

RADIO TEST REPORT FCC ID: 2ABU6-I9

Product: Coin Tag Trade Mark: MINEW Model No.: i9 Family Model: N/A Report No.: S24070501305001 Issue Date: Jul. 18, 2024

Prepared for

Shenzhen Minew Technologies Co., Ltd.

3rd Floor, I Building, Gangzhilong Science Park, Qinglong Road, Longhua District, Shenzhen City, China

Prepared by

Shenzhen NTEK Testing Technology Co., Ltd. 1/F, Building E, Fenda Science Park, Sanwei Community,Xixiang Street Bao'an District, Shenzhen 518126 P.R. China Tel:400-800-6106,0755-2320 0050 / 2320 0090 Website: http://www.ntek.org.cn

TABLE OF CONTENTS

ACCREDITED Certificate #4298.01

1 T	EST RESULT CERTIFICATION	3
2 SU	UMMARY OF TEST RESULTS	4
3 FA	ACILITIES AND ACCREDITATIONS	5
3.1 3.2 3.3	FACILITIES LABORATORY ACCREDITATIONS AND LISTINGS MEASUREMENT UNCERTAINTY	5
4 G	ENERAL DESCRIPTION OF EUT	6
5 D	DESCRIPTION OF TEST MODES	8
6 SI	ETUP OF EQUIPMENT UNDER TEST	9
6.1 6.2 6.3	BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM SUPPORT EQUIPMENT EQUIPMENTS LIST FOR ALL TEST ITEMS	
7 TI	EST REQUIREMENTS	13
7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9	CONDUCTED EMISSIONS TEST RADIATED SPURIOUS EMISSION 6DB BANDWIDTH DUTY CYCLE PEAK OUTPUT POWER POWER SPECTRAL DENSITY CONDUCTED BAND EDGE MEASUREMENT SPURIOUS RF CONDUCTED EMISSIONS ANTENNA APPLICATION	15 24 25 27 28 30 31 32
8 TI	EST RESULTS	
8.1 8.2 8.3 8.4 8.5	MAXIMUM CONDUCTED OUTPUT POWER -6DB BANDWIDTH MAXIMUM POWER SPECTRAL DENSITY LEVEL BAND EDGE CONDUCTED RF SPURIOUS EMISSION	

1 TEST RESULT CERTIFI	CATION			
Applicant's name:	Shenzhen Minew Technologie	s Co., Ltd.		
Address:	3rd Floor, I Building, Gangzhilong Science Park, Qinglong Road, Longhua District, Shenzhen City, China			
Manufacturer's Name:	Shenzhen Minew Technologies Co., Ltd.			
Address:	Building 3, Instrument World Industrial Park, No. 306, Guanlan Guiyue Road, Longhua District, Shenzhen			
Product description				
Product name:	Coin Tag			
Model and/or type reference :	i9			
Family Model:	N/A			
Test Sample Number:	S240705013005			
Date (s) of performance of tests.	Jul. 05, 2024~ Jul. 18, 2024			
Measurement Procedure Used:				
	APPLICABLE STANDARD	S		
APPLICABLE STANDAR	D/ TEST PROCEDURE	TEST RESULT		
FCC 47 CFR Pa	art 2, Subpart J			
FCC 47 CFR Pa	rt 15, Subpart C			
KDB 174176 D01 Line (Conducted FAQ v01r01	Complied		
ANSI C63.10-2013				
KDB 558074 D01 15.247	KDB 558074 D01 15.247 Meas Guidance v05r02			
This device described above has been tested by Shenzhen NTEK Testing Technology Co., Ltd., and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report. This report shall not be reproduced except in full, without the written approval of Shenzhen NTEK Testing Technology Co., Ltd., this document may be altered or revised by Shenzhen NTEK Testing Technology Co., Ltd., personnel only, and shall be noted in the revision of the document. The test results of this report relate only to the tested sample identified in this report.				
Prepared By (Project Engineer)	Reviewed By Aaron Chen (Supervisor)			

FCC Part15 (15.247), Subpart C				
Standard Section	Test Item	Verdict	Remark	
15.207	Conducted Emission	N/A		
15.247 (a)(2)	6dB Bandwidth	PASS		
15.247 (b)	Peak Output Power	PASS		
15.209 (a) 15.205 (a)	Radiated Spurious Emission	PASS		
15.247 (e)	Power Spectral Density	PASS		
15.247 (d)	Band Edge Emission	PASS		
15.247 (d)	Spurious RF Conducted Emission	PASS		
15.203	Antenna Requirement	PASS		

Remark:

 "N/A" denotes test is not applicable in this Test Report.
 All test items were verified and recorded according to the standards and without any deviation during the test.

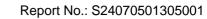
3 FACILITIES AND ACCREDITATIONS

3.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District, Shenzhen 518126 P.R. China.

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.10 and CISPR Publication 22.


3.2 LABORATORY ACCREDITATIONS AND LISTINGS

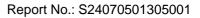
Site Description	
CNAS-Lab. :	The Certificate Registration Number is L5516.
IC-Registration	The Certificate Registration Number is 9270A.
	CAB identifier:CN0074
FCC- Accredited	Test Firm Registration Number: 463705.
	Designation Number: CN1184
A2LA-Lab.	The Certificate Registration Number is 4298.01
	This laboratory is accredited in accordance with the recognized
	International Standard ISO/IEC 17025:2005 General requirements for
	the competence of testing and calibration laboratories.
	This accreditation demonstrates technical competence for a defined
	scope and the operation of a laboratory quality management system
	(refer to joint ISO-ILAC-IAF Communiqué dated 8 January 2009).
	Shenzhen NTEK Testing Technology Co., Ltd.
Site Location :	1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang
	Street, Bao'an District, Shenzhen 518126 P.R. China.

3.3 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y\pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	Uncertainty
1	Conducted Emission Test	±2.80dB
2	RF power, conducted,PSD	±0.16dB
3	Spurious emissions, conducted	±0.21dB
4	All emissions, radiated(30MHz~1GHz)	±2.64dB
5	All emissions, radiated(1GHz~6GHz)	±2.40dB
6	All emissions, radiated(>6GHz)	±2.52dB
7	Temperature	±0.5°C
8	Humidity	±2%
9	Occupied Bandwidth	±3.70dB

4 GENERAL DESCRIPTION OF EUT


Product Feature and Specification			
Equipment	Coin Tag		
Trade Mark	MINEW		
FCC ID	2ABU6-I9		
Model No.	i9		
Family Model	N/A		
Model Difference	N/A		
Operating Frequency	2402MHz~2480MHz		
Modulation	GFSK		
Number of Channels	40 Channels		
Antenna Type	PCB Antenna		
Antenna Gain	-2.47 dBi		
Adapter	N/A		
Power Supply	DC 3V from battery		
Hardware Version	N/A		
Software Version	N/A		

Note: Based on the application, features, or specification exhibited in User's Manual, the EUT is considered as an ITE/Computing Device. More details of EUT technical specification, please refer to the User's Manual.

Revision History

Report No.	Version	Description	Issued Date
S24070501305001	Rev.01	Initial issue of report	Jul. 18, 2024
	+		

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

Test of channel included the lowest and middle and highest frequency to perform the test, then record on this report.

Those data rates (1Mbps for GFSK modulation) were used for all test.

The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement -X, Y, and Z-plane. The X-plane results were found as the worst case and were shown in this report.

Carrier Frequency and Channel list:

Channel	Frequency(MHz)
0	2402
1	2404
19	2440
20	2442
38	2478
39	2480

Note: fc=2402MHz+k×2MHz k=0 to 39

The following summary table is showing all test modes to demonstrate in compliance with the standard.

Test Cases			
Test Item	Data Rate/ Modulation		
	Mode 1: normal link mode		
Radiated Test	Mode 2: Bluetooth Tx Ch00_2402MHz_1Mbps		
Cases	Mode 3: Bluetooth Tx Ch19_2440MHz_1Mbps		
	Mode 4: Bluetooth Tx Ch39_2480MHz_1Mbps		
Conducted Test	Mode 2: Bluetooth Tx Ch00_2402MHz_1Mbps		
Conducted Test	Mode 3: Bluetooth Tx Ch19_2440MHz_1Mbps		
Cases	Mode 4: Bluetooth Tx Ch39_2480MHz_1Mbps		

Note:

- 1. The engineering test program was provided and the EUT was programmed to be in continuously transmitting mode.
- 2. AC power line Conducted Emission was tested under maximum output power.
- 3. For radiated test cases, the worst mode data rate 1Mbps was reported only, because this data rate has the highest RF output power at preliminary tests, and no other significantly frequencies found in conducted spurious emission.
- 4. EUT built-in battery-powered, the battery is fully-charged.

6 SETUP OF EQUIPMENT UNDER TEST	
6.1 BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM	
For Radiated Test Cases	
EUT	
For Conducted Test Cases	
C-1	
Measurement EUT	
Note: The temporary antenna connector is soldered on the PCB board in order	to perform conducted
tests and this temporary antenna connector is listed in the equipment list.	

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

ACCREDITED Certificate #4298.01

Item	Equipment	Model/Type No.	Series No.	Note
EUT	Coin Tag i9		N/A	

R

Item	Cable Type	Shielded Type	Ferrite Core	Length
C-1	RF Cable	YES	NO	0.1m

Notes:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in [Length] column.
- (3) "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".

6.3 EQUIPMENTS LIST FOR ALL TEST ITEMS

Radiation& Conducted Test equipment

	ond Conducted	loot oquipinione					
	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibrati on period
1	Spectrum Analyzer	Agilent	E4440A	MY41000130	2024.03.12	2025.03.11	1 year
2	Spectrum Analyzer	Agilent	N9020A	MY49100060	2024.04.26	2025.04.25	1 year
3	Spectrum Analyzer	R&S	FSV40	101417	2024.03.12	2025.03.11	1 year
4	Test Receiver	R&S	ESPI7	101318	2024.03.12	2025.03.11	1 year
5	Bilog Antenna	TESEQ	CBL6111D	31216	2024.03.11	2025.03.10	1 year
6	50Ω Coaxial Switch	Anritsu	MP59B	6200983705	2023.05.06	2026.05.05	3 year
7	Horn Antenna	SCHWARZBE CK	BBHA 9120 D	2816	2023.01.12	2026.01.11	3 year
8	Broadband Horn Antenna	SCHWARZBE CK	BBHA 9170	803	2022.11.07	2025.11.06	3 year
9	Amplifier	EMC	EMC051835 SE	980246	2024.01.23	2025.01.22	1 year
10	Active Loop Antenna	SCHWARZBE CK	FMZB 1519 B	055	2023.11.03	2026.11.02	3 year
11	Power Meter	DARE	RPR3006W	15I00041SN 084	2024.04.25	2025.04.24	1 year
12	Test Cable (9KHz-30MHz)	N/A	R-01	N/A	2023.05.06	2026.05.05	3 year
13	Test Cable (30MHz-1GHz)	N/A	R-02	N/A	2023.05.06	2026.05.05	3 year
14	High Test Cable(1G-40G Hz)	N/A	R-03	N/A	2022.06.17	2025.06.16	3 year
15	Filter	TRILTHIC	2400MHz	29	2024.04.26	2027.04.27	3 year
16	temporary antenna connector (Note)	NTS	R001	N/A	N/A	N/A	N/A

Note:

We will use the temporary antenna connector (soldered on the PCB board) When conducted test And this temporary antenna connector is listed within the instrument list ®

NTEK 北测

AC Conduction Test equipment							
Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period	
Test Receiver	R&S	ESCI	101160	2024.03.12	2025.03.11	1 year	
LISN	R&S	ENV216	101313	2024.03.12	2025.03.11	1 year	
LISN	SCHWARZBE CK	NNLK 8129	8129245	2024.03.12	2025.03.11	1 year	
50Ω Coaxial Switch	ANRITSU CORP	MP59B	6200983704	2023.05.06	2026.05.05	3 year	
Test Cable (9KHz-30MH z)	N/A	C01	N/A	2023.05.06	2026.05.05	3 year	
Test Cable (9KHz-30MH z)	N/A	C02	N/A	2023.05.06	2026.05.05	3 year	
Test Ćable (9KHz-30MH z)	N/A	C03	N/A	2023.05.06	2026.05.05	3 year	
	Kind of Equipment Test Receiver LISN 50Ω Coaxial Switch Test Cable (9KHz-30MH z) Test Cable (9KHz-30MH z) Test Cable (9KHz-30MH	Kind of EquipmentManufacturerTest ReceiverR&SLISNR&SLISNSCHWARZBE CK50Ω Coaxial SwitchANRITSU CORPTest Cable (9KHz-30MH z)N/ATest Cable (9KHz-30MH z)N/A	Kind of EquipmentManufacturerType No.Test ReceiverR&SESCILISNR&SENV216LISNSCHWARZBE CKNNLK 812950Ω Coaxial SwitchANRITSU CORPMP59BTest Cable (9KHz-30MH z)N/AC01Z)Test Cable (9KHz-30MHN/ATest Cable (9KHz-30MHN/AC02Z)Test Cable (9KHz-30MHN/A	Kind of EquipmentManufacturerType No.Serial No.Test ReceiverR&SESCI101160LISNR&SENV216101313LISNSCHWARZBE CKNNLK 8129812924550Ω Coaxial SwitchANRITSU CORPMP59B6200983704Test Cable (9KHz-30MH z)N/AC01N/ATest Cable (9KHz-30MHN/AC02N/ATest Cable (9KHz-30MHN/AC03N/A	Kind of EquipmentManufacturerType No.Serial No.Last calibrationTest ReceiverR&SESCI1011602024.03.12LISNR&SENV2161013132024.03.12LISNSCHWARZBE CKNNLK 812981292452024.03.1250Ω Coaxial SwitchANRITSU CORPMP59B62009837042023.05.06Test Cable (9KHz-30MH Z)N/AC01N/A2023.05.06Test Cable (9KHz-30MHN/AC02N/A2023.05.06Test Cable (9KHz-30MHN/AC03N/A2023.05.06	Kind of EquipmentManufacturerType No.Serial No.Last calibrationCalibrated untilTest ReceiverR&SESCI1011602024.03.122025.03.11LISNR&SENV2161013132024.03.122025.03.11LISNSCHWARZBE CKNNLK 812981292452024.03.122025.03.1150Ω Coaxial SwitchANRITSU CORPMP59B62009837042023.05.062026.05.05Test Cable (9KHz-30MH Z)N/AC01N/A2023.05.062026.05.05Test Cable (9KHz-30MHN/AC02N/A2023.05.062026.05.05Test Cable (9KHz-30MHN/AC03N/A2023.05.062026.05.05	

Note: Each piece of equipment is scheduled for calibration once a year except the Aux Equipment & Test Cable which is scheduled for calibration every 2 or 3 years.

7 TEST REQUIREMENTS

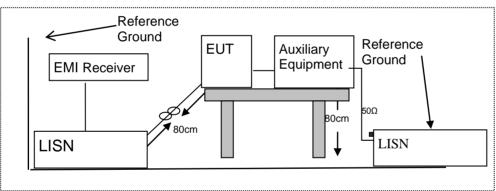
7.1 CONDUCTED EMISSIONS TEST

7.1.1 Applicable Standard

According to FCC Part 15.207(a)

7.1.2 **Conformance Limit**

	Conducted Emission Limit		
Frequency(MHz)	Quasi-peak	Average	
0.15-0.5	66-56*	56-46*	
0.5-5.0	56	46	
5.0-30.0	60	50	


Note: 1. *Decreases with the logarithm of the frequency

- 2. The lower limit shall apply at the transition frequencies
 - 3. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

7.1.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.1.4 **Test Configuration**

7.1.5 **Test Procedure**

According to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 Conducted emissions the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode.

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room.
- 2. The EUT was placed on a table which is 0.8m above ground plane.
- Connect EUT to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- 4. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40cm long.
- 5. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- 6. LISN at least 80 cm from nearest part of EUT chassis.
- 7. The frequency range from 150KHz to 30MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth(IF bandwidth=9KHz) with Maximum Hold Mode
- 9. For the actual test configuration, please refer to the related Item -EUT Test Photos.

7.1.6 Test Results

EUT:	Coin Tag	Model Name :	i9
Temperature:	1 22 °C	Relative Humidity:	57%
Pressure:	1010hPa	Phase :	N/A
Test Voltage :	N/A	Test Mode:	N/A

Note: Not Applicable

7.2 RADIATED SPURIOUS EMISSION

7.2.1 Applicable Standard

According to FCC Part 15.247(d) and 15.209 and ANSI C63.10-2013

7.2.2 Conformance Limit

According to FCC Part 15.247(d): radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). According to FCC Part15.205. Restricted bands

According to 1 OO 1 art 10.200, Restricted bands							
MHz	MHz	MHz	GHz				
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15				
0.495-0.505	16.69475-16.69525	608-614	5.35-5.46				
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75				
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5				
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2				
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5				
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7				
6.26775-6.26825	123-138	2200-2300	14.47-14.5				
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2				
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4				
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12				
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0				
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8				
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5				
12.57675-12.57725	322-335.4	3600-4400	(2)				
13.36-13.41							
15.50-15.41							

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Restricted Frequency(MHz)	Field Strength (µV/m)	Field Strength (dBµV/m)	Measurement Distance
0.009~0.490	2400/F(KHz)	20 log (uV/m)	300
0.490~1.705	24000/F(KHz)	20 log (uV/m)	30
1.705~30.0	30	29.5	30
30-88	100	40	3
88-216	150	43.5	3
216-960	200	46	3
Above 960	500	54	3

Limits of Radiated Emission Measurement(Above 1000MHz)

Frequency(MHz)	Class B (dBuV/m) (at 3M)		
	PEAK	AVERAGE	
Above 1000	74	54	

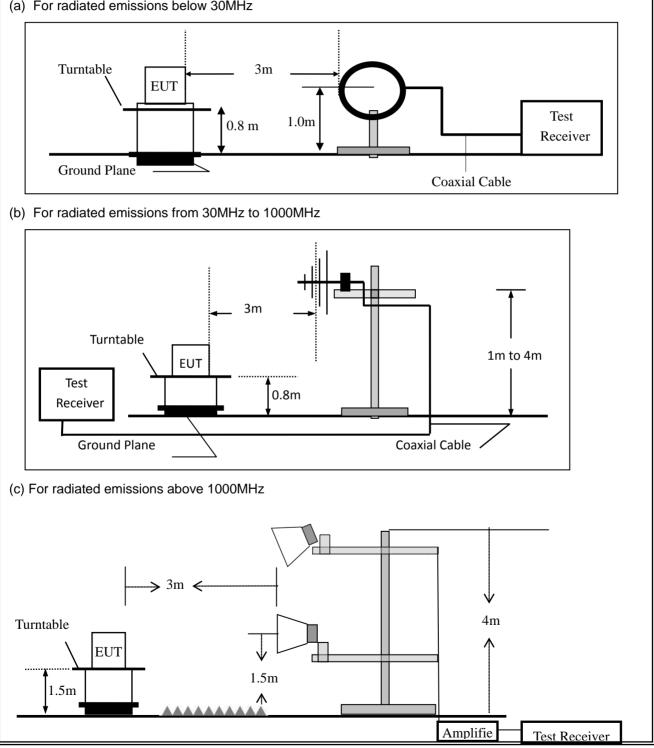
Remark :1. Emission level in dBuV/m=20 log (uV/m)

2. Measurement was performed at an antenna to the closed point of EUT distance of meters.

3. For Frequency 9kHz~30MHz: Distance extrapolation factor =40log(Specific distance/ test distance)(dB); Limit line=Specific limits(dBuV) + distance extrapolation factor.

For Frequency above 30MHz: Distance extrapolation factor =20log(Specific distance/ test distance)(dB); Limit line=Specific limits(dBuV) + distance extrapolation factor.

NTEK JL


The Measuring equipment is listed in the section 6.3 of this test report.

R

ACCRE Certificate #4298.01

7.2.4 **Test Configuration**

(a) For radiated emissions below 30MHz

NTEK 北

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4 dB according to the standards: ANSI C63.10-2013. The test distance is 3m. The setup is according to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 and CAN/CSA-CEI/IEC CISPR 22.

Certificate #4298.0

This test is required for any spurious emission that falls in a Restricted Band, as defined in Section 15.205. It must be performed with the highest gain of each type of antenna proposed for use with the EUT. Use the following spectrum analyzer settings:

Setting				
Auto				
1000 MHz				
10th carrier harmonic				
1 MHz / 1 MHz for Peak, 1 MHz / 1MHz for Average				

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
- b. The EUT was placed on the top of a rotating table 0.8 m for below 1GHz and 1.5m for above 1GHz the ground at a 3 meter. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m for below 1GHz and 1.5m for above 1GHz; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For the radiated emission test above 1GHz: Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- e. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- f. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- g. For the actual test configuration, please refer to the related Item –EUT Test Photos.

Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

During the radiated emission test, the Spectrum Analyzer was set with the following configurations:							
Frequency Band (MHz)	Function	Resolution bandwidth	Video Bandwidth				
30 to 1000	QP	120 kHz	300 kHz				
Ab 200	Peak	1 MHz	1 MHz				
Above 1000	Average	1 MHz	1 MHz				

Note: for the frequency ranges below 30 MHz, a narrower RBW is used for these ranges but the measured value should add a RBW correction factor (RBWCF) where RBWCF [dB] =10*lg(100 [kHz]/narrower RBW [kHz]). , the narrower RBW is 1 kHz and RBWCF is 20 dB for the frequency 9 kHz to 150 kHz, and the narrower RBW is 10 kHz and RBWCF is 10 dB for the frequency 150 kHz to 30 MHz.

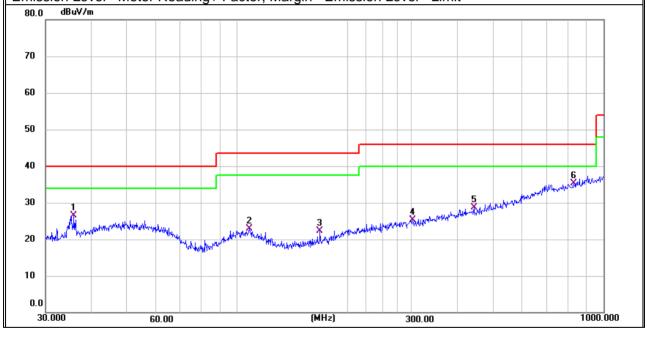
7.2.6 Test Results

Spurious Emission below 30MHz (9KHz to 30MHz)

EUT:	Coin Tag	Model No.:	i9
Temperature:	20 °C	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Mary Hu

Freq.	Ant.Pol.	Emission L	.evel(dBuV/m)	Limit 3	m(dBuV/m)	Over	r(dB)
(MHz)	H/V	PK	AV	PK	AV	PK	AV

Note: the amplitude of spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.


Spurious Emission below 1GHz (30MHz to 1GHz) All the modulation modes have been tested, and the worst result was report as below:

EUT:	Coin Tag	Model Name :	i9
Temperature:	20 °C	Relative Humidity:	48%
Pressure:	1010hPa	Test Mode:	CH00
Test Voltage :	DC 3V from Battery		

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
(H/V)	(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
V	35.8746	44.89	-18.44	26.45	40.00	-13.55	QP
V	107.8877	5.26	17.69	22.95	43.50	-20.55	QP
V	168.4138	6.99	15.26	22.25	43.50	-21.25	QP
V	301.4224	4.96	20.27	25.23	46.00	-20.77	QP
V	443.2943	5.28	23.37	28.65	46.00	-17.35	QP
V	830.4002	5.58	29.67	35.25	46.00	-10.75	QP

Remark:

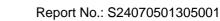
Emission Level= Meter Reading+ Factor, Margin= Emission Level - Limit

Polar	Freque	ency		eter ding	Factor	r	nissio Level	n	Lim	its	Mar	gin	Re	mark
(H/V)	(MH	z)	(dE	BuV)	(dB)	(d	BuV/m	ו)	(dBu\	//m)	(dł	B)		man
Н	45.69	48	5.	96	19.49		25.45		40.0	00	-14.	.55	(QΡ
Н	62.65		4.	67	18.32		22.99		40.0	00	-17.	.01		QP
Н	103.4			80	17.87		22.67		43.5		-20.			QP
Н	171.3			59	15.38		20.97		43.5		-22.			QP
Н	411.8			86	22.86		27.72		46.0		-18.			QP
H Remark	793.3	960	6.	14	29.24		35.38		46.0	00	-10.	.62	(QP
80.0 d	Bu¥/m													7
70														
60														_
50														
40												6		A
30	Ĵ								. u.daw	5	with we that	hunder and the	KU40 ⁴⁴	-
20 4444	nhanallumiter	-www.williander	Mary Mary and	-Angle Angle Contraction	work and a shirt which and a	tymestimest	rodentine-period	wphyratel	her parrient					-
10														_
0.0		60.0	<u> </u>			(MHz)			300.00				100	D.000

Spurious	s Emission	Above	1GHz (1G	Hz to 250	GHz)		-				
EUT:	Coin	Tag			Model No.	:	i9				
Temperature	e: 20 °C	;			Relative H	lumidity:	48%				
Test Mode:	Mode	e2/Mode	3/Mode4		Test By:		Mary Hu	Mary Hu			
					,		,				
Frequency	/ Read Level	Cable loss	Antenna Factor	Preamp Factor	Emission Level	Limits	Margin	Remark	Comment		
(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµV/m)	(dB)				
	Low Channel (2402 MHz)(GFSK)Above 1G										
4804.83	66.39	5.21	35.59	44.30	62.89	74.00	-11.11	Pk	Vertical		
4804.83	44.60	5.21	35.59	44.30	41.10	54.00	-12.90	AV	Vertical		
7206.05	67.70	6.48	36.27	44.60	65.85	74.00	-8.15	Pk	Vertical		
7206.05	44.89	6.48	36.27	44.60	43.04	54.00	-10.96	AV	Vertical		
4804.35	64.95	5.21	35.55	44.30	61.41	74.00	-12.59	Pk	Horizontal		
4804.35	46.53	5.21	35.55	44.30	42.99	54.00	-11.01	AV	Horizontal		
7206.48	65.97	6.48	36.27	44.52	64.20	74.00	-9.80	Pk	Horizontal		
7206.48	44.71	6.48	36.27	44.52	42.94	54.00	-11.06	AV	Horizontal		
	Mid Channel (2440 MHz)(GFSK)Above 1G										
4880.79	66.33	5.21	35.66	44.20	63.00	74.00	-11.00	Pk	Vertical		
4880.79	44.39	5.21	35.66	44.20	41.06	54.00	-12.94	AV	Vertical		
7320.33	65.97	7.10	36.50	44.43	65.14	74.00	-8.86	Pk	Vertical		
7320.33	46.22	7.10	36.50	44.43	45.39	54.00	-8.61	AV	Vertical		
4880.58	68.16	5.21	35.66	44.20	64.83	74.00	-9.17	Pk	Horizontal		
4880.58	46.61	5.21	35.66	44.20	43.28	54.00	-10.72	AV	Horizontal		
7320.40	65.06	7.10	36.50	44.43	64.23	74.00	-9.77	Pk	Horizontal		
7320.40	45.37	7.10	36.50	44.43	44.54	54.00	-9.46	AV	Horizontal		
		•	High Cha	annel (2480	0 MHz)(GFS	K) Above	1G				
4960.27	67.92	5.21	35.52	44.21	64.44	74.00	-9.56	Pk	Vertical		
4960.27	46.70	5.21	35.52	44.21	43.22	54.00	-10.78	AV	Vertical		
7440.32	66.17	7.10	36.53	44.60	65.20	74.00	-8.80	Pk	Vertical		
7440.32	45.62	7.10	36.53	44.60	44.65	54.00	-9.35	AV	Vertical		
4960.45	64.83	5.21	35.52	44.21	61.35	74.00	-12.65	Pk	Horizontal		
4960.45	46.52	5.21	35.52	44.21	43.04	54.00	-10.96	AV	Horizontal		
7440.97	64.16	7.10	36.53	44.60	63.19	74.00	-10.81	Pk	Horizontal		
7440.97	44.82	7.10	36.53	44.60	43.85	54.00	-10.15	AV	Horizontal		

Note:

(1) Emission Level= Antenna Factor + Cable Loss + Read Level - Preamp Factor (2)All other emissions more than 20dB below the limit.


■ Sp	ourious	Emissior	n in Rest	ricted Ban	d 2310-23	90MHz an	d 2483.5-25	500MHz			
EUT:			Coin Ta	9		Model	No.:	i9			
Tempe	erature	:	20 °C			Relativ	Relative Humidity: 48%				
Test M	lode:		Mode2/	Mode4		Test B	y:	Mary H	łu		
									-		
Freq	uency	Meter Reading	Cable Loss	Antenna Factor	Preamp Factor	Emission Level	Limits	Margin	Detector	Comment	
(M	lHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре		
	1Mbps(GFSK)										
231	0.00	64.01	2.97	27.80	43.80	50.98	74	-23.02	Pk	Horizontal	
231	0.00	44.46	2.97	27.80	43.80	31.43	54	-22.57	AV	Horizontal	
231	0.00	66.16	2.97	27.80	43.80	53.13	74	-20.87	Pk	Vertical	
231	0.00	45.03	2.97	27.80	43.80	32.00	54	-22.00	AV	Vertical	
239	90.00	64.27	3.14	27.21	43.80	50.82	74	-23.18	Pk	Vertical	
239	90.00	45.98	3.14	27.21	43.80	32.53	54	-21.47	AV	Vertical	
239	90.00	66.07	3.14	27.21	43.80	52.62	74	-21.38	Pk	Horizontal	
239	90.00	45.29	3.14	27.21	43.80	31.84	54	-22.16	AV	Horizontal	
248	33.50	66.25	3.58	27.70	44.00	53.53	74	-20.47	Pk	Vertical	
248	33.50	45.27	3.58	27.70	44.00	32.55	54	-21.45	AV	Vertical	
248	33.50	64.35	3.58	27.70	44.00	51.63	74	-22.37	Pk	Horizontal	
248	33.50	44.60	3.58	27.70	44.00	31.88	54	-22.12	AV	Horizontal	

Note: (1) All other emissions more than 20dB below the limit.

Spurious	s Emiss	ion i	in Restri	icted Band	3260MH	lz-18000MF	Ηz			
EUT:	C	Coin	Tag			Model No.:	:	i9		
Temperature	e: 2	20 °C	0			Relative H	Relative Humidity: 48%			
Test Mode:	ſ	Mod	e2/ Mod	le4		Test By:		Mary H	u	
Frequency	Readir Leve	-	Cable Loss	Antenna Factor	Preamp Factor	Emission Level	Limits	Margin	Detector	Comment
(MHz)	(dBµ∖	/)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	
3260	65.00	C	4.04	29.57	44.70	53.91	74	-20.09	Pk	Vertical
3260	46.13	3	4.04	29.57	44.70	35.04	54	-18.96	AV	Vertical
3260	64.71	1	4.04	29.57	44.70	53.62	74	-20.38	Pk	Horizontal
3260	44.12	2	4.04	29.57	44.70	33.03	54	-20.97	AV	Horizontal
3332	66.07	7	4.26	29.87	44.40	55.80	74	-18.20	Pk	Vertical
3332	45.65	5	4.26	29.87	44.40	35.38	54	-18.62	AV	Vertical
3332	66.48	3	4.26	29.87	44.40	56.21	74	-17.79	Pk	Horizontal
3332	44.77	7	4.26	29.87	44.40	34.50	54	-19.50	AV	Horizontal
17797	52.54	4	10.99	43.95	43.50	63.98	74	-10.02	Pk	Vertical
17797	32.50)	10.99	43.95	43.50	43.94	54	-10.06	AV	Vertical
17788	53.97	7	11.81	43.69	44.60	64.87	74	-9.13	Pk	Horizontal
17788	32.08	3	11.81	43.69	44.60	42.98	54	-11.02	AV	Horizontal

Note: (1) All other emissions more than 20dB below the limit. (2)Only the worst data is recorded in the report, the data rates test result is the worst

7.3 6DB BANDWIDTH

7.3.1 Applicable Standard

According to FCC Part 15.247(a)(2) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.2.

7.3.2 Conformance Limit

The minimum permissible 6dB bandwidth is 500 kHz.

7.3.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.3.4 Test Setup

Please refer to Section 6.1 of this test report.

7.3.5 **Test Procedure**

The testing follows Subclause 11.8 of ANSI C63.10

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Use the following spectrum analyzer settings:

a) Set RBW = 100 kHz.

b) Set the video bandwidth (VBW) \ge 3*RBW.

c) Detector = Peak.

d) Trace mode = max hold.

e) Sweep = auto couple.

f) Allow the trace to stabilize.

g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

7.3.6 Test Results

EUT:	Coin Tag	Model No.:	i9
Temperature:	20 °C	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Mary Hu

7.4 DUTY CYCLE

7.4.1 Applicable Standard

According to KDB 558074 D01 15.247 Meas Guidance v05r02s Section 6.

7.4.2 Conformance Limit

No limit requirement.

7.4.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.4.4 Test Setup

Please refer to Section 6.1 of this test report.

7.4.5 **Test Procedure**

The zero-span mode on a spectrum analyzer or EMI receiver if the response time and spacing between bins on the sweep are sufficient to permit accurate measurements of the on and off times of the transmitted signal. Set the center frequency of the instrument to the center frequency of the transmission. Set RBW \geq OBW if possible; otherwise, set RBW to the largest available value. Set VBW \geq RBW. Set detector = peak or average. The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T and the number of sweep points across duration T exceeds 100. (For example, if VBW and/or RBW are limited to 3 MHz, then the zero-span method of measuring duty cycle shall not be used if T \leq 16.7 microseconds.)

The transmitter output is connected to the Spectrum Analyzer. We tested accroding to the zero-span measurement method, 6.0)b) in KDB 558074

The largest available value of RBW is 8 MHz and VBW is 50 MHz. The zero-span method of measuring duty cycle shall not be used if $T \le 6.25$ microseconds. (50/6.25 = 8)

The zero-span method was used because all measured T data are > 6.25 microseconds and both RBW and VBW are > 50/T.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Span = Zero Span RBW = 8MHz(the largest available value) VBW = 8MHz (\geq RBW) Number of points in Sweep >100 Detector function = peak Trace = Clear write Measure T_{total} and T_{on} Calculate Duty Cycle = T_{on} / T_{total}

7.4.6 Test Results

EUT:	Coin Tag	Model No.:	i9
Temperature:	20 °C	Relative Humidity:	48%
Test Mode:	N/A	Test By:	N/A

Note: Not Applicable

7.5 PEAK OUTPUT POWER

7.5.1 Applicable Standard

According to FCC Part 15.247(b)(3) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.3.1.

7.5.2 **Conformance Limit**

The maximum peak conducted output power of the intentional radiator for systems using digital modulation in the 2400 - 2483.5 MHz bands shall not exceed: 1 Watt (30dBm). If transmitting antenna of directional gain greater than 6dBi is used, the peak output power from the intentional radiator shall be reduced below the above stated value by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6dBi.

7.5.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.5.4 Test Setup

Please refer to Section 6.1 of this test report.

7.5.5 **Test Procedure**

The testing follows Subclause 11.9.1.1 of ANSI C63.10 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Set the RBW \geq DTS bandwidth. Set VBW =3*RBW. Set the span \geq 3*RBW Set Sweep time = auto couple. Set Detector = peak. Set Trace mode = max hold. Allow trace to fully stabilize. Use peak marker function to determine the peak amplitude level.

7.5.6 Test Results

EUT:	Coin Tag	Model No.:	i9
Temperature:	20 °C	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Mary Hu

7.6 **POWER SPECTRAL DENSITY**

7.6.1 Applicable Standard

According to FCC Part 15.247(e) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.4.

7.6.2 **Conformance Limit**

The transmitter power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

7.6.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.6.4 Test Setup

Please refer to Section 6.1 of this test report.

7.6.5 **Test Procedure**

The testing follows Measurement Procedure Subclause 11.10.2 of ANSI C63.10 This procedure shall be used if maximum peak conducted output power was used to demonstrate compliance, and is optional if the maximum conducted (average) output power was used to demonstrate compliance.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

a) Set analyzer center frequency to DTS channel center frequency.

b) Set the span to 1.5*DTS bandwidth.

c) Set the RBW to: $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$.

- d) Set the VBW \geq 3 RBW.
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum amplitude level within the RBW.
- j) If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

7.6.6 Test Results

EUT:	Coin Tag	Model No.:	i9
Temperature:	20 °C	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Mary Hu

7.7 CONDUCTED BAND EDGE MEASUREMENT

7.7.1 Applicable Standard

According to FCC Part 15.247(d) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.7.

7.7.2 Conformance Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

7.7.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.7.4 Test Setup

Please refer to Section 6.1 of this test report.

7.7.5 Test Procedure

The testing follows FCC KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.7.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Set RBW to 100 kHz and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.

Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.

Repeat above procedures until all measured frequencies were complete.

7.7.6 Test Results

EUT:	Coin Tag	Model No.:	i9
Temperature:	20 °C	Relative Humidity:	48%
Test Mode:	Mode2/Mode4	Test By:	Mary Hu

7.8 SPURIOUS RF CONDUCTED EMISSIONS

7.8.1 Conformance Limit

Below -20dB of the highest emission level in operating band.
 Fall in the restricted bands listed in section 15.205. The maximum permitted average field strength is listed in section 15.209.

7.8.2 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.8.3 Test Setup

Please refer to Section 6.1 of this test report.

7.8.4 **Test Procedure**

The Spurious RF conducted emissions compliance of RF radiated emission should be measured by following the guidance in ANSI C63.10-2013 with respect to maximizing the emission by rotating the EUT, measuring the emission while the EUT is situated in three orthogonal planes (if appropriate), adjusting the measurement antenna height and polarization etc. Set RBW=100kHz and VBW= 300KHz to measure the peak field strength , and measure frequency range from 30MHz to 25GHz.

7.8.5 Test Results

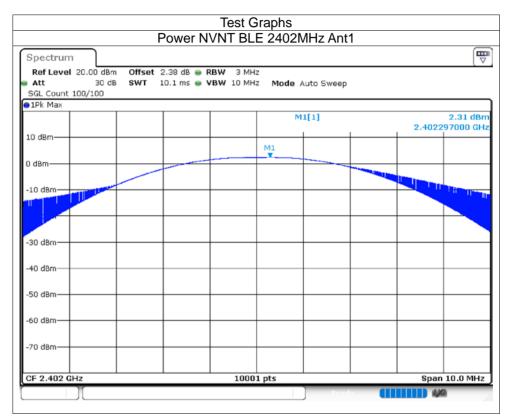
Remark: The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandege measurement data.

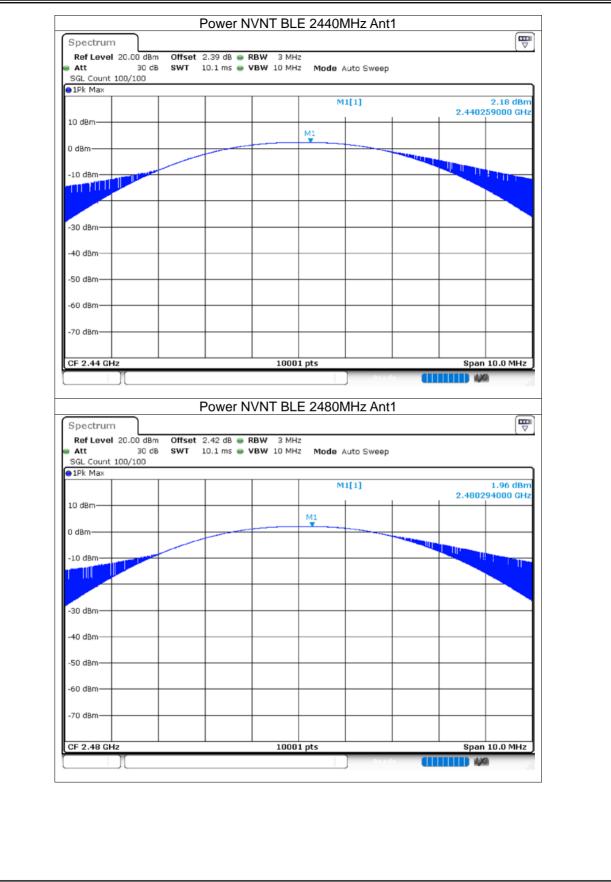
7.9 ANTENNA APPLICATION

7.9.1 Antenna Requirement

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

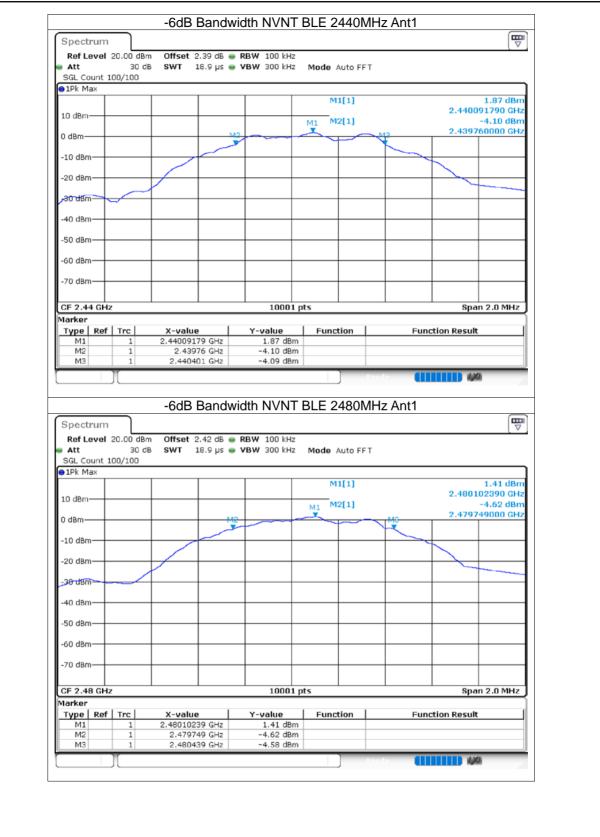
7.9.2 **Result**


The EUT antenna is permanent attached PCB Antenna (Gain: -2.47dBi). It comply with the standard requirement.


8 TEST RESULTS

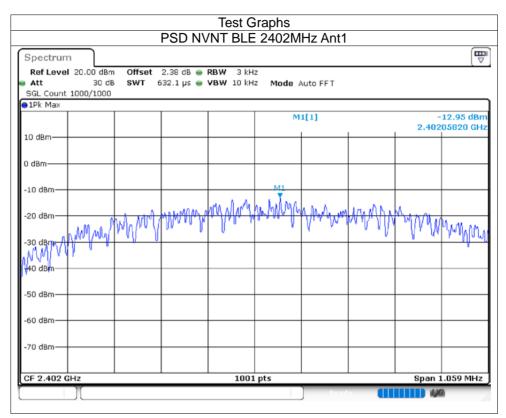
8.1 Maximum Conducted Output Power

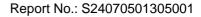
Condition	Mode	Frequency (MHz)	Antenna	Conducted Power (dBm)	Limit (dBm)	Verdict
NVNT	BLE	2402	Ant1	2.31	30	Pass
NVNT	BLE	2440	Ant1	2.18	30	Pass
NVNT	BLE	2480	Ant1	1.96	30	Pass



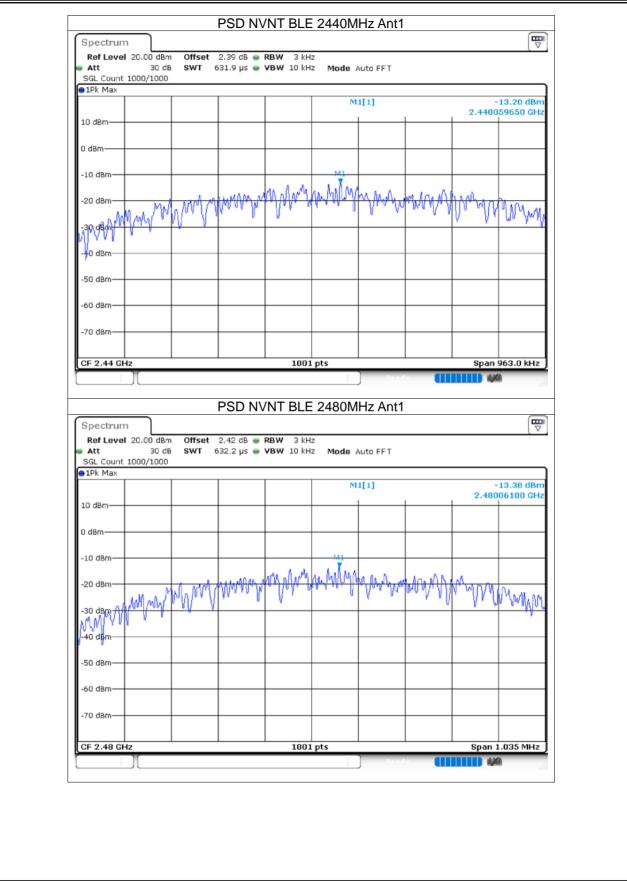
ition	Mode	F	requency (MHz)	Antenna	-6	dB Bandw (MHz)	idth		: -6 dB dth (MHz)	Verd
NT	BLE		2402	Ant1		0.706		C	0.5	Pas
NT	BLE		2440	Ant1		0.642		C	0.5	Pas
NT	BLE		2480	Ant1		0.69		C).5	Pas
[Те	st Gra	phs				
-			-6dB Ba			BLE 2402N	/Hz An	t1		
	Spectrum									
	Ref Level Att SGL Count :	30	dB SWT 18.	8 dB 👄 RBW 1 9 µs 👄 VBW 3		Mode Auto FF	т			
	●1Pk Max								1.51.45	
	10 dBm					M1[1]			1.51 dBm 091990 GHz -4.52 dBm	
	0 dBm			M2 ~~		<u> </u>		2.401	730000 GHz	
	-10 dBm									
	-20 dBm									
	- 30-dBm									
	-40 dBm									
	-50 dBm						_			
	-60 dBm						_			
	-70 dBm									
	CF 2.402 G	Ηz			10001 p	ts		Sp	an 2.0 MHz	
	Marker	1 1		1						
	Type Ref	1	X-value 2.40209199	GHz 1	51 dBm	Function		Function Resu	lt	
	M2	1	2.40173	GHz -4	52 dBm					
	МЗ	1	2.402437	GHz -4	53 dBm					

ACCREDITED Certificate #4298.01

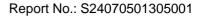


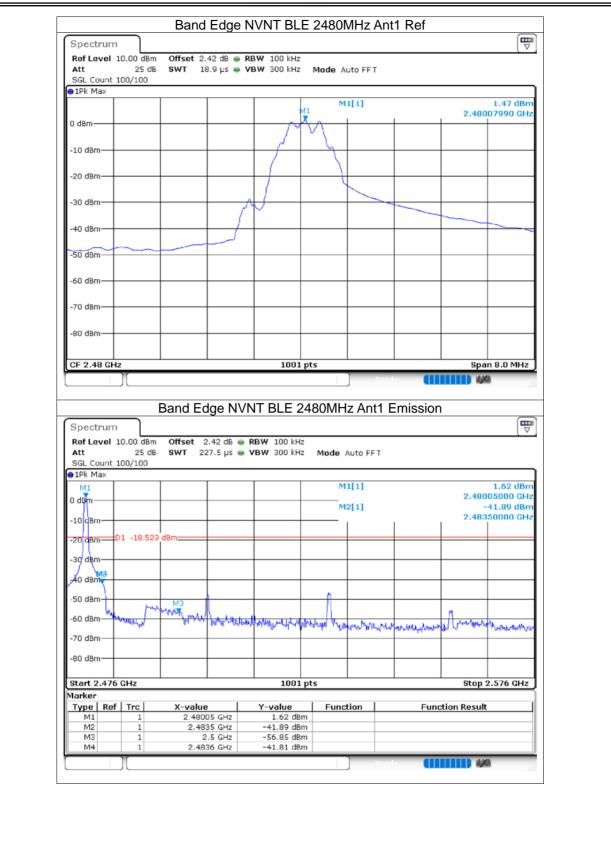

8.3

Maximum Power Spectral Density Level

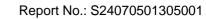

Condition	Mode	Frequency (MHz)	Antenna	Conducted PSD (dBm)	Limit (dBm)	Verdict
NVNT	BLE	2402	Ant1	-12.95	8	Pass
NVNT	BLE	2440	Ant1	-13.2	8	Pass
NVNT	BLE	2480	Ant1	-13.38	8	Pass

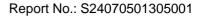
ACCREDITED Certificate #4298.01



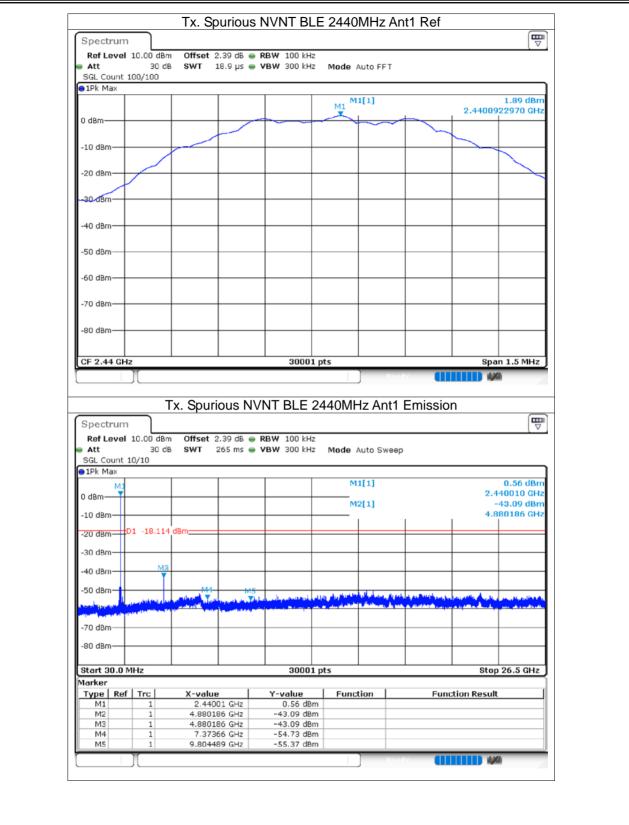


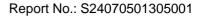
ondition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verd
NVNT	BLE	2402	Ant1	-48.24	-20	Pas
NVNT	BLE	2480	Ant1	-43.27	-20	Pas
ſ			Test Graph	8		
-		Band Edge N		D2MHz Ant1 Ref		
	Spectrum					
	Ref Level : Att SGL Count :	25 dB SWT 18.9 µs 👄 🕻		e Auto FFT		
	●1Pk Max		M1	M1[1]	1.97 dBm	
	0 dBm				2.40207990 GHz	
	-10 dBm					
				$\langle $		
	-20 dBm					
	-30 dBm	~ ~	~ √			
	-40 dBm					
	-50 dBm				~~~	
	-60 dBm					
	-60 GBM					
	-70 dBm					
	-80 dBm					
	CF 2.402 G		1001 ptc		Span 8.0 MHz	
	CF 2.402 G		1001 pts	Ready		
·				Alle Anti Emission		
	Spectrum		NT BLE 24020	MHz Ant1 Emission		
	Ref Level	10.00 dBm Offset 2.38 dB 👄			(
	Att SGL Count :		VBW 300 kHz Mod	de Auto FFT		
	●1Pk Max			M1[1]	1.45 <u>/d</u> Bm	
	0 dBm			M2[1]	2.40205000 GHz -53.44 Bm	
	-10 dBm			-	2.4000000 GHz	
	-20 dBm	01 -18.033 dBm				
	-30 dBm					
	-40 dBm		M4	N	13	
	-50 dBm				and the t	
	-60 dBm	mound in the manual and the second	Mar burn whether			
	-80 dBm					
	Start 2.306 Marker	GHz	1001 pts		Stop 2.406 GHz	
	Type Ref	Trc X-value 1 2.40205 GHz	Y-value Fi 1.45 dBm	unction Function	Result	
	M2	1 2.4 GHz	-53.44 dBm			
	M3 M4	1 2.39 GHz 1 2.3501 GHz	-51.06 dBm -46.28 dBm			




8.5 Cond	ucted R	F Spurious Emissic	on			
Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE	2402	Ant1	-45.19	-20	Pass
NVNT	BLE	2440	Ant1	-44.97	-20	Pass
8.5 Cond Condition NVNT NVNT NVNT	BLE	2480	Ant1	-46.16	-20	Pass

ACCREDITED





Spectrum	•	IS NVNT BL					
Ref Level 20.00 de		 RBW 100 kHz VBW 300 kHz 					(\
SGL Count 100/100	00 000 TO'A h2	- + 5 47 300 KHZ	MOUB A				
●1Pk Max							
			MI	[1]		2.402	2.00 dBn 08840 GH:
10 dBm							
			M1				
0 dBm							
-10 dBm							
	1						
-20 dBm							
-30 dBm-							
-40 dBm							
Fo days							
-50 dBm							
-60 dBm	<u> </u>						
-70 dBm							
		1001					
Spectrum	Tx. Spurious N		2402MH	Road	Emission		n 1.5 MHz
Spectrum Ref Level 20.00 dB Att 30	Bm Offset 2.38 dB		2402MH		Emission		
Spectrum Ref Level 20.00 dß	Bm Offset 2.38 dB	VVNT BLE 2	2402MH		Emission		
Spectrum Ref Level 20.00 de Att 30 SGL Count 10/10 91Pk Max	Bm Offset 2.38 dB	VVNT BLE 2	2402MH Mode A		Emission	, , , , , , , , , , , , , , , , , , ,	
Spectrum Ref Level 20.00 dB Att 30 SGL Count 10/10	Bm Offset 2.38 dB	VVNT BLE 2	2402MH Mode A	uto Sweep	Emission	2	1.33 dBn 2.3970 GH: 43.20 dBn
Spectrum Ref Level 20.00 dE Att 30 of SGL Count 10/10 PIPk Max	Bm Offset 2.38 dB		2402MH Mode A	uto Sweep	Emission	2	1.33 dBn 2.3970 GH:
Spectrum Ref Level 20.00 dB Att 30 r SGL Count 10/10 PIPk Max 10 dBm -10 dBm	Bm Offset 2.38 dB dB SWT 265 ms		2402MH Mode A	uto Sweep	Emission	2	1.33 dBn 2.3970 GH: 43.20 dBn
Spectrum Ref Level 20.00 dB Att 30 f SGL Count 10/10 ● 1Pk Max 10 dBm 10 dBm	Bm Offset 2.38 dB dB SWT 265 ms		2402MH Mode A	uto Sweep	Emission	2	1.33 dBn 2.3970 GH: 43.20 dBn
Spectrum Ref Level 20.00 dB Att 30 r SGL Count 10/10 PIPk Max 10 dBm -10 dBm	Bm Offset 2.38 dB dB SWT 265 ms		2402MH Mode A	uto Sweep	Emission	2	1.33 dBn 2.3970 GH: 43.20 dBn
Spectrum Ref Level 20.00 dB Att 30 SGL Count 10/10 IPk Max 10 dBm -10 dBm -20 dBm -30 dBm	Bm Offset 2.38 dB dB SWT 265 ms		2402MH Mode A	uto Sweep	Emission	2	1.33 dBn 2.3970 GH: 43.20 dBn
Spectrum Ref Level 20.00 dE Att 30 SGL Count 10/10 P1Pk Max 10 dBm -10 dBm -20 dBm -40 dBm M1 0 -40 dBm M1 0 -20 dBm -40 dB	8m Offset 2.38 dB dB SWT 265 ms	NVNT BLE 2 • RBW 100 kHz • VBW 300 kHz	2402MH	uto Sweep [[1] 2[1]		2	1.33 dBn 2.3970 GH: 43.20 dBn
Spectrum Ref Level 20.00 dB Att 30 r SGL Count 10/10 PIPk Max 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -50 dBm	8m Offset 2.38 dB dB SWT 265 ms	NVNT BLE 2 • RBW 100 kHz • VBW 300 kHz	2402MH	uto Sweep		22	1.33 dBn 2.3970 GH: 43.20 dBn
Spectrum Ref Level 20.00 dB Att 30 SGL Count 10/10 IPk Max 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm	8m Offset 2.38 dB dB SWT 265 ms	NVNT BLE 2 • RBW 100 kHz • VBW 300 kHz	2402MH	uto Sweep [[1] 2[1]		22	1.33 dBn 2.3970 GH: 43.20 dBn
Spectrum Ref Level 20.00 dB Att 30 r SGL Count 10/10 PIPk Max 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -50 dBm	8m Offset 2.38 dB dB SWT 265 ms	NVNT BLE 2 • RBW 100 kHz • VBW 300 kHz	2402MH	uto Sweep [[1] 2[1]		22	1.33 dBn 2.3970 GH: 43.20 dBn
Spectrum Ref Level 20.00 dB Att 30 SGL Count 10/10 IPk Max 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm	8m Offset 2.38 dB dB SWT 265 ms	NVNT BLE 2	2402MH Mode A M3	uto Sweep [[1] 2[1]		2 	
Spectrum Ref Level 20.00 dB Att 30 r SGL Count 10/10 PIPk Max 10 dBm -10 dBm -20 dBm -20 dBm -20 dBm -30 dBm -50 dBm -50 dBm -70 dBm -70 dBm Stort 30.0 MHz Marker	Bim Offset 2.38 dB dB SWT 265 ms	NVNT BLE 2 RBW 100 kHz VBW 300 kHz	2402MH	uto Sweep [[1] [1] [ปี//	لوام المرجم ومرجلو	2 	1.33 dBn 2.3970 GH: 43.20 dBn
Spectrum Ref Level 20.00 df Att 30 SGL Count 10/10 P1Pk Max 10 dBm -10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -30 dBm -30 dBm -30 dBm -70 dBm -70 dBm Start 30.0 MHz Marker Type Ref Trc	Am Offset 2.38 dB dB SWT 265 ms	NVNT BLE 2	2402MH	uto Sweep [[1] [1] [ปี//	لوام المرجم ومرجلو	2 	
Spectrum Ref Level 20.00 dB Att 30 SGL Count 10/10 ● IPk Max 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -50 dBm -70 dB	Bin Offset 2.38 dB dB SWT 265 ms J6 Bm	NVNT BLE 2 RBW 100 kHz VBW 300 kHz VBW 300 kHz S S S S S S S S S S S S S	2402MH	uto Sweep [[1] [1] [ปี//	لوام المرجم ومرجلو	2 	
Spectrum Ref Level 20.00 dE Att 30 SGL Count 10/10 ID dBm 10 dBm -10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -30 dBm -50 dBm -70 dBm -70 dBm Start 30.0 MHz Marker Type Ref M1 1 M2 1 M3 1	Am Offset 2.39 dB dB SWT 265 ms 26 dBm 26 26 dBm 26 26 dBm 20 27 dBm 20 28 20 20 29 dBm 20 20 dBm 20 20	NVNT BLE 2 • RBW 100 kHz • VBW 300 kHz • VBW 100 kHz • VBW 300 kHz • VBW 300 kHz • VBW 300 kHz • VBW 300 kHz • VBW 100	2402MH	uto Sweep [[1] [1] [ปี//	لوام المرجم ومرجلو	2 	
Spectrum Ref Level 20.00 dB Att 30 SGL Count 10/10 ● IPk Max 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -50 dBm -70 dB	Bin Offset 2.38 dB dB SWT 265 ms J6 Bm	NVNT BLE 2 RBW 100 kHz VBW 300 kHz VBW 300 kHz S S S S S S S S S S S S S	2402MH	uto Sweep [[1] [1] [ปี//	لوام المرجم ومرجلو	2 	

