FCC SAR Test Report Test Report No. : OT-216-RWD-035 Reception No. : 2104002366 Applicant : LG Electronics USA, Inc. Address : 111 Sylvan Ave, North Building, Englewood Cliffs, New Jersey, United States Manufacturer : LG Electronics Inc. Address : 222 LG-ro Jinwi-myeon, Pyeongtaek-si, Gyeonggi-do, Korea Type of Equipment : Bluetooth Earbud FCC ID : ZNFTONEFP5 Model Name : TONE-FP5 Multiple Model Name: TONE-FP5W, TONE-TFP5, TONE-TFP5W, TONE-UFP5, TONE-UFP5W, TONE-DFP5, TONE-DFP5W, TONE-AFP5, TONE-AFP5W, TONE-FP5A, **TONE-FP5WA** Serial number : N/A Total page of Report: 72 pages (including this page) Date of Incoming : May 31, 2021 Date of Test : June 07, 2021 ~ June 08, 2021 Date of issue : June 17, 2021 #### SUMMARY The equipment complies with the regulation; CFR §2.1093. This test report only contains the result of a single test of the sample supplied for the examination. It is not a generally valid assessment of the features of the respective products of the mass-production. Reviewed by: Approved by: Jung Wook Kim / Technical Manager ONETECH Corp. No Gyun, Im / Senior Manager ONETECH Corp. # **Revision history** | Report No. | Reason for Change | Date Issued | |----------------|-------------------|-------------| | OT-216-RWD-035 | Initial release | 2021-06-17 | | | | | | | | | | | | | # **TABLE OF CONTENTS** | 1. | Summary of Maximum SAR Value | 4 | |--------|---|----| | 2. | Device Under Test | 4 | | 3. | INTRODUCTION | 6 | | 4. | DOSIMETRIC ASSESSMENT | 8 | | 5. | TEST CONFIGURATION POSITIONS | 9 | | 6. | RF EXPOSURE LIMITS | 10 | | 7. | FCC MEASUREMENT PROCEDURES | 11 | | 8. | RF CONDUCTED POWERS | 12 | | 9. | SYSTEM VERIFICATION | 14 | | 10. | SAR TEST DATA SUMMARY | 16 | | 11. | SAR MEASUREMENT VARIABILITY | 18 | | 12. | EQUIPMENT LIST | 19 | | 13. | MEASUREMENT UNCERTAINTIES | 20 | | 14. | CONCLUSION | 21 | | 15. | REFERENCES | 22 | | APPEN | DIX A: SYSTEM VERIFICATION | 24 | | APPEN | DIX B: SAR TEST DATA | 27 | | APPEN | DIX C: PROBE & DIPOLE ANTENNA CALIBRATION | 32 | | APPEN | DIX D: SAR TISSUE SPECIFICATIONS | 62 | | APPEN | DIX E: SAR SYSTEM VALIDATION | 64 | | ΔΡΡΕΝΙ | DIX E: DUT ANTENNA DIAGRAM & SAR TEST SETUP PHOTOGRAPHS | 65 | # 1. Summary of Maximum SAR Value | Equipment | | | SAR | | | | |--------------------|-------------|-------------------|--------------------|--------------------|---------------------|--| | Equipment
Class | Band & Mode | Tx Frequency | 1 g Head
(W/kg) | 1 g Body
(W/kg) | 10g Hands
(W/kg) | | | DSS | Bluetooth | 2 402 ~ 2 480 MHz | 0.50 | 1.06 | 0.39 | | | Sir | N/A | N/A | N/A | | | | This wireless portable device has been shown to be capable of compliance for localized specific absorption rate (SAR) for uncontrolled environment/general population exposure limits specified in ANSI/IEEE C95.1-1992 and has been tested in accordance with the measurement procedures specified in Section 7 of this report; ### 2. Device Under Test ### 2.1. DUT Information | DUT Type | Bluetooth Earbud | |--------------------------|---| | FCC ID | ZNFTONEFP5 | | Model Name | TONE-FP5 | | Additional Model Name(s) | TONE-FP5W, TONE-TFP5, TONE-TFP5W, TONE-UFP5, TONE-UFP5W, TONE-DFP5, TONE-DFP5W, TONE-AFP5W, TONE-FP5A, TONE-FP5WA | | Antenna Type | FPCB Antenna | | DUT Stage | Identical Prototype | #### Note: - 1. There are 12 model names for this product. These 12 models have the same hardware structure and functions. - 2. For antenna peak gain and detailed antenna information, refer to the antenna report in FCC filing. #### 2.2. Device Overview | Band & Mode | Operating Modes | Tx Frequency | |-------------|-----------------|-------------------| | Bluetooth | Data | 2 402 ~ 2 480 MHz | #### 2.3. Power Reduction for SAR There is no power reduction used for any band/mode implemented in the device for SAR purposes. # 2.4. Nominal and Maximum Output Power Specifications This device operates using the following maximum and nominal output power specifications. SAR values were scaled to the maximum allowed power to determine compliance per KDB Publication 447498 D01 v06. ### **Maximum Bluetooth Output Power** | Mode / Band | | Modulated Average (dBm) | |----------------------------------|---------|-------------------------| | Division of the (DDD 14 Minus) | Maximum | 11.5 | | Bluetooth (BDR – 1 Mbps) | Nominal | 10.0 | | Bluetooth (EDR – 2 Mbps, 3 Mbps) | Maximum | 9.5 | | | Nominal | 8.0 | | Bluetooth LE (1 Mbps, 2 Mbps) | Maximum | 7.5 | | | Nominal | 6.0 | #### 2.5. DUT Antenna Locations The DUT antenna locations are included in the filing. # 2.6. Near Field Communications (NFC) Antenna This DUT does not support NFC operations. # 2.7. Simultaneous Transmission Capabilities This device is supported only Bluetooth. So, simultaneous transmission analysis was not considered. #### 2.8. Miscellaneous SAR Test Considerations #### (A) Bluetooth This device only supports Bluetooth BDR(1 Mbps), EDR(2 Mbps), EDR(3 Mbps) and LE (1 Mbps, 2 Mbps). Bluetooth SAR was measured with hopping disabled with DH5 operation and Tx Tests test mode type. # 2.9. Guidance Applied - IEEE 1528-2013 - FCC KDB Publication 447498 D01v06 (General SAR Guidance) - FCC KDB Publication 865664 D01v01r04, D02v01r02 (SAR Measurements up to 6 GHz) - FCC KDB Publication 690783 D01v01r03 (SAR Listings on Grants) - October 2016 TCBC Workshop Notes (Bluetooth SAR Testing) - October 2016 TCBC Workshop Notes (DUT Holder Perturbations) - April 2019 TCBC Workshop Notes (Tissue Simulating Liquids (TSL)) ### 2.10. Device Serial Numbers Several samples with identical hardware were used to support SAR testing. The manufacturer has confirmed that the device(s) tested have the same physical, mechanical and thermal characteristics and are within operational tolerances expected for production units. The serial numbers used for each test are indicated alongside the results in Section 10. # 3. INTRODUCTION The FCC and Innovation, Science, and Economic Development Canada have adopted the guidelines for evaluating the environmental effects of radio frequency (RF) radiation in ET Docket 93-62 on Aug. 6, 1996 and Health Canada Safety Code 6 to protect the public and workers from the potential hazards of RF emissions due to FCC-regulated portable devices. The safety limits used for the environmental evaluation measurements are based on the criteria published by the American National Standards Institute (ANSI) for localized specific absorption rate (SAR) in IEEE/ANSI C95.1-1992 Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz and Health Canada RF Exposure Guidelines Safety Code 6. The measurement procedure described in IEEE/ANSI C95.3-2002 Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields - RF and Microwave is used for guidance in measuring the Specific Absorption Rate (SAR) due to the RF radiation exposure from the Equipment Under Test (EUT). These criteria for SAR evaluation are similar to those recommended by the International Committee for Non-Ionizing Radiation Protection (ICNIRP) in Biological Effects and Exposure Criteria for Radiofrequency Electromagnetic Fields," Report No. Vol 74. SAR is a measure of the rate of energy absorption due to exposure to an RF transmitting source. SAR values have been related to threshold levels for potential biological hazards. #### 3.1. SAR Definition Specific Absorption Rate is defined as the time derivative (rate) of the incremental energy (dU) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dV) of a given density (). It is also defined as the rate of RF energy absorption per unit mass at a point in an absorbing body (see Equation 3-1). $$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dV} \right)$$ **Equation 3-1 SAR Mathematical Equation** SAR is expressed in units of watts per kilogram (W/kg). $$SAR = \frac{\sigma \mid E \mid^2}{\rho}$$ where: σ = conductivity of the tissue (S/m) ρ = mass density of the tissue (kg/m³) E = rms electric field strength (V/m) NOTE: The primary factors that control rate of energy absorption were found to be the wavelength of the incident field in relation to the dimensions and geometry of the irradiated organism, the orientation of the organism in relation to the polarity of field vectors, the presence of reflecting surfaces, and whether conductive contact is made by the organism with a ground plane. # 3.2. SAR Measurement Setup A standard high precision 6-axis robot with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE). An isotropic Field probe optimized and calibrated for the targeted measurement. Data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC. The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server. The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts. The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning. A computer running WinXP, Win7 or Win10 and the DASY5 software. Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc. The phantom, the device holder and other
accessories according to the targeted measurement. # 4. DOSIMETRIC ASSESSMENT The evaluation was performed using the following procedure compliant to FCC KDB Publication 865664 D01v01r04 and IEEE 1528-2013: - The SAR distribution at the exposed side of the head or body was measured at a distance no greater than 5.0 mm from the inner surface of the shell. The area covered the entire dimension of the device-head and body interface and the horizontal grid resolution was determined per FCC KDB Publication 865664 D01v01r04 (See Table 5-1) and IEEE 1528-2013. - The point SAR measurement was taken at the maximum SAR region determined from Step 1 to enable the monitoring of SAR fluctuations/drifts during the 1g/10g cube evaluation. SAR at this fixed was measured and used as a reference value. - 3. Based on the area scan data, the peak of the region with maximum SAR point was determined by spline interpolation. Around this point, a volume was assessed according to the measurement resolution and volume size requirements of FCC KDB Publication 865664 D01v01r04 (See Table 4-1) and IEEE 1528-2013. On the basis of this data set, the spatial peak SAR value was evaluated with the following procedure (see references or the DASY manual online for more details): - a) SAR values at the inner surface of the phantom are extrapolated from the measured values along the line away from the surface with spacing no greater than that in Table 4-1. The extrapolation was based on a least-squares algorithm. A polynomial of the fourth order was calculated through the points in the z-axis (normal to the phantom shell). - b) After the maximum interpolated values were calculated between the points in the cube, the SAR was averaged over the spatial volume (1g or 10g) using a 3D-Spline interpolation algorithm. The 3D-spline is composed of three one-dimensional splines with the "Not a knot" condition (in x, y, and z directions). The volume was then integrated with the trapezoidal algorithm. One thousand points (10 x 10 x 10) were obtained through interpolation, in order to calculate the averaged SAR. - c) All neighboring volumes were evaluated until no neighboring volume with a higher average value was found. - 4. The SAR reference value, at the same location as step 2, was re-measured after the zoom scan was complete to calculate the SAR drift. If the drift deviated by more than 5%, the SAR test and drift measurements were repeated. Table 4-1 Area and Zoom Scan Resolutions per FCC KDB Publication 865664 D01v01r04* | F | Maximum Area Scan | Maximum Zoom Scan
Resolution (mm) | Max | Minimum Zoom Scan
Volume (mm)
(x,y,z) | | | |--|-------------------|--------------------------------------|----------------------|---|---------------------------------|------| | Frequency Resolution (mm) (Δx _{ama} , Δy _{ama}) | | $(\Delta x_{200m}, \Delta y_{200m})$ | Uniform Grid | | Graded Grid | | | | | | $\Delta z_{zoom}(n)$ | Δz _{zoom} (1)* | $\Delta z_{zoom}(n>1)*$ | | | ≤2 GHz | ≤15 | ≤8 | ≤5 | ≤ 4 | $\leq 1.5*\Delta z_{zoom}(n-1)$ | ≥ 30 | | 2-3 GHz | ≤12 | ≤5 | ≤5 | ≤4 | $\leq 1.5*\Delta z_{zoom}(n-1)$ | ≥ 30 | | 3-4 GHz | ≤12 | ≤5 | ≤ 4 | ≤3 | $\leq 1.5*\Delta z_{zoom}(n-1)$ | ≥ 28 | | 4-5 GHz | ≤10 | ≤4 | ≤3 | ≤2.5 | $\leq 1.5*\Delta z_{zoom}(n-1)$ | ≥ 25 | | 5-6 GHz | ≤10 | ≤4 | ≤2 | ≤2 | $\leq 1.5*\Delta z_{zoom}(n-1)$ | ≥ 22 | *Also compliant to IEEE 1528-2013 Table 6 # 5. TEST CONFIGURATION POSITIONS ### 5.1. Device Holder The device holder is made out of low-loss POM material having the following dielectric parameters: relative permittivity $\varepsilon = 3$ and loss tangent $\delta = 0.02$. # 5.2. Positioning for Testing Based on FCC guidance and expected exposure conditions, the device was positioned with the outside of the device touching the flat phantom and such that the location of maximum SAR was captured during SAR testing. The SAR test setup photograph is included in Appendix F. # 6. RF EXPOSURE LIMITS In order for users to be aware of the body-worn operating requirements for meeting RF exposure compliance, operating instructions and cautions statements are included in the user's manual. #### 6.1. Uncontrolled Environment Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity. #### 6.2. Controlled Environment Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. This exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means. Table 8-1 SAR Human Exposure Specified in ANSI/IEEE C95.1-1992 and Health Canada Safety Code 6 | | UNCONTROLLED ENVIRONMENT
General Population
(W/kg) or (mW/g) | CONTROLLED ENVIROMENT Professional Population (W/kg) or (mW/g) | |--|--|--| | SPATIAL PEAK SAR ¹
Brain | 1.60 | 8.00 | | SPATIAL AVERAGE SAR ²
Whole Body | 0.08 | 0.40 | | SPATIAL PEAK SAR ³
Hands, Feet, Ankles, Wrists | 4.00 | 20.00 | ¹ The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time. EMC-003 (Rev.2) The Spatial Average value of the SAR averaged over the whole body. ³ The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time. # 7. FCC MEASUREMENT PROCEDURES Power measurements for licensed transmitters are performed using a base station simulator under digital average power. # 7.1. Measured and Reported SAR Per FCC KDB Publication 447498 D01v06, when SAR is not measured at the maximum power level allowed for production units, the results must be scaled to the maximum tune-up tolerance limit according to the power applied to the individual channels tested to determine compliance. For simultaneous transmission, the measured aggregate SAR must be scaled according to the sum of the differences between the maximum tune-up tolerance and actual power used to test each transmitter. When SAR is measured at or scaled to the maximum tune-up tolerance limit, the results are referred to as *reported* SAR. The highest *reported* SAR results are identified on the grant of equipment authorization according to procedures in KDB 690783 D01v01r03. Per KDB Publication 447498 D01v06, testing of other required channels within the operating mode of a frequency band is not required when the reported 1g or 10g SAR for the mid-band or highest output power channel is: - \leq 0.8 W/kg or 2.0 W/kg, for 1g or 10g respectively, when the transmission band is \leq 100 MHz - ≤ 0.6 W/kg or 1.5 W/kg, for 1g or 10g respectively, when the transmission band is between 100 MHz and 200 MHz - ≤ 0.4 W/kg or 1.0 W/kg, for 1g or 10g respectively, when the transmission band is ≥ 200 MHz # 7.2. Procedures Used to Establish RF Signal for SAR Chipset based test mode software is hardware dependent and generally varies among manufacturers. The device operating parameters established in test mode for SAR measurements must be identical to those programmed in production units, including output power levels, amplifier gain settings and other RF performance tuning parameters. The reported SAR is scaled to 100% transmission duty factor to determine compliance at the maximum tune-up tolerance limit. Establishing connections in this manner ensure a consistent means for testing SAR and are recommended for evaluating SAR. Devices under test are evaluated prior to testing, with a fully charged battery and were configured to operate at maximum output power. In order to verify that the device is tested throughout the SAR test at maximum output power, the SAR measurement system measures a "point SAR" at an arbitrary reference point at the start and end of the 1 gram SAR evaluation, to assess for any power drifts during the evaluation. If the power drift deviates by more than 5%, the SAR test and drift measurements are repeated. As required by §§ 2.1091(d)(2) and 2.1093(d)(5), RF exposure compliance must be determined at the maximum average power level according to source-based time-averaging requirements to determine compliance for general population exposure conditions. Unless it is specified differently in the *published RF exposure KDB procedures*, these requirements also apply to test reduction and test exclusion considerations. Time-averaged maximum conducted output power applies to SAR and, as required by § 2.1091(c), time-averaged effective radiated power applies to MPE. When an antenna port is not
available on the device to support conducted power measurement, such as for FRS (Part 95) devices and certain Part 15 transmitters with built-in integral antennas, the maximum output power and tolerance allowed for production units should be used to determine RF exposure test exclusion and compliance. # 8. RF CONDUCTED POWERS # 8.1. Conducted Powers #### 8.1.1. Bluetooth **Table 8-1 Bluetooth Conducted Powers** | Mode | Data Rate | Ch. | Eroguones | Average Con | ducted Power | |-------------|-----------|------|-----------|-------------|--------------| | Wiode | Data Kate | CII. | Frequency | dBm | mW | | | | 0 | 2402 | 11.35 | 13.65 | | | 1 Mbps | 39 | 2441 | 11.39 | 13.77 | | | | 78 | 2480 | 11.28 | 13.43 | | | | 0 | 2402 | 8.83 | 7.64 | | | 2 Mbps | 39 | 2441 | 8.77 | 7.53 | | | | 78 | 2480 | 8.59 | 7.23 | | Diverse | 3 Mbps | 0 | 2402 | 8.95 | 7.85 | | Bluetooth | | 39 | 2441 | 9.01 | 7.96 | | (Right Ear) | | 78 | 2480 | 8.63 | 7.29 | | | | 0 | 2402 | 7.00 | 5.01 | | | | 19 | 2440 | 6.85 | 4.84 | | | | 39 | 2480 | 6.93 | 4.93 | | | | 0 | 2402 | 6.97 | 4.98 | | | LE 2 Mbps | 19 | 2440 | 6.84 | 4.83 | | | | 39 | 2480 | 6.91 | 4.91 | Note: The bolded data rates and channel above were tested for SAR. \blacksquare Spectrum 4 Spectrum 3 Spectrum Spectrum 2 Ref Level 20.00 dBm Offset 0.80 dB ● RBW 1 MHz 30 dB 🅌 SWT 15 ms 🌘 **VBW** 3 MHz Att TRG: VID ●1Pk View D3[1] 3.7500 ms 11.58 dBm 3.7500 ms 10 dBm-M1[1] 0 dBm--10 dBm -20 dBm TRG -20.000 dBm -30 dBm -40 dBm--50 dBm -70 dBm-CF 2.441 GHz 1001 pts 1.5 ms/ Marker Type | Ref | Trc | Function **Function Result** X-value Y-value 3.75 ms 11.58 dBm D2 М1 2.88 ms 3.75 ms -0.19 dB -0.00 dB D3 M1 Figure 8-1 Bluetooth Transmission Plot ### Equation 8-1 Bluetooth Duty Cycle Calculation for Right ear - DUTY cycle of this device is 76.8 %. - DUTY Cycle [%] = (Pulse / Period) X 100 = (2.88/3.75) X 100 = 76.8 % EMC-003 (Rev.2) **Table 8-2 Bluetooth Conducted Powers** | Mode | Data Rate | Ch. | Eroguoney | Average Conducted Power | | | |------------|-----------|------|-----------|-------------------------|-------|--| | iviode | Data Kate | CII. | Frequency | dBm | mW | | | | | 0 | 2402 | 11.42 | 13.87 | | | | 1 Mbps | 39 | 2441 | 11.49 | 14.09 | | | | | 78 | 2480 | 11.37 | 13.71 | | | | | 0 | 2402 | 8.73 | 7.46 | | | | 2 Mbps | 39 | 2441 | 8.69 | 7.40 | | | | | 78 | 2480 | 8.54 | 7.14 | | | Bluetooth | 3 Mbps | 0 | 2402 | 9.01 | 7.96 | | | (Left Ear) | | 39 | 2441 | 8.82 | 7.62 | | | (Left Ear) | | 78 | 2480 | 8.71 | 7.43 | | | | LE 1 Mbps | 0 | 2402 | 6.45 | 4.42 | | | | | 19 | 2440 | 6.25 | 4.22 | | | | | 39 | 2480 | 6.29 | 4.26 | | | | | 0 | 2402 | 6.45 | 4.42 | | | | LE 2 Mbps | 19 | 2440 | 6.25 | 4.22 | | | | | 39 | 2480 | 6.32 | 4.29 | | Note: The bolded data rates and channel above were tested for SAR. \blacksquare Spectrum 3 Spectrum 4 Spectrum Spectrum 2 Ref Level 20.00 dBm Offset 0.80 dB • RBW 1 MHz Att 30 dB 🁄 SWT 15 ms 🁄 **VBW** 3 MHz TRG: VID ●1Pk View D3[1] 0.00 dE 3.7500 ms 11.49 dBm 3.7500 ms 10 dBm-M1[1] 0 dBm--10 dBm-TRG -15.000 dBm -20 dBm--30 dBm--40 dBm--50 dBm -60 dBm--70 dBm-1001 pts 1.5 ms/ CF 2.441 GHz Marker Type | Ref | Trc | Y-value Function **Function Result** X-value 3.75 ms 11.49 dBm D2 М1 2.88 ms 3.75 ms -0.49 dB M1 -0.00 dB DЗ Figure 8-2 Bluetooth Transmission Plot # **Equation 8-2 Bluetooth Duty Cycle Calculation for Left ear** - DUTY cycle of this device is 76.8 %. - DUTY Cycle [%] = (Pulse / Period) X 100 = (2.88/3.75) X 100 = 76.8 % # 9. SYSTEM VERIFICATION ### 9.1. Tissue Verification **Table 9-1 Measured Head Tissue Properties** | Tissue
Type | Frequency
(MHz) | Liquid
Temp.
(℃) | Measured
Conductivity
(σ) | Measured
Permittivity
(ε _r) | Target
Conductivity
(σ) | Target
Permittivity
(ε _r) | Conductivity Deviation (%) | Permittivity
Deviation
(%) | Test
Date | |----------------|--------------------|------------------------|---------------------------------|---|-------------------------------|---|----------------------------|----------------------------------|--------------| | | 2 450 | | 1.762 | 39.247 | 1.80 | 39.2 | - 2.11 | 0.12 | | | UOI 2450 | 2 402 | 21.6 | 1.718 | 39.348 | 1.76 | 39.3 | - 2.39 | 0.12 | 2021.06.07 | | HSL2450 | 2 441 | 21.6 | 1.754 | 39.287 | 1.79 | 39.2 | - 2.01 | 0.22 | 2021.06.07 | | | 2 480 | | 1.793 | 39.072 | 1.83 | 39.2 | - 2.02 | - 0.33 | | | HSL2450 | 2 450 | | 1.829 | 38.585 | 1.80 | 39.2 | 1.61 | - 1.57 | | | | 2 402 | 21.0 | 1.773 | 38.720 | 1.76 | 39.3 | 0.74 | - 1.48 | 2024 06 09 | | | 2 441 | 21.9 | 1.818 | 38.611 | 1.79 | 39.2 | 1.56 | - 1.50 | 2021.06.08 | | | 2 480 | | 1.863 | 38.475 | 1.83 | 39.2 | 1.80 | - 1.85 | | Tissue Verification Notes: - 1. The above measured tissue parameters were used in the DASY software. The DASY software was used to perform interpolation to determine the dielectric parameters at the SAR test device frequencies (per KDB Publication 865664 D01v01r04 and IEEE 1528-2013 6.6.1.2). The tissue parameters listed in the SAR test plots may slightly differ from the table above due to significant digit rounding in the software. - 2. Per April 2019 TCBC Workshop Notes, effective February 19, 2019, FCC has permitted the use of single head-tissue simulating liquid specified in IEC 62209-1 for all SAR tests. # 9.2. Test System Verification Prior to SAR assessment, the system is verified to \pm 10 % of the SAR measurement on the reference dipole at the time of calibration by the calibration facility. Full system validation status and result summary can be found in Appendix E. | Table 9-2 System | Verification | Results - | 1 g | |------------------|--------------|-----------|-----| |------------------|--------------|-----------|-----| | SAR
System
| Amb.
Temp
(°C) | Liquid
Temp.
(°C) | Test
Date | Tissue
Type | Frequency
(MHz) | Input
Power
(mW) | 1W Target
SAR-1 g
(W/kg) | Measured
SAR-1 g
(W/kg) | Normalized
to 1W
SAR-1 g
(W/kg) | Deviation
(%) | Dipole
S/N | Probe
S/N | |--------------------|----------------------|-------------------------|--------------|----------------|--------------------|------------------------|--------------------------------|-------------------------------|--|------------------|---------------|--------------| | 3 | 22.2 | 21.6 | 2021.06.07 | Head | 2 450 | 100 | 52.00 | 5.24 | 52.40 | 0.77 | 920 | 7610 | | 3 | 22.5 | 21.9 | 2021.06.08 | Head | 2 450 | 100 | 52.00 | 5.46 | 54.60 | 5.00 | 920 | 7610 | Table 9-3 System Verification Results - 10 g | SAR
System
| Amb.
Temp
(°C) | Liquid
Temp.
(°C) | Test
Date | Tissue
Type | Frequency
(MHz) | Input
Power
(mW) | 1W Target
SAR-10 g
(W/kg) | Measured
SAR-10 g
(W/kg) | Normalized
to 1W
SAR-10 g
(W/kg) | Deviation (%) | Dipole
S/N | Probe
S/N | |--------------------|----------------------|-------------------------|--------------|----------------|--------------------|------------------------|---------------------------------|--------------------------------|---|---------------|---------------|--------------| | 3 | 22.2 | 21.6 | 2021.06.07 | Head | 2 450 | 100 | 24.30 | 2.35 | 23.50 | - 3.29 | 920 | 7610 | | 3 | 22.5 | 21.9 | 2021.06.08 | Head | 2 450 | 100 | 24.30 | 2.45 | 24.50 | 0.82 | 920 | 7610 | Figure 9-1 System Verification Setup Diagram and Photo # 10. SAR TEST DATA SUMMARY # 10.1. Standalone Head SAR Data Table 10-1 Bluetooth Head SAR | Plot | Device | Frequ | iency | | | Test | Spacing | Maximum
Allowed | Measured
Conducted | Scaling | Scaling | Power | Measured | Reported | |------|---|-------|-------|-----------|---------|-----------|---|--------------------|-----------------------|------------------------|-------------------|------------|-------------------|-------------------| | No. | Serial
Number | MHz | Ch. | Mode | Service | Position | (cm) | Power
(dBm) | Power | Factor
(Duty Cycle) | Factor
(Power) | Drift (dB) | SAR 1 g
(W/kg) | SAR 1 g
(W/kg) | | 1 | SAR1 | 2 441 | 39 | Bluetooth | 1 Mbps | Right Ear | 0 | 11.5 | 11.39 | 1.302 | 1.026 | - 0.100 | 0.233 | 0.311 | | 4 | SAR1 | 2 441 | 39 | Bluetooth | 1 Mbps | Left Ear | 0 | 11.5 | 11.49 | 1.302 | 1.002 | - 0.190 | 0.382 | 0.499 | | | ANSI / IEEE C95.1 1992 – SAFETY LIMIT
Spatial Peak
Uncontrolled Exposure / General Population | | | | | | Head
1.6 W/kg (mW/g)
Averaged over 1 gram | | | | | | | | # 10.2. Standalone Body/Hands SAR Data Table 10-2 Bluetooth Body/Hands SAR | Plot | Device
Serial
Number | Earphone
Side | Frequ | Ch. | Mode | Service | Test
Position | Spacing (cm) | Maximum
Allowed
Power | Measured
Conducted
Power | Scaling
Factor
(Duty
Cycle) | Scaling
Factor
(Power) | Power
Drift (dB) | Measured
SAR 1 g
(W/kg) | Reported
SAR 1 g
(W/kg) | Measured
SAR 10 g
(W/kg) | • | |------|---|------------------|-------|-----|-----------|---------|------------------|---|-----------------------------|--------------------------------|--------------------------------------|---|---------------------|-------------------------------|-------------------------------|--------------------------------|-------| | | 2121 | | | | | | _ | | (dBm) | (dBm) | • • | | | , ,, | , ,, | | | | | SAR1 | | 2 441 | 39 | Bluetooth | 1 Mbps | Тор | 0 | 11.5 | 11.39 | 1.302 | 1.026 | 0.060 | 0.056 | 0.075 | 0.027 | 0.036 | | | SAR1 | | 2 441 | 39 | Bluetooth | 1 Mbps | Bottom | 0 | 11.5 | 11.39 | 1.302 |
1.026 | - 0.010 | 0.097 | 0.130 | 0.039 | 0.052 | | 9 | SAR1 | | 2 441 | 39 | Bluetooth | 1 Mbps | Front | 0 | 11.5 | 11.39 | 1.302 | 1.026 | - 0.150 | 0.646 | 0.863 | 0.189 | 0.252 | | | SAR1 | Right Ear | 2 441 | 39 | Bluetooth | 1 Mbps | Rear | 0 | 11.5 | 11.39 | 1.302 | 1.026 | - 0.100 | 0.233 | 0.311 | 0.085 | 0.114 | | | SAR1 | Night Lai | 2 441 | 39 | Bluetooth | 1 Mbps | Right | 0 | 11.5 | 11.39 | 1.302 | 1.026 | 0.120 | 0.324 | 0.433 | 0.119 | 0.159 | | | SAR1 | | 2 441 | 39 | Bluetooth | 1 Mbps | Left | 0 | 11.5 | 11.39 | 1.302 | 1.026 | 0.190 | 0.354 | 0.473 | 0.131 | 0.175 | | | SAR1 | | 2 402 | 0 | Bluetooth | 1 Mbps | Front | 0 | 11.5 | 11.35 | 1.302 | 1.035 | 0.160 | 0.617 | 0.832 | 0.181 | 0.244 | | | SAR1 | | 2 480 | 78 | Bluetooth | 1 Mbps | Front | 0 | 11.5 | 11.28 | 1.302 | 1.052 | 0.170 | 0.626 | 0.857 | 0.180 | 0.247 | | | SAR1 | | 2 441 | 39 | Bluetooth | 1 Mbps | Тор | 0 | 11.5 | 11.49 | 1.302 | 1.002 | - 0.150 | 0.047 | 0.061 | 0.022 | 0.029 | | | SAR1 | | 2 441 | 39 | Bluetooth | 1 Mbps | Bottom | 0 | 11.5 | 11.49 | 1.302 | 1.002 | - 0.190 | 0.140 | 0.183 | 0.053 | 0.069 | | | SAR1 | | 2 441 | 39 | Bluetooth | 1 Mbps | Front | 0 | 11.5 | 11.49 | 1.302 | 1.002 | - 0.020 | 0.455 | 0.594 | 0.147 | 0.192 | | | SAR1 | | 2 441 | 39 | Bluetooth | 1 Mbps | Rear | 0 | 11.5 | 11.49 | 1.302 | 1.002 | - 0.190 | 0.382 | 0.499 | 0.135 | 0.176 | | 19 | SAR1 | Left Ear | 2 441 | 39 | Bluetooth | 1 Mbps | Right | 0 | 11.5 | 11.49 | 1.302 | 1.002 | - 0.070 | 0.809 | 1.056 | 0.298 | 0.389 | | | SAR1 | | 2 441 | 39 | Bluetooth | 1 Mbps | Left | 0 | 11.5 | 11.49 | 1.302 | 1.002 | - 0.160 | 0.373 | 0.487 | 0.122 | 0.159 | | | SAR1 | | 2 402 | 0 | Bluetooth | 1 Mbps | Right | 0 | 11.5 | 11.42 | 1.302 | 1.019 | 0.040 | 0.785 | 1.041 | 0.288 | 0.382 | | | SAR1 | | 2 480 | 78 | Bluetooth | 1 Mbps | Right | 0 | 11.5 | 11.37 | 1.302 | 1.030 | - 0.050 | 0.780 | 1.046 | 0.285 | 0.382 | | | SAR1 | | 2 441 | 39 | Bluetooth | 1 Mbps | Right | | 11.5 | 11.49 | 1.302 | 1.002 | - 0.040 | 0.803 | 1.048 | 0.296 | 0.386 | | | ANSI / IEEE C95.1 1992 – SAFETY LIMIT
Spatial Peak
Uncontrolled Exposure / General Population | | | | | | | Body
1.6 W/kg (mW/g)
Averaged over 1 gram | | | , | Limbs (Hands)
4.0 W/kg (mW/g)
Averaged over 10 gram | | | | | | Note: Green entry represents variability measurement. #### 10.3. SAR Test Notes #### General Notes: - 1. The test data reported are the worst-case SAR values according to test procedures specified in IEEE 1528-2013, and FCC KDB Publication 447498 D01v06. - 2. Batteries are fully charged at the beginning of the SAR measurements. - 3. Liquid tissue depth was at least 15.0 cm for all frequencies. - 4. The manufacturer has confirmed that the device(s) tested have the same physical, mechanical and thermal characteristics and are within operational tolerances expected for production units. - 5. SAR results were scaled to the maximum allowed power to demonstrate compliance per FCC KDB Publication 447498 D01v06. - 6. Device was tested using a fixed spacing for body testing. A separation distance of 0 cm was considered because the manufacturer has determined that there will be body available in the marketplace for users to support this separation distance. - 7. Unless otherwise noted, when 10g SAR measurement is considered, a factor of 2.5 is applied to the thresholds below. - 8. Per FCC KDB 865664 D01v01r04, variability SAR tests may be performed when the measured SAR results for a frequency band were greater than or equal to 0.8 W/kg. Repeated SAR measurements are highlighted in the tables above for clarity. Please see section 11 for variability analysis. - Per FCC KDB 447498 D01v06, SAR Testing was performed on the Flat Phantom for normal use for Head. Additional SAR Testing was performed on the location closest to the Antenna of similar configuration to demonstrate compliance. - 10. Right ear means tested with right earbud. - 11. Left ear means tested with left earbud. #### Bluetooth Notes: - Bluetooth SAR was measured with hopping disabled with DH5 operation and Tx Tests test mode type. Per October 2016 TCBC Workshop Notes, the reported SAR was scaled to the 100 % transmission duty factor to determine compliance. See Section 8.1.1 for the time domain plot and calculation for the duty factor of the device. - 2. Per FCC KDB Publication 447498 D01v06, if the reported (Scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg for 1g evaluations then testing at the other channels is not required for such test configuration(s). When the maximum output power variation across the required test channels is > 1/2 dB, instead of the middle channel, the highest output power channel was used. Tested By: No Gyun, Im / Senior Manager (ONETECH Corp.) # 11. SAR MEASUREMENT VARIABILITY # 11.1. Measurement Variability Per FCC KDB Publication 865664 D01v01r04, SAR measurement variability was assessed for each frequency band, which was determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media were required for SAR measurements in a frequency band, the variability measurement procedures were applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium. These additional measurements were repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device was returned to ambient conditions (normal room temperature) with the battery fully charged before it was re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results. SAR Measurement Variability was assessed using the following procedures for each frequency band: - 1) When the original highest measured SAR is ≥ 0.80 W/kg, the measurement was repeated once. - 2) A second repeated measurement was performed only if the ratio of largest to smallest SAR for the original and first repeated measurements was > 1.20 or when the original or repeated measurement was ≥ 1.45 W/kg (~ 10 % from the 1 g SAR limit). - 3) A third repeated measurement was performed only if the original, first or second repeated measurement was ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20. - 4) Repeated measurements are not required when the original highest measured SAR is < 0.80 W/kg. - 5) When 10 g SAR measurement is considered, a factor of 2.5 is applied to the thresholds above. **Body Variability Results** 1s 2nd 3rd Measured Frequency Frequency Repeated Repeated Repeated Test Mode Service Spacing SAR (1 g) Ratio Ratio Ratio Band Position **SAR** (1 g) SAR (1 g) SAR (1 g) MHz Ch. (W/kg) (W/kg) (W/kg) (W/kg) 2 450 2 441 39 Bluetooth 1 Mbps Right 0 cm 0.809 0.803 1.01 N/A N/A N/A N/A ANSI / IEEE C95.1 1992 - SAFETY LIMIT Body 1.6 W/kg (mW/g) Spatial Peak Uncontrolled Exposure / General Population Averaged over 1 gram Table 11-1 Body SAR Measurement Variability Results # 11.2. Measurement Uncertainty The measured SAR was < 1.5 W/kg for 1 g and < 3.75 W/kg for 10 g for all frequency bands. Therefore, per KDB Publication 865664 D01v01r04, the extended measurement uncertainty analysis per IEEE 1528-2013 was not required. # 12. EQUIPMENT LIST | Manufacturer | Model | Description | Cal. Date | Cal. Interval | CaL.Due | Serial No. | |---------------------|------------------|------------------------------|------------|---------------|------------|--------------------| | SY Corp. | SAR ROOM #3 | SAR Shield Room | N/A | N/A | N/A | N/A | | STAUBLI | TX90 XLspeag | DASY6 Robot | N/A | N/A | N/A | F/20/0019420/A/001 | | STAUBLI | CS8Cspeag-Tx90 | DASY6 Controller | N/A | N/A | N/A | F/20/0019420/A/001 | | Speag | SE UMS 028 CA | DASY6 Measurement Server | N/A | N/A | N/A | 1676 | | STAUBLI | SP1 | Robot Remote Control | N/A | N/A | N/A | D21142608A | | Speag | SE UKS 030 AA | Light Beam SAR #3 | N/A | N/A | N/A | 1156 | | Speag | ELI Phantom V8.0 | Phantom | N/A | N/A | N/A | 2114 | | Speag | MD4HHTV5 | Mounting Device | N/A | N/A | N/A | N/A | | Speag | EX3DV4 | SAR Probe | 2020-08-31 | Annual | 2021-08-31 | 7610 | | Speag | DAE4 | Data Acquisition Electronics | 2020-08-31 | Annual | 2021-08-31 | 1631 | | Speag | D2450V2 | Dipole Antenna | 2020-08-18 | Biennal | 2022-08-18 | 920 | | HP | 8665B | RF Signal Generator | 2020-08-20 | Annual | 2021-08-20 | 3744A01349 | | EMPOWER | BBS3Q7ECK-2001 | RF Power Amplifier | 2020-08-21 | Annual | 2021-08-21 | 1045D/C0536 | | Agilent | E4419B | Power Meter | 2020-08-21 | Annual | 2021-08-21 | MY45100284 | | Anritsu | ML2495A | Power Meter | 2020-07-21 | Annual | 2021-07-21 | 1924013 | | HP | 8481H | Power Sensor | 2020-08-21 | Annual | 2021-08-21 | 3318A17600 | | HP | 8481A | Power Sensor | 2020-08-21 | Annual | 2021-08-21 | US37290447 | | Anritsu | MA2411B | Pulse Power Sensor | 2020-07-21 | Annual | 2021-07-21 | 1726430 | | HP | 11692D | Dual Directional Coupler | 2020-08-20 | Annual | 2021-08-20 | 1212A05057 | | Bird | 50-6A-MFN-30 | Attenuator | 2020-08-20 | Annual | 2021-08-20 | N/A | | HP | 8491A | Attenuator | 2020-08-20 | Annual | 2021-08-20 | 63272 | | WAINWRIGHT | WLJS3000-6EF | Low Pass Filter | 2020-08-20 | Annual | 2021-08-20 | 1 | | Speag | DAK-3.5 | Dielectric Assessment Kit | 2020-11-25 | Annual | 2021-11-25 | 1040 | | Agilent | E8357A | Network Analyzer | 2020-08-21 | Annual | 2021-08-21 | US41070399 | | ROHDE & SCHWARZ | FSP | Spectrum Analyzer | 2020-07-15 | Annual | 2021-07-15 | 100017 | | ROHDE & SCHWARZ | FSV40-N | Signal Analyzer | 2021-04-16 | Annual | 2022-04-16 | 101457 | | LKM Electronic GmbH | DTM3000-Spezial | Hand-Held Thermometers | 2020-08-26 | Annual | 2021-08-26 | 3247 | | CAS | TE-201 | Temperature hygrometer | 2020-08-25 | Annual | 2021-08-25 | 14011777-1 | ####
Notes: - 1. CBT (Calibration Before Testing). Prior to testing, the measurement paths containing a cable, amplifier, attenuator, coupler or filter were connected to a calibrated source (i.e. a signal generator) to determine the losses of the measurement path. The power meter offset was then adjusted to compensate for the measurement system losses. This level offset is stored within the power meter before measurements are made. This calibration verification procedure applies to the system verification and output power measurements. The calibrated reading is then taken directly from the power meter after compensation of the losses for all final power measurements. - 2. All equipment was used solely within its calibration period. # 13. MEASUREMENT UNCERTAINTIES Table 13-1 Uncertainty of SAR equipment for measurement Body 0.3 GHz to 3 GHz | | | | Uncertainty | Uncertainty | Probe | Div. | C_i | C_i | $U_{i}(y)$ | $U_{i}(y)$ | V_i | |-----|-----------------------|--|-------------|--------------|------------|------------|-------|--------|------------|------------|------------------| | No. | | Error Description | Value (1 g) | Value (10 g) | Dist. | | (1 g) | (10 g) | (1 g) | (10 g) | or $V_{\it eff}$ | | | | | (%) | (%) | | | | | | | | | 1 | U(PR _C) | Probe Calibration | 6.65 | 6.65 | N | 1.00 | 1.00 | 1.00 | 6.65 | 6.65 | 80 | | 2 | U(PR ₁) | Isotropy | 1.87 | 1.87 | R | √₃
1.73 | 1.00 | 1.00 | 1.08 | 1.08 | 80 | | 3 | U(L) | Linearity | 0.60 | 0.60 | R | √₃
1.73 | 1.00 | 1.00 | 0.35 | 0.35 | 80 | | 4 | U(PR _{MR}) | Probe modulation response | 2.40 | 2.40 | R | √3
1.73 | 1.00 | 1.00 | 1.39 | 1.39 | 8 | | 6 | U(DL) | Detection Limits | 1.00 | 1.00 | R | √3
1.73 | 1.00 | 1.00 | 0.58 | 0.58 | 80 | | 5 | U(BE) | Boundary effect | 1.00 | 1.00 | R | √3
1.73 | 1.00 | 1.00 | 0.58 | 0.58 | 80 | | 7 | U(RE) | Readout Electronics | 0.30 | 0.30 | N | 1.00 | 1.00 | 1.00 | 0.30 | 0.30 | 80 | | 8 | U(T _{RT}) | Response Time | 0.80 | 0.80 | R | √₃
1.73 | 1.00 | 1.00 | 0.46 | 0.46 | œ | | 9 | $U(T_{II})$ | Integration Time | 2.60 | 2.60 | R | √3
1.73 | 1.00 | 1.00 | 1.50 | 1.50 | 80 | | 10 | U(A _{NO}) | RF ambient conditions-noise | 3.00 | 3.00 | R | √3
1.73 | 1.00 | 1.00 | 1.73 | 1.73 | œ | | 11 | U(A RF) | RF ambient conditions-reflections | 3.00 | 3.00 | R | √₃
1.73 | 1.00 | 1.00 | 1.73 | 1.73 | 8 | | 12 | U(PR _{PT}) | Probe positioner mech. Restrictions | 0.40 | 0.40 | R | √₃
1.73 | 1.00 | 1.00 | 0.23 | 0.23 | 80 | | 13 | U(PR _{PP}) | Probe positioning with respect to phantom she | 2.90 | 2.90 | R | √₃
1.73 | 1.00 | 1.00 | 1.67 | 1.67 | 80 | | 14 | U(PP _{MSE}) | Post-processing(for max. SAR evaluation) | 2.00 | 2.00 | R | √3
1.73 | 1.00 | 1.00 | 1.15 | 1.15 | 80 | | 15 | U(DU) | Device Holder Uncertainty | 3.60 | 3.60 | N | 1.00 | 1.00 | 1.00 | 3.60 | 3.60 | 5.00 | | 16 | U(PO _{EUT}) | Test sample positioning | 1.04 | 1.27 | N | 1.00 | 1.00 | 1.00 | 1.04 | 1.27 | 9.00 | | 17 | U(PS) | Power scaling | 0.00 | 0.00 | R | √3
1.73 | 1.00 | 1.00 | 0.00 | 0.00 | 8 | | 18 | U(PD) | Drift of output power(measured SAR drift) | 5.00 | 5.00 | R | √₃ 1.73 | 1.00 | 1.00 | 2.89 | 2.89 | 8 | | 19 | U(PU) | Phantom Uncertainty | 7.50 | 7.50 | R | √₃
1.73 | 1.00 | 1.00 | 4.33 | 4.33 | 8 | | 20 | U(CS _{DPC)} | Algorithm for correcting SAR for deviations in permittivity and conductivity | 1.90 | 1.90 | N | 1.00 | 1.00 | 0.84 | 1.90 | 1.60 | 8 | | 21 | U(LC _M) | Liquid Conductivity (meas.) | 2.09 | 1.90 | N | 1.00 | 0.78 | 0.71 | 1.63 | 1.35 | 5.00 | | 22 | U(LP _M) | Liquid Permittivity (meas.) | 0.37 | 0.42 | N | 1.00 | 0.23 | 0.26 | 0.09 | 0.11 | 5.00 | | 23 | U(LC TU) | Liquid conductivity(temperature uncertainty) | 1.87 | 1.71 | R | √₃
1.73 | 0.78 | 0.71 | 0.84 | 0.70 | œ | | 24 | U(LP TU) | Liquid permittivity(temperature uncertainty) | 0.13 | R | √3
1.73 | 0.23 | 0.26 | 0.01 | 0.02 | 8 | | | / | | Uc(sar) Combined standard uncertainty (| %) | | | | | | 10.44 | 10.36 | 347 | | | | Extended uncertainty $U(\%)$ | | | | | | | 20.88 | 20.72 | | ### 14. CONCLUSION #### 14.1. Measurement Conclusion The SAR evaluation indicates that the EUT complies with the RF radiation exposure limits of the FCC and Innovation, Science, and Economic Development Canada, with respect to all parameters subject to this test. These measurements were taken to simulate the RF effects of RF exposure under worst-case conditions. Precise laboratory measures were taken to assure repeatability of the tests. The results and statements relate only to the item(s) tested. Please note that the absorption and distribution of electromagnetic energy in the body are very complex phenomena that depend on the mass, shape, and size of the body, the orientation of the body with respect to the field vectors, and the electrical properties of both the body and the environment. Other variables that may play a substantial role in possible biological effects are those that characterize the environment (e.g. ambient temperature, air velocity, relative humidity, and body insulation) and those that characterize the individual (e.g. age, gender, activity level, debilitation, or disease). Because various factors may interact with one another to vary the specific biological outcome of an exposure to electromagnetic fields, any protection guide should consider maximal amplification of biological effects as a result of field-body interactions, environmental conditions, and physiological variables. # 14.2. Information on the Testing Laboratories We, Onetech Corp. Laboratory were founded in 1989 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are accredited and approved according to ISO/IEC 17025. If you have any comments, please feel free to contact us at the following: Address: 43-14, Jinsaegol-gil, Chowol-eup, Gwangju-si, Gyeonggi-do, Korea Republic of, 12735 E-Mail: info@onetech.co.kr Tel: +82-31-799-9500 Fax: +82-31-799-9599 #### Site Filing: VCCI (Voluntary Control Council for Interference) – Registration No. R-4112/ C-14617/ G-10666/ T-11842 ISED (Innovation, Science and Economic Development Canada) – Registration No. Site# 3736A-3 KOLAS (Korea Laboratory Accreditation Scheme) - Accreditation NO. KT085 FCC (Federal Communications Commission) - Accreditation No. KR0013 RRA (Radio Research Agency) - Designation No. KR0013 # 15. REFERENCES - [1] Federal Communications Commission, ET Docket 93-62, Guidelines for Evaluating the Environmental Effects of Radiofrequency Radiation, Aug. 1996. - [2] ANSI/IEEE C95.1-2005, American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 3kHz to 300GHz, New York: IEEE, 2006. - [3] ANSI/IEEE C95.1-1992, American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 3kHz to 300GHz, New York: IEEE, Sept. 1992. - [4] ANSI/IEEE C95.3-2002, IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields RF and Microwave, New York: IEEE, December 2002. - [5] IEEE Standards Coordinating Committee 39 –Standards Coordinating Committee 34 IEEE Std. 1528-2013, IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques. - [6] NCRP, National Council on Radiation Protection and Measurements, Biological Effects and Exposure Criteria for RadioFrequency Electromagnetic Fields, NCRP Report No. 86, 1986. Reprinted Feb. 1995. - [7] T. Schmid, O. Egger, N. Kuster, Automated E-field scanning system for dosimetric assessments, IEEE Transaction on Microwave Theory and Techniques, vol. 44, Jan. 1996, pp. 105-113. - [8] K. Pokovic, T. Schmid, N. Kuster, Robust setup for precise calibration of E-field probes in tissue simulating liquids at mobile communications frequencies, ICECOM97, Oct. 1997, pp. 1 -124. - [9] K. Pokovic, T. Schmid, and N. Kuster, E-field Probe with improved isotropy in brain simulating liquids, Proceedings of the ELMAR, Zadar, Croatia, June 23-25, 1996, pp. 172-175. - [10] Schmid & Partner Engineering AG, Application Note: Data Storage and Evaluation, June 1998, p2. - [11] V. Hombach, K. Meier, M. Burkhardt, E. Kuhn, N. Kuster, The Dependence of EM Energy Absorption upon Human Modeling at 900 MHz, IEEE Transaction on Microwave Theory and Techniques, vol. 44 no. 10, Oct. 1996, pp. 1865-1873. - [12] N. Kuster and Q. Balzano, Energy absorption mechanism by biological bodies in the near field of dipole antennas above 300MHz, IEEE Transaction on Vehicular Technology, vol. 41, no. 1, Feb. 1992, pp. 17-23. - [13] G. Hartsgrove, A. Kraszewski, A. Surowiec, Simulated Biological Materials for Electromagnetic Radiation Absorption Studies, University of Ottawa, Bioelectromagnetics, Canada: 1987, pp. 29-36. - [14] Q. Balzano, O. Garay, T. Manning Jr., Electromagnetic Energy Exposure of Simulated Users of Portable Cellular Telephones, IEEE Transactions on Vehicular Technology, vol. 44, no.3, Aug. 1995. - [15] W. Gander, Computermathematick, Birkhaeuser, Basel, 1992. - [16] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical Recipes in C, The Art of Scientific Computing, Second edition, Cambridge University Press, 1992. - [17] N. Kuster, R. Kastle, T. Schmid, Dosimetric evaluation of mobile communications equipment with known precision, IEEE Transaction on Communications, vol. E80-B, no. 5, May 1997, pp. 645-652. - [18] CENELEC CLC/SC111B, European Prestandard (prENV 50166-2), Human Exposure to Electromagnetic Fields Highfrequency: 10kHz-300GHz, Jan. 1995. - [19] Prof. Dr. Niels Kuster, ETH, Eidgenössische Technische Hoschschule Zürich, Dosimetric Evaluation of the Cellular Phone. - [20] IEC 62209-1, Measurement procedure for the assessment of specific absorption rate of human exposure to radio frequency fields from
hand-held and body-mounted wireless communication devices Part 1: Devices used next to the ear (Frequency range of 300 MHz to 6 GHz), July 2016. - [21] Innovation, Science, Economic Development Canada RSS-102 Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands) Issue 5, March 2015. - [22] Health Canada Safety Code 6 Limits of Human Exposure to Radio Frequency Electromagnetic Fields in the Frequency Range from 3 kHz 300 GHz, 2015 - [23] FCC SAR Test Procedures for 2G-3G Devices, Mobile Hotspot and UMPC Devices KDB Publications 941225, D01-D07 - [24] SAR Measurement Guidance for IEEE 802.11 Transmitters, KDB Publication 248227 D01 - [25] FCC SAR Considerations for Handsets with Multiple Transmitters and Antennas, KDB Publications 648474 D03-D04 - [26] FCC SAR Evaluation Considerations for Laptop, Notebook, Netbook and Tablet Computers, FCC KDB Publication 616217 D04 - [27] FCC SAR Measurement and Reporting Requirements for 100MHz 6 GHz, KDB Publications 865664 D01-D02 - [28] FCC General RF Exposure Guidance and SAR Procedures for Dongles, KDB Publication 447498, D01-D02 - [29] Anexo à Resolução No. 533, de 10 de Septembro de 2009. - [30] IEC 62209-2, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices Human models, instrumentation, and procedures Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz), May. 2019. # **APPENDIX A: SYSTEM VERIFICATION** Test Laboratory: ONETECH CO., LTD. Lab Date: 6/7/2021 #### System Verification for 2 450 MHz #### **DUT: D2450V2 - SN:920** Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: HSL2450 Medium parameters used: f=2450 MHz; $\sigma=1.762$ S/m; $\epsilon_r=39.247$; $\rho=1000$ kg/m³ Ambient Temperature: 22.2 °C; Liquid Temperature: 21.6 °C #### DASY5 Configuration: - Probe: EX3DV4 SN7610; ConvF(7.84, 7.84, 7.84) @ 2450 MHz; Calibrated: 8/31/2020 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1631; Calibrated: 8/31/2020 - Phantom: ELI V8.0 (20deg probe tilt); Type: QD OVA 004 Ax; Serial: 2114 - Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) # Pin = 100 mW/Area Scan (7x8x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (measured) = 7.29 W/kg #### Pin = 100 mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 73.56 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 11.8 W/kg # SAR(1 g) = 5.24 W/kg; SAR(10 g) = 2.35 W/kg Smallest distance from peaks to all points 3 dB below = 9 mm Ratio of SAR at M2 to SAR at M1 = 44% Maximum value of SAR (measured) = 9.23 W/kg Test Laboratory: ONETECH CO., LTD. Lab Date: 6/8/2021 #### System Verification for 2 450 MHz #### **DUT: D2450V2 - SN:920** Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: HSL2450 Medium parameters used: f = 2450 MHz; $\sigma = 1.829$ S/m; $\epsilon_r = 38.585$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.5 °C; Liquid Temperature: 21.9 °C # DASY5 Configuration: - Probe: EX3DV4 SN7610; ConvF(7.84, 7.84, 7.84) @ 2450 MHz; Calibrated: 8/31/2020 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1631; Calibrated: 8/31/2020 - Phantom: ELI V8.0 (20deg probe tilt); Type: QD OVA 004 Ax; Serial: 2114 - Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) # Pin = 100 mW/Area Scan (7x8x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (measured) = 7.52 W/kg Pin = 100 mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 74.10 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 12.3 W/kg # SAR(1 g) = 5.46 W/kg; SAR(10 g) = 2.45 W/kg Smallest distance from peaks to all points 3 dB below = 9 mm Ratio of SAR at M2 to SAR at M1 = 44% Maximum value of SAR (measured) = 9.59 W/kg # **APPENDIX B: SAR TEST DATA** Test Laboratory: ONETECH CO., LTD. Lab Date: 6/7/2021 ### P01_Bluetooth_1 Mbps_Right Ear_0 cm_Ch.39 #### **DUT: TONE-FP5** Communication System: Bluetooth; Frequency: 2441 MHz; Duty Cycle: 1:1.302 Medium: HSL2450 Medium parameters used: f=2441 MHz; $\sigma=1.754$ S/m; $\epsilon_r=39.287$; $\rho=1000$ kg/m³ Ambient Temperature: 22.2 °C; Liquid Temperature: 21.6 °C #### DASY 5 Configuration: - Probe: EX3DV4 SN7610; ConvF(7.84, 7.84, 7.84) @ 2441 MHz; Calibrated: 8/31/2020 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1631; Calibrated: 8/31/2020 - Phantom: ELI V8.0 (20deg probe tilt); Type: QD OVA 004 Ax; Serial: 2114 - Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) - **Area Scan (7x8x1):** Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (measured) = 0.350 W/kg - **Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 15.79 V/m; Power Drift = -0.10 dB Peak SAR (extrapolated) = 1.04 W/kg SAR(1 g) = 0.233 W/kg; SAR(10 g) = 0.085 W/kg Smallest distance from peaks to all points 3 dB below = 8.8 mm Ratio of SAR at M2 to SAR at M1 = 45% Maximum value of SAR (measured) = 0.530 W/kg Test Laboratory: ONETECH CO., LTD. Lab Date: 6/8/2021 ### P04_Bluetooth_1 Mbps_Left Ear_0 cm_Ch.39 #### **DUT: TONE-FP5** Communication System: Bluetooth; Frequency: 2441 MHz; Duty Cycle: 1:1.302 Medium: HSL2450 Medium parameters used: f=2441 MHz; $\sigma=1.818$ S/m; $\epsilon_r=38.611$; $\rho=1000$ kg/m³ Ambient Temperature: 22.5 °C; Liquid Temperature: 21.9 °C #### DASY5 Configuration: - Probe: EX3DV4 SN7610; ConvF(7.84, 7.84, 7.84) @ 2441 MHz; Calibrated: 8/31/2020 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1631; Calibrated: 8/31/2020 - Phantom: ELI V8.0 (20deg probe tilt); Type: QD OVA 004 Ax; Serial: 2114 - Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) - **Area Scan (7x8x1):** Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (measured) = 0.663 W/kg - Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 16.67 V/m; Power Drift = -0.19 dB Peak SAR (extrapolated) = 1.61 W/kg SAR(1 g) = 0.382 W/kg; SAR(10 g) = 0.135 W/kg SAR(1 g) = 0.332 W/kg, SAR(10 g) = 0.133 W/kg Smallest distance from peaks to all points 3 dB below = 9.6 mm Ratio of SAR at M2 to SAR at M1 = 47.8% Maximum value of SAR (measured) = 0.851 W/kg Test Laboratory: ONETECH CO., LTD. Lab Date: 6/7/2021 ### P09_Bluetooth_1 Mbps_Front_0 cm_Ch.39_Right Ear #### **DUT: TONE-FP5** Communication System: Bluetooth; Frequency: 2441 MHz; Duty Cycle: 1:1.302 Medium: HSL2450 Medium parameters used: f=2441 MHz; $\sigma=1.754$ S/m; $\epsilon_r=39.287$; $\rho=1000$ kg/m³ Ambient Temperature: 22.2 °C; Liquid Temperature: 21.6 °C #### DASY5 Configuration: - Probe: EX3DV4 SN7610; ConvF(7.84, 7.84, 7.84) @ 2441 MHz; Calibrated: 8/31/2020 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1631; Calibrated: 8/31/2020 - Phantom: ELI V8.0 (20deg probe tilt); Type: QD OVA 004 Ax; Serial: 2114 - Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) - **Area Scan (7x8x1):** Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (measured) = 0.676 W/kg - Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 27.89 V/m; Power Drift = -0.15 dB Peak SAR (extrapolated) = 3.37 W/kg SAR(1 g) = 0.646 W/kg; SAR(10 g) = 0.189 W/kg Smallest distance from peaks to all points 3 dB below = 7.6 mm Ratio of SAR at M2 to SAR at M1 = 48.8% Maximum value of SAR (measured) = 1.83 W/kg Test Laboratory: ONETECH CO., LTD. Lab Date: 6/8/2021 ### P19_Bluetooth_1 Mbps_Right_0 cm_Ch.39_Left Ear #### **DUT: TONE-FP5** Communication System: Bluetooth; Frequency: 2441 MHz; Duty Cycle: 1:1.302 Medium: HSL2450 Medium parameters used: f=2441 MHz; $\sigma=1.818$ S/m; $\epsilon_r=38.611$; $\rho=1000$ kg/m³ Ambient Temperature: 22.5 °C; Liquid Temperature: 21.9 °C #### DASY5 Configuration: - Probe: EX3DV4 SN7610; ConvF(7.84, 7.84, 7.84) @ 2441 MHz; Calibrated: 8/31/2020 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1631; Calibrated: 8/31/2020 - Phantom: ELI V8.0 (20deg probe tilt); Type: QD OVA 004 Ax; Serial: 2114 - Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) - **Area Scan (7x8x1):** Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (measured) = 1.10 W/kg - **Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 29.80 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 2.22 W/kg SAR(1 g) = 0.809 W/kg; SAR(10 g) = 0.298 W/kg Smallest distance from peaks to all points 3 dB below = 5.8 mm Ratio of SAR at M2 to SAR at M1 = 39.9% Maximum value of SAR (measured) = 1.52 W/kg # **APPENDIX C: PROBE & DIPOLE ANTENNA CALIBRATION** Swiss Calibration Service Accreditation No.: SCS 0108 Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multitateral Agreement for the recognition of calibration certificates Client Onetech (Dymstec) Cartificate No: EX3-7610_Aug20/2 # CALIBRATION CERTIFICATE (Replacement of No: EX3-7610_Aug20) Object EX3DV4 - SN:7610 Calibratian procedure(a) QA CAL-01.v9, QA CAL-14.v6, QA CAL-23.v5, QA CAL-25.v7 Calibration procedure for dosimetric E-field probes Calibration date August 31, 2020 This calibration contribute occuments the traceability to national standards, which realize the physical units of measurements (Si). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate All calibrations have been conducted in the piosed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (MRTE critical for calibration) | Prznary Standards |
ID | Cal Date (Certificate No.) | Scheduled Calibration | |----------------------------|------------------|-----------------------------------|------------------------| | Power mater NRP | SN. 104776 | 01-Apr-20 (No. 217-03100/03101) | Apr21 | | Power sensor NRP-Z91 | 5N: 103244 | 01-Apr-20 (No. 217-03100) | Apr-21 | | Power sensor NRP-291 | 5N, 193245 | 01-Apr-20 (No. 217-03101) | Apr-21 | | Raference 20 dB Attenuator | 5N: 0C2552 (20x) | 31-Mar-20 (No. 217-03106) | Apr-21 | | DAE4 | SN: 660 | 27-Dec-19 (No. DAE4-660 Dec19) | Dec-20 | | Reference Probe ES30V2 | 5N: 3013 | 31-Dec-19 (No. ES3-3013_Dec19) | Dec-20 | | Secondary Standards | 10 | Check Date (in House) | Scheduled Check | | Power meter E4419B | SN: GB41293874 | 06-Apr-16 (in house check Jun-20) | In house check: Jun-22 | | Power sensor E4412A | SN: MY41498087 | 06-Apr-16 (in house check Jun/20) | In house check: Jun-22 | | Power sensor E4412A | SN: 000110210 | 06-Apr-16 (in house check Jun-20) | In house check, Jun-22 | | RF generator HP 8848C | SN: US3642U01700 | 04-Aug-99 (in house check Jun-20) | In house check: Jun-22 | | Network Analyzer E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-19) | In house check: Oct-20 | | | | | | Calibrated by: Jeton Kestrati Approved by: Katja Pokovic Technical Milnager Issued: September 21, 2020 This calibration certificate shall not be reproduced except in full without written approval of the laboratory Certificate No: EX3-7610_Aug20/2 Page 1 of 21 #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughavestrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdiansi C Service sulses d'étalonnage Servizie svizzero di faratura Swiss Calibration Service Accreditation No.: SCS 0108 accredited by the Swas Accreditation Service (SAS) The Swiss Accredition Service is one of the signatures to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: TSL lissue simulating liquid NORMx,y,z sensitivity in free space ConvF sensitivity in TSL / NORMx,y,z DCP diode compression point CF crest factor (1/duty_cycle) of the RF signal A, B, C, D modulation dependent linearization parameters Polarization \(\phi \) o rotation around probe axis Polarization 9 8 rotation around an axis that is in the plane normal to probe exis (at measurement center). te., 3 = 0 is normal to probe axis Connector Angle Information used in DASY system to align probe sensor X to the robot coordinate system # Calibration is Performed According to the Following Standards: - a) IEEE Sid 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - Techniques', June 2013 b) IEC 62209-1, ", "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rale (SAR) for wheless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010. - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Methods Applied and Interpretation of Parameters: - NORMx,y,z Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF). - NORM(I)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. - DCPx,y,z. DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media. - PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics - Ax.y.z; Bx.y.z; Cx.y.z; Dx.y.z; VRx.y.z: A, B, C. D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. - ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to Improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz. - Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. - Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required). Certificate No: EX3-7610_Aug20/2 EX3DV4 - SN:7610 August 31, 2020 # DASY/EASY - Parameters of Probe: EX3DV4 - SN:7610 #### **Basic Calibration Parameters** | | Sensor X | Sensor Y | Sensor Z | Unc (k=2) | |--------------------------|----------|----------|----------|-----------| | Norm $(\mu V/(V/m)^2)^A$ | 0.59 | 0.69 | 0.73 | ± 10.1 % | | DCP (mV) ⁸ | 109.5 | 107.6 | 109.7 | | Calibration Results for Modulation Response | UID | Communication System Name | | A
dB | B
dB√μV | С | D
dB | VR
mV | Max
dev. | Max
Unc ^E
(k=2) | |--------|--|---|---------|------------|-------|---------|----------|-------------|----------------------------------| | 0 | CW | X | 0.00 | 0.00 | 1.00 | 0.00 | 143.5 | ±3.5 % | ± 4.7 % | | | | Y | 0.00 | 0.00 | 1.00 | 7.55 | 138.1 | 1 | 1 3 3 1 10 | | | | Z | 0.00 | 0.00 | 1.00 | | 148.7 | | | | 10352- | Pulse Waveform (200Hz, 10%) | X | 1.66 | 61.48 | 7.21 | 10.00 | 60.0 | ± 4.0 % | ± 9.6 % | | AAA | The state of s | Y | 1.48 | 60.58 | 6.56 | 1000 | 60.0 | 100 | 15.00 | | | | Z | 1.62 | 60.93 | 6.61 | | 60.0 | | | | 10353- | Pulse Waveform (200Hz, 20%) | X | 0.89 | 60.00 | 5.56 | 6.99 | 80.0 | ±3.1% | ± 9.6 % | | AAA | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | Y | 0.87 | 60.00 | 5.36 | 20.00 | 80.0 | 1000 | | | | the state of s | Z | 0.84 | 60.00 | 5.06 | | 80.0 | | | | 10354- | Pulse Waveform (200Hz, 40%) | X | 2.00 | 66.00 | 7.00 | 3.98 | 95.0 | ±1.9 % | ± 9.6 % | | AAA | | Y | 0.52 | 60.00 | 4.43 | 100 | 95.0 | | | | | | Z | 2.00 | 64,00 | 5.00 | | 95.0 | | | | 10355- | Pulse Waveform (200Hz, 60%) | X | 14.86 | 130.41 | 0.52 | 2.22 | 120.0 | ± 2.4 % | ± 9.6 % | | AAA. | The state of s | Y | 16.47 | 136.36 | 0.06 | | 120.0 | 2000 | | | | | Z | 13.12 | 143,97 | 13.20 | | 120.0 | 1 | | | 10387- | QPSK Waveform, 1 MHz | X | 0.91 | 63.05 | 11.66 | 1.00 | 150.0 | ±4.0 % | ± 9.6 % | | AAA | 20.000 | Y | 0.85 | 64.31 | 12.14 | | 150.0 | 2 | 10.00 | | | | Z | 0.56 | 61.13 | 10.27 | | 150.0 | | | | 10388- | QPSK Waveform, 10 MHz | X | 1.47 | 63.87 | 13.05 | 0.00 | 150.0 | ± 1.6 % | ±9.6 % | | AAA | The second secon | Y | 1.51 | 65.10 | 13.57 | 32.6 | 150.0 | | | | | A TANK | Z | 1.24 | 63.18 | 12.29 | | 150.0 | | | | 10396- | 64-QAM Waveform, 100 kHz | X | 1.74 | 64.17 | 15.38 | 3.01 | 150.0 | ± 0.9 % | ± 9.6 % | | AAA | The state of s | Y | 1.84 | 65.27 | 16.11 | | 150.0 | | | | | | 2 | 1.64 | 63.38 | 14.90 | | 150.0 | | | | 10399- |
64-QAM Waveform, 40 MHz | X | 2.93 | 65.34 | 14.38 | 0.00 | 150.0 | ± 1.9 % | ±9.6 % | | AAA | | Y | 2.83 | 65.22 | 14.35 | | 150.0 | | | | | | Z | 2.73 | 65.03 | 14.14 | | 150.0 | | - | | 10414- | WLAN CCDF, 64-QAM, 40MHz | X | 4.13 | 64.99 | 14.70 | 0.00 | 150.0 | ± 4.0 % | ± 9.6 % | | AAA | | Y | 4.13 | 65.76 | 15.08 | | 150.0 | | 17. | | | | Z | 3.78 | 64.97 | 14.55 | | 150.0 | | | Note: For details on UID parameters see Appendix The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: EX3-7610_Aug20/2 Page 3 of 21 A The uncertainties of Norm X.Y.Z do not affect the E²-field uncertainty inside TSL (see Page 5). B Numerical linearization parameter: uncertainty not required. E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value. EX3DV4— SN:7610 August 31, 2020 # DASY/EASY - Parameters of Probe: EX3DV4 - SN:7610 ### Sensor Model Parameters | | C1
fF | C2
fF | α
V ⁻¹ | T1
ms.V ⁻² | T2
ms.V ⁻¹ | T3
ms | T4
V ⁻² | T5
V-1 | Т6 | |---|----------|----------|----------------------|--------------------------|--------------------------|----------|-----------------------|-----------|------| | X | 19.1 | 133.25 | 31.26 | 6.75 | 0.00 | 4.93 | 0.63 | 0.00 | 1.00 | | Y | 14.5 | 101.96 | 31.50 | 6.56 | 0.00 | 4.90 | 0.54 | 0.00 | 1.00 | | Z | 11.8 | 83.04 | 31.75 | 3.45 | 0.00 | 4.90 | 0.45 | 0.00 | 1.00 | #### Other Probe Parameters | Sensor Arrangement | Triangular | |---|------------| | Connector Angle (°) | -77.3 | | Mechanical Surface Detection Mode | enabled | | Optical Surface Detection Mode | disabled | | Probe Overall Length | 337 mm | | Probe Body Diameter | 10 mm | | Tip Length | 9 mm | | Tip Diameter | 2.5 mm | | Probe Tip to Sensor X Calibration Point | 1 mm | | Probe Tip to Sensor Y Calibration Point | 1 mm | | Probe Tip to Sensor Z Calibration Point | 1 mm | | Recommended Measurement Distance from Surface | 1.4 mm | Note: Measurement distance from surface can be increased to 3-4 mm for an Area Scan job. EX3DV4-SN:7610 August 31, 2020 # DASY/EASY - Parameters of Probe: EX3DV4 - SN:7610 #### Calibration Parameter Determined in Head Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity ^F | Conductivity
(S/m) ^F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unc
(k=2) | |----------------------|---------------------------------------|------------------------------------|---------|---------|---------|--------------------|----------------------------|--------------| | 750 | 41.9 | 0.89 | 11.17 | 11.17 | 11.17 | 0.40 | 0.80 | ± 12.0 % | | 835 | 41.5 | 0.90 | 10.69 | 10.69 | 10.69 | 0.47 | 0.80 | ± 12.0 % | | 900 | 41.5 | 0.97 | 10.43 | 10.43 | 10.43 | 0.34 | 0.94 | ± 12.0 % | | 1750 | 40,1 | 1.37 | 8.76 | 8.76 | 8.76 | 0.35 | 0.88 | ± 12.0 % | | 1950 | 40.0 | 1.40 | 8.40 | 8.40 | 8.40 | 0.35 | 0.88 | ± 12.0 9 | | 2300 | 39.5 | 1.67 | 8.17 | 8.17 | 8.17 | 0.29 | 0.95 | ± 12.0 9 | | 2450 | 39.2 | 1.80 | 7.84 | 7.84 | 7.84 | 0.20 | 1.06 | ± 12.0 % | | 2600 | 39.0 | 1.96 | 7.59 | 7.59 | 7.59 | 0.32 | 0.99 | ± 12.0 % | | 3500 | 37.9 | 2.91 | 6.84 | 6.84 | 6.84 | 0.35 | 1.35 | ± 13.1 % | | 3700 | 37.7 | 3.12 | 6.80 | 6.80 | 6.80 | 0.35 | 1.35 | ± 13.1 % | | 5200 | 36.0 | 4.66 | 5.56 | 5.56 | 5.56 | 0.40 | 1.80 | ± 13.1 % | | 5300 | 35.9 | 4.76 | 5.45 | 5.45 | 5.45 | 0.40 | 1,80 | ± 13.1 % | | 5500 | 35.6 | 4.96 | 5.04 | 5.04 | 5.04 | 0.40 | 1.80 | ± 13.1 % | | 5600 | 35.5 | 5.07 | 4.94 | 4.94 | 4.94 | 0.40 | 1.80 | ± 13.1 % | | 5800 | 35.3 | 5.27 | 5.00 | 5.00 | 5.00 | 0.40 | 1.80 | ± 13.1 % | Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz. At frequencies below 3 GHz, the validity of tissue parameters (s and of) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (s and of) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. Apha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. Certificate No: EX3-7610_Aug20/2 Page 5 of 21 # Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of E-field: ± 6.3% (k=2) Certificate No: EX3-7610_Aug20/2 Page 6 of 21 # Receiving Pattern (6), 9 = 0° Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2) Certificate No: EX3-7610_Aug20/2 Page 7 of 21 # Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz) Uncertainty of Linearity Assessment: ± 0.6% (k=2) Certificate No: EX3-7610_Aug20/2 Page 8 of 21 #### Appendix: Modulation Calibration Parameters | UID | Rev | Communication System Name | Group | PAR
(dB) | Unc ^E
(k=2) | |-------|-----|---|-----------|-------------|---------------------------| | 0 | | CW | CW | 0.00 | ± 4.7 % | | 10010 | CAA | SAR Validation (Square, 100ms, 10ms) | Test | 10.00 | ± 9.6 % | | 10011 | CAB | UMTS-FDD (WCDMA) | WCDMA | 2.91 | ± 9.6 % | | 10012 | CAB | IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps) | WLAN | 1.87 | ± 9.6 % | | 10013 | CAB | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps) | WLAN | 9.46 | ± 9.6 % | | 10021 | DAC | GSM-FDD (TDMA, GMSK) | GSM | 9.39 | ± 9.6 % | | 10023 | DAC | GPRS-FDD (TDMA, GMSK, TN 0) | GSM | 9.57 | ± 9.6 % | | 10024 | DAC | GPRS-FDD (TDMA, GMSK, TN 0-1) | GSM | 6.56 | ± 9.6 % | | 10025 | DAC | EDGE-FDD (TDMA, 8PSK, TN 0) | GSM | 12.62 | ± 9.6 % | | 10026 | DAC | EDGE-FDD (TDMA, 8PSK, TN 0-1) | GSM | 9.55 | ± 9.6 % | | 10027 | DAC | GPRS-FDD (TDMA, GMSK, TN 0-1-2) | GSM | 4.80 | ±9.6% | | 10028 | DAC | GPRS-FDD (TDMA, GMSK, TN 0-1-2-3) | GSM | 3.55 | ±9.6 % | | 10029 | DAC | EDGE-FDD (TDMA, 8PSK, TN 0-1-2) | GSM | 7.78 | ± 9.6 % | | 10030 | CAA | IEEE 802.15.1 Bluetooth (GFSK, DH1) | Bluetooth | 5.30 | ±9.6 % | | 10031 | CAA | IEEE 802.15.1 Bluetooth (GFSK, DH3) | Bluetooth | 1.87 | ± 9.6 % | | 10032 | CAA | IEEE 802.15.1 Bluetooth (GFSK, DH5) | Bluetooth | 1.16 | ± 9.6 % | | 10033 | CAA | IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH1) | Bluetooth | 7.74 | ± 9.6 % | | 10034 | CAA | IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH3) | Bluetooth | 4.53 | ±9.6 % | | 10035 | CAA | IEEE 802,15.1 Bluetooth (PI/4-DQPSK, DH5) | Bluetooth | 3,83 | ± 9.6 % | | 10036 | CAA | IEEE 802.15.1 Bluetooth (8-DPSK, DH1) | Bluetooth | 8.01 | | | 10037 | CAA | IEEE 802.15.1 Bluetooth (8-DPSK, DH3) | Bluetooth | | ± 9.6 % | | 10038 | CAA | IEEE 802.15.1 Bluetooth (8-DPSK, DH5) | | 4.77 | ± 9.6 % | | 10039 | CAB | CDMA2000 (1xRTT, RC1) | Bluetooth | 4.10 | ± 9.6 % | | 10039 | CAB | IS-54 / IS-136 FDD (TDMA/FDM, PI/4-DQPSK, Halfrate) | CDMA2000 | 4.57 | ±9.6 % | | 10042 | CAA | | AMPS | 7.78 | ± 9.6 % | | 10044 | CAA | IS-91/EIA/TIA-553 FDD (FDMA, FM) | AMPS | 0.00 | ±9.6 % | | 10048 | CAA | DECT (TDD, TDMA/FDM, GFSK, Full Slot, 24) | DECT | 13.80 | ± 9.6 % | | | | DECT (TDD, TDMA/FDM, GFSK, Double Slot, 12) | DECT | 10.79 | ± 9.6 % | | 10056 | CAA | UMTS-TDD (TD-SCDMA, 1.28 Mcps) | TD-SCDMA | 11.01 | ± 9.6 % | | 10058 | DAC | EDGE-FDD (TDMA, 8PSK, TN 0-1-2-3) | GSM | 6.52 | ± 9.6 % | | 10059 | CAB | IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps) | WLAN | 2.12 | ±9.6 % | | 10060 | CAB | IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps) | WLAN | 2.83 | ±9.6 % | | 10061 | CAB | IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps) | WLAN | 3.60 | ± 9.6 % | | 10062 | CAC | IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps) | WLAN | 8.68 | ± 9.6 % | | 10063 | CAC | IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps) | WLAN | 8.63 | ±9.6% | | 10064 | CAC | IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps) | WLAN | 9.09 | ±9.6 % | | 10065 | CAC | IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps) | WLAN | 9.00 | ± 9.6 % | | 10066 | CAC | IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps) | WLAN | 9.38 | ± 9.6 % | | 10067 | CAC | IEEE 802,11a/h WiFi 5 GHz (OFDM, 36 Mbps) | WLAN | 10.12 | ±9.6 % | | 10068 | CAC | IEEE 802.11a/h WIFI 5 GHz (OFDM, 48 Mbps) | WLAN | 10.24 | ±9.6 % | | 10069 | CAC | IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps) | WLAN | 10.56 | ±9.6 % | | 10071 | CAB | IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 9 Mbps) | WLAN | 9.83 | ±9.6% | | 10072 | CAB | IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 12 Mbps) | WLAN | 9.62 | ±9.6 % | | 10073 | CAB | IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 18 Mbps) | WLAN | 9.94 | ±9.6 % | | 10074 | CAB | IEEE 802.11g WiFl 2.4 GHz (DSSS/OFDM, 24 Mbps) | WLAN | 10.30 | ±9.6 % | | 10075 | CAB | IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 36 Mbps) | WLAN | 10.77 | ±9.6% | | 10076 | CAB | IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 48 Mbps) | WLAN | 10.94 | ±9.6 % | | 10077 | CAB | IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 54 Mbps) | WLAN | 11.00 | ±9.6 % | | 10081 | CAB | CDMA2000 (1xRTT, RC3) | CDMA2000 | 3.97 | ±9.6 % | | 10082 | CAB | IS-54 / IS-136 FDD (TDMA/FDM, PI/4-DQPSK, Fullrate) | AMPS | 4,77 | ±9.6 % | | 10090 | DAC | GPRS-FDD (TDMA, GMSK, TN 0-4) | GSM | 6.56 | ± 9.6 % | | 10097 | CAB | UMTS-FDD (HSDPA) | WCDMA | 3.98 | ±9.6 % | | 0098 | CAB | UMTS-FDD (HSUPA, Subtest 2) | WCDMA | 3.98 | ± 9.6 % | | 0099 | DAC | EDGE-FDD (TDMA, 8PSK, TN 0-4) |
GSM | 9.55 | ±9.6 % | | 10100 | CAE | LTE-FDD (SC-FDMA, 100% RB, 20 MHz, QPSK) | LTE-FDD | 5.67 | ±9.6 % | | 0101 | CAE | LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM) | LTE-FDD | | | | 10102 | CAE | LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM) | LTE-FDD | 6.42 | ±9.6% | | 10103 | CAG | LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 84-QAM) | | 6.60 | ±9.6 % | | 0104 | CAG | | LTE-TOD | 9.29 | ±9.6 % | | 0104 | CAG | LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM) | LTE-TDD | 9.97 | ±9.6% | | | | LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM) | LTE-TDD | 10.01 | ±9.6% | | 10108 | CAG | LTE-FDD (SC-FDMA, 100% RB, 10 MHz, QPSK) | LTE-FDD | 5.80 | ± 9.6 % | | 10109 | CAG | LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM) | LTE-FDD | 6.43 | ± 9.6 % | |-------|-----|--|---------|--------------|--------------------| | 10110 | CAG | LTE-FDD (SC-FDMA, 100% RB, 5 MHz, QPSK) | LTE-FDD | 5.75 | ± 9.6 % | | 10111 | CAG | LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM) | LTE-FDD | 6.44 | ± 9.6 % | | 10112 | CAG | LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM) | LTE-FDD | 6.59 | ± 9.6 % | | 10113 | CAG | LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM) | LTE-FDD | 6.62 | ± 9.6 % | | 10114 | CAC | IEEE 802.11n (HT Greenfield, 13.5 Mbps, BPSK) | WLAN | 8.10 | ± 9.6 % | | 10115 | CAC | IEEE 802.11n (HT Greenfield, 81 Mbps, 16-QAM) | WLAN | 8.46 | ± 9.6 % | | 10116 | CAC | IEEE 802.11n (HT Greenfield, 135 Mbps, 64-QAM) | WLAN | 8.15 | ± 9.6 % | | 10117 | CAC | IEEE 802.11n (HT Mixed, 13.5 Mbps, BPSK) | WLAN | 8.07 | ± 9.6 % | | 10118 | CAC | IEEE 802.11n (HT Mixed, 81 Mbps, 16-QAM) | WLAN | 8.59 | ± 9.6 % | | 10119 | CAC | IEEE 802.11n (HT Mixed, 135 Mbps, 64-QAM) | WLAN | 8.13 | ± 9.6 % | | 10140 | CAE | LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM) | LTE-FDD | 6.49 | ± 9.6 % | | 10141 | CAE | LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM) | LTE-FDD | 6.53 | ± 9.6 % | | 10142 | CAE | LTE-FDD (SC-FDMA, 100% RB, 3 MHz, QPSK) | LTE-FOD | 5.73 | ± 9.6 % | | 10143 | CAE | LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM) | LTE-FDD | 6.35 | ± 9.6 % | | 10144 | CAE | LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM) | LTE-FDD | 6.65 | ± 9.6 % | | 10145 | CAF | LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK) | LTE-FDD | 5.76 | ± 9.6 % | | 10146 | CAF | LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM) | LTE-FDD | 6.41 | ± 9.6 % | | 10147 | CAF | LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM) | LTE-FDD | 6.72 | ± 9.6 % | | 10149 | CAE | LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM) | LTE-FDD | 6.42 | ± 9.6 % | | 10150 | CAE | LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM) | LTE-FDD | 6.60 | ± 9.6 % | | 10151 | CAG | LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK) | LTE-TDD | 9.28 | ± 9.6 % | | 10152 | CAG | LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM) | LTE-TDD | 9.92 | ±9.6 % | | 10153 | CAG | LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM) | LTE-TDD | 10.05 | ± 9.6 % | | 10154 | CAG | LTE-FDD (SC-FDMA, 50% RB, 10 MHz, QPSK) | LTE-FDD | 5.75 | ± 9.6 % | | 10155 | CAG | LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM) | LTE-FDD | 6.43 | ±9.6 % | | 10156 | CAG | LTE-FDD (SC-FDMA, 50% RB, 5 MHz, QPSK) | LTE-FDD | 5.79 | | | 10157 | CAG | LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM) | LTE-FDD | 6.49 | ±9.6 % | | 10158 | CAG | LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM) | LTE-FDD | | | | 10159 | CAG | LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM) | LTE-FDD | 6.62 | ±9.6 % | | 10160 | CAE | LTE-FDD (SC-FDMA, 50% RB, 15 MHz, QPSK) | LTE-FDD | 6.56 | ±9.6 % | | 10161 | CAE | LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM) | LTE-FDD | 5.82 | ±9.6 % | | 10162 | CAE | LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM) | LTE-FDD | 6.43 | ±9.6 % | | 10166 | GAF | LTE-FDD (SC-FDMA, 50% RB, 13 MHz, QPSK) | LTE-FDD | 6.58 | ±9.6 % | | 10167 | CAF | LTE-FQD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM) | LTE-FDD | 6.21 | ± 9.6 % | | 10168 | CAF | LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM) | LTE-FDD | | | | 10169 | CAE | LTE-FDD (SC-FDMA, 1 RB, 20 MHz, QPSK) | LTE-FDD | 6.79
5.73 | ± 9.6 %
± 9.6 % | | 10170 | CAE | LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM) | LTE-FDD | 6.52 | | | 10171 | AAE | LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM) | LTE-FDD | | ± 9.6 % | | 10172 | CAG | LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK) | LTE-TDD | 9.21 | | | 10173 | CAG | LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM) | LTE-TOD | | ± 9.6 % | | 10174 | CAG | LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM) | LTE-TDD | 9.48 | ± 9.6 % | | 10175 | CAG | LTE-FDD (SC-FDMA, 1 RB, 10 MHz, QPSK) | | 10.25 | ± 9.6 % | | 10176 | CAG | LTE-FDD (SC-FDMA, 1 RB, 10 MHz, QPSR) | LTE-FDD | 5.72 | ± 9.6 % | | 10177 | CAG | LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM) | | 6.52 | ± 9.6 % | | 10177 | CAG | LTE-FDD (SC-FDMA, 1 RB, 5 MHz, QPSK) | LTE-FDD | 5.73 | ± 9.6 % | | 10179 | CAG | | LTE-FDD | 6.52 | ±9.6 % | | 10179 | CAG | LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM) LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM) | LTE-FDD | 6.50 | ±9.6 % | | 10180 | CAE | | LTE-FDD | 6.50 | ±9.6 % | | 10181 | CAE | LTE-FDD (SC-FDMA, 1 RB, 15 MHz, QPSK) | LTE-FDD | 5.72 | ±9.6 % | | | | LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM) | LTE-FDD | 6.52 | ± 9.6 % | | 10183 | AAD | LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM) | LTE-FDD | 6.50 | ±9.6 % | | 10184 | CAE | LTE-FDD (SC-FDMA, 1 RB, 3 MHz, QPSK) | LTE-FDD | 5.73 | ±9.6 % | | 10185 | CAE | LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM) | LTE-FDD | 6.51 | ±9.6 % | | 10186 | AAE | LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM) | LTE-FDD | 6.50 | ±9.6 % | | 10187 | CAF | LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK) | LTE-FDD | 5.73 | ± 9.6 % | | 10188 | CAF | LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM) | LTE-FDD | 6.52 | ±9.6 % | | 10189 | AAF | LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM) | LTE-FDD | 6.50 | ±9.6 % | | 10193 | CAC | IEEE 802.11n (HT Greenfield, 6.5 Mbps, BPSK) | WLAN | 8.09 | ±9.6 % | | 10194 | CAC | IEEE 802.11n (HT Greenfield, 39 Mbps, 16-QAM) | WLAN | 8.12 | ±9.6% | | 10195 | CAC | IEEE 802.11n (HT Greenfield, 65 Mbps, 64-QAM) | WLAN | 8.21 | ±9.6 % | | 10196 | CAC | IEEE 802.11n (HT Mixed, 6.5 Mbps, BPSK) | WLAN | 8.10 | ± 9.6 % | | 10197 | CAC | IEEE 802.11n (HT Mixed, 39 Mbps, 16-QAM) | WLAN | 8.13 | ±9.6 % | | 10198 | CAC | IEEE 802.11n (HT Mixed, 65 Mbps, 64-QAM) | WLAN | 8.27 | ±9.6% | | | CAC | IEEE 802,11n (HT Mixed, 7.2 Mbps, BPSK) | WLAN | | | Page 11 of 21 | 10220 | CAC | IEEE 802.11n (HT Mixed, 43.3 Mbps, 16-QAM) | WLAN | 8.13 | ± 9.6 % | |-------|-------|--|----------|-------|---------| | 10221 | CAC | IEEE 802.11n (HT Mixed, 72.2 Mbps, 64-QAM) | WLAN | 8.27 | ± 9.6 % | | 10222 | CAC | IEEE 802.11n (HT Mixed, 15 Mbps, BPSK) | WLAN | 8.06 | ± 9.6 % | | 10223 | CAC | IEEE 802.11n (HT Mixed, 90 Mbps, 16-QAM) | WLAN | 8.48 | ± 9.6 % | | 10224 | CAC | IEEE 802.11n (HT Mixed, 150 Mbps, 64-QAM) | WLAN | 8.08 | ± 9.6 % | | 10225 | CAB | UMTS-FDD (HSPA+) | WCDMA | 5.97 | ± 9.6 % | | 10226 | CAB | LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM) | LTE-TDD | 9.49 | ± 9.6 % | | 10227 | CAB | LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM) | LTE-TDD | 10.26 | ± 9.6 % | | 10228 | CAB | LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK) | LTE-TDD | 9.22 | | | 10229 | CAD | LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM) | LTE-TDD | | ± 9.6 % | | 10230 | CAD | LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM) | LTE-TDD | 9.48 | ± 9.6 % | | 10231 | CAD | LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK) | | 10.25 | ± 9.6 % | | 10232 | CAG | LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM) | LTE-TDD | 9.19 | ± 9.6 % | | 10233 | CAG | LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM) | LTE-TDD | 9.48 | ± 9.6 % | | 10234 | CAG | LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK) | LTE-TOD | 10.25 | ± 9.6 % | | 10235 | CAG | LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM) | 7.1 | 9.21 | ± 9.6 % | | 10236 | CAG | LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM) | LTE-TOD | 9.48 | ± 9.6 % | | 10237 | CAG | | LTE-TDD | 10.25 | ± 9.6 % | | 10237 | CAF | LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK) | LTE-TDD | 9.21 | ± 9.6 % | | | - | LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM) | LTE-TDD | 9.48 | ± 9.6 % | | 10239 | CAF | LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM) | LTE-TDD | 10.25 | ± 9.6 % | | 10240 | CAF | LTE-TDD (SC-FDMA, 1 RB, 15 MHz, QPSK) | LTE-TDD | 9.21 | ± 9.6 % | | 10241 | CAB | LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM) | LTE-TDD | 9.82 | ± 9.6 % | | 10242 | CAB | LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM) | LTE-TDD | 9.86 | ±9.6 % | | 10243 | CAB | LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK) | LTE-TDD | 9.46 | ±9.6 % | | 10244 | CAD | LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM) | LTE-TDD | 10.06 | ± 9.6 % | | 10245 | CAD | LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM) | LTE-TDD | 10.06 | ± 9.6 % | | 10246 | CAD | LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK) | LTE-TDD | 9.30 | ± 9.6 % | | 10247 | CAG | LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM) | LTE-TDD | 9.91 | ± 9.6 % | | 10248 | CAG | LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM) | LTE-TDD | 10.09 | ±9.6 % | | 10249 | CAG | LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK) | LTE-TDD | 9.29 | ± 9.6 % | | 10250 | CAG | LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM) | LTE-TDD | 9.81 | ± 9.6 % | | 10251 | CAG | LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM) | LTE-TDD | 10.17 | ± 9.6 % | | 10252 | CAG | LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK) | LTE-TDD | 9.24 | ±9.6 % | | 10253 | CAF | LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM) | LTE-TDD | 9.90 | ± 9.6 % | | 10254 | CAF | LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM) | LTE-TDD | 10.14 | ±9.6 % | | 10255 | CAF | LTE-TDD (SC-FDMA, 50% RB, 15 MHz, QPSK) | LTE-TDD | 9.20 | ±9.6 % | | 10256 | CAB | LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM) | LTE-TDD | 9.96 | ± 9.6 % | | 10257 | CAB | LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM) | LTE-TDD | 10.08 | ± 9.6 % | | 10258 | CAB | LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK) | LTE-TDD | 9:34 | ± 9.6 % | | 10259 | CAD | LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM) | LTE-TDD | 9.98 | ±9.6 % | | 10260 | CAD | LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM) | LTE-TDD | | | | 10261 | CAD | LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK) | LTE-TDD | 9.97 | ±9.6 % | | 10262 | CAG | LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM) | LTE-TDD | | ± 9.6 % | | 10263 | CAG |
LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM) | LTE-TOD | 9.83 | ± 9.6 % | | 10264 | CAG | | | 10.16 | ± 9.6 % | | 10265 | CAG | LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK) LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM) | LTE-TDD | 9.23 | ± 9.6 % | | 10266 | CAG | | LTE-TDD | 9.92 | ± 9,6 % | | 10267 | CAG | LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM) | LTE-TDD | 10.07 | ± 9.6 % | | | 10000 | LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK) | LTE-TDD | 9.30 | ± 9.6 % | | 10268 | CAF | LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM) | LTE-TDD | 10.06 | ± 9.6 % | | 10269 | CAF | LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM). | LTE-TDD | 10.13 | ±9.6 % | | 10270 | CAF | LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK) | LTE-TDD | 9.58 | ± 9.6 % | | 10274 | CAB | UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.10) | WCDMA | 4.87 | ±9.6 % | | 0275 | CAB | UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.4) | WCDMA | 3.96 | ±9.6% | | 0277 | CAA | PHS (QPSK) | PHS | 11.81 | ± 9.6 % | | 0278 | CAA | PHS (QPSK, BW 884MHz, Rolloff 0.5) | PHS | 11.81 | ± 9.6 % | | 0279 | CAA | PHS (QPSK, BW 884MHz, Rolloff 0.38) | PHS | 12.18 | ± 9.6 % | | 0290 | AAB | CDMA2000, RC1, SO55, Full Rate | CDMA2000 | 3.91 | ± 9.6 % | | 0291 | AAB | CDMA2000, RC3, SO55, Full Rate | CDMA2000 | 3.46 | ± 9.6 % | | 10292 | AAB | CDMA2000, RC3, SO32, Full Rate | CDMA2000 | 3.39 | ± 9.6 % | | 10293 | AAB | CDMA2000, RC3, SO3, Full Rate | CDMA2000 | 3,50 | ± 9.6 % | | 10295 | AAB | CDMA2000, RC1, SO3, 1/8th Rate 25 fr. | CDMA2000 | 12.49 | ± 9.6 % | | | 440 | LTE-FDD (SC-FDMA, 50% RB, 20 MHz, QPSK) | LTE-FDD | 5.81 | ± 9.6 % | | 10297 | AAD | LILI DD (GG-I DIVIA, GU /G NG. ZU IVIAZ. QF-SKI | | | | | | AAD | LTE-FDD (SC-FDMA, 50% RB, 3 MHz, QPSK) | LTE-FDD | 5.72 | 19.6% | Page 12 of 21 | 10300 | AAD | LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM) | LTE-FDD | 6.60 | ± 9.6 % | |----------------|-------|---|----------|--------------|---------| | 10301 | AAA | IEEE 802.16e WIMAX (29:18, 5ms, 10MHz, QPSK, PUSC) | WIMAX | 12.03 | ± 9.6 % | | 10302 | AAA | IEEE 802.16e WiMAX (29:18, 5ms, 10MHz, QPSK, PUSC, 3CTRL) | WiMAX | 12.57 | ± 9.6 % | | 10303 | AAA | IEEE 802.16e WiMAX (31:15, 5ms, 10MHz, 64QAM, PUSC) | WiMAX | 12.52 | ± 9.6 % | | 10304 | AAA | IEEE 802.16e WIMAX (29:18, 5ms, 10MHz, 64QAM, PUSC) | WiMAX | 11.86 | ± 9.6 % | | 10305 | AAA | IEEE 802.16e WIMAX (31:15, 10ms, 10MHz, 64QAM, PUSC) | WiMAX | 15.24 | ± 9.6 % | | 10306 | AAA | IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, 64QAM, PUSC) | WiMAX | 14.67 | ± 9.6 % | | 10307 | AAA | IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, QPSK, PUSC) | WiMAX | 14.49 | ± 9.6 % | | 10308 | AAA | IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, 16QAM, PUSC) | WiMAX | 14.46 | ± 9.6 % | | 10309 | AAA | IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, 16QAM,AMC 2x3) | WiMAX | 14.58 | ± 9.6 % | | 10310 | AAA | IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, QPSK, AMC 2x3 | WiMAX | 14.57 | ± 9.6 % | | 10311 | AAD | LTE-FDD (SC-FDMA, 100% RB, 15 MHz, QPSK) | LTE-FDD | 6.06 | ± 9.6 % | | 10313 | AAA | IDEN 1:3 | IDEN | 10.51 | ± 9.6 % | | 10314 | AAA | IDEN 1:6 | IDEN | 13.48 | ±9.6 % | | 10315 | AAB | IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 96pc dc) | WLAN | 1.71 | ± 9.6 % | | 10316 | AAB | IEEE 802.11g WiFi 2.4 GHz (ERP-OFDM, 6 Mbps, 96pc dc) | WLAN | 8.36 | ± 9.6 % | | 10317 | AAC | IEEE 802.11a WiFi 5 GHz (OFDM, 6 Mbps, 96pc dc) | WLAN | 8.36 | ± 9.6 % | | 10352 | AAA | Pulse Waveform (200Hz, 10%) | Generic | 10.00 | ± 9.6 % | | 10353 | AAA | Pulse Waveform (200Hz, 20%) | Generic | 6.99 | | | 10354 | AAA | Pulse Waveform (200Hz, 40%) | Generic | | ±9.6 % | | 10355 | AAA | Pulse Waveform (200Hz, 60%) | | 3.98 | ±9.6 % | | 10356 | AAA | Pulse Waveform (200Hz, 80%) | Generic | 2.22 | ±9.6 % | | 10336 | AAA | QPSK Waveform (200Hz, 80%) | Generic | 0.97 | ±9.6% | | 10388 | AAA | | Generic | 5.10 | ± 9.6 % | | 10396 | AAA | QPSK Waveform, 10 MHz | Generic | 5.22 | ±9.6 % | | | | 64-QAM Waveform, 100 kHz | Generic | 6.27 | ±9.6% | | 10399 | AAA | 64-QAM Waveform, 40 MHz | Generic | 6.27 | ±9.6 % | | 10400 | AAD | IEEE 802.11ac WiFi (20MHz, 64-QAM, 99pc dc) | WLAN | 8.37 | ± 9.6 % | | 10401 | AAD | IEEE 802.11ac WiFi (40MHz, 64-QAM, 99pc dc) | WLAN | 8.60 | ±9.6 % | | 10402 | AAD | IEEE 802.11ac WiFi (80MHz, 64-QAM, 99pc dc) | WLAN | 8.53 | ± 9.6 % | | 10403 | AAB | CDMA2000 (1xEV-DO, Rev. 0) | CDMA2000 | 3,76 | ± 9.6 % | | 10404 | AAB | CDMA2000 (1xEV-DO, Rev. A) | CDMA2000 | 3,77 | ±9.6 % | | 10406 | AAB | CDMA2000, RC3, SO32, SCH0, Full Rate | CDMA2000 | 5.22 | ±9.6 % | | 10410 | AAG | LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL Sub=2,3,4,7,8,9) | LTE-TDD | 7.82 | ±9.6 % | | 10414 | AAA | WLAN CCDF, 64-QAM, 40MHz | Generic | 8.54 | ± 9.6 % | | 10415 | AAA | IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 99pc dc) | WLAN | 1.54 | ± 9.6 % | | 10416 | AAA | IEEE 802,11g WiFi 2.4 GHz (ERP-OFDM, 6 Mbps, 99pc dc) | WLAN | 8.23 | ±9.6 % | | 10417 | AAB | IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 99pc dc) | WLAN | 8.23 | ±9.6 % | | 10418 | AAA | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc, Long) | WLAN | 8.14 | ±9.6 % | | 10419 | AAA | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc, Short) | WLAN | 8.19 | ±9.6 % | | 10422 | AAB | IEEE 802.11n (HT Greenfield, 7.2 Mbps, BPSK) | WLAN | 8.32 | ±9.6% | | 10423 | AAB | IEEE 802.11n (HT Greenfield, 43.3 Mbps, 16-QAM) | WLAN | 8.47 | ±9.6 % | | 10424 | AAB | IEEE 802.11n (HT Greenfield, 72.2 Mbps, 64-QAM) | WLAN | 8.40 | ±9.6 % | | 10425 | AAB | IEEE 802.11n (HT Greenfield, 15 Mbps, BPSK) | WLAN | 8.41 | ±9.6 % | | 10426 | AAB | IEEE 802.11n (HT Greenfield, 90 Mbps, 16-QAM) | WLAN | 8.45 | ±9.6% | | 10427 | AAB | IEEE 802.11n (HT Greenfield, 150 Mbps, 64-QAM) | WLAN | 8.41 | ± 9.6 % | | 10430 | AAD | LTE-FDD (OFDMA, 5 MHz, E-TM 3.1) | LTE-FDD | 8.28 | ±9.6 % | | 10431 | AAD | LTE-FDD (OFDMA, 10 MHz, E-TM 3.1) | LTE-FDD | 8.38 | ±9.6 % | | 10432 | AAC | LTE-FDD (OFDMA, 15 MHz, E-TM 3,1) | LTE-FDD | 8.34 | ± 9.6 % | | 10433 | AAC | LTE-FDD (OFDMA, 20 MHz, E-TM 3.1) | LTE-FDD | 8.34 | ±9.6 % | | 10434 | AAA | W-CDMA (BS Test Model 1, 64 DPCH) | WCDMA | 8.60 | ±9.6 % | | 10435 | AAF | LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Sub) | LTE-TDD | | | | 10447 | AAD | LTE-FDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%) | LTE-FDD | 7.82
7.56 | ±9.6 % | | 10448 | AAD | LTE-FDD (OFDMA, 10 MHz, E-TM 3.1, Clipping 44%) | LTE-FDD | | ±9.6 % | | 10449 | AAC | LTE-FDD (OFDMA, 15 MHz, E-TM 3.1, Clippin 44%) | | 7.53 | ±9.6 % | | 10450 | AAC | LTE-FDD (OFDMA, 15 MHz, E-1M 3.1, Clipping 44%) LTE-FDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%) | LTE-FDD | 7.51 | ±9.6% | | 10451 | AAA | W-CDMA (BS Test Model 1, 64 DPCH, Clipping 44%) | WCDMA | 7.48 | ±9.6% | | 10453 | AAD | | | 7.59 | ±9.6 % | | 10456 | AAB | Validation (Square, 10ms, 1ms) IEEE 802.11ac WiFI (160MHz, 64-QAM, 99pc dc) | Test | 10.00 | ±9.6 % | | 10455 | AAA | | WLAN | 8.63 | ± 9.6 % | | 10457 | 7.0.0 | UMTS-FDD (DC-HSDPA) | WCDMA | 6.62 | ±9.6 % | | | AAA | CDMA2000 (1xEV-DO, Rev. B, 2 carriers) | CDMA2000 | 6.55 | ±9.6 % | | 10459 | AAA | CDMA2000 (1xEV-DO, Rev. B, 3 carriers) | CDMA2000 | 8.25 | ±9.6 % | | 10460 | AAA | UMTS-FDD (WCDMA, AMR) | WCDMA | 2.39 | ± 9.6 % | | 10461
10462 | AAB | LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK, UL Sub) | LTE-TDD | 7.82 | ± 9.6 % | | | | LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM, UL Sub) | LTE-TDD | 8.30 | ± 9.6 % | Certificate No: EX3-7610_Aug20/2 Page 13 of 21 | 10463 | AAB | LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM, UL Sub) | LTE-TDD | 8.56 | ± 9.6 % | |-------|-------------|---|------------------|----------|---------| | 10464 | AAC | LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK, UL Sub) | LTE-TDD | 7.82 | ± 9.6 % | | 10465 | AAC | LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM, UL Sub) | LTE-TDD | 8.32 | ± 9.6 % | | 10466 | AAC | LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM, UL Sub) | LTE-TDD | 8.57 | ±9.6 % | | 10467 | AAF | LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Sub) | LTE-TDD | 7.82 | ± 9.6 % | | 10468 | AAF | LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM, UL Sub) | LTE-TDD | 8.32 | ± 9.6 % | | 10469 | AAF | LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM, UL Sub) | LTE-TDD | 8.56 | ± 9.6 % | | 10470 | AAF | LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL Sub) | LTE-TDD | 7.82 | ± 9.6 % | | 10471 | AAF | LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM, UL Sub) | LTE-TDD | 8.32 | ± 9.6 % | | 10472 | AAF | LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM, UL Sub) | LTE-TDD | 8.57 | ± 9.6 % | | 10473 | AAE | LTE-TDD (SC-FDMA, 1 RB, 15 MHz, QPSK, UL Sub) | LTE-TDD | 7.82 | ± 9.6 % | | 10474 | AAE | LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM, UL Sub) | LTE-TDD | 8.32 | ± 9.6 % | | 10475 | AAE | LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM, UL Sub) | LTE-TDD | 8.57 | ± 9.6 % | | 10477 | AAF | LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM, UL Sub) | LTE-TDD | 8.32 | ± 9.6 % | | 10478 | AAF | LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM, UL Sub) | LTE-TDD | 8.57 | ± 9.6 % | | 10479 | AAB | LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK, UL Sub) | LTE-TDD | 7.74 | ± 9.6 % | | 10480 | AAB | LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM, UL Sub) | LTE-TDD | | | | 10481 | AAB | LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM, UL Sub) | LTE-TDD | 8.18 | ± 9.6 % | | 10482 | AAC | LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK, UL Sub) | | 8.45 | ± 9.6 % | | 10483 | AAC | LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM, Sub) | LTE-TDD | 7.71 | ± 9.6 % | | 10484 | AAC | | LTE-TDD | 8.39 | ± 9.6 % | | 10485 | AAF | LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM, UL Sub) | LTE-TDD | 8.47 | ± 9.6 % | | 10485 | AAF | LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK, UL Sub) | LTE-TDD | 7.59 | ± 9.6 % | | 10486 | AAF | LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM, UL Sub) | LTE-TDD | 8.38 | ± 9.6 % | | | 7.51,41,100 | LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM, UL Sub) | LTE-TDD | 8.60 | ± 9.6 % | | 10488 | AAF | LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK, UL Sub) | LTE-TDD | 7.70 | ± 9.6 % | | 10489 | AAF | LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM, UL Sub) | LTE-TDD | 8.31 | ± 9.6 % | | 10490 | AAF | LTE-TDD (SC-FDMA, 50% RB, 10 MHz,
64-QAM, UL Sub) | LTE-TDD | 8.54 | ± 9.6 % | | 10491 | AAE | LTE-TDD (SC-FDMA, 50% RB, 15 MHz, QPSK, UL Sub) | LTE-TDD | 7.74 | ± 9.6 % | | 10492 | AAE | LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM, UL Sub) | LTE-TDD | 8.41 | ± 9.6 % | | 10493 | AAE | LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM, UL Sub) | LTE-TDD | 8.55 | ±9.6 % | | 10494 | AAF | LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK, UL Sub) | LTE-TDD | 7.74 | ±9.6 % | | 10495 | AAF | LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM, UL Sub) | LTE-TDD | 8.37 | ± 9.6 % | | 10496 | AAF | LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM, UL Sub) | LTE-TDD | 8.54 | ± 9.6 % | | 10497 | AAB | LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK, UL Sub) | LTE-TDD | 7.67 | ±9.6 % | | 10498 | AAB | LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM, UL Sub) | LTE-TDD | 8.40 | ±9.6 % | | 10499 | AAB | LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM, UL Sub) | LTE-TDD | 8.68 | ±9.6% | | 10500 | AAC | LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK, UL Sub) | LTE-TDD | 7,67 | ± 9.6 % | | 10501 | AAC | LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM, UL Sub) | LTE-TDD | 8.44 | ± 9.6 % | | 10502 | AAC | LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM, UL Sub) | LTE-TDD | 8.52 | ± 9.6 % | | 10503 | AAF | LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK, UL Sub) | LTE-TDD | 7.72 | ± 9.6 % | | 10504 | AAF | LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM, UL Sub) | LTE-TDD | 8.31 | ± 9.6 % | | 10505 | AAF | LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM, UL Sub) | LTE-TDD | 8.54 | ± 9.6 % | | 10506 | AAF | LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK, UL Sub) | LTE-TDD | 7.74 | ± 9.6 % | | 10507 | AAF | LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM, UL Sub) | LTE-TDD | | | | 10508 | AAF | LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM, UL Sub) | LTE-TDD | 8.36 | ± 9.6 % | | 10509 | AAE | LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK, UL Sub) | | 8.55 | ± 9.6 % | | 10510 | AAE | LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM, UL Sub) | LTE-TOD | 7.99 | ± 9.6 % | | 10511 | AAE | LTE-TOD (SC-FDMA, 100% RB, 15 MHz, 16-QAM, UL Sub) | LTE-TDD | 8.49 | ± 9.6 % | | 10512 | AAF | LIETOD (SC EDMA 100% PD 20 MM, 04-QAM, DE SUB) | LTE-TDD | 8.51 | ± 9.6 % | | 10512 | AAF | LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK, UL Sub) | LTE-TDD | 7.74 | ±9.6 % | | | | LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM, UL Sub) | LTE-TDD | 8.42 | ±9.6 % | | 0514 | AAF | LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM, UL Sub) | LTE-TDD | 8.45 | ±9.6 % | | 0515 | AAA | IEEE 802,11b WiFi 2.4 GHz (DSSS, 2 Mbps, 99pc dc) | WLAN | 1.58 | ± 9.6 % | | 0516 | AAA | IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 99pc dc) | WLAN | 1.57 | ± 9.6 % | | 0517 | AAA | IEEE 802 11b WiFi 2.4 GHz (DSSS, 11 Mbps, 99pc dc) | WLAN | 1.58 | ±9.6% | | 0518 | AAB | IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps, 99pc dc) | WLAN | 8.23 | ±9.6% | | 0519 | AAB | IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 99pc dc) | WLAN | 8.39 | ±9.6 % | | 0520 | AAB | IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 99pc dc) | WLAN | 8.12 | ±9.6% | | 0521 | AAB | IEEE 802.11a/h WiFl 5 GHz (OFDM, 24 Mbps, 99pc dc) | WLAN | 7.97 | ±9.6 % | | 0522 | AAB | IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 99pc dc) | WLAN | 8.45 | ± 9.6 % | | 0523 | AAB | IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 99pc dc) | WLAN | 8.08 | ± 9.6 % | | 0524 | AAB | IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 99pc dc) | WLAN | 8.27 | ± 9.6 % | | 0525 | AAB | IEEE 802.11ac WiFi (20MHz, MCS0, 99pc dc) | WLAN | 8.36 | ± 9.6 % | | 0526 | AAB | IEEE 802.11ac WiFi (20MHz, MCS1, 99pc dc) | WLAN | 8.42 | ± 9.6 % | | 0527 | AAB | IEEE 802.11ac WiFi (20MHz, MCS2, 99pc dc) | - Annual Control | 400 1.86 | | Page 14 of 21 | IEEE 802.11ac WiFi (20MHz, MCS6, 99pc dc) | 10583 | AAB | IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 90pc dc) | WLAN | 8.67
8.59 | ± 9.6 % | |--|-------|------|---|--|----------------------------------|---------------------------------------| | IEEE 802.11ac WIFI (20MHz, MCSR, 99pc dc) | 10582 | AAA | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 54 Mbps, 90pc dc) | | | | | IEEE 802.11ac WIFI (20MHz, MCS7, 99pc dc) | 10581 | AAA | IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 48 Mbps, 90pc dc) | | | | | IEEE 802.11ac WIFI (20MHz, MCSR, 99pc dc) | 10580 | AAA | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 36 Mbps, 90pc dc) | WLAN | | | | IEEE 802.11ac WIFI (20MHz, MCS7, 99pc dc) | 10579 | AAA | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 24 Mbps, 90pc dc) | WLAN | | | | IEEE 802.11ac WIFI (20MHz, MCSR, 99pc dc) | 10578 | AAA | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 18 Mbps, 90pc dc) | | | | | IEEE 802.11ac WiFi (20MHz, MCSR, 99pc dc) WLAN 8.38 ± 9.6 % IEEE 802.11ac WiFi (40MHz, MCSR, 99pc dc) WLAN 8.45 ± 9.6 % IEEE 802.11ac WiFi (40MHz, MCSR, 99pc dc) WLAN 8.45 ± 9.6 % IEEE 802.11ac WiFi (40MHz, MCSR, 99pc dc) WLAN 8.45 ± 9.6 % IEEE 802.11ac WiFi (40MHz, MCSR, 99pc dc) WLAN 8.45 ± 9.6 % IEEE 802.11ac WiFi (40MHz, MCSR, 99pc dc) WLAN 8.44 ± 9.6 % IEEE 802.11ac WiFi (40MHz, MCSR, 99pc dc) WLAN 8.54 ± 9.6 % IEEE 802.11ac WiFi (40MHz, MCSR, 99pc dc) WLAN 8.54 ± 9.6 % IEEE 802.11ac WiFi (40MHz, MCSR, 99pc dc) WLAN 8.54 ± 9.6 % IEEE 802.11ac WiFi (40MHz, MCSR, 99pc dc) WLAN 8.46 ± 9.6 % IEEE 802.11ac WiFi (40MHz, MCSR, 99pc dc) WLAN 8.46 ± 9.6 % IEEE 802.11ac WiFi (40MHz, MCSR, 99pc dc) WLAN 8.46 ± 9.6 % IEEE 802.11ac WiFi (40MHz, MCSR, 99pc dc) WLAN 8.46 ± 9.6 % IEEE 802.11ac WiFi (80MHz, MCSR, 99pc dc) WLAN 8.46 ± 9.6 % IEEE 802.11ac WiFi (80MHz, MCSR, 99pc dc) WLAN 8.47 ± 9.6 % IEEE 802.11ac WiFi (80MHz, MCSR, 99pc dc) WLAN 8.47 ± 9.6 % IEEE 802.11ac WiFi (80MHz, MCSR, 99pc dc) WLAN 8.47 ± 9.6 % IEEE 802.11ac WiFi (80MHz, MCSR, 99pc dc) WLAN 8.47 ± 9.6 % IEEE 802.11ac WiFi (80MHz, MCSR, 99pc dc) WLAN 8.49 ± 9.6 % IEEE 802.11ac WiFi (80MHz, MCSR, 99pc dc) WLAN 8.49 ± 9.6 % IEEE 802.11ac WiFi (80MHz, MCSR, 99pc dc) WLAN 8.49 ± 9.6 % IEEE 802.11ac WiFi (80MHz, MCSR, 99pc dc) WLAN 8.49 ± 9.6 % IEEE 802.11ac WiFi (80MHz, MCSR, 99pc dc) WLAN 8.49 ± 9.6 % IEEE 802.11ac WiFi (80MHz, MCSR, 99pc
dc) WLAN 8.45 ± 9.6 % IEEE 802.11ac WiFi (80MHz, MCSR, 99pc dc) WLAN 8.45 ± 9.6 % IEEE 802.11ac WiFi (80MHz, MCSR, 99pc dc) WLAN 8.45 ± 9.6 % IEEE 802.11ac WiFi (80MHz, MCSR, 99pc dc) WLAN 8.45 ± 9.6 % IEEE 802.11ac WiFi (80MHz, MCSR, 99pc dc) WLAN 8.45 ± 9.6 % IEEE 802.11ac WiFi (80MHz, MCSR, 99pc dc) WLAN 8.45 ± 9.6 % IEEE 802.11ac WiFi (80MHz, MCSR, 99pc dc) WLAN 8.45 ± 9.6 % IEEE 802.11ac WiFi (80MHz, MCSR, 99pc dc) WLAN 8.45 ± 9.6 % | 10577 | AAA | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 12 Mbps, 90pc do) | | | | | IEEE 802.11ac WiFi (20MHz, MCSR, 99pc dc) WLAN | 10576 | AAA | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 9 Mbps, 90pc dc) | WLAN | | | | IEEE 802.11ac WiFi (20MHz, MCSR, 99pc dc) WLAN | 10575 | AAA | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 90pc dc) | WLAN | | | | IEEE 802.11ac WiFi (20MHz, MCS8, 99pc dc) | 10574 | AAA | | WLAN | | | | IEEE 802.11ac WiFi (20MHz, MCS8, 99pc dc) | 10573 | AAA | | WLAN | | | | IEEE 802.11ac WiFi (20MHz, MCS8, 99pc dc) WLAN 8.29 ± 9.6 9 IEEE 802.11ac WiFi (20MHz, MCS8, 99pc dc) WLAN 8.38 ± 9.6 9 IEEE 802.11ac WiFi (40MHz, MCS0, 99pc dc) WLAN 8.45 ± 9.6 9 IEEE 802.11ac WiFi (40MHz, MCS1, 99pc dc) WLAN 8.45 ± 9.6 9 IEEE 802.11ac WiFi (40MHz, MCS2, 99pc dc) WLAN 8.32 ± 9.6 9 IEEE 802.11ac WiFi (40MHz, MCS3, 99pc dc) WLAN 8.44 ± 9.6 9 IEEE 802.11ac WiFi (40MHz, MCS4, 99pc dc) WLAN 8.54 ± 9.6 9 IEEE 802.11ac WiFi (40MHz, MCS4, 99pc dc) WLAN 8.39 ± 9.6 9 IEEE 802.11ac WiFi (40MHz, MCS6, 99pc dc) WLAN 8.39 ± 9.6 9 IEEE 802.11ac WiFi (40MHz, MCS6, 99pc dc) WLAN 8.65 ± 9.6 9 IEEE 802.11ac WiFi (40MHz, MCS8, 99pc dc) WLAN 8.65 ± 9.6 9 IEEE 802.11ac WiFi (40MHz, MCS8, 99pc dc) WLAN 8.65 ± 9.6 9 IEEE 802.11ac WiFi (40MHz, MCS9, 99pc dc) WLAN 8.65 ± 9.6 9 IEEE 802.11ac WiFi (80MHz, MCS9, 99pc dc) WLAN 8.55 ± 9.6 9 IEEE 802.11ac WiFi (80MHz, MCS1, 99pc dc) WLAN 8.55 ± 9.6 9 IEEE 802.11ac WiFi (80MHz, MCS1, 99pc dc) WLAN 8.35 ± 9.6 9 IEEE 802.11ac WiFi (80MHz, MCS3, 99pc dc) WLAN 8.35 ± 9.6 9 IEEE 802.11ac WiFi (80MHz, MCS3, 99pc dc) WLAN 8.35 ± 9.6 9 IEEE 802.11ac WiFi (80MHz, MCS3, 99pc dc) WLAN 8.37 ± 9.6 9 IEEE 802.11ac WiFi (80MHz, MCS4, 99pc dc) WLAN 8.37 ± 9.6 9 IEEE 802.11ac WiFi (80MHz, MCS8, 99pc dc) WLAN 8.38 ± 9.6 9 IEEE 802.11ac WiFi (80MHz, MCS9, 99pc dc) WLAN 8.38 ± 9.6 9 IEEE 802.11ac WiFi (80MHz, MCS9, 99pc dc) WLAN 8.30 ± 9.6 9 IEEE 802.11ac WiFi (80MHz, MCS9, 99pc dc) WLAN 8.30 ± 9.6 9 IEEE 802.11ac WiFi (80MHz, MCS9, 99pc dc) WLAN 8.30 ± 9.6 9 IEEE 802.11ac WiFi (80MHz, MCS9, 99pc dc) WLAN 8.37 ± 9.6 9 IEEE 802.11ac WiFi (80MHz, MCS9, 99pc dc) WLAN 8.37 ± 9.6 9 IEEE 802.11ac WiFi (80MHz, MCS9, 99pc dc) WLAN 8.37 ± 9.6 9 IEEE 802.11ac WiFi (80MHz, MCS9, 99pc dc) WLAN 8.37 ± 9.6 9 IEEE 802.11ac WiFi (80MHz, MCS9, 99pc dc) WLAN 8.50 ± 9.6 9 IEEE | 10572 | AAA | | WLAN | | | | IEEE 802.11ac WiFi (20MHz, MCS7, 99pc dc) WLAN 8.29 | 10571 | AAA | | | | | | IEEE 802.11ac WiFi (20MHz, MCS8, 99pc dc) WLAN 8.29 | 10570 | AAA | | | | - | | IEEE 802.11ac WiFi (20MHz, MCSR, 99pc dc) WLAN 8.38 | 10569 | AAA | IEEE 802.11g WiFl 2.4 GHz (DSSS-OFDM, 48 Mbps, 99pc dc) | | | | | IEEE 802.11ac WiFi (20MHz, MCSR, 99pc dc) WLAN 8.38 | 10568 | AAA | | WLAN | | | | IEEE 802.11ac WiFi (20MHz, MCSR, 99pc dc) | 10567 | AAA | | | | | | IEEE 802.11ac WiFi (20MHz, MCS7, 99pc dc) | 10566 | AAA. | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 18 Mbps, 99pc dc) | WLAN | | | | IEEE 802.11ac WiFi (20MHz, MCS7, 99pc dc) | 10565 | AAA | | | | | | IEEE 802.11ac WiFi (20MHz, MCS7, 99pc dc) | 10564 | AAA | | | | | | IEEE 802.11ac WiFi (20MHz, MCS7, 99pc dc) | 10563 | AAC | | The same and s | 8.77 | ±9.6% | | IEEE 802.11ac WiFi (20MHz, MCS7, 99pc dc) WLAN 8.29 | 10562 | AAC | | | | ±9.6 % | | IEEE 802.11ac WiFi (20MHz, MCS7, 99pc dc) WLAN 8.29 | 10561 | AAC | | | | | | IEEE 802.11ac WiFi (20MHz, MCS7, 99pc dc) | | | | | | | | IEEE 802.11ac WiFi (20MHz, MCS7, 99pc dc) | 10558 | AAC | | | | | | IEEE 802.11ac WiFi (20MHz, MCS7, 99pc dc) WLAN 8.29 | 10557 | AAC | | | | | | IEEE 802.11ac WiFi (20MHz, MCS7, 99pc dc) WLAN 8.29 | 10557 | AAC | | | | | | IEEE 802.11ac WiFi (20MHz, MCS7, 99pc dc) WLAN 8.29 ± 9.6 9 IEEE 802.11ac WiFi (20MHz, MCS8, 99pc dc) WLAN 8.38 ± 9.6 9 IEEE 802.11ac WiFi (40MHz, MCS0, 99pc dc) WLAN 8.45 ± 9.6 9 IEEE 802.11ac WiFi (40MHz, MCS1, 99pc dc) WLAN 8.45 ± 9.6 9 IEEE 802.11ac WiFi (40MHz, MCS2, 99pc dc) WLAN 8.32 ± 9.6 9 IEEE 802.11ac WiFi (40MHz, MCS2, 99pc dc) WLAN 8.32 ± 9.6 9 IEEE 802.11ac WiFi (40MHz, MCS4, 99pc dc) WLAN 8.54 ± 9.6 9 IEEE 802.11ac WiFi (40MHz, MCS4, 99pc dc) WLAN 8.39 ± 9.6 9 IEEE 802.11ac WiFi (40MHz, MCS7, 99pc dc) WLAN 8.39 ± 9.6 9 IEEE 802.11ac WiFi (40MHz, MCS7, 99pc dc) WLAN 8.46 ± 9.6 9 IEEE 802.11ac WiFi (40MHz, MCS8, 99pc dc) WLAN 8.65 ± 9.6 9 IEEE 802.11ac WiFi (80MHz, MCS9, 99pc dc) WLAN 8.65 ± 9.6 9 IEEE 802.11ac WiFi (80MHz, MCS9, 99pc dc) WLAN 8.47 ± 9.6 9 IEEE 802.11ac WiFi (80MHz, MCS1, 99pc dc) WLAN 8.47 ± 9.6 9 IEEE 802.11ac WiFi (80MHz, MCS1, 99pc dc) WLAN 8.35 ± 9.6 9 IEEE 802.11ac WiFi (80MHz, MCS3, 99pc dc) WLAN 8.35 ± 9.6 9 IEEE 802.11ac WiFi (80MHz, MCS3, 99pc dc) WLAN 8.35 ± 9.6 9 IEEE 802.11ac WiFi (80MHz, MCS3, 99pc dc) WLAN 8.35 ± 9.6 9 IEEE 802.11ac WiFi (80MHz, MCS3, 99pc dc) WLAN 8.37 ± 9.6 9 IEEE 802.11ac WiFi (80MHz, MCS3, 99pc dc) WLAN 8.37 ± 9.6 9 IEEE 802.11ac WiFi (80MHz, MCS3, 99pc dc) WLAN 8.38 ± 9.6 9 IEEE 802.11ac WiFi (80MHz, MCS4, 99pc dc) WLAN 8.38 ± 9.6 9 IEEE 802.11ac WiFi (80MHz, MCS4, 99pc dc) WLAN 8.39 ± 9.6 9 IEEE 802.11ac WiFi (80MHz, MCS4, 99pc dc) WLAN 8.39 ± 9.6 9 IEEE 802.11ac WiFi (80MHz, MCS4, 99pc dc) WLAN 8.39 ± 9.6 9 IEEE 802.11ac WiFi (80MHz, MCS6, 99pc dc) WLAN 8.40 ± 9.6 9 IEEE 802.11ac WiFi (80MHz, MCS6, 99pc dc) WLAN 8.40 ± 9.6 9 IEEE 802.11ac WiFi (80MHz, MCS6, 99pc dc) WLAN 8.40 ± 9.6 9 IEEE 802.11ac WiFi (80MHz, MCS6, 99pc dc) WLAN 8.40 ± 9.6 9 IEEE 802.11ac WiFi (80MHz, MCS6, 99pc dc) WLAN 8.40 ± 9.6 9 IEEE | 10556 | AAC | | | | | | IEEE 802.11ac WiFi (20MHz, MCS7, 99pc dc) WLAN 8.29 | 10555 | AAC | | | | - | | IEEE 802.11ac WiFi (20MHz, MCS7, 99pc dc) WLAN 8.29 | 10554 | AAC | | | | | | IEEE 802.11ac WiFi (20MHz, MCS7, 99pc dc) WLAN 8.29 | 10552 | AAB | | | | | | IEEE 802.11ac WiFi (20MHz, MCS7, 99pc dc) WLAN 8.29 | 10552 | AAB | | | | | | IEEE 802.11ac WiFi (20MHz, MCS7, 99pc dc) | 10551 | AAB | | | | | | IEEE 802.11ac WiFi (20MHz, MCS7, 99pc dc) WLAN 8.29 | 10550 | AAB | | 112 | | | | IEEE 802.11ac WiFi (20MHz, MCS7, 99pc dc) WLAN 8.29 | 10547 | AAB | | | | | | IEEE 802.11ac WiFi (20MHz, MCS7, 99pc dc) WLAN 8.29 | 10546 | AAB | | 200 400 1001 | | | | IEEE 802.11ac WiFi (20MHz, MCS7, 99pc dc) | 10546 | AAB | | | | | | IEEE 802.11ac WiFi (20MHz, MCS7, 99pc dc) WLAN 8.29 | 10545 | AAB | | | | | | IEEE 802.11ac WiFi (20MHz, MCS7, 99pc dc) WLAN 8.29 | 10544 | AAB | | | | | | IEEE 802.11ac WiFi (20MHz, MCS7, 99pc dc) WLAN 8.29 ± 9.6 9 IEEE 802.11ac WiFi (20MHz, MCS8, 99pc dc) WLAN 8.38 ± 9.6 9 IEEE 802.11ac WiFi (40MHz, MCS0, 99pc dc) WLAN 8.45 ± 9.6 9 IEEE 802.11ac WiFi (40MHz, MCS1, 99pc dc) WLAN 8.45 ± 9.6 9 IEEE 802.11ac WiFi (40MHz, MCS2, 99pc dc) WLAN 8.32 ± 9.6 9 IEEE 802.11ac WiFi (40MHz, MCS2, 99pc dc) WLAN 8.44 ± 9.6 9 IEEE 802.11ac WiFi (40MHz, MCS4, 99pc dc) WLAN 8.54 ± 9.6 9 IEEE 802.11ac WiFi (40MHz, MCS4, 99pc dc) WLAN 8.54 ± 9.6 9 IEEE 802.11ac WiFi (40MHz, MCS6, 99pc dc) WLAN 8.39 ± 9.6 9 IEEE 802.11ac WiFi (40MHz, MCS7, 99pc dc) WLAN 8.39 ± 9.6 9 IEEE 802.11ac WiFi (40MHz, MCS7, 99pc dc) WLAN 8.46 ± 9.6 9 IEEE 802.11ac WiFi (40MHz, MCS7, 99pc dc) WLAN 8.46 ± 9.6 9 IEEE 802.11ac WiFi (40MHz, MCS7, 99pc dc) WLAN 8.46 ± 9.6 9 IEEE 802.11ac WiFi (40MHz, MCS7, 99pc dc) WLAN 8.46 ± 9.6 9 IEEE 802.11ac WiFi (40MHz, MCS7, 99pc dc) WLAN 8.46 ± 9.6 9 IEEE 802.11ac WiFi (40MHz, MCS7, 99pc dc) WLAN 8.46 ± 9.6 9 IEEE 802.11ac WiFi (40MHz, MCS7, 99pc dc) WLAN 8.46 ± 9.6 9 | 10542 | AAB | IEEE 802.11ac WIFI (40MHz, MCS8, 99pc dc) | | | | | IEEE 802.11ac WiFi (20MHz, MCS7, 99pc dc) WLAN 8.29 | 10541 | AAB | | | | | | IEEE 802.11ac WiFi (20MHz, MCS7, 99pc dc) WLAN 8.29 ± 9.6 9 IEEE 802.11ac WiFi (20MHz, MCS8, 99pc dc) WLAN 8.38 ± 9.6 9 IEEE 802.11ac WiFi (40MHz, MCS0, 99pc dc) WLAN 8.45 ± 9.6 9 IEEE 802.11ac WiFi (40MHz, MCS1, 99pc dc) WLAN 8.45 ± 9.6 9 IEEE 802.11ac WiFi (40MHz, MCS2, 99pc dc) WLAN 8.32 ± 9.6 9 IEEE 802.11ac WiFi (40MHz, MCS3, 99pc dc) WLAN 8.44 ± 9.6 9 IEEE 802.11ac WiFi (40MHz, MCS3, 99pc dc) WLAN 8.44 ± 9.6 9 IEEE 802.11ac WiFi (40MHz, MCS4, 99pc dc) WLAN 8.54 ± 9.6 9 IEEE 802.11ac WiFi (40MHz, MCS4, 99pc dc) WLAN 8.54 ± 9.6 9 IEEE 802.11ac WiFi (40MHz, MCS4, 99pc dc) WLAN 8.54 ± 9.6 9 IEEE 802.11ac WiFi (40MHz, MCS4, 99pc dc) WLAN 8.54 ± 9.6 9 IEEE 802.11ac WiFi (40MHz, MCS4, 99pc dc) WLAN 8.54 ± 9.6 9 IEEE 802.11ac WiFi (40MHz, MCS4, 99pc dc) WLAN 8.54 ± 9.6 9 IEEE 802.11ac WiFi (40MHz, MCS4, 99pc dc) WLAN 8.54 ± 9.6 9 IEEE 802.11ac WiFi (40MHz, MCS4, 99pc dc) WLAN 8.54 ± 9.6 9 IEEE 802.11ac WiFi (40MHz, MCS4, 99pc dc) WLAN 8.54 ± 9.6 9 IEEE 802.11ac WiFi (40MHz, MCS4, 99pc dc) WLAN 8.54 ± 9.6 9 IEEE 802.11ac WiFi (40MHz, MCS4, 99pc dc) WLAN 8.54 ± 9.6 9 | 10540 | AAB | | | | | | IEEE 802.11ac WiFi (20MHz, MCS7, 99pc dc) | 10530 | AAB | | | | | | IEEE 802.11ac WiFi (20MHz, MCS7, 99pc dc) | 10538 | AAB | | | | | | IEEE 802.11ac WiFi (20MHz, MCS7, 99pc dc) WLAN 8.29 ± 9.6 9 IEEE 802.11ac WiFi (20MHz, MCS8, 99pc dc) WLAN 8.38 ± 9.6 9 IEEE 802.11ac WiFi (40MHz, MCS0, 99pc dc) WLAN 8.45 ± 9.6 9 IEEE 802.11ac WiFi (40MHz, MCS1, 99pc dc) WLAN 8.45 ± 9.6 9 | 10537 | AAB | | 100000000000000000000000000000000000000 | | | | IEEE 802.11ac WiFi (20MHz, MCS7, 99pc dc) WLAN 8.29 ± 9.6 ° IEEE 802.11ac WiFi (20MHz, MCS8, 99pc dc) WLAN 8.38 ± 9.6 ° IEEE 802.11ac WiFi (40MHz, MCS0, 99pc dc) WLAN 8.45 ± 9.6 ° | 10536 | AAB | | | | | | IEEE 802.11ac WiFi (20MHz, MCS7, 99pc dc) WLAN 8.29 ± 9.6 ° IEEE 802.11ac WiFi (20MHz, MCS8, 99pc dc) WLAN 8.38 ± 9.6 ° | 10535 | AAB | | | | | | IEEE 802.11ac WiFi (20MHz, MCS7, 99pc dc) WLAN 8.29 ± 9.6 9 | 10534 | AAB | | | | | | | 10533 | AAB | | The second secon | | | | | 10532 | AAB | | | | | | | 10531 | AAB | | | - | | | THE PART OF PA | | AAB | IEEE 802.11ac
WiFi (20MHz, MCS4, 99pc dc) | WLAN | | | | IEEE 802.11ac | 10531 | | IEEE 802.11ac | | WiFi (20MHz, MCS4, 99pc dc) WLAN | WiFi (20MHz, MCS4, 99pc dc) WLAN 8.36 | Page 15 of 21 | | AAA | IEEE 802.11ax (20MHz, MCS0, 90pc dc) | WLAN | 9.09 | ± 9.6 % | |----------------|-----|---|--------------|-------|---------| | 10670 | AAA | Bluetooth Low Energy | Bluetooth | 2.19 | ±9.6 % | | 10662 | AAA | Pulse Waveform (200Hz, 80%) | Test | 0.97 | ± 9.6 % | | 10661 | AAA | Pulse Waveform (200Hz, 60%) | Test | 2.22 | ± 9.6 % | | 10660 | AAA | Pulse Waveform (200Hz, 40%) | Test | 3.98 | ± 9.6 % | | 10659 | AAA | Pulse Waveform (200Hz, 20%) | Test | 6.99 | ± 9.6 % | | 10658 | AAA | Pulse Waveform (200Hz, 10%) | Test | 10.00 | ± 9.6 % | | 10655 | AAE | LTE-TDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%) | LTE-TDD | 7.21 | ±9.6 % | | 10654 | AAD | LTE-TDD (OFDMA, 15 MHz, E-TM 3.1, Clipping 44%) | LTE-TDD | 6.96 | ± 9.6 % | | 10653 | AAE | LTE-TDD (OFDMA, 10 MHz, E-TM 3.1, Clipping 44%) | LTE-TDD | 7.42 | ± 9.6 % | | 10652 | AAE | LTE-TDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%) | LTE-TDD | 6.91 | ± 9.6 % | | 10648 | AAA | CDMA2000 (1x Advanced) | CDMA2000 | 3.45 | ± 9.6 % | | 10647 | AAF | LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Sub=2,7) | LTE-TDD | 11.96 | ±9.6 % | | 10646 | AAG | LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Sub=2,7) | LTE-TDD | 11.96 | ±9.69 | | 10645 | AAC | IEEE 802.11ac WIFi (160MHz, MCS9, 90pc dc) | WLAN | 9.11 | ±9.69 | | 10644 | AAC | IEEE 802.11ac WiFi (160MHz, MCS8, 90pc dc) | WLAN | 9.05 | ±9.6 % | | 10643 | AAC | IEEE 802.11ac WiFi (160MHz, MCS7, 90pc dc) | WLAN | 8.89 | ± 9.6 % | | 10642 | AAC | IEEE 802.11ac WiFi (160MHz, MCS6, 90pc dc) | WLAN | 9.06 | ± 9.6 % | | 10641 | AAC | IEEE 802.11ac WIFI (160MHz, MCS5, 90pc dc) | WLAN | 9.06 | ± 9.6 % | | 0640 | AAC | IEEE 802.11ac WiFi (160MHz, MCS4, 90pc dc) | WLAN | 8.98 | ± 9.6 % | | 10639 | AAC | IEEE 802.11ac WiFi (160MHz, MCS3, 90pc dc) | WLAN | 8.85 | ±9.6 % | | 10638 | AAC | IEEE 802.11ac WIFI (160MHz, MCS2, 90pc dc) | WLAN | 8.86 | ± 9.6 9 | | 0637 | AAC | IEEE 802.11ac WiFi (160MHz, MCS1, 90pc dc) | WLAN | 8.79 | ± 9.6 9 | | 10636 | AAC | IEEE 802.11ac WiFi (160MHz, MCS0, 90pc dc) | WLAN | 8.83 | ± 9.6 9 | | 10635 | AAB | IEEE 802.11ac WiFi (80MHz, MCS9, 90pc dc) | WLAN | 8.81 | ± 9.6 9 | | 10634 | AAB | IEEE 802.11ac WIFI (80MHz, MCS8, 90pc dc) | WLAN | 8.80 | ±9.6 9 | | 10633 | AAB | IEEE 802.11ac WiFi (80MHz, MCS7, 90pc dc) | WLAN | 8.83 | ± 9.6 9 | | 10632 | AAB | IEEE 802.11ac WiFi (80MHz, MCS6, 90pc dc) | WLAN | 8.74 | ±9.6 | | 10631 | AAB | IEEE 802.11ac WiFi (80MHz, MCS5, 90pc dc) | WLAN | 8.81 | ±9.6 | | 10630 | AAB | IEEE 802.11ac WiFi (80MHz, MCS4, 90pc dc) | WLAN | 8.72 | ±9.6 9 | | 10629 | AAB | IEEE 802.11ac WiFi (80MHz, MCS3, 90pc dc) | WLAN | 8.85 | ±9.6 9 | | 10628 | AAB | IEEE 802.11ac WiFi (80MHz, MCS2, 90pc dc) | WLAN | 8.71 | ±9.6 | | 10627 | AAB | IEEE 802.11ac WiFi (80MHz, MCS1, 90pc dc) | WLAN | 8.88 | ±9.6 | | 10626 | AAB | IEEE 802.11ac WiFi (80MHz, MCS0, 90pc dc) | WLAN | 8.83 | ±9.6 | | 10625 | AAB | IEEE 802.11ac WiFi (40MHz, MCS9, 90pc dc) | WLAN | 8.96 | ±9.6 | | 10624 | AAB | IEEE 802.11ac WiFi (40MHz, MCS8, 90pc dc) | WLAN | 8.96 | ± 9.6 | | 10623 | AAB | IEEE 802.11ac WiFi (40MHz, MCS7, 90pc dc) | WLAN | 8.82 | ± 9.6 | | 10622 | AAB | IEEE 802.11ac WiFi (40MHz, MCS6, 90pc dc) | WLAN | 8.68 | ±9.6 | | 10621 | AAB | IEEE 802.11ac WiFi (40MHz, MCS5, 90pc dc) | WLAN | 8.77 | ± 9.6 | | 10620 | AAB | IEEE 802.11ac WiFi (40MHz, MCS4, 90pc dc) | WLAN | 8.87 | ± 9.6 | | 10619 | AAB | IEEE 802 11ac WiFi (40MHz, MCS3, 90pc dc) | WLAN | 8.86 | ± 9.6 | | 10618 | AAB | IEEE 802.11ac WiFi (40MHz, MCS2, 90pc dc) | WLAN | 8.58 | ± 9.6 | | 10617 | AAB | IEEE 802,11ac WiFi (40MHz, MCS1, 90pc dc) | WLAN | 8.81 | ± 9.6 | | 10616 | AAB | IEEE 802.11ac WiFi (40MHz, MCS0, 90pc dc) | WLAN. | 8.82 | ±9.6 | | 10615 | AAB | IEEE 802.11ac WiFi (20MHz, MCS8, 90pc dc) | WLAN | B.82 | ± 9.6 | | 10614 | AAB | IEEE 802.11ac WiFi (20MHz, MCS7, 90pc dc) | WLAN | 8.59 | ± 9.6 | | 10613 | AAB | IEEE 802.11ac WiF1 (20MHz, MCS6, 90pc dc) | WLAN | 8.94 | ± 9.6 | | 10612 | AAB | IEEE 802,11ac WiFi (20MHz, MCS5, 90pc dc) | WLAN | 8.70 | ± 9.6 ° | | 10611 | AAB | IEEE 802,11ac WiFi (20MHz, MCS4, 90pc dc) | WLAN | 8.78 | ±9.65 | | 10610 | AAB | IEEE 802.11ac WiFi (20MHz, MCS3, 90pc dc) | WLAN | 8.57 | ±9.6 | | 10609 | AAB | IEEE 802.11ac WIFI (20MHz, MCS1, 90pc dc) | WLAN
WLAN | 8.77 | ± 9.6 ° | | 10607 | AAB | IEEE 802.11ac WiFi (20MHz, MCS0, 90pc dc) | WLAN | 8.64 | ± 9.6 9 | | 10606 | AAB | IEEE 802.11n (HT Mixed, 40MHz, MCS7, 90pc dc) IEEE 802.11ac WiFi (20MHz, MCS0, 90pc dc) | WLAN | 8.82 | ± 9.6 9 | | 10605 | AAB | | WLAN | 8.97 | ± 9.6 | | 10604 | AAB | IEEE 802.11n (HT Mixed, 40MHz, MCS5, 90pc dc) IEEE 802.11n (HT Mixed, 40MHz, MCS6, 90pc dc) | WLAN | 8.76 | ± 9.6 | | 10604 | AAB | | WLAN | 9.03 | ± 9.6 | | 10602 | AAB | IEEE 802.11n (HT Mixed, 40MHz, MCS3, 90pc dc) | WLAN | 8.94 | ± 9.6 | | 10601 | AAB | IEEE 802.11n (HT Mixed, 40MHz, MCS2, 90pc dc) IEEE 802.11n (HT Mixed, 40MHz, MCS3, 90pc dc) | WLAN | 8.82 | ± 9.6 | | 10600 | AAB | IEEE 802.11n (HT Mixed, 40MHz, MCS1, 90pc dc) | WLAN | 8.88 | ± 9.6 ° | | 10600 | AAB | IEEE 802.11n (HT Mixed, 40MHz, MCS0, 90pc dc) | WLAN | 8.79 | ± 9.6 | | 10598
10599 | AAB | IEEE 802.11n (HT Mixed, 20MHz, MCS7, 90pc dc) | WLAN | 8.50 | ± 9.6 | | 10E00 | AAB | IEEE 802.11n (HT Mixed, 20MHz, MCS6, 90pc dc) | WLAN | 8.72 | ± 9.6 | | 10597 | | | | | | Page 16 of 21 | 10672 | AAA | IEEE 802.11ax (20MHz, MCS1, 90pc dc) | WLAN | 8.57 | ± 9.6 % | |-------|-----|--|--------------|--------------|---------| | 10673 | AAA | IEEE 802.11ax (20MHz, MCS2, 90pc dc) | WLAN | 8.78 | ± 9.6 % | | 10674 | AAA | IEEE 802.11ax (20MHz, MCS3, 90pc dc) | WLAN | 8.74 | ± 9.6 % | | 10675 | AAA | IEEE 802.11ax (20MHz, MCS4, 90pc dc) | WLAN | 8.90 | ± 9.6 % | | 10676 | AAA | IEEE 802.11ax (20MHz, MCS5, 90pc dc) | WLAN | 8.77 | ± 9.6 % | | 10677 | AAA | IEEE 802.11ax (20MHz, MCS6, 90pc dc) | WLAN | 8.73 | ± 9.6 % | | 10678 | AAA | IEEE 802.11ax (20MHz, MCS7, 90pc dc) | WLAN | 8.78 | ± 9.6 % | | 10679 | AAA | IEEE 802.11ax (20MHz, MCS8, 90pc dc) | WLAN | 8.89 | ± 9.6 % | | 10681 | AAA | IEEE 802.11ax (20MHz, MCS9, 90pc dc) | WLAN | 8.80 | ± 9.6 % | | 10682 | AAA | IEEE 802.11ax (20MHz, MCS10, 90pc dc) | WLAN | 8.62 | ± 9.6 % | | 10683 | AAA | IEEE 802.11ax (20MHz, MCS11, 90pc dc) | WLAN | 8.83 | ± 9.6 % | | 10684 | AAA | IEEE 802.11ax (20MHz, MCS0, 99pc dc) IEEE 802.11ax (20MHz, MCS1, 99pc dc) | WLAN
WLAN | 8.42 | ± 9.6 % | | 10685 | AAA | IEEE 802.11ax (20MHz, MCS2, 99pc dc) | WLAN | 8.26 | ± 9.6 % | | 10686 | AAA | IEEE 802.11ax (20MHz, MCS3, 99pc dc) | WLAN | 8.33
8.28 | ±9.6 % | | 10687 | AAA | IEEE 802.11ax (20MHz, MCS4, 99pc dc) | WLAN | 8.45 | ±9.6 % | | 10688 | AAA | IEEE 802.11ax (20MHz, MCS5, 99pc dc) | WLAN | 8.29 | ±9.6 % | | 10689 | AAA | IEEE 802.11ax (20MHz, MCS6, 99pc dc) | WLAN | 8.55 | ± 9.6 % | | 10690 | AAA | IEEE 802.11ax (20MHz, MCS7, 99pc dc) | WLAN | 8.29 | ± 9.6 % | | 10691 | AAA | IEEE 802.11ax (20MHz, MCS8, 99pc dc) | WLAN | 8.25 | ± 9.6 % | | 10692 | AAA | IEEE 802.11ax (20MHz, MCS9, 99pc dc) | WLAN | 8.29 | ±9.6 % | | 10693 | AAA | IEEE 802.11ax (20MHz, MCS10, 99pc dc) | WLAN | 8.25 | ±9.6 % | | 10694 | AAA | IEEE 802.11ax (20MHz, MCS11, 99pc dc) | WLAN | 8.57 | ± 9.6 % | | 10695 | AAA | IEEE 802.11ax (40MHz, MCS0, 90pc dc) | WLAN | 8.78 | ± 9.6 % | | 10696 | AAA | IEEE 802.11ax (40MHz, MCS1, 90pc dc) | WLAN | 8.91 | ± 9.6 % | | 10697 | AAA | IEEE 802.11ax (40MHz, MCS2, 90pc dc) | WLAN | 8.61 | ±9.6 % | | 10698 | AAA | IEEE 802.11ax (40MHz, MCS3, 90pc dc) | WLAN | 8.89 | ±9.6 % | | 10699 | AAA | IEEE 802.11ax (40MHz, MCS4, 90pc dc) | WLAN | 8.82 | ± 9.6 % | | 10700 | AAA | IEEE 802.11ax (40MHz, MCS5, 90pc dc) | WLAN | 8.73 | ± 9.6 % | | 10701 | AAA | IEEE 802.11ax (40MHz, MCS6, 90pc dc) | WLAN | 8.86 | ± 9.6 % | |
10702 | AAA | IEEE 802.11ax (40MHz, MCS7, 90pc dc) | WLAN | 8.70 | ± 9.6 % | | 10703 | AAA | IEEE 802.11ax (40MHz, MCS8, 90pc dc) | WLAN. | 8.82 | ± 9.6 % | | 10704 | AAA | IEEE 802.11ax (40MHz, MCS9, 90pc dc) | WLAN | 8.56 | ± 9.6 % | | 10705 | AAA | IEEE 802.11ax (40MHz, MCS10, 90pc dc) | WLAN | 8.69 | ± 9.6 % | | 10706 | AAA | IEEE 802.11ax (40MHz, MCS11, 90pc dc) | WLAN | 8.66 | ±9.6 % | | 10707 | AAA | IEEE 802.11ax (40MHz, MCS0, 99pc dc) | WLAN | 8.32 | ±9.6 % | | 10708 | AAA | IEEE 802.11ax (40MHz, MCS1, 99pc dc) | WLAN | 8.55 | ± 9.6 % | | 10709 | AAA | IEEE 802.11ax (40MHz, MCS2, 99pc dc) | WLAN | 8.33 | ±9.6 % | | 10710 | AAA | IEEE 802.11ax (40MHz, MCS3, 99pc dc) | WLAN | 8.29 | ±9.6 % | | 10711 | AAA | IEEE 802.11ax (40MHz, MCS4, 99pc dc) | WLAN | 8.39 | ± 9.6 % | | 10712 | AAA | IEEE 802.11ax (40MHz, MCS5, 99pc dc) | WLAN | 8.67 | ±9.6 % | | 10713 | AAA | IEEE 802.11ax (40MHz, MCS6, 99pc dc) | WLAN | 8.33 | ±9.6 % | | 10715 | AAA | IEEE 802.11ax (40MHz, MCS7, 99pc dc) | WLAN | 8.26 | ±9.6 % | | 10716 | AAA | IEEE 802.11ax (40MHz, MCS8, 99pc dc) | WLAN | 8.45 | ±9.6 % | | 10717 | AAA | IEEE 802.11ax (40MHz, MCS9, 99pc dc) | WLAN | 8.30 | ±9.6 % | | 10718 | AAA | IEEE 802.11ax (40MHz, MCS10, 99pc dc) IEEE 802.11ax (40MHz, MCS11, 99pc dc) | WLAN | 8.48 | ± 9.6 % | | 10719 | AAA | IEEE 802.11ax (80MHz, MCS0, 90pc dc) | WLAN | 8.24 | ± 9.6 % | | 10720 | AAA | IEEE 802.11ax (80MHz, MCS1, 90pc dc) | WLAN | 8.81 | ± 9.6 % | | 10721 | AAA | IEEE 802.11ax (80MHz, MCS1, 90pc dc) | WLAN | 8.87 | ± 9.6 % | | 10722 | AAA | IEEE 802.11ax (80MHz, MCS3, 90pc dc) | WLAN | 8.76 | ± 9.6 % | | 10723 | AAA | IEEE 802,11ax (80MHz, MCS4, 90pc dc) | WLAN
WLAN | 8.55 | ± 9.6 % | | 0724 | AAA | IEEE 802.11ax (80MHz, MCS5, 90pc dc) | WLAN | 8.70 | ± 9.6 % | | 0725 | AAA | IEEE 802.11ax (80MHz, MCS6, 90pc dc) | WLAN | 8.90 | ± 9.6 % | | 0726 | AAA | IEEE 802.11ax (80MHz, MCS7, 90pc dc) | WLAN | 8.74 | ±9.6 % | | 0727 | AAA | IEEE 802.11ax (80MHz, MCS8, 90pc dc) | WLAN | 8.66 | ±9.6 % | | 0728 | AAA | IEEE 802.11ax (80MHz, MCS9, 90pc dc) | WLAN | 8.65 | ±9.6 % | | 0729 | AAA | IEEE 802.11ax (80MHz, MCS10, 90pc dc) | WLAN | 8.64 | ±9.6 % | | 10730 | AAA | IEEE 802.11ax (80MHz, MCS11, 90pc dc) | WLAN | 8.67 | ±9.6 % | | 0731 | AAA | IEEE 802.11ax (80MHz, MCS0, 99pc dc) | WLAN | 8.42 | ±9.6 % | | 10732 | AAA | IEEE 802.11ax (80MHz, MCS1, 99pc dc) | WLAN | 8.46 | | | 10733 | AAA | IEEE 802.11ax (80MHz, MCS2, 99pc dc) | WLAN | 8.40 | ± 9.6 % | | 10734 | AAA | IEEE 802.11ax (80MHz, MCS3, 99pc dc) | WLAN | 8.25 | ±9.6 % | | | | A CONTRACTOR OF THE PARTY TH | 713-0114 | 0.20 | 20.0 70 | Page 17 of 21 | 10736 | AAA | IEEE 802.11ax (80MHz, MCS5, 99pc dc) | WLAN | 8.27 | ± 9.6 % | |---|--|---|---|--|---| | 10737 | AAA | IEEE 802.11ax (80MHz, MCS6, 99pc dc) | WLAN | 8.36 | ± 9.6 % | | 10738 | AAA | IEEE 802.11ax (80MHz, MCS7, 99pc dc) | WLAN | 8.42 | ± 9.6 % | | 10739 | AAA | IEEE 802.11ax (80MHz, MCS8, 99pc dc) | WLAN | 8.29 | ± 9.6 % | | 10740 | AAA | IEEE 802.11ax (80MHz, MCS9, 99pc dc) | WLAN | 8.48 | ± 9.6 % | | 10741 | AAA | IEEE 802.11ax (80MHz, MCS10, 99pc dc) | WLAN | 8.40 | ± 9.6 % | | 10742 | AAA | IEEE 802.11ax (80MHz, MCS11, 99pc dc) | WLAN | 8.43 | ± 9.6 % | | 10743 | AAA | IEEE 802.11ax (160MHz, MCS0, 90pc dc) | WLAN | 8.94 | ± 9.6 % | | 10744 | AAA | IEEE 802.11ax (160MHz, MCS1, 90pc dc) | WLAN | 9.16 | ± 9.6 % | | 10745 | AAA | IEEE 802.11ax (160MHz, MCS2, 90pc dc) | WLAN | 8.93 | ± 9.6 % | | 10746 | AAA | IEEE 802.11ax (160MHz, MCS3, 90pc dc) | WLAN | 9.11 | ± 9.6 % | | 10747 | AAA | IEEE 802.11ax (160MHz, MCS4, 90pc dc) | WLAN | 9.04 | ± 9.6 % | | 10748 | AAA | IEEE 802.11ax (160MHz, MCS5, 90pc dc) | WLAN | 8.93 | ± 9.6 % | | 10749 | AAA | IEEE 802,11ax (160MHz, MCS6, 90pc dc) | WLAN | 8.90 | ± 9.6 % | | 10750 | AAA | IEEE 802.11ax (160MHz, MCS7, 90pc dc) | WLAN | 8.79 | ± 9.6 % | | 10751 | AAA | IEEE 802.11ax (160MHz, MCS8, 90pc dc) | WLAN | 8.82 | ± 9.6 % | | 10752 | AAA | IEEE 802.11ax (160MHz, MCS9, 90pc do) | WLAN | 8.81 | | | 10753 | AAA | IEEE 802,11ax (160MHz, MCS10, 90pc dc) | WLAN | + | ±9.6 % | | 10754 | AAA | IEEE 802.11ax (160MHz, MCS11, 90pc dc) | WLAN | 9.00 | ± 9.6 % | | 10755 | AAA | IEEE 802.11ax (160MHz, MCS0, 99pc dc) | WLAN | 8.94 | ± 9.6 % | | 10756 | AAA | IEEE 802.11ax (160MHz, MCS1, 99pc dc) | | 8.64 | ±9.6 % | | 10757 | AAA | | WLAN | 8.77 | ± 9.6 % | | 10758 | AAA | IEEE 802.11ax (160MHz, MCS2, 99pc dc) | WLAN | 8.77 | ±9.6% | | 10759 | AAA | IEEE 802.11ax (160MHz, MCS3, 99pc dc) | WLAN | 8.69 | ± 9.6 % | | | | IEEE 802.11ax (160MHz, MCS4, 99pc dc) | WLAN | 8.58 | ±9.6 % | | 10760 | AAA | IEEE 802.11ax (160MHz, MCS5, 99pc dc) | WLAN | 8.49 | ±9.6 % | | 10761 | AAA | IEEE 802.11ax (160MHz, MCS6, 99pc dc) | WLAN | 8.58 | ±9.6% | | 10762 | AAA | IEEE 802.11ax (160MHz, MCS7, 99pc dc) | WLAN | 8,49 | ±9.6 % | | 10763 | AAA | IEEE 802.11ax (160MHz, MCS8, 99pc dc) | WLAN | 8.53 | ± 9.6 % | | 10764 | AAA | IEEE 802.11ax (160MHz, MCS9, 99pc dc) | WLAN | 8.54 | ±9.6% | | 10765 | AAA | IEEE 802.11ax (160MHz, MCS10, 99pc dc) | WLAN | 8.54 | ± 9.6 % | | 10766 | AAA | IEEE 802.11ax (160MHz, MCS11, 99pc dc) | WLAN | 8.51 | ± 9.6 % | | 10767 | AAC | 5G NR (CP-OFDM, 1 RB, 5 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 7.99 | ± 9.6 % | | 10768 | AAC | 5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.01 | ±9.6 % | | 10769 | AAC | 5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.01 | ± 9.6 % | | 10770 | AAC | 5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.02 | ± 9.6 % | | 10771 | AAC | 5G NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.02 | ±9.6 % | | 10772 | AAC | 5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.23 | ±9.6 % | | 10773 | AAC | 5G NR (CP-OFDM, 1 RB, 40 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.03 | ±9.6 % | | 10774 | AAC | 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.02 | ±9.6 % | | 10775 | AAB | 5G NR (CP-OFDM, 50% RB, 5 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.31 | ± 9.6 % | | 10776 | AAC | 5G NR (CP-OFDM, 50% RB, 10 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.30 | ±9.6% | | 10777 | AAB | 5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.30 | ±9.6 % | | 10778 | AAC | 5G NR (CP-OFDM, 50% RB, 20 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.34 | ±9.6 % | | 10779 | AAB | 5G NR (CP-OFDM, 50% RB, 25 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.42 | ±9.6 % | | 10780 | AAC | 5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.38 | ± 9.6 % | | 10781 | AAC | 5G NR (CP-OFDM, 50% RB, 40 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.38 | ±9.6 % | | 10782 | AAC | 5G NR (CP-OFDM, 50% RB, 50 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.43 | ±9.6 % | | | 1.000 | | | | ± 9.6 % | | 10783 | AAC | 5G NR (CP-OFDM, 100% RB, 5 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8 31 | | | 10783 | AAC | | 5G NR FR1 TDD | 8.31 | | | 10784 | | 5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.29 | ±9,6 % | | 10784
10785 | AAC | 5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 15 kHz)
5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD
5G NR FR1 TDD | 8.29
8.40 | ±9.6 %
±9.6 % | | 10784
10785
10786 | AAC | 5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 15 kHz)
5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 15 kHz)
5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD
5G NR FR1 TDD
5G NR FR1 TDD | 8.29
8.40
8.35 | ± 9.6 %
± 9.6 %
± 9.6 % | | 10784
10785
10786
10787 | AAC
AAC
AAC | 5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 15 kHz)
5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 15 kHz)
5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 15 kHz)
5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD
5G NR FR1 TDD
5G NR FR1 TDD
5G NR FR1 TDD | 8.29
8.40
8.35
8.44 | ± 9.6 %
± 9.6 %
± 9.6 %
± 9.6 % | | 10784
10785
10786
10787
10788 | AAC
AAC
AAC | 5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 15 kHz) 5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 15 kHz) 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 15 kHz) 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 15 kHz) 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD
5G NR FR1 TDD
5G NR FR1 TDD
5G NR FR1 TDD
5G NR FR1 TDD | 8.29
8.40
8.35
8.44
8.39 | ± 9.6 %
± 9.6 %
± 9.6 %
± 9.6 %
± 9.6 % | | 10784
10785
10786
10787
10788
10789 | AAC
AAC
AAC
AAC | 5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 15 kHz) 5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 15 kHz) 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 15 kHz) 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 15 kHz) 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 15 kHz) 5G NR (CP-OFDM, 100% RB, 40 MHz,
QPSK, 15 kHz) | 5G NR FR1 TDD
5G NR FR1 TDD | 8.29
8.40
8.35
8.44
8.39
8.37 | ± 9.6 %
± 9.6 %
± 9.6 %
± 9.6 %
± 9.6 % | | | AAC
AAC
AAC
AAC
AAC | 5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 15 kHz) 5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 15 kHz) 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 15 kHz) 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 15 kHz) 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD
5G TDD | 8.29
8.40
8.35
8.44
8.39
8.37
8.39 | ± 9.6 %
± 9.6 %
± 9.6 %
± 9.6 %
± 9.6 %
± 9.6 % | | 10784
10785
10786
10787
10788
10789
10790 | AAC
AAC
AAC
AAC
AAC
AAC | 5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 15 kHz) 5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 15 kHz) 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 15 kHz) 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 15 kHz) 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 15 kHz) 5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 15 kHz) 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 15 kHz) 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 15 kHz) 5G NR (CP-OFDM, 1 RB, 5 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD
5G TDD | 8.29
8.40
8.35
8.44
8.39
8.37
8.39
7.83 | ± 9.6 %
± % | | 10784
10785
10786
10787
10788
10789
10790
10791
10792 | AAC
AAC
AAC
AAC
AAC
AAC
AAC | 5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 15 kHz) 5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 15 kHz) 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 15 kHz) 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 15 kHz) 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 15 kHz) 5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 15 kHz) 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 15 kHz) 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 15 kHz) 5G NR (CP-OFDM, 1 RB, 5 MHz, QPSK, 30 kHz) 5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8,29
8,40
8,35
8,44
8,39
8,37
8,39
7,83
7,92 | ± 9.6 %
± % | | 10784
10785
10786
10787
10788
10789
10790
10791 | AAC
AAC
AAC
AAC
AAC
AAC
AAC
AAC | 5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 15 kHz) 5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 15 kHz) 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 15 kHz) 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 15 kHz) 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 15 kHz) 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 15 kHz) 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 15 kHz) 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 15 kHz) 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz) 5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 30 kHz) 5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8,29
8,40
8,35
8,44
8,39
8,37
8,39
7,83
7,92
7,95 | ±9.6 %
±9.6 %
±9.6 %
±9.6 %
±9.6 %
±9.6 %
±9.6 %
±9.6 %
±9.6 % | | 10784
10785
10786
10787
10788
10789
10790
10791
10792
10793
10794 | AAC
AAC
AAC
AAC
AAC
AAC
AAC
AAC
AAC
AAC | 5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 15 kHz) 5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 15 kHz) 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 15 kHz) 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 15 kHz) 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 15 kHz) 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 15 kHz) 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 15 kHz) 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz) 5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 30 kHz) 5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 30 kHz) 5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8,29
8,40
8,35
8,44
8,39
8,37
8,39
7,83
7,92
7,95
7,82 | ±9.6 %
±9.6 %
±9.6 %
±9.6 %
±9.6 %
±9.6 %
±9.6 %
±9.6 %
±9.6 % | | 10784
10785
10786
10787
10788
10789
10790
10791
10792
10793
10794
10795 | AAC
AAC
AAC
AAC
AAC
AAC
AAC
AAC
AAC
AAC | 5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 15 kHz) 5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 15 kHz) 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 15 kHz) 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 15 kHz) 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 15 kHz) 5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 15 kHz) 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 15 kHz) 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz) 5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 30 kHz) 5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz) 5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz) 5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz) 5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8,29
8,40
8,35
8,44
8,39
8,37
8,39
7,83
7,92
7,95
7,82
7,84 | ± 9.6 %
± % | | 10784
10785
10786
10787
10788
10789
10790
10791
10792
10793
10794
10795
10796 | AAC | 5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 15 kHz) 5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 15 kHz) 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 15 kHz) 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 15 kHz) 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 15 kHz) 5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 15 kHz) 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 15 kHz) 5G NR (CP-OFDM, 1 RB, 5 MHz, QPSK, 30 kHz) 5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 30 kHz) 5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz) 5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 30 kHz) 5G NR (CP-OFDM, 1 RB, 35 MHz, QPSK, 30 kHz) 5G NR (CP-OFDM, 1 RB, 35 MHz, QPSK, 30 kHz) 5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 30 kHz) 5G NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8,29
8,40
8,35
8,44
8,39
8,37
8,39
7,83
7,92
7,95
7,82
7,84
7,82 | ± 9.6 %
± % | | 10784
10785
10786
10787
10788
10789
10790
10791
10792
10793
10794
10795 | AAC
AAC
AAC
AAC
AAC
AAC
AAC
AAC
AAC
AAC | 5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 15 kHz) 5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 15 kHz) 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 15 kHz) 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 15 kHz) 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 15 kHz) 5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 15 kHz) 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 15 kHz) 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz) 5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 30 kHz) 5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz) 5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz) 5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz) 5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8,29
8,40
8,35
8,44
8,39
8,37
8,39
7,83
7,92
7,95
7,82
7,84 | ± 9.6 %
± % | Page 18 of 21 | 10801 | AAC | 5G NR (CP-OFDM, 1 RB, 80 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 7.89 | ± 9.6 % | |-------|-----|--|---------------|------|---------| | 10802 | AAC | 5G NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 7.87 | ± 9.6 % | | 10803 | AAC | 5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 7.93 | ± 9.6 % | | 10805 | AAC | 5G NR (CP-OFDM, 50% RB, 10 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.34 | ± 9.6 % | | 10806 | AAC | 5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.37 | ± 9.6 % | | 10809 | AAC | 5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.34 | ± 9.6 % | | 10810 | AAC | 5G NR (CP-OFDM, 50% RB, 40 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.34 | ± 9.6 % | | 10812 | AAC | 5G NR (CP-OFDM, 50% RB, 60 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.35 | | | 10817 | AAC | 5G NR (CP-OFDM, 100% RB, 5 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | | ± 9.6 % | | 10818 | AAC | 5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.35 | ± 9.6 % | | 10819 | AAC | 5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 30 kHz) | | 8.34 | ± 9.6 % | | 10820 | AAC | 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.33 | ± 9.6 % | | 10821 | AAC | | 5G NR FR1 TDD | 8.30 | ± 9.6 % | | 10822 | AAC | 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.41 | ± 9.6 % | | 10823 | AAC | 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 30 KHz) | 5G NR FR1 TDD | 8.41 | ±9.6 % | | 10824 | AAC | 5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.36 | ± 9.6 % | | | - | 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.39 | ± 9.6 % | | 10825 | AAC | 5G NR (CP-OFDM, 100% RB, 60 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.41 | ± 9.6 % | | 10827 | AAC | 5G NR (CP-OFDM, 100% RB, 80 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.42 | ± 9.6 % | | 10828 | AAC | 5G NR (CP-OFDM, 100% RB, 90 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.43 | ± 9.6 % | | 10829 | AAC | 5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.40 | ±9.6 % | | 10830 | AAC | 5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 7.63 | ± 9.6 % | | 10831 | AAC | 5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 7.73 | ± 9.6 % | | 10832 | AAC | 5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 7.74 | ± 9.6 % | | 10833 | AAC | 5G NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 7.70 | ± 9.6 % | | 10834 | AAC | 5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 7.75 | ± 9.6 % | | 10835 | AAC | 5G NR (CP-OFDM, 1 RB, 40 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 7.70 | ± 9.6 % | | 10836 | AAC | 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 7.66 | ± 9.6 % | | 10837 | AAC | 5G NR (CP-OFDM, 1 RB, 60 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 7.68 | ± 9.6 % | | 10839 | AAC | 5G NR (CP-OFDM, 1 RB, 80 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 7.70 | ± 9.6 % | | 10840 | AAC | 5G NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 7.67 | ± 9.6 % | | 10841 | AAC | 5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 7.71 | ± 9.6 % | | 10843 | AAC | 5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.49 | ± 9.6 % | | 10844 | AAC | 5G NR (CP-OFDM, 50% RB, 20 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.34 | ±9.6 % | | 10846 | AAC | 5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.41 | ±9.6 % | | 10854 | AAC | 5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.34 | ±9.6 % | | 10855 | AAC | 5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.36 | ±9.6 % | | 10856 | AAC | 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 60
kHz) | 5G NR FR1 TDD | 8.37 | ±9.6 % | | 10857 | AAC | 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.35 | ±9.6 % | | 10858 | AAC | 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | | | | 10859 | AAC | 5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.36 | ±9.6 % | | 10860 | AAC | 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | | ±9.6 % | | 10861 | AAC | 5G NR (CP-OFDM, 100% RB, 60 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.41 | ±9.6 % | | 10863 | AAC | 5G NR (CP-OFDM, 100% RB, 80 MHz, QPSK, 60 kHz) | | 8.40 | ±9.6 % | | 10864 | AAC | 5G NR (CP-OFDM, 100% RB, 80 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.41 | ±9.6 % | | 10865 | AAC | | 5G NR FR1 TDD | 8.37 | ± 9.6 % | | 10866 | AAC | 5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.41 | ± 9.6 % | | | _ | 5G NR (DFT-s-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.68 | ± 9.6 % | | 10868 | AAC | 5G NR (DFT-s-OFDM, 100% RB, 100 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.89 | ±9.6 % | | 10869 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 100 MHz, QPSK, 120 kHz) | 5G NR FR2 TDD | 5.75 | ±9.6 % | | 10870 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 100 MHz, QPSK, 120 kHz) | 5G NR FR2 TDD | 5.86 | ± 9.6 % | | 10871 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 100 MHz, 16QAM, 120 kHz) | 5G NR FR2 TDD | 5.75 | ±9.6 % | | 10872 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 100 MHz, 16QAM, 120 kHz) | 5G NR FR2 TDD | 6.52 | ± 9.6 % | | 10873 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 100 MHz, 64QAM, 120 kHz) | 5G NR FR2 TDD | 6.61 | ± 9.6 % | | 10874 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 100 MHz, 64QAM, 120 kHz) | 5G NR FR2 TDD | 6.65 | ±9.6 % | | 10875 | AAD | 5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 120 kHz) | 5G NR FR2 TDD | 7.78 | ± 9.6 % | | 10876 | AAD | 5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 120 kHz) | 5G NR FR2 TDD | 8.39 | ±9.6 % | | 10877 | AAD | 5G NR (CP-OFDM, 1 RB, 100 MHz, 16QAM, 120 kHz) | 5G NR FR2 TDD | 7.95 | ± 9.6 % | | 10878 | AAD | 5G NR (CP-OFDM, 100% RB, 100 MHz, 16QAM, 120 kHz) | 5G NR FR2 TDD | 8.41 | ± 9.6 % | | 10879 | AAD | 5G NR (CP-OFDM, 1 RB, 100 MHz, 64QAM, 120 kHz) | 5G NR FR2 TDD | 8.12 | ±9.6 % | | 10880 | AAD | 5G NR (CP-OFDM, 100% RB, 100 MHz, 64QAM, 120 kHz) | 5G NR FR2 TDD | 8.38 | ± 9.6 % | | 10881 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 120 kHz) | 5G NR FR2 TDD | 5.75 | ± 9.6 % | | 10882 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 120 kHz) | 5G NR FR2 TDD | 5.96 | ± 9.6 % | | | | 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, 16QAM, 120 kHz) | 5G NR FR2 TDD | | ±9.6 % | | 10883 | AAD | | | | | | | AAD | 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, 16QAM, 120 kHz) | 5G NR FR2 TDD | 6.57 | ± 9.6 % | | 10886 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, 64QAM, 120 kHz) | 5G NR FR2 TDD | 6.65 | ± 9.6 % | |-------|------|---|---------------|------|---------| | 10887 | AAD | 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 120 kHz) | 5G NR FR2 TDD | 7.78 | ± 9.6 % | | 10888 | AAD | 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 120 kHz) | 5G NR FR2 TDD | 8.35 | ± 9.6 % | | 10889 | AAD | 5G NR (CP-OFDM, 1 RB, 50 MHz, 16QAM, 120 kHz) | 5G NR FR2 TDD | 8.02 | ± 9.6 % | | 10890 | AAD | 5G NR (CP-OFDM, 100% RB, 50 MHz, 16QAM, 120 kHz) | 5G NR FR2 TDD | 8.40 | ± 9.6 % | | 10891 | AAD | 5G NR (CP-OFDM, 1 RB, 50 MHz, 64QAM, 120 kHz) | 5G NR FR2 TDD | 8.13 | ± 9.6 % | | 10892 | AAD | 5G NR (CP-OFDM, 100% RB, 50 MHz, 64QAM, 120 kHz) | 5G NR FR2 TDD | 8.41 | ± 9.6 % | | 10897 | AAA | 5G NR (DFT-s-OFDM, 1 RB, 5 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.66 | ± 9.6 % | | 10898 | AAA | 5G NR (DFT-s-OFDM, 1 RB, 10 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.67 | ± 9.6 % | | 10899 | AAA | 5G NR (DFT-s-OFDM, 1 RB, 15 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.67 | ± 9.6 % | | 10900 | AAA | 5G NR (DFT-s-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.68 | ± 9.6 % | | 10901 | AAA | 5G NR (DFT-s-OFDM, 1 RB, 25 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.68 | ± 9.6 % | | 10902 | AAA | 5G NR (DFT-s-OFDM, 1 RB, 30 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.68 | ± 9.6 % | | 10903 | AAA | 5G NR (DFT-s-OFDM, 1 RB, 40 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.68 | ± 9.6 % | | 10904 | AAA | 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.68 | ± 9.6 % | | 10905 | AAA | 5G NR (DFT-s-OFDM, 1 RB, 60 MHz, QPSK, 30 kHz). | 5G NR FR1 TDD | 5.68 | ± 9.6 % | | 10906 | AAA | 5G NR (DFT-s-OFDM, 1 RB, 80 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.68 | ± 9.6 % | | 10907 | AAA | 5G NR (DFT-s-OFDM, 50% RB, 5 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | | ± 9.6 % | | 10908 | AAA | 5G NR (DFT-s-OFDM, 50% RB, 10 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.78 | | | 10909 | AAA | 5G NR (DFT-s-OFDM, 50% RB, 15 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.93 | ± 9.6 % | | | | | | 5.96 | ± 9.6 % | | 10910 | AAA | 5G NR (DFT-s-OFDM, 50% RB, 20 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.83 | ± 9.6 % | | | | 5G NR (DFT-s-OFDM, 50% RB, 25 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5,93 | ±9.6 % | | 10912 | AAA | 5G NR (DFT-s-OFDM, 50% RB, 30 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.84 | ± 9.6 % | | 10913 | AAA | 5G NR (DFT-s-OFDM, 50% RB, 40 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.84 | ± 9.6 % | | 10914 | AAA | 5G NR (DFT-s-OFDM, 50% RB, 50 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.85 | ± 9.6 % | | 10915 | AAA | 5G NR (DFT-s-OFDM, 50% RB, 60 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.83 | ± 9.6 % | | 10916 | AAA | 5G NR (DFT-s-OFDM, 50% RB, 80 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.87 | ± 9.6 % | | 10917 | AAA | 5G NR (DFT-s-OFDM, 50% RB, 100 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.94 | ± 9.6 % | | 10918 | AAA | 5G NR (DFT-s-OFDM, 100% RB, 5 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.86 | ±9.6 % | | 10919 | AAA | 5G NR (DFT-s-OFDM, 100% RB, 10 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.86 | ±9.6 % | | 10920 | AAA | 5G NR (DFT-s-OFDM, 100% RB, 15 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.87 | ±9.6 % | | 10921 | AAA | 5G NR (DFT-s-OFDM, 100% RB, 20 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.84 | ±9.6 % | | 10922 | AAA | 5G NR (DFT-s-OFDM, 100% RB, 25 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.82 | ±9.6 % | | 10923 | AAA | 5G NR (DFT-3-OFDM, 100% RB, 30 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.84 | ±9.6 % | | 10924 | AAA | 5G NR (DFT-s-OFDM, 100% RB, 40 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.84 | ±9.6% | | 10925 | AAA | 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.95 | ±9.6% | | 10926 | AAA | 5G NR (DFT-s-OFDM, 100% RB, 60 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.84 | ± 9.6 % | | 10927 | AAA | 5G NR (DFT-s-OFDM, 100% RB, 80 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.94 | ±9.6 % | | 10928 | AAA | 5G NR (DFT-s-OFDM, 1 RB, 5 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.52 | ±9.6 % | | 10929 | AAA | 5G NR (DFT-s-OFDM, 1 RB, 10 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.52 | ±9.6 % | | 10930 | AAA. | 5G NR (DFT-s-OFDM, 1 RB, 15 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.52 | ± 9.6 % | | 10931 | AAA. | 5G NR (DFT-s-OFDM, 1 RB, 20 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.51 | ± 9.6 % | | 10932 | AAA. | 5G NR (DFT-s-OFDM, 1 RB, 25 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.51 | ± 9.6 % | | 10933 | AAA | 5G NR (DFT-s-OFDM, 1 RB, 30 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.51 | ±9.6 % | | 10934 | AAA | 5G NR (DFT-s-OFDM, 1 RB, 40 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.51 | ±9.6 % | | 10935 | AAA | 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.51 | | | 10936 | AAA | 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | | ±9.6 % | | 10936 | AAA | 5G NR (DFT-s-OFDM, 50% RB, 5 MHz, QPSK, 15 kHz) | | 5.90 | ± 9.6 % | | 10938 | AAA | | 5G NR FR1 FDD | 5.77 | ±9.6% | | | AAA | 5G NR (DFT-s-OFDM, 50% RB, 15 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.90 | ±9.6 % | | 10939 | | 5G NR (DFT-s-OFDM, 50% RB, 20 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.82 | ±9.6 % | | 10940 | AAA | 5G NR (DFT-s-OFDM, 50% RB, 25 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.89 | ±9.6 % | | 10941 | AAA | 5G NR (DFT-s-OFDM, 50% RB, 30 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.83 | ±9.6 % | | 10942 | AAA | 5G NR (DFT-s-OFDM, 50% RB, 40 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.85 | ±9.6 % | | 10943 | AAA | 5G NR (DFT-s-OFDM, 50% RB, 50 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.95 | ±9.6 % | | 0944 | AAA | 5G NR (DFT-s-OFDM, 100% RB, 5 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5,81 | ±9.6 % | | 10945 | AAA | 5G NR (DFT-s-OFDM, 100% RB, 10 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5,85 | ±9.6 % | | 10946 | AAA | 5G NR (DFT-s-OFDM, 100% RB, 15 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5,83 | ±9.6 % | | 10947 | AAA | 5G NR (DFT-s-OFDM, 100% RB, 20 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.87 | ±9.6 % | | 10948 | AAA | 5G NR (DFT-s-OFDM, 100% RB, 25 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.94 | ±9.6 % | | 10949 | AAA | 5G NR (DFT-s-OFDM, 100% RB, 30 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.87 | ±9.6 % | | 10950 | AAA | 5G NR (DFT-s-OFDM, 100% RB, 40 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.94 | ±9.6 % | | 10951 | AAA | 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.92 | ±9.6% | | 10952 | AAA | 5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 15 kHz) | 5G NR FR1 FDD | 8.25 | ±9.6 % | | | AAA | 5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 15 kHz) | 5G NR FR1 FDD | 8.15 | 10 70 | Certificate No: EX3-7610_Aug20/2 Page 20 of 21 EX3DV4- SN:7610 August 31, 2020 | 10954 | AAA | 5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 15 kHz) | 5G NR FR1 FDD | 8.23 | ± 9.6 % | |-------|-----|---|---------------|------|---------| | 10955 | AAA | 5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 15 kHz) | 5G NR FR1 FDD | 8.42 | ± 9.6 % | | 10956 | AAA | 5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 30 kHz) | 5G NR FR1 FDD | 8.14 | ± 9.6 % | | 10957 | AAA | 5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 30 kHz) | 5G NR FR1 FDD | 8.31 | ± 9.6 % | | 10958 | AAA | 5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 30 kHz) | 5G NR FR1 FDD | 8.61 | ± 9.6 % | | 10959 | AAA | 5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 30 kHz) | 5G NR FR1 FDD | 8.33 | ± 9.6 % | | 10960 | AAA | 5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 15 kHz) | 5G NR FR1 TDD | 9.32 | ± 9.6 % | | 10961 | AAA |
5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 15 kHz) | 5G NR FR1 TDD | 9.36 | ± 9.6 % | | 10962 | AAA | 5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 15 kHz) | 5G NR FR1 TDD | 9.40 | ± 9.6 % | | 10963 | AAA | 5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 15 kHz) | 5G NR FR1 TDD | 9.55 | ±9.6 % | | 10964 | AAA | 5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 30 kHz) | 5G NR FR1 TDD | 9.29 | ± 9.6 % | | 10965 | AAA | 5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 30 kHz) | 5G NR FR1 TDD | 9.37 | ±9.6 % | | 10966 | AAA | 5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 30 kHz) | 5G NR FR1 TDD | 9.55 | ± 9.6 % | | 10967 | AAA | 5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 30 kHz) | 5G NR FR1 TDD | 9.42 | ±9.6% | | 10968 | AAA | 5G NR DL (CP-OFDM, TM 3.1, 100 MHz, 64-QAM, 30 kHz) | 5G NR FR1 TDD | 9.49 | ±9.6% | E Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the field value. Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzaro di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Certificate No: D2450V2-920_Aug20 Client DT&C (Dymstec) CALIBRATION CERTIFICATE D2450V2 - SN:920 Object QA CAL-05:V11 Calibration procedure(s) Calibration Procedure for SAR Validation Sources between 0.7-3 GHz Calibration date: August 18, 2020 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (S1). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Cal Date (Certificate No.) Scheduled Calibration Primary Standards SN: 104778 01-Apr-20 (No. 217-03100/03101) Apr-21 Power meter NRP Apr-21 01-Apr-20 (No. 217-03100) Power sensor NRP-Z91 SN: 103244 Power sensor NRP-Z91 SN: 103245 01-Apr-20 (No. 217-03101) Apr-21 SN: BH9394 (20k) 31-Mar-20 (No. 217-03106) Apr-21 Reference 20 dB Attenuator SN: 310982 / 06327 31-Mar-20 (No. 217-03104) Apr-21 Type-N mismatch combination 29-Jun-20 (No. EX3-7349 Jun20) Jun-21 Reference Probe EX3DV4 SN: 7349 DAE4 SN: 601 27-Dec-19 (No. DAE4-601_Dec19) Dec-20 Check Date (in house) Scheduled Check ID # Secondary Standards 30-Oct-14 (in house check Feb-19) In house check: Oct-20 Power moter E4419B SN: GB39512475 Power sensor HP 8481A SN: US37292783 07-Oct-15 (in house check Oct-18) In house check: Oct-20 Power sensor HP 8481A SN: MY41092317 07-Oct-15 (in house check Oct-18) In house check: Oct-20 RF generator R&S SMT-06 In house check: Oct-20 SN: 100972 15-Jun-15 (in house check Oct-18) in house check: Oct-20 Network Analyzer Aglient EB358A SN: US41080477 31-Mar-14 (in house check Oct-19) Function Name Calibrated by: Jeffrey Katzman. Laboratory Technician Approved by: Katja Pokovic Technical Manager Isaued: August 18, 2020 This calibration cartificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: D2450V2-920_Aug20 Page 1 of 8 Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienut Service suisse d'étalonnage Servizie svizzere di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the aignatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured Calibration is Performed According to the Following Standards: a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 EC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Additional Documentation: e) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - . SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D2450V2-920_Aug20 Page 2 of 8 ## **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.10.4 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 2450 MHz ± 1 MHz | | # Head TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 39.2 | 1.80 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 38.9 ± 6 % | 1.84 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | - | #### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 13.2 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 52.0 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 6.11 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 24.3 W/kg ± 16.5 % (k=2) | # **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 52.7 | 1.95 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 51.5 ± 6 % | 2.03 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | - Marien | | ## SAR result with Body TSL | SAR averaged over 1 cm3 (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 13.0 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 50.6 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm3 (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 6.08 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 24.0 W/kg ± 16.5 % (k=2) | Certificate No: D2450V2-920_Aug20 Page 3 of 8 # Appendix (Additional assessments outside the scope of SCS 0108) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 56.1 Ω + 1,9]Ω | |--------------------------------------|-----------------| | Return Loss | - 24.4 dB | #### Antenna Parameters with Body TSL | Impedance, transformed to feed point | $51.8 \Omega + 4.6 j\Omega$ | | |--------------------------------------|-----------------------------|--| | Return Loss | - 26.3 dB | | ## General Antenna Parameters and Design | 154 ns | |--------| | 1 | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be
applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### Additional EUT Data | Manufactured by | SPEAG | |-----------------|-------| Certificate No: D2450V2-920_Aug20 Page 4 of 8 #### DASY5 Validation Report for Head TSL Date: 18.08.2020 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:920 Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; σ = 1.84 S/m; ϵ_r = 38.9; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: - Probe: EX3DV4 SN7349; ConvF(7.74, 7.74, 7.74) @ 2450 MHz; Calibrated: 29.06.2020 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 27.12.2019 - Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 - DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483) ## Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 114.7 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 25.5 W/kg SAR(1 g) = 13.2 W/kg; SAR(10 g) = 6.11 W/kg Smallest distance from peaks to all points 3 dB below = 9 mm Ratio of SAR at M2 to SAR at M1 = 51.5% Maximum value of SAR (measured) = 21.4 W/kg Certificate No: D2450V2-920_Aug20 Page 5 of 8 #### Impedance Measurement Plot for Head TSL Certificate No: D2450V2-920_Aug20 Page 6 of 8 ## DASY5 Validation Report for Body TSL Date: 18.08.2020 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:920 Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\alpha = 2.03$ S/m; $\epsilon_c = 51.5$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: Probe: EX3DV4 - SN7349; ConvF(7.82, 7.82, 7.82) @ 2450 MHz; Calibrated: 29.06.2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 27.12.2019 Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002 DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483) # Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 107.5 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 24.5 W/kg SAR(1 g) = 13.0 W/kg; SAR(10 g) = 6.08 W/kg Smallest distance from peaks to all points 3 dB below = 8.9 mm Ratio of SAR at M2 to SAR at M1 = 53.8% Maximum value of SAR (measured) = 20.4 W/kg Certificate No: D2450V2-920 Aug20 ## Impedance Measurement Plot for Body TSL Certificate No: D2450V2-920_Aug20 Page 8 of 8 # APPENDIX D: SAR TISSUE SPECIFICATIONS Measurement Procedure for Tissue verification: - 1) The network analyzer and probe system were configured and calibrated. - 2) The probe was immersed in the tissue. The tissue was placed in a nonmetallic container. Trapped air bubbles beneath the flange were minimized by placing the probe at a slight angle. - 3) The complex admittance with respect to the probe aperture was measured. - 4) The complex relative permittivity ε_r can be calculated from the below equation (Pournaropoulos and Misra): $$Y = \frac{j2\omega\varepsilon_{r}\varepsilon_{0}}{\left[\ln(b/a)\right]^{2}} \int_{a}^{b} \int_{a}^{b} \int_{0}^{\pi} \cos\phi' \frac{\exp\left[-j\omega r(\mu_{0}\varepsilon_{r}\varepsilon_{0})^{1/2}\right]}{r} d\phi' d\rho' d\rho$$ where Y is the admittance of the probe in contact with the sample, the primed and unprimed coordinates refer to source and observation points, respectively, $r^2 = \rho^2 + \rho'^2 - 2\rho\rho'\cos\phi'$, ω is the angular frequency, and $j = \sqrt{-1}$. Table D-1 Composition of the Tissue Equivalent Matter | Frequency (MHz) | 2 450 | | | | |---------------------------|-------|--|--|--| | Tissue | Head | | | | | Ingredients (% by weight) | | | | | | Bactericide | - | | | | | DGBE | - | | | | | HEC | - | | | | | NaCl | 0.1 | | | | | Sucrose | - | | | | | Tween 20 | 45.0 | | | | | Water | 54.9 | | | | Table D-2 Recommended Tissue Dielectric Parameters (IEC 62209-1) | Frequency | Relative permittivity | Conductivity (a) | | | |-----------|-----------------------|------------------|--|--| | MHz | £, | S/m | | | | 300 | 45,3 | 0.87 | | | | 450 | 43,5 | 0.87 | | | | 750 | 41,9 | 0,89 | | | | 835 | 41,5 | 0,90 | | | | 900 | 41,5 | 0,97 | | | | 1 450 | 40,5 | 1,20 | | | | f 500 | 40.4 | 1,23 | | | | 1.640 | 40.2 | 1,31 | | | | 1.750 | 40.1 | 1,37 | | | | 1 800 | 40,0 | 1,40 | | | | 1 900 | 40,0 | 1,40 | | | | 2 000 | 40,0 | 1,40 | | | | 2 100 | 39,8 | 1,49 | | | | 2 300 | 39.5 | 1,67 | | | | 2 450 | 39.2 | 1,80 | | | | 2 600 | 39.0 | 1,96 | | | | 3 000 | 38,5 | 2,40 | | | | 3 500 | 37,9 | 2.91 | | | | 4 000 | 37,4 | 3,43 | | | | 4 500 | 36,8 | 3.94 | | | | 5 000 | 36.2 | 4.45 | | | | 5 200 | 36,0 | 4,66 | | | | 5 400 | 35.8 | 4.86 | | | | 5 600 | 35.5 | 5.07 | | | | 5 800 | 35,3 | 5.27 | | | | 6 000 | 35.1 | 5.48 | | | Figure D-1 Liquid Height for Head & Body Position (SAM Twin Phantom) Figure D-2 Liquid Height for Body Position (ELI Phantom) #### APPENDIX E: SAR SYSTEM VALIDATION Per FCC KDB Publication 865664 D02v01r02, SAR system validation status should be documented to confirm measurement accuracy. The SAR systems (including SAR probes, system components and software versions) used for this device were validated against its performance specifications prior to the SAR measurements. Reference dipoles were used with the required tissue-equivalent media for system validation, according to the procedures outlined in FCC KDB Publication 865664 D01v01r04 and IEEE 1528-2013. Since SAR probe calibrations are frequency dependent, each probe calibration point was validated at a frequency within the valid frequency range of the probe calibration point, using the system that normally operates with the probe for routine SAR measurements and according to the required tissue-equivalent media. A tabulated summary of the system validation status including the validation date(s), measurement frequencies, SAR probes and tissue dielectric parameters has been included. | | SAR Freq.
System (MHz) | Date | Probe
SN | | | | | CW VALIDATION | | | MOD. VALIDATION | | | |---|---------------------------|------------|-------------|------|--------------|--------------|---------------|---------------|--------------------|-------------------|-----------------|--------------------|-----| | | | | | | e Cal
int | Cond.
(σ) | Perm.
(εr) | SENSITIVITY | PROBE
LINEARITY | PROBE
ISOTROPY | MOD.
TYPE | DUTY
FACTO
R | PAR | | 3 | 750 | 2021.09.14 | 7610 | 750 | Head | 0.891 | 41.798 | Pass | Pass | Pass | N/A | N/A | N/A | | 3 | 900 | 2021.09.14 | 7610 | 900 | Head | 0.958 | 41.845 | Pass | Pass | Pass | GMSK | PASS | N/A | | 3 | 1750 | 2021.09.15 | 7610 | 1750 | Head | 1.375 | 39.833 | Pass | Pass | Pass | N/A | N/A | N/A | | 3 | 1950 | 2021.09.15 | 7610 | 1950 | Head | 1.405 | 40.014 | Pass | Pass | Pass | GMSK | Pass | N/A | | 3 | 2450 | 2021.09.16 | 7610 | 2450 | Head | 1.807 | 39.688 | Pass | Pass | Pass | OFDM/TDD | Pass | N/A | Table E-1 SAR System Validation Summary - 1g / 10g Note: Wile the probes have been calibrated for both CW and modulated signals, all measurements were performed using communication systems calibrated for CW signals only. Modulations in the table above represent test configurations for which the measurement system has been validated per FCC KDB Publication 865664 D01v01r04 for scenarios when CW probe calibrations are used with other signal types. SAR systems were validated for modulated signals with a periodic duty cycle, such as GMSK, or with a high peak to average ratio (> 5 dB), such as OFDM according to FCC KDB Publication 865664 D01v01r04.