI	EMC104-SM- SM-13000	170814	10/29/2019	1 year
Microwave Cable	EMCI	EMC102-KM- KM-14000	151001	02/20/2020	1 year

For Conducted

Test Period: Jul. 03, 2020
Testing Engineer: Peter Shui

Teeting Engineer. Feter enter						
Equipment	Manufacturer	Model Number	Serial Number	Cal. Date	Cal. Period	
Power Sensor	Anritsu	MA2411B	1126022	09/02/2019	1 year	
Power Meter	Anritsu	ML2495A	1135009	09/02/2019	1 year	
Spectrum Analyzer (20 Hz~26.5 GHz)	Agilent	N9020A	US47520902	09/18/2019	1 year	

Note: N.C.R. = No Calibration Request.

3.5. Test Site Environment

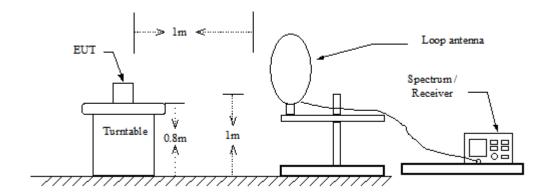
Items	Required (IEC 60068-1)	Actual	
Temperature (°C)	15-35	20-30	
Humidity (%RH)	25-75	45-75	

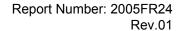
Rev.01

4 Measurement Procedure

4.1. Radiated Emission Measurement

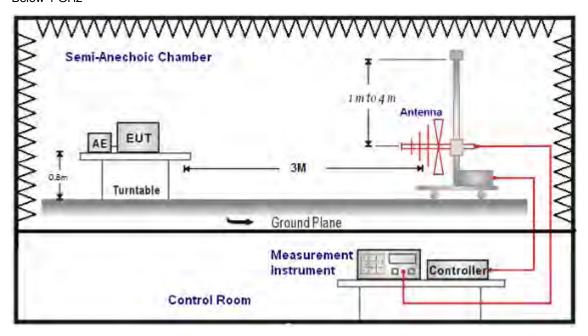
■ Limit

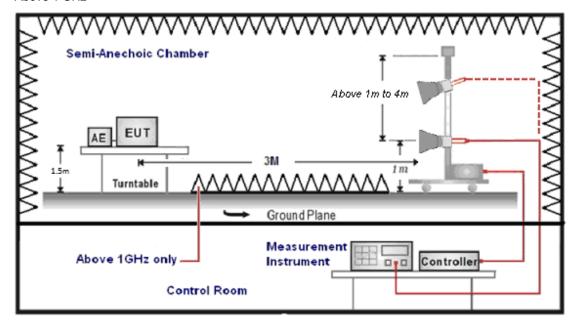

According to §15.209(a), except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:


lot exceed the field strength levels specified in the following table.								
Frequency	Field Strength	Measurement Distance						
(MHz)	(μV/m at meter)	(meters)						
0.009 - 0.490	2400 / F (kHz)	300						
0.490 – 1.705	24000 / F (kHz)	30						
1.705 – 30.0	30	30						
30 - 88	100**	3						
88-216	150**	3						
216-960	200**	3						
Above 960	500	3						

^{**} Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

■ Setup


9 kHz ~ 30 MHz



Below 1 GHz

Above 1 GHz

Rev.01

■ Test Procedure

Final radiation measurements were made on a three-meter, Semi Anechoic Chamber. The EUT system was placed on a nonconductive turntable which is 0.8 or 1.5 meters height, top surface 1.0 x 1.5 meter. The spectrum was examined from 250 MHz to 2.5 GHz in order to cover the whole spectrum below 10th harmonic which could generate from the EUT. During the test, EUT was set to transmit continuously & Measurements spectrum range from 9 kHz to 26.5 GHz is investigated.

For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, and then the video bandwidth is set to 3 MHz for peak measurements and 10 Hz for average measurements when Duty cycle >0.98 / 1/T for average measurements when Duty cycle <0.98. A nonconductive material surrounded the EUT to supporting the EUT for standing on tree orthogonal planes. At each condition, the EUT was rotated 360 degrees, and the antenna was raised and lowered from one to four meters to find the maximum emission levels. Measurements were taken using both horizontal and vertical antenna polarization.

SCHWARZBECK MESS-ELEKTRONIK Biconilog Antenna at 3 Meter and the SCHWARZBECK Double Ridged Guide Antenna was used in frequencies 1 –26.5 GHz at a distance of 3 meter. The antenna at an angle toward the source of the emission. All test results were extrapolated to equivalent signal at 3 meters utilizing an inverse linear distance extrapolation Factor (20 dB/decade).

For testing above 1 GHz, the emission level of the EUT in peak mode was 20 dB lower than average limit (that means the emission level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.

Appropriate preamplifiers were used for improving sensitivity and precautions were taken to avoid overloading or desensitizing the spectrum analyzer. No post – detector video filters were used in the test.

The spectrum analyzer's 6 dB bandwidth was set to 1 MHz, and the analyzer was operated in the peak detection mode, for frequencies both below and up 1 GHz. The average levels were obtained by subtracting the duty cycle correction factor from the peak readings.

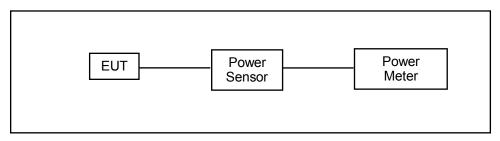
The following procedures were used to convert the emission levels measured in decibels referenced to 1 microvolt (dBuV) into field intensity in micro volts pre meter (uV/m).

The actual field intensity in decibels referenced to 1 microvolt in to field intensity in micro colts per meter (dBuV/m).

The actual field is intensity in referenced to 1 microvolt per meter (dBuV/m) is determined by algebraically adding the measured reading in dBuV, the antenna factor (dB), and cable loss (dB) and Subtracting the gain of preamplifier (dB) is auto calculate in spectrum analyzer.

- (1) Amplitude (dBuV/m) = FI (dBuV) +AF (dBuV) +CL (dBuV)-Gain (dB)
 - FI= Reading of the field intensity.
 - AF= Antenna factor.
 - CL= Cable loss.
 - P.S Amplitude is auto calculate in spectrum analyzer.
- (2) Actual Amplitude (dBuV/m) = Amplitude (dBuV)-Dis(dB)
 - The FCC specified emission limits were calculated according the EUT operating frequency and by following linear interpolation equations:
 - (a) For fundamental frequency: Transmitter Output < +30 dBm
 - (b) For spurious frequency: Spurious emission limits = fundamental emission limit /10

Data of measurement within this frequency range without mark in the table above means the reading of emissions are attenuated more than 20 dB below the permissible limits or the field strength is too small to be measured.


Rev.01

4.2. Maximum Conducted Output Power Measurement

■ Limit

For systems using digital modulation in the 2400-2483.5 MHz, the limit for peak output power is 30 dBm.

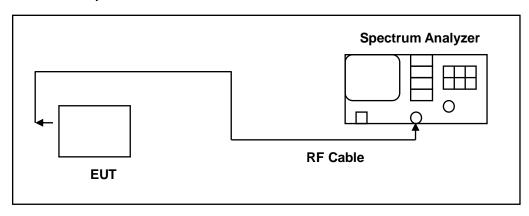
■ Test Setup

■ Test Procedure

The testing follows the Measurement Procedure of ANSI C63.10:2013 section 11.9.2.3.2 Method AVGPM.

The tests below are run with the EUT's transmitter set at high power in TX mode. The EUT is needed to force selection of output power level and channel number. While testing, EUT was set to transmit continuously. Remove the Subjective device's antenna and connect the RF output port to power sensor.

Rev.01

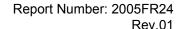

4.3. 6 dB RF Bandwidth Measurement

■ Limit

6 dB RF Bandwidth: Systems using digital modulation techniques may operate in the 2400–2483.5 MHz bands. The minimum 6 dB band-width shall be at least 500 kHz.

99 % Occupied Bandwidth: N/A

■ Test Setup

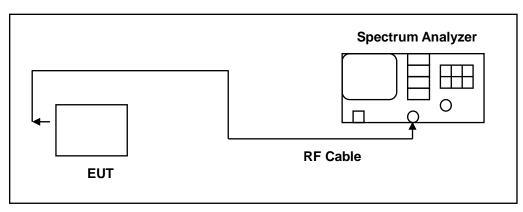


■ Test Procedure

The EUT tested to DTS test procedure of ANSI C63.10-2013 section 11.8.2 option2 for compliance to FCC 47CFR 15.247 requirements.

6 dB RF Bandwidth: The antenna port of the EUT was connected to the input of a spectrum analyzer. Analyzer RBW was set to 100 kHz. For each RF output channel investigated, the spectrum analyzer center frequency was set to the channel carrier. A peak output reading was taken, a DISPLAY line was drawn 6 dB lower than peak level. The 6 dB bandwidth was determined from where the channel output spectrum intersected the display line.

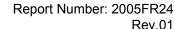
The test was performed at 3 channels (Channel low, middle, high)



4.4. Maximum Power Density Measurement

■ Limit

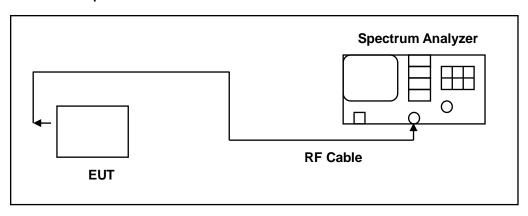
For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.


■ Test Setup

■ Test Procedure

The EUT tested to DTS test procedure of ANSI C63.10:2013 section 11.10.2 Method PKPSD.

- 1. Set analyzer center frequency to DTS channel center frequency.
- 2. Set the span to 1.5 times the DTS bandwidth.
- 3. Set the RBW to: $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$.
- 4. Set the VBW \geq 3 \times RBW.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level within the RBW.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.



4.5. Out of Band Conducted Emissions Measurement

■ Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power

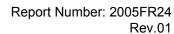
■ Test Setup

■ Test Procedure

In any 100 kHz bandwidth outside the EUT pass band, the RF power produced by the modulation products of the spreading sequence, the information sequence, and the carrier frequency shall be at least 20 dB below that of the maximum in-band 100 kHz emission, antenna output of the EUT was coupled directly to spectrum analyzer; if an external attenuator and/or cable was used, these losses are compensated for with the analyzer OFFSET function.

All other types of emissions from the EUT shall meet the general limits for radiated frequencies outside the pass band. The test was performed at 3 channels.

4.6. Antenna Measurement


■ Limit

For intentional device, according to 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

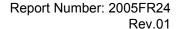
And According to 15.247 (b), if transmitting antennas of directional gain greater than 6 dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

■ Antenna Connector Construction

See section 2 – antenna information.

5 Test Results

Annex A. Conducted Test Results


Maximum Conducted Output Power Measurement

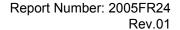
Test Mode	Mode 1				
Frequency	Average	e Power	Peak	Limit	
(MHz)	(dBm)	(W)	(dBm)	(W)	(dBm)
2402	-3.11	0.00049	-2.72	0.00053	≤ 30
2440	-1.28	0.00074	-0.96	0.00080	≤ 30
2480	-3.00	0.00050	-2.63	0.00055	≤ 30

Note: The relevant measured result has the offset with cable loss already.

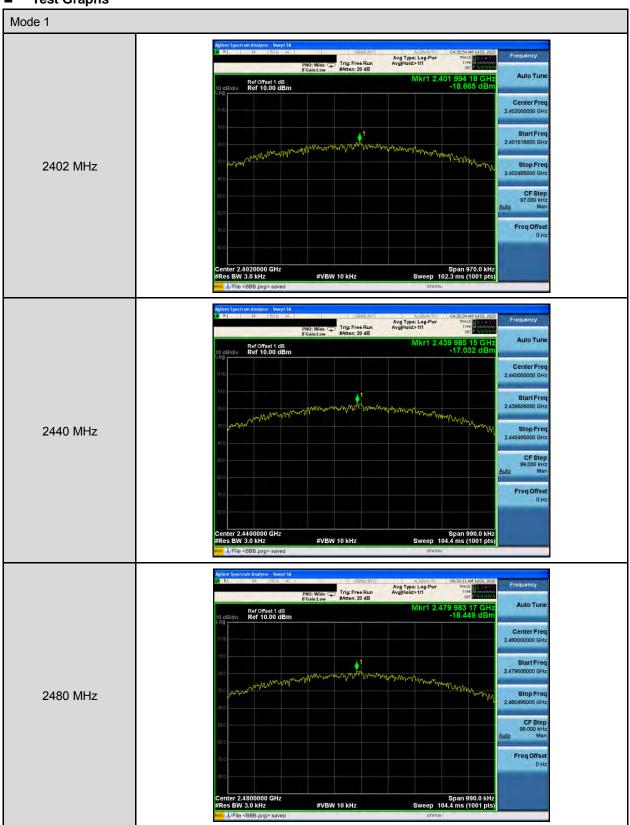

6 dB RF Bandwidth Measurement

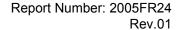
Test Mode	Mode 1	
Frequency (MHz)	Measurement Results (kHz)	Limit (kHz)
2402	645.700	≥ 500
2440	655.500	≥ 500
2480	655.300	≥ 500

Test Graphs

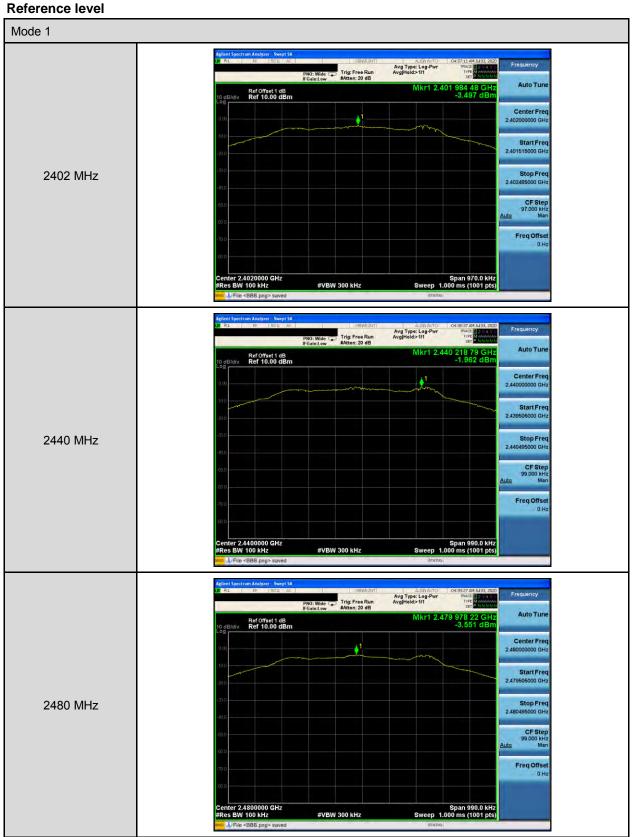


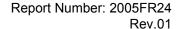
Rev.01


Maximum Power Density Measurement


Test Mode	Mode 1	
Frequency (MHz)	Measurement Results (dBm/ 3 kHz)	Limit (dBm)
2402	-18.665	≤ 8
2440	-17.032	≤ 8
2480	-18.449	≤ 8

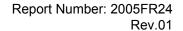
■ Test Graphs





Out of Band Conducted Emissions Measurement


Test Graphs



Out of Band Conducted Emissions

Conducted Band Edge

Rev.01

Annex B. Radiated Emission Measurement

Below 1 GHz

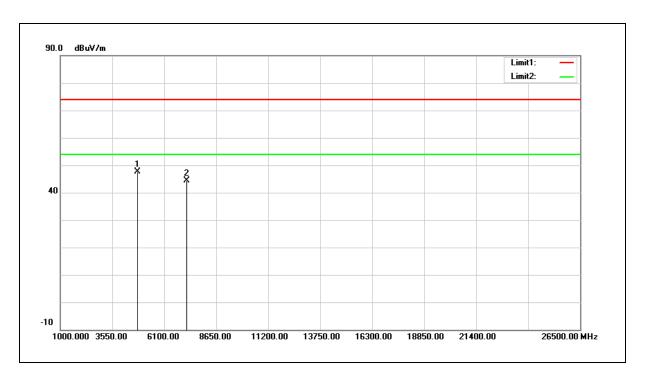
JCIOW I OI IZ							
Standard:	FCC Part 15.247			Test Distance:		3 m	
Test item:	Radiated Emission			Power:		DC 20 V	
Frequency:	2402	MHz		Temp.(°ℂ)/⊦	lum.(%RH):	26(°ℂ)/60 %	6RH
Mode:	Mode	e 1					
Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark	Ant.Polar. H / V
154.1600	37.40	-5.60	31.80	43.50	-11.70	QP	Н
194.9000	39.18	-7.51	31.67	43.50	-11.83	QP	Н
279.2900	36.60	-4.72	31.88	46.00	-14.12	QP	Н
462.6200	28.17	-0.56	27.61	46.00	-18.39	QP	Н
587.7500	28.12	2.14	30.26	46.00	-15.74	QP	Н
741.0100	28.43	4.98	33.41	46.00	-12.59	QP	Н
168.7100	38.22	-5.75	32.47	43.50	-11.03	QP	V
196.8400	41.72	-7.63	34.09	43.50	-9.41	QP	V
265.7100	35.84	-5.32	30.52	46.00	-15.48	QP	V
597.4500	29.39	2.42	31.81	46.00	-14.19	QP	V
691.5400	29.93	3.76	33.69	46.00	-12.31	QP	V
777.8700	30.85	5.55	36.40	46.00	-9.60	QP	V

Note:1.Result (dBuV/m) = Correct Factor (dB/m) + Reading(dBuV).

Example: 31.80 = -5.60 + 37.40

2.Correction factor (dB/m) = Antenna Factor (dB/m) + Cable loss (dB) – Pre-Amplifier gain (dB).

3. When the peak results are less than average limit, so not need to evaluate the average.



Rev.01

Harmonic

Above 1 GHz

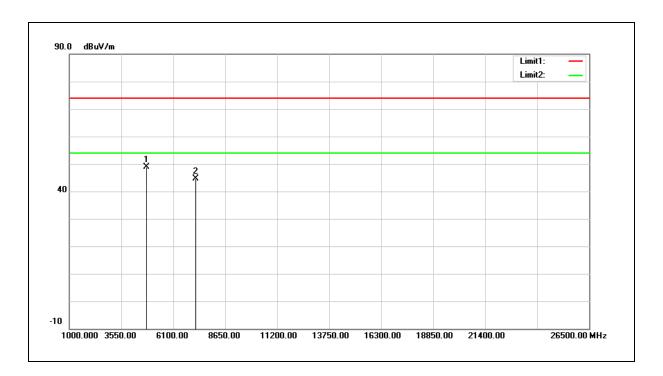
Standard:	FCC Part 15.247	Test Distance:	3 m
Test item:	Harmonic	Power:	DC 20 V
Frequency:	2402 MHz	Temp.(°ℂ)/Hum.(%RH):	26(°ℂ)/60 %RH
Mode:	Mode 1		
Ant.Polar.:	Horizontal		

No.	Frequency	Reading	Correct Factor	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4804.000	43.53	4.14	47.67	74.00	-26.33	peak
2	7206.000	34.15	10.28	44.43	74.00	-29.57	peak

Note:1.Result (dBuV/m) = Correct Factor (dB/m) + Reading(dBuV).

Example: 47.67 = 4.14 + 43.53

- 2.Correction factor (dB/m) = Antenna Factor (dB/m) + Cable loss (dB) Pre-Amplifier gain (dB).
- 3. When the peak results are less than average limit, so not need to evaluate the average.


Rev.01

Standard: FCC Part 15.247 Test Distance: 3 m

Test item: Power: DC 20 V

Frequency: 2402 MHz Temp.($^{\circ}$ C)/Hum.($^{\circ}$ RH): 26($^{\circ}$ C)/60 %RH

Mode: Mode 1
Ant.Polar.: Vertical

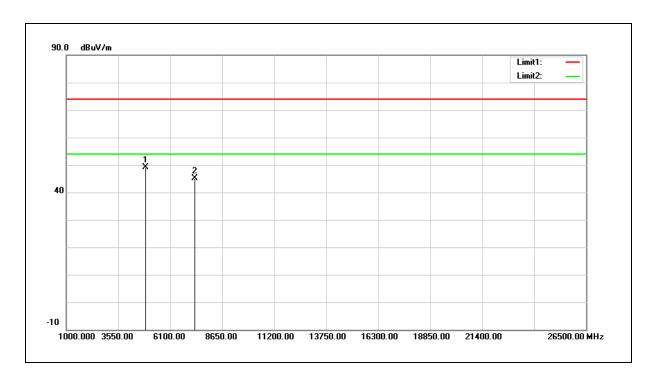
No.	Frequency	Reading	Correct Factor	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4804.000	44.78	4.14	48.92	74.00	-25.08	peak
2	7206.000	34.46	10.28	44.74	74.00	-29.26	peak

Note:1.Result (dBuV/m) = Correct Factor (dB/m) + Reading(dBuV).

Example: 48.92 = 4.14 + 44.78

- 2.Correction factor (dB/m) = Antenna Factor (dB/m) + Cable loss (dB) Pre-Amplifier gain (dB).
- 3. When the peak results are less than average limit, so not need to evaluate the average.

Rev.01


Standard: FCC Part 15.247 Test Distance: 3 m

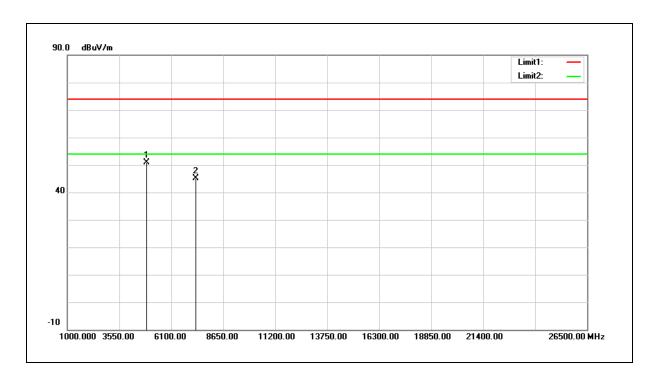
Test item: Power: DC 20 V

Frequency: 2440 MHz Temp.(°C)/Hum.(%RH): 26(°C)/60 %RH

Mode: Mode 1

Ant.Polar.: Horizontal

No.	Frequency	Reading	Correct Factor	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4880.000	44.78	4.37	49.15	74.00	-24.85	peak
2	7320.000	34.46	10.64	45.10	74.00	-28.90	peak


- $2. Correction \ factor \ (dB/m) = Antenna \ Factor \ (dB/m) + Cable \ loss \ (dB) Pre-Amplifier \ gain \ (dB).$
- 3. When the peak results are less than average limit, so not need to evaluate the average.

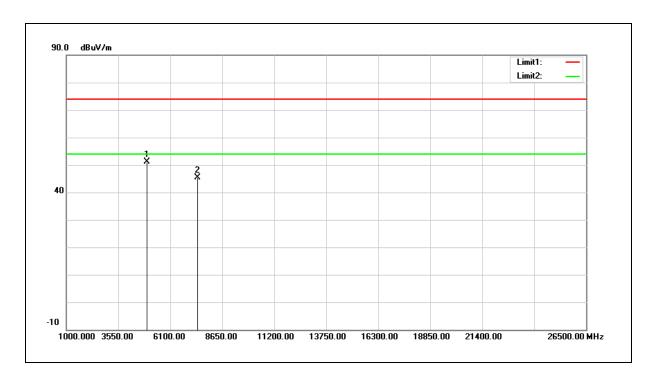
Test item: Harmonic Power: DC 20 V

Frequency: 2440 MHz Temp.($^{\circ}$ C)/Hum.($^{\circ}$ RH): 26($^{\circ}$ C)/60 %RH

Mode: Mode 1
Ant.Polar.: Vertical

No.	Frequency	Reading	Correct Factor	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4880.000	46.45	4.37	50.82	74.00	-23.18	peak
2	7320.000	34.44	10.64	45.08	74.00	-28.92	peak

- $2. Correction \ factor \ (dB/m) = Antenna \ Factor \ (dB/m) + Cable \ loss \ (dB) Pre-Amplifier \ gain \ (dB).$
- 3. When the peak results are less than average limit, so not need to evaluate the average.


Rev.01

Standard: FCC Part 15.247 Test Distance: 3 m

Test item: Power: DC 20 V

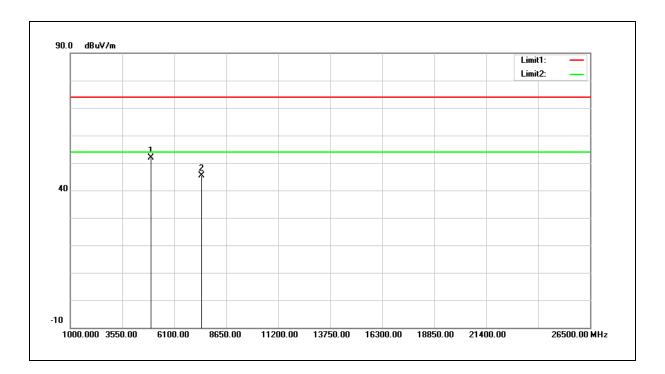
Frequency: 2480 MHz Temp.($^{\circ}$ C)/Hum.($^{\circ}$ RH): 26($^{\circ}$ C)/60 %RH

Mode: Mode 1
Ant.Polar.: Horizontal

No.	Frequency	Reading	Correct Factor	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4960.000	46.52	4.60	51.12	74.00	-22.88	peak
2	7440.000	34.47	11.02	45.49	74.00	-28.51	peak

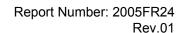
- $2. Correction \ factor \ (dB/m) = Antenna \ Factor \ (dB/m) + Cable \ loss \ (dB) Pre-Amplifier \ gain \ (dB).$
- 3. When the peak results are less than average limit, so not need to evaluate the average.

Rev.01


Standard: FCC Part 15.247 Test Distance: 3 m

Test item: Harmonic Power: DC 20 V

Frequency: 2480 MHz Temp.($^{\circ}$ C)/Hum.($^{\circ}$ RH): 26($^{\circ}$ C)/60 %RH


Mode: Mode 1

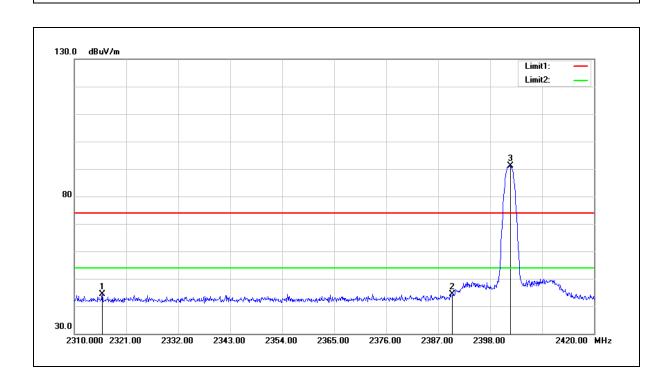
Ant.Polar.: Vertical

No.	Frequency	Reading	Correct Factor	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4960.000	47.30	4.60	51.90	74.00	-22.10	peak
2	7440.000	34.40	11.02	45.42	74.00	-28.58	peak

- $2. Correction \ factor \ (dB/m) = Antenna \ Factor \ (dB/m) + Cable \ loss \ (dB) Pre-Amplifier \ gain \ (dB).$
- 3. When the peak results are less than average limit, so not need to evaluate the average.

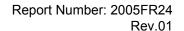
Band Edge

Ant.Polar.:


Horizontal

 Standard:
 FCC Part 15.247
 Test Distance:
 3 m

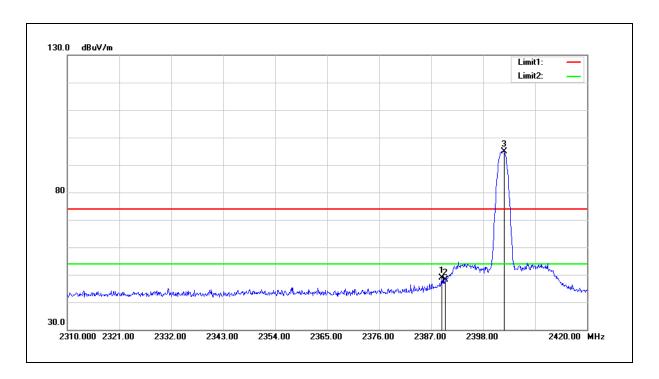
 Test item:
 Band edge
 Power:
 DC 20 V


 Frequency:
 2402 MHz
 Temp.(°C)/Hum.(%RH):
 26(°C)/60 %RH

 Mode:
 Mode 1

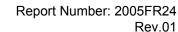
No.	Frequency	Reading	Correct Factor	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2315.940	47.49	-3.12	44.37	74.00	-29.63	peak
2	2390.000	47.11	-2.73	44.38	74.00	-29.62	peak
3	2402.290	93.71	-2.67	91.04			peak

- 2.Correction factor (dB/m) = Antenna Factor (dB/m) + Cable loss (dB) Pre-Amplifier gain (dB).
- 3. When the peak results are less than average limit, so not need to evaluate the average.



Test item: Band edge Power: DC 20 V

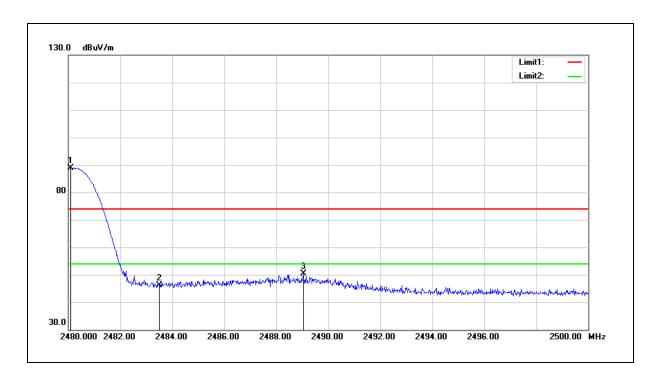
Frequency: 2402 MHz Temp.($^{\circ}$ C)/Hum.($^{\circ}$ RH): 26($^{\circ}$ C)/60 %RH


Mode: Mode 1

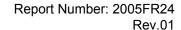
Ant.Polar.: Vertical

No.	Frequency	Reading	Correct Factor	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2389.310	51.57	-2.74	48.83	74.00	-25.17	peak
2	2390.000	50.91	-2.73	48.18	74.00	-25.82	peak
3	2402.400	97.49	-2.67	94.82	1	1	peak

- 2.Correction factor (dB/m) = Antenna Factor (dB/m) + Cable loss (dB) Pre-Amplifier gain (dB).
- 3. When the peak results are less than average limit, so not need to evaluate the average.



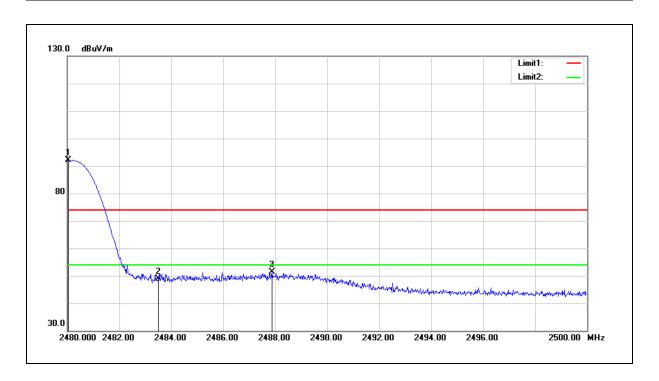
Test item: Band edge Power: DC 20 V


Frequency: 2480 MHz Temp.($^{\circ}$ C)/Hum.($^{\circ}$ RH): 26($^{\circ}$ C)/60 %RH

Mode: Mode 1
Ant.Polar.: Horizontal

No.	Frequency	Reading	Correct Factor	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2480.100	91.17	-2.28	88.89	1	1	peak
2	2483.500	48.37	-2.27	46.10	74.00	-27.90	peak
3	2489.040	52.71	-2.24	50.47	74.00	-23.53	peak

- 2.Correction factor (dB/m) = Antenna Factor (dB/m) + Cable loss (dB) Pre-Amplifier gain (dB).
- 3. When the peak results are less than average limit, so not need to evaluate the average.



Test item: Band edge Power: DC 20 V

Frequency: 2480 MHz Temp.($^{\circ}$ C)/Hum.($^{\circ}$ RH): 26($^{\circ}$ C)/60 %RH

Mode: Mode 1

Ant.Polar.: Vertical

No.	Frequency	Reading	Correct Factor	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2480.040	94.36	-2.28	92.08			peak
2	2483.500	51.05	-2.27	48.78	74.00	-25.22	peak
3	2487.880	53.54	-2.24	51.30	74.00	-22.70	peak

- 2.Correction factor (dB/m) = Antenna Factor (dB/m) + Cable loss (dB) Pre-Amplifier gain (dB).
- 3. When the peak results are less than average limit, so not need to evaluate the average.