FCC Part 15C Measurement and Test Report #### For # SHENZHEN JUNLAN ELECTRONIC LTD No. 277 PingKui Road, Shijing Community, Pingshan Street, Pingshan New District, Shenzhen, China FCC ID: OKUSBB-61250 FCC Rule(s): FCC Part 15.247 Product Description: CH BLUETOOTH SOUNDBAR SPEAKER Tested Model: SBB-61250 Report No.: <u>HCT18AR016E-1</u> Sample Receipt Date: 2018-02-07 **Tested Date:** <u>2018-02-08 to 2018-02-27</u> **Issued Date:** <u>2018-02-28</u> Tested By: <u>Jason Su / Engineer</u> Reviewed By: Silin Chen / EMC Manager Approved & Authorized By: Jandy So / PSQ Manager **Prepared By:** Shenzhen SEM Test Technology Co., Ltd 1/F, Building A, Hongwei Industrial Park, Liuxian 2nd Road, Jasan Su Silim chen Jumbuso Bao'an District, Shenzhen, 518101, China Tel.: +86-755-33663308 Fax.: +86-755-33663309 Website: www.semtest.com.cn Note: This test report is limited to the above client company and the product model only. It may not be duplicated without prior permitted by Shenzhen SEM Test Technology Co., Ltd. # TABLE OF CONTENTS | 1. GENERAL INFORMATION | | |--|----| | 1.1 PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT) | | | 1.3 TEST METHODOLOGY | | | 1.4 Test Facility | | | 1.5 EUT SETUP AND TEST MODE | | | 1.7 TEST EQUIPMENT LIST AND DETAILS | | | 2. SUMMARY OF TEST RESULTS | | | 3. RF EXPOSURE | | | 3.1 Standard Applicable | | | 3.2 TEST RESULT. | 9 | | 4. ANTENNA REQUIREMENT | 10 | | 4.1 STANDARD APPLICABLE | | | 4.2 EVALUATION INFORMATION | | | 5. FREQUENCY HOPPING SYSTEM REQUIREMENTS | | | 5.1 Standard Applicable | | | 5.3 EUT PSEUDORANDOM FREQUENCY HOPPING SEQUENCE | | | 6. QUANTITY OF HOPPING CHANNELS AND CHANNEL SEPARATION | 13 | | 6.1 STANDARD APPLICABLE | | | 6.2 Test Procedure | | | 6.3 Environmental Conditions | | | 7. DWELL TIME OF HOPPING CHANNEL | | | 7.1 STANDARD APPLICABLE | | | 7.1 STANDARD APPLICABLE | | | 7.3 Environmental Conditions | 20 | | 7.4 SUMMARY OF TEST RESULTS/PLOTS | | | 8. 20DB BANDWIDTH | | | 8.1 STANDARD APPLICABLE | | | 8.2 Test Procedure | | | 8.4 Summary of Test Results/Plots | | | 9. RF OUTPUT POWER | 43 | | 9.1 STANDARD APPLICABLE | 43 | | 9.2 Test Procedure | | | 9.3 Environmental Conditions | | | 10. FIELD STRENGTH OF SPURIOUS EMISSIONS | | | 10.1 STANDARD APPLICABLE | | | 10.2 Test Procedure | 51 | | 10.3 CORRECTED AMPLITUDE & MARGIN CALCULATION | | | 10.4 Environmental Conditions | | | 11. OUT OF BAND EMISSIONS | | | 11.1 STANDARD APPLICABLE | | | 11.2 Test Procedure | 74 | | 11.3 ENVIRONMENTAL CONDITIONS | | | 11.4 SUMMARY OF TEST RESULTS/PLOTS | | | 12. CONDUCTED EMISSIONS | 92 | | 12.1 Test Procedure | 92 | |-------------------------------------|----| | 12.2 BASIC TEST SETUP BLOCK DIAGRAM | 92 | | 12.3 Environmental Conditions | | | 12.4 Test Receiver Setup | 93 | | 12.5 SUMMARY OF TEST RESULTS/PLOTS | 93 | | 12.6 CONDUCTED EMISSIONS TEST DATA | | #### 1. GENERAL INFORMATION #### 1.1 Product Description for Equipment Under Test (EUT) **Client Information** Applicant: SHENZHEN JUNLAN ELECTRONIC LTD Address of applicant: No. 277 PingKui Road, Shijing Community, Pingshan Street, Pingshan New District, Shenzhen, China Manufacturer: SHENZHEN JUNLAN ELECTRONIC LTD Address of manufacturer: No. 277 PingKui Road, Shijing Community, Pingshan Street, Pingshan New District, Shenzhen, China | General Description of EUT | | |----------------------------|--------------------------------| | Product Name: | CH BLUETOOTH SOUNDBAR SPEAKER | | Trade Name: | NAXA | | Model No.: | SBB-61250 | | Adding Model(s): | NHS-2012 | | Rated Voltage: | DC 5.8V | | | GKYPS0200058US1 | | Power Adapter Model: | Input:AC100-240V~50/60Hz, 0.5A | | | Output:DC5.8V/2000mA | | _ | | Note: The test data is gathered from a production sample provided by the manufacturer. The product names of others models listed in the report is different from main-test model SBB-61250, but the appearance and circuit and the electronic construction do not change, declared by the manufacturer. | Technical Characteristics of EUT | | |-----------------------------------|-------------------------| | Bluetooth Version: | V4.0 | | Frequency Range: | 2402-2480MHz | | RF Output Power: | -5.967dBm (Conducted) | | Data Rate: | 1Mbps, 2Mbps, 3Mbps | | Modulation: | GFSK, Pi/4 DQPSK, 8DPSK | | Quantity of Channels: | 79 | | Channel Separation: | 1MHz | | Type of Antenna: | PCB | | Antenna Gain: | 0 dBi | | Lowest Internal Frequency of EUT: | 24.576MHz | #### 1.2 Test Standards The following report is prepared on behalf of the SHENZHEN JUNLAN ELECTRONIC LTD in accordance with FCC Part 15, Subpart C, and section 15.203, 15.205, 15.207, 15.209 and 15.247 of the Federal Communication Commissions rules The objective is to determine compliance with FCC Part 15, Subpart C, and section 15.203, 15.205, 15.207, 15.209 and 15.247 of the Federal Communication Commissions rules. **Maintenance of compliance** is the responsibility of the manufacturer. Any modification of the product, which result in lowering the emission, should be checked to ensure compliance has been maintained. #### 1.3 Test Methodology All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard for Testing Unlicensed Wireless Devices. #### 1.4 Test Facility #### FCC - Registration No.: 125990 Shenzhen SEM Test Technology Co., Ltd EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files and the Registration is 125990. #### Industry Canada (IC) Registration No.: 11464A The 3m Semi-anechoic chamber of Shenzhen SEM. Test Technology Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 11464A. #### **CNAS Registration No.: L4062** Shenzhen SEM.Test Technology Co., Ltd. is a testing organization accredited by China National Accreditation Service for Conformity Assessment (CNAS) according to ISO/IEC 17025. The accreditation certificate number is L4062. All measurement facilities used to collect the measurement data are located at 1/F, Building A, Hongwei Industrial Park, Liuxian 2nd Road, Bao'an District, Shenzhen, P.R.C (518101). # 1.5 EUT Setup and Test Mode The EUT was operated in the engineering mode to fix the Tx frequency that was for the purpose of the measurements. All testing shall be performed under maximum output power condition, and to measure its highest possible emissions level, more detailed description as follows: | Test Mode L | ist | | |-------------|----------------|--------------| | Test Mode | Description | Remark | | TM1 | Low Channel | 2402MHz | | TM2 | Middle Channel | 2441MHz | | TM3 | High Channel | 2480MHz | | TM4 | Hopping | 2402-2480MHz | | Modulation Configure | | | | |-----------------------------|--------|-------------|-------------| | Modulation | Packet | Packet Type | Packet Size | | | DH1 | 4 | 27 | | GFSK | DH3 | 11 | 183 | | | DH5 | 15 | 339 | | | 2DH1 | 20 | 54 | | Pi/4 DQPSK | 2DH3 | 26 | 367 | | | 2DH5 | 30 | 679 | | | 3DH1 | 24 | 83 | | 8DPSK | 3DH3 | 27 | 552 | | | 3DH5 | 31 | 1021 | Normal mode: the Bluetooth has been tested on the modulation of GFSK, (Pi/4)DQPSK and 8DPSK, compliance test and record the worst case. | Accessories Equipment List and Details | | | | | | |--|------------------------------------|---------------------|------------------------|--|--| | Description | Manufacturer | Model No. | Serial Number | | | | / | / | / | / | | | | / | / | / | / | | | | / | / | / | / | | | | / | / | / | / | | | | Accessories Cable List | Accessories Cable List and Details | | | | | | Cable Description | Length (m) | Shielded/Unshielded | With Core/Without Core | | | | / | / | / | / | | | | / | / | / | / | | | | / | / | / | / | | | | EUT Cable List and D | etails | | | | | | Cable Description | Length (m) | Shielded/Unshielded | With Core/Without Core | | | | DC Cable | 1.5 | Shielded | Without Core | | | | AUX Cable | 1.0 | Shielded | Without Core | | | | Audio Cable | 1.2 | Shielded | Without Core | | | # 1.6 Measurement Uncertainty | Measurement uncertainty | | | |--------------------------------|------------|-------------| | Parameter | Conditions | Uncertainty | | RF Output Power | Conducted | ±0.42dB | | Occupied Bandwidth | Conducted | ±1.5% | | Conducted Spurious Emission | Conducted | ±2.17dB | | Conducted Emissions | Conducted | ±2.88dB | | Transmitter Spurious Emissions | Radiated | ±5.1dB | # 1.7 Test Equipment List and Details | No. | Description | Manufacturer | Model | Serial No. | Cal Date | Due Date | |-----------|-------------------|-----------------|-----------|-------------|------------|-----------------| | SEMT-1072 | Spectrum Analyzer | Agilent | E4407B | MY41440400 | 2017-06-12 | 2018-06-11 | | SEMT-1031 | Spectrum Analyzer | Rohde & Schwarz | FSP30 | 836079/035 | 2017-06-12 | 2018-06-11 | | SEMT-1007 | EMI Test Receiver | Rohde & Schwarz | ESVB | 825471/005 | 2017-06-12 | 2018-06-11 | | SEMT-1008 | Amplifier | Agilent | 8447F | 3113A06717 | 2017-06-12 | 2018-06-11 | | SEMT-1043 | Amplifier | C&D | PAP-1G18 | 2002 | 2017-06-12 | 2018-06-11 | | SEMT-1011 | Broadband Antenna | Schwarz beck | VULB9163 | 9163-333 | 2017-06-12 | 2018-06-11 | | SEMT-1042 | Horn Antenna | ETS | 3117 | 00086197 | 2017-06-12 | 2018-06-11 | | SEMT-1121 | Horn Antenna | Schwarzbeck | BBHA 9170 | BBHA9170582 | 2017-06-12 | 2018-06-11 | | SEMT-1069 | Loop Antenna | Schwarz beck | FMZB 1516 | 9773 | 2017-06-12 | 2018-06-11 | | SEMT-1001 | EMI Test Receiver | Rohde & Schwarz | ESPI | 101611 | 2017-06-12 | 2018-06-11 | | SEMT-1003 | L.I.S.N | Schwarz beck | NSLK8126 | 8126-224 | 2017-06-12 | 2018-06-11 | | SEMT-1002 | Pulse Limiter | Rohde & Schwarz | ESH3-Z2 | 100911 | 2017-06-12 | 2018-06-11 | # 2. SUMMARY OF TEST RESULTS | FCC Rules | Description of Test Item | Result |
-----------------------------|-----------------------------------|-----------| | § 2.1091 | RF Exposure | Compliant | | § 15.203; § 15.247(b)(4)(i) | Antenna Requirement | Compliant | | §15.205 | Restricted Band of Operation | Compliant | | § 15.207(a) | Conducted Emission | Compliant | | § 15.209(a) | Radiated Spurious Emissions | Compliant | | § 15.247(a)(1)(iii) | Quantity of Hopping Channel | Compliant | | § 15.247(a)(1) | Channel Separation | Compliant | | § 15.247(a)(1)(iii) | Time of Occupancy (Dwell time) | Compliant | | § 15.247(a) | 20dB Bandwidth | Compliant | | § 15.247(b)(1) | RF Power Output | Compliant | | § 15.247(d) | Band Edge (Out of Band Emissions) | Compliant | | § 15.247(a)(1) | Frequency Hopping Sequence | Compliant | | § 15.247(g), (h) | Frequency Hopping System | Compliant | N/A: not applicable # 3. RF Exposure # 3.1 Standard Applicable According to § 1.1307 and § 2.1091, the mobile transmitter must comply the RF exposure requirements. #### 3.2 Test Result This product complied with the requirement of the RF exposure, please see the RF Exposure Report. # 4. Antenna Requirement ## 4.1 Standard Applicable According to FCC Part 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. #### **4.2 Evaluation Information** This product has an PCB antenna, fulfill the requirement of this section. # 5. Frequency Hopping System Requirements ## **5.1 Standard Applicable** According to FCC Part 15.247(a)(1), The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals. - (g) Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmitter be presented with a continuous data (or information) stream. In addition, a system employing short transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmissions over the minimum number of hopping channels specified in this section. - (h) The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hopsets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted. #### **5.2 Frequency Hopping System** This transmitter device is frequency hopping device, and complies with FCC part 15.247 rule. This device uses Bluetooth radio which operates in 2400-2483.5 MHz band. Bluetooth uses a radio technology called frequency-hopping spread spectrum, which chops up the data being sent and transmits chunks of it on up to 79 bands (1 MHz each; centred from 2402 to 2480 MHz) in the range 2,400-2,483.5 MHz. The transmitter switches hop frequencies 1,600 times per second to assure a high degree of data security. All Bluetooth devices participating in a given piconet are synchronized to the frequency-hopping channel for the piconet. The frequency hopping sequence is determined by the master's device address and the phase of the hopping sequence (the frequency to hop at a specific time) is determined by the master's internal clock. Therefore, all slaves in a piconet must know the master's device address and must synchronize their clocks with the master's clock. Adaptive Frequency Hopping (AFH) was introduced in the Bluetooth specification to provide an effective way for a Bluetooth radio to counteract normal interference. AFH identifies "bad" channels, where either other wireless devices are interfering with the Bluetooth signal or the Bluetooth signal is interfering with another device. The AFH-enabled Bluetooth device will then communicate with other devices within its piconet to share details of any identified bad channels. The devices will then switch to alternative available "good" channels, away from the areas of interference, thus having no impact on the bandwidth used. This device was tested with an bluetooth system receiver to check that the device maintained hopping synchronization, and the device complied with these requirements for DA 00-705 and FCC Part 15.247 rule. #### **5.3 EUT Pseudorandom Frequency Hopping Sequence** Pseudorandom Frequency Hopping Sequence Table as below: Channel: 08, 24, 40, 56, 40, 56, 72, 09, 01, 09, 33, 41, 33, 41, 65, 73, 53, 69, 06, 22, 04, 20, 36, 52, 38, 46, 70, 78, 68, 76, 21, 29, 10, 26, 42, 58, 44, 60, 76, 13, 03, 11, 35, 43, 37, 45, 69, 77, 55, 71, 08, 24, 08, 24, 40, 56, 40, 48, 72, 01, 72, 01, 25, 33, 12, 28, 44, 60, 42, 58, 74, 11, 05, 13, 37, 45 etc. The system receiver have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals. # 6. Quantity of Hopping Channels and Channel Separation #### 6.1 Standard Applicable According to FCC 15.247(a)(1), frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, and frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. #### **6.2 Test Procedure** According to ANSI C63.10-2013 section 7.8.3, the number of hopping frequencies test method as follows. - a) Span: The frequency band of operation. Depending on the number of channels the device supports, it may be necessary to divide the frequency range of operation across multiple spans, to allow the individual channels to be clearly seen. - b) RBW: To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller. - c) VBW \geq RBW. - d) Sweep: Auto. - e) Detector function: Peak. - f) Trace: Max hold. - g) Allow the trace to stabilize. According to ANSI C63.10-2013 section 7.8.2, the EUT shall have its hopping function enabled, the Carrier frequency separation test method as follows: - a) Span: Wide enough to capture the peaks of two adjacent channels. - b) RBW: Start with the RBW set to approximately 30% of the channel spacing; adjust as necessary to best identify the center of each individual channel. - c) Video (or average) bandwidth (VBW) \geq RBW. - d) Sweep: Auto. - e) Detector function: Peak. - f) Trace: Max hold. - g) Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. #### 6.3 Environmental Conditions | Temperature: | 24 °C | |--------------------|-----------| | Relative Humidity: | 54% | | ATM Pressure: | 1011 mbar | # 6.4 Summary of Test Results/Plots No. of Channel = 79 For GFSK mode Channel Spacing (Low CH) # Channel Spacing (Middle CH) # Channel Spacing (High CH) # For pi/4 DQPSK mode Channel Spacing (Low CH) #### Channel Spacing (Middle CH) # Channel Spacing (High CH) # For 8DPSK mode Channel Spacing (Low CH) #### Channel Spacing (Middle CH) # Channel Spacing (High CH) # 7. Dwell Time of Hopping Channel ## 7.1 Standard Applicable According to 15.247(a)(1)(iii), Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. #### 7.2 Test Procedure According to ANSI C63.10-2013 section 7.8.4, the dwell time of a hopping channel test method as follows. - a) Span: Zero span, centered on a hopping channel. - b) RBW shall be \leq channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel. - c) Sweep: As necessary to capture the entire dwell time per hopping channel; where possible use a video trigger and trigger delay so that the transmitted signal starts a little to the right of the start - of the plot. The trigger level might need slight adjustment to prevent triggering when the system hops on an adjacent channel; a second plot might be needed with a longer sweep time to show two successive hops on a channel. - d) Detector function: Peak. - e) Trace: Max hold. Use the marker-delta function to determine the transmit time per hop. If this value varies with different modes of operation (data rate, modulation format, number of hopping channels, etc.), then repeat this test for each variation in transmit time Repeat the measurement using a longer sweep time to determine the number of hops over the period specified in the requirements. The sweep time shall be equal to, or less than, the period specified in the requirements. Determine the number of hops over the sweep time and calculate the total number of hops in the period specified in the requirements, using the following equation: (Number of hops in the period specified in the requirements) = (number of hops on spectrum analyzer) × (period specified in the requirements / analyzer sweep time) The average time of occupancy is calculated from the transmit time per hop multiplied by the number of hops in the period specified in the
requirements. If the number of hops in a specific time varies with different modes of operation (data rate, modulation format, number of hopping channels, etc.), then repeat this test for each variation. The measured transmit time and time between hops shall be consistent with the values described in the operational description for the EUT. #### 7.3 Environmental Conditions | Temperature: | 24 °C | |--------------------|-----------| | Relative Humidity: | 54% | | ATM Pressure: | 1011 mbar | # 7.4 Summary of Test Results/Plots The dwell time within a period in data mode is independent from the packet type (packet length). The test period: T = 0.4 Second * 79 Channel = 31.6 s Dwell time (DH1) = time slot length * (1600 / 2 / 79) * 31.6 Dwell time (DH3) = time slot length * (1600 / 4 / 79) * 31.6 Dwell time (DH5) = time slot length * (1600 / 6 / 79) * 31.6 | Modulation | Test Channel | Packet | Time Slot Length | Dwell Time | Limit | |------------|--------------|--------|------------------|------------|-------| | | | | ms | ms | ms | | GFSK | 2402MHz | DH1 | 0.380 | 121.6 | 400 | | | | DH3 | 1.63 | 260.8 | 400 | | | | DH5 | 2.87 | 306. 1 | 400 | | | 2441MHz | DH1 | 0.360 | 115. 2 | 400 | | | | DH3 | 1.62 | 259. 2 | 400 | | | | DH5 | 2.87 | 306. 1 | 400 | | | 2480MHz | DH1 | 0.370 | 118. 4 | 400 | | | | DH3 | 1.61 | 257. 6 | 400 | | | | DH5 | 2.86 | 305. 1 | 400 | | pi/4-DQPSK | 2402MHz | 2DH1 | 0.380 | 121.6 | 400 | | | | 2DH3 | 1.63 | 260.8 | 400 | | | | 2DH5 | 2.87 | 306. 1 | 400 | | | 2441MHz | 2DH1 | 0.380 | 121.6 | 400 | | | | 2DH3 | 1.63 | 260.8 | 400 | | | | 2DH5 | 2.87 | 306. 1 | 400 | | | 2480MHz | 2DH1 | 0.380 | 121.6 | 400 | | | | 2DH3 | 1.63 | 260.8 | 400 | | | | 2DH5 | 2.87 | 306. 1 | 400 | | 8DPSK | 2402MHz | 3DH1 | 0.380 | 121.6 | 400 | | | | 3DH3 | 1.63 | 260.8 | 400 | | | | 3DH5 | 2.87 | 306. 1 | 400 | | | 2441MHz | 3DH1 | 0.380 | 121.6 | 400 | | | | 3DH3 | 1.63 | 260.8 | 400 | | | | 3DH5 | 2.87 | 306. 1 | 400 | | | 2480MHz | 3DH1 | 0.380 | 121.6 | 400 | | | | 3DH3 | 1.63 | 260.8 | 400 | | | | 3DH5 | 2.87 | 306. 1 | 400 | Please refer to the test plots as below: GFSK DH3 time slot (Low, Middle, High Channels) GFSK DH5 time slot (Low, Middle, High Channels) Pi/4 DQPSK 2DH1 time slot (Low, Middle, High Channels) Pi/4 DQPSK 2DH5 time slot (Low, Middle, High Channels) 8DPSK 3DH3 time slot (Low, Middle, High Channels) Model:SBB-61250 #### 8. 20dB Bandwidth #### 8.1 Standard Applicable According to 15.247(a) and 15.215(c). 20dB bandwidth is recommended that the fundamental emission be kept within at least the central 80% of the permitted band in order to minimize the possibility of out-of-band operation. #### **8.2** Test Procedure According to ANSI C63.10-2013 section 6.9.2, the 20dB bandwidth test method as follows. - a) The spectrum analyzer center frequency is set to the nominal EUT channel center frequency. The span range for the EMI receiver or spectrum analyzer shall be between two times and five times the OBW. - b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW and video bandwidth (VBW) shall be approximately three times RBW, unless otherwise specified by the applicable requirement. - c) Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level. - d) Steps a) through c) might require iteration to adjust within the specified tolerances. - e) The dynamic range of the instrument at the selected RBW shall be more than 10 dB below the target "-xx dB down" requirement; that is, if the requirement calls for measuring the -20 dB OBW, the instrument noise floor at the selected RBW shall be at least 30 dB below the reference value. - f) Set detection mode to peak and trace mode to max hold. - g) Determine the reference value: Set the EUT to transmit an unmodulated carrier or modulated signal, as applicable. Allow the trace to stabilize. Set the spectrum analyzer marker to the highest level of the displayed trace (this is the reference value). - h) Determine the "-xx dB down amplitude" using [(reference value) -xx]. Alternatively, this calculation may be made by using the marker-delta function of the instrument. - i) If the reference value is determined by an unmodulated carrier, then turn the EUT modulation ON, and either clear the existing trace or start a new trace on the spectrum analyzer and allow the new trace to stabilize. Otherwise, the trace from step g) shall be used for step j). - j) Place two markers, one at the lowest frequency and the other at the highest frequency of the envelope of the spectral display, such that each marker is at or slightly below the "-xx dB down amplitude" determined in step h). If a marker is below this "-xx dB down amplitude" value, then it shall be as close as possible to this value. The occupied bandwidth is the frequency difference between the two markers. Alternatively, set a marker at the lowest frequency of the envelope of the spectral display, such that the marker is at or slightly below the "-xx dB down amplitude" determined in step h). Reset the marker-delta function and move the marker to the other side of the emission until the delta marker amplitude is at the same level as the reference marker amplitude. The marker-delta frequency reading at this point is the specified emission bandwidth. - k) The occupied bandwidth shall be reported by providing plot(s) of the measuring instrument display; the plot axes and the scale units per division shall be clearly labeled. Tabular data may be reported in addition to the plot(s). # 8.3 Environmental Conditions | Temperature: | 25 °C | |--------------------|-----------| | Relative Humidity: | 53% | | ATM Pressure: | 1018 mbar | # **8.4 Summary of Test Results/Plots** | Test Mode | Test Channel
MHz | 20 dB Bandwidth
kHz | 99% Bandwidth
kHz | Result | |------------|---------------------|------------------------|----------------------|--------| | | 2402 | 888.367 | 832.6438 | Pass | | GFSK | 2441 | 888.463 | 828.4461 | Pass | | | 2480 | 893.283 | 831.0432 | Pass | | | 2402 | 953.283 | 857.0331 | Pass | | Pi/4 DQPSK | 2441 | 952.190 | 851.3604 | Pass | | | 2480 | 951.247 | 868.5885 | Pass | | | 2402 | 1261 | 1.1610 | Pass | | 8DPSK | 2441 | 1262 | 11598 | Pass | | | 2480 | 1262 | 11580 | Pass | # For GFSK Low Channel: ## Middle Channel: # High Channel: # For pi/4 DQPSK Low Channel: ### Middle Channel: # High Channel: # For 8DPSK Low Channel: ## Middle Channel: # High Channel: # 9. RF Output Power # 9.1 Standard Applicable According to 15.247(b)(1). For frequency hopping systems operating in the 2400–2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725–5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400–2483.5 MHz band: 0.125 watts. ### 9.2 Test Procedure According to ANSI C63.10-2013 section 7.8.5, the output power test method as follows. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer. This is an RF-conducted test to evaluate maximum peak output power. Use a direct connection between the antenna port of the unlicensed wireless device and the spectrum analyzer, through suitable attenuation. The hopping shall be disabled for this test: - a) Use the following spectrum analyzer settings: - 1) Span: Approximately five times the 20 dB bandwidth, centered on a hopping channel. - 2) RBW > 20 dB bandwidth of the emission being measured. - 3) VBW \geq RBW. - 4) Sweep: Auto. - 5) Detector function: Peak. - 6) Trace: Max hold. - b) Allow trace to stabilize. - c) Use the marker-to-peak function to set the marker to the peak of the emission. - d) The indicated level is the peak output power, after any corrections for external attenuators and cables. - e) A plot of the test results and setup description shall be included in the test report. ### 9.3 Environmental Conditions | Temperature: | 24 °C | |--------------------|-----------| | Relative Humidity: | 55% | | ATM Pressure: | 1011 mbar | ### 9.4 Summary of Test Results/Plots # For GFSK | Channel | Frequency
MHz | Measured Value
dBm | Output Power
mW | Limit
mW | |----------------|------------------|-----------------------|--------------------|-------------| | Low Channel | 2402 | -6.135 | 0.24 | 1000 | | Middle Channel | 2441 | -5.967 | 0.25 | 1000 | | High Channel | 2480 | -6.199 | 0.24 | 1000 | # For Pi/4 DQPSK | Channel | Frequency
MHz | Measured Value
dBm | Output Power
mW | Limit
mW | |----------------|------------------|-----------------------|--------------------|-------------| | Low Channel | 2402 | -6.151 | 0.24 | 1000 | | Middle Channel | 2441 | -6.003 | 0.25 | 1000 | | High Channel | 2480 | -6.243 | 0.24 | 1000 | # For 8DPSK | Channel | Frequency
MHz | Measured Value
dBm | Output Power
mW | Limit
mW | |----------------|------------------|-----------------------|--------------------|-------------| | Low Channel | 2402 | -6.192 | 0.24 | 1000 | | Middle Channel | 2441 | -6.022 | 0.25 | 1000 | | High Channel | 2480 | -6.243 | 0.24 | 1000 | Note: the antenna gain of 0dBi less than 6dBi maximum permission antenna gain value based on 1 watt peak output power limit. # For GFSK mode Low CH ### Middle CH High CH # For pi/4 DQPSK mode Low CH # Middle CH High CH # For 8DPSK mode Low CH # Middle CH High CH # 10. Field Strength of Spurious Emissions # 10.1 Standard Applicable According to §15.247(d), in any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF
conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a). The emission limit in this paragraph is based on measurement instrumentation employing an average detector. The provisions in §15.35 for limiting peak emissions apply. Spurious Radiated Emissions measurements starting below or at the lowest crystal frequency. ### 10.2 Test Procedure The setup of EUT is according with per ANSI C63.10-2013 measurement procedure. The specification used was with the FCC Part 15.205 15.247(a) and FCC Part 15.209 Limit. The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle. The spacing between the peripherals was 10 cm. | Frequency:9kHz-30MHz | Frequency:30MHz-1GHz | Frequency: Above 1GHz | |--------------------------|------------------------------|------------------------------| | RBW=10KHz, | RBW=120KHz, | RBW=1MHz, | | VBW = 30KHz | VBW=300KHz | VBW=3MHz(Peak), 10Hz(AV) | | Sweep time= Auto | Sweep time= Auto | Sweep time= Auto | | Trace = max hold | Trace = max hold | $Trace = \max hold$ | | Detector function = peak | Detector function = peak, QP | Detector function = peak, AV | # 10.3 Corrected Amplitude & Margin Calculation The Corrected Amplitude is calculated by adding the Antenna Factor and the Cable Factor, and subtracting the Amplifier Gain from the Amplitude reading. The basic equation is as follows: The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of $-6dB\mu V$ means the emission is $6dB\mu V$ below the maximum limit. The equation for margin calculation is as follows: ## **10.4 Environmental Conditions** | Temperature: | 25 °C | |--------------------|-----------| | Relative Humidity: | 52% | | ATM Pressure: | 1012 mbar | # 10.5 Summary of Test Results/Plots According to the data below, the FCC Part 15.205, 15.209 and 15.247 standards, and had the worst cases: ### Plot of Radiated Emissions Test Data (30MHz to 1GHz) CH BLUETOOTH SOUNDBAR SPEAKER EUT: Tested Model: SBB-61250 GFSK Transmitting Low Channel (2402MHz) Operating Condition: Comment: DC 5.8V(with a adapter input AC 120V/60Hz) Test Specification: **Horizontal** SWEEP TABLE: "test (30M-1G)" Short Description: Fi Field Strength Start Stop Detector Meas. Transducer Bandw. Frequency Frequency Time 30.0 MHz 1.0 GHz MaxPeak Coupled 100 kHz 9163-2015 ### MEASUREMENT RESULT: "18AR016E04 red" | | | 46PM | | | | | | | | |-----|-----------------|-----------------|--------------|-----------------|--------------|------|--------------|----------------|--------------| | F: | requency
MHz | Level
dBuV/m | Transd
dB | Limit
dBuV/m | Margin
dB | Det. | Height
cm | Azimuth
deg | Polarization | | 4. | 5.520000 | 27.00 | 16.8 | 40.0 | 13.0 | | 100.0 | 0.00 | HORIZONTAL | | 5 | 9.100000 | 26.90 | 15.7 | 40.0 | 13.1 | | 100.0 | 0.00 | HORIZONTAL | | 15 | 8.040000 | 24.90 | 12.3 | 43.5 | 18.6 | | 100.0 | 0.00 | HORIZONTAL | | 19 | 6.840000 | 25.60 | 13.8 | 43.5 | 17.9 | | 100.0 | 0.00 | HORIZONTAL | | 52 | 2.760000 | 31.40 | 19.6 | 46.0 | 14.6 | | 100.0 | 0.00 | HORIZONTAL | | 95. | 5.380000 | 37.60 | 25.3 | 46.0 | 8.4 | | 100.0 | 0.00 | HORIZONTAL | Test Specification: Vertical SWEEP TABLE: "test (30M-1G)" Short Description: Field Strength Start Stop Detector Meas. IF Transducer 1F. Bandw. Frequency Frequency Time Bandw. 30.0 MHz 1.0 GHz MaxPeak Coupled 100 kHz 9163-2015 # MEASUREMENT RESULT: "18AR016E02_red" | 2018-2-16 01: | 42PM | | | | | | | | |------------------|-----------------|--------------|-----------------|--------------|------|--------------|----------------|--------------| | Frequency
MHz | Level
dBuV/m | Transd
dB | Limit
dBuV/m | Margin
dB | Det. | Height
cm | Azimuth
deg | Polarization | | 45.520000 | 28.50 | 16.8 | 40.0 | 11.5 | | 100.0 | 0.00 | VERTICAL | | 61.040000 | 25.70 | 14.9 | 40.0 | 14.3 | | 100.0 | 0.00 | VERTICAL | | 146.400000 | 24.00 | 12.0 | 43.5 | 19.5 | | 100.0 | 0.00 | VERTICAL | | 196.840000 | 25.00 | 13.8 | 43.5 | 18.5 | | 100.0 | 0.00 | VERTICAL | | 547.980000 | 32.00 | 20.3 | 46.0 | 14.0 | | 100.0 | 0.00 | VERTICAL | | 926.280000 | 37.20 | 25.9 | 46.0 | 8.8 | | 100.0 | 0.00 | VERTICAL | Operating Condition: GFSK Transmitting Middle Channel (2441MHz) Comment: DC 5.8V(with a adapter input AC 120V/60Hz) Test Specification: Horizontal SWEEP TABLE: "test (30M-1G)" Short Description: Fi Field Strength Detector Meas. IF Start Stop Transducer Frequency Frequency 30.0 MHz 1.0 GHz Time Bandw. Coupled 100 kHz 9163-2015 MaxPeak # MEASUREMENT RESULT: "18AR016E05 red" | 2018-2-16 01:4 | 17PM | | | | | | | | |----------------|--------|--------|--------|--------|------|--------|---------|--------------| | Frequency | Level | Transd | Limit | Margin | Det. | Height | Azimuth | Polarization | | MHz | dBuV/m | dB | dBuV/m | dB | | cm | deg | | | | | | | | | | | | | 49.400000 | 27.50 | 15.3 | 40.0 | 12.5 | | 100.0 | 0.00 | HORIZONTAL | | 57.160000 | 25.60 | 15.7 | 40.0 | 14.4 | | 100.0 | 0.00 | HORIZONTAL | | 86.260000 | 23.80 | 12.9 | 40.0 | 16.2 | | 100.0 | 0.00 | HORIZONTAL | | 194.900000 | 25.70 | 13.7 | 43.5 | 17.8 | | 100.0 | 0.00 | HORIZONTAL | | 499.480000 | 30.90 | 19.5 | 46.0 | 15.1 | | 100.0 | 0.00 | HORIZONTAL | | 918.520000 | 38.10 | 25.7 | 46.0 | 7.9 | | 100.0 | 0.00 | HORIZONTAL | | | | | | | | | | | Test Specification: Vertical SWEEP TABLE: "test (30M-1G)" Short Description: Field Strength Start Stop Detector Meas. IF Transducer Frequency Frequency Time Bandw. 30.0 MHz 1.0 GHz MaxPeak Coupled 100 kHz 9163-2015 # MEASUREMENT RESULT: "18AR016E01_red" | 2018-2-16 01:
Frequency
MHz | :41PM
Level
dBuV/m | Transd
dB | Limit
dBuV/m | Margin
dB | Det. | Height
cm | Azimuth
deg | Polarization | |-----------------------------------|--------------------------|--------------|-----------------|--------------|------|--------------|----------------|--------------| | 47.460000 | 27.80 | 16.7 | 40.0 | 12.2 | | 100.0 | 0.00 | VERTICAL | | 57.160000 | 26.10 | 15.7 | 40.0 | 13.9 | | 100.0 | 0.00 | VERTICAL | | 127.000000 | 25.10 | 12.9 | 43.5 | 18.4 | | 100.0 | 0.00 | VERTICAL | | 204.600000 | 25.20 | 14.1 | 43.5 | 18.3 | | 100.0 | 0.00 | VERTICAL | | 544.100000 | 31.80 | 19.9 | 46.0 | 14.2 | | 100.0 | 0.00 | VERTICAL | | 945.680000 | 37.80 | 25.3 | 46.0 | 8.2 | | 100.0 | 0.00 | VERTICAL | Operating Condition: GFSK Transmitting High Channel (2480MHz) Comment: DC 5.8V(with a adapter input AC 120V/60Hz) Test Specification: Horizontal SWEEP TABLE: "test (30M-1G)" Short Description: Fi Field Strength Start Stop Detector Meas. IF Transducer Frequency Frequency Bandw. Time 1.0 GHz 30.0 MHz MaxPeak Coupled 100 kHz 9163-2015 # MEASUREMENT RESULT: "18AR016E06 red" | 2018-2-16 01:48PM | | | | | | | | | | |-------------------|-----------------|--------------|-----------------|--------------|------|--------------|----------------|--------------|--| | Frequency
MHz | Level
dBuV/m | Transd
dB | Limit
dBuV/m | Margin
dB | Det. | Height
cm | Azimuth
deg | Polarization | | | 45.520000 | 28.60 | 16.8 | 40.0 | 11.4 | | 100.0 | 0.00 | HORIZONTAL | | | 59.100000 | 26.10 | 15.7 | 40.0 | 13.9 | | 100.0 | 0.00 | HORIZONTAL | | | 86.260000 | 24.00 | 12.9 | 40.0 | 16.0 | | 100.0 | 0.00 | HORIZONTAL | | | 119.240000 | 25.30 | 13.2 | 43.5 | 18.2 | | 100.0 | 0.00 | HORIZONTAL | | | 549.920000 | 31.60 | 20.5 | 46.0 | 14.4 | | 100.0 | 0.00 | HORIZONTAL | | | 943.740000 | 38.50 | 25.3 | 46.0 | 7.5 | | 100.0 | 0.00 | HORIZONTAL | | Test Specification: Vertical SWEEP TABLE: "test (30M-1G)" Short Description: Field Strength Start Stop Detector Meas. IF Time Bandw. Transducer Frequency Frequency Time Bandw. 30.0 MHz 1.0 GHz MaxPeak Coupled 100 kHz 9163-2015 ### MEASUREMENT RESULT: "18AR016E03 red" | 2018-2-16 01 | :44PM | | | | | | | | |--------------|--------|--------|--------|--------|-----------|--------|---------|--------------| | Frequency | Level | Transd | Limit | Margin | Det. | Height | Azimuth | Polarization | | MHz | dBuV/m | dB | dBuV/m | dB | | cm | deg | | | | | | | | | | | | | 45.520000 | 28.00 | 16.8 | 40.0 | 12.0 | | 100.0 | 0.00 | VERTICAL | | 57.160000 | 25.30 | 15.7 | 40.0 | 14.7 | 1000 1000 | 100.0 | 0.00 | VERTICAL | | 130.880000 | 24.10 | 12.7 | 43.5 | 19.4 | | 100.0 | 0.00 | VERTICAL | | 204.600000 | 24.30 | 14.1 | 43.5 | 19.2 | 100.0 | 100.0 | 0.00 | VERTICAL | | 493.660000 | 31.40 | 19.5 | 46.0 | 14.6 | | 100.0 | 0.00 | VERTICAL | | 901.060000 | 38.00 | 25.8 | 46.0 | 8.0 | | 100.0 | 0.00 | VERTICAL | EUT: CH BLUETOOTH SOUNDBAR SPEAKER Tested Model: SBB-61250 Operating Condition: Pi/4 DQPSK Transmitting Low Channel (2402MHz) DC 5.8V(with a adapter input AC 120V/60Hz) Comment: Test Specification: Horizontal SWEEP TABLE: "test (30M-1G)" Short Description: Fi Field Strength Stop Start Detector Meas. IF Transducer Frequency Frequency Time Bandw. 30.0 MHz 1.0 GHz Coupled 100 kHz 9163-2015 MaxPeak ### MEASUREMENT RESULT: "18AR016E07_red" 2018-2-16 01:51PM | Frequency
MHz | Level
dBuV/m | Transd
dB | Limit
dBuV/m | Margin
dB | Det. | Height
cm | Azimuth
deg | Polarization | |------------------|-----------------|--------------|-----------------|--------------|------|--------------|----------------|--------------| | 33.880000 | 27.80 | 15.1 | 40.0 | 12.2 | | 100.0 | 0.00 | HORIZONTAL | | 59.100000 | 26.10 | 15.7 | 40.0 | 13.9 | | 100.0 | 0.00 | HORIZONTAL | | 165.800000 | 23.60 | 12.9 |
43.5 | 19.9 | | 100.0 | 0.00 | HORIZONTAL | | 196.840000 | 24.90 | 13.8 | 43.5 | 18.6 | | 100.0 | 0.00 | HORIZONTAL | | 447.100000 | 31.30 | 18.3 | 46.0 | 14.7 | | 100.0 | 0.00 | HORIZONTAL | | 934.040000 | 38.30 | 25.7 | 46.0 | 7.7 | | 100.0 | 0.00 | HORIZONTAL | Test Specification: Vertical SWEEP TABLE: "test (30M-1G)" Short Description: Fi Field Strength Stop Detector Meas. IF Start Transducer Frequency Frequency Time Bandw. 30.0 MHz 1.0 GHz MaxPeak Coupled 100 kHz 9163-2015 # MEASUREMENT RESULT: "18AR016E10 red" | 2018-2-16 01:5 | | | | | | | | | |------------------|-----------------|--------------|-----------------|--------------|------|--------------|----------------|--------------| | Frequency
MHz | Level
dBuV/m | Transd
dB | Limit
dBuV/m | Margin
dB | Det. | Height
cm | Azimuth
deg | Polarization | | 45.520000 | 27.70 | 16.8 | 40.0 | 12.3 | | 100.0 | 0.00 | VERTICAL | | 59.100000 | 26.10 | 15.7 | 40.0 | 13.9 | | 100.0 | 0.00 | VERTICAL | | 123.120000 | 24.90 | 13.1 | 43.5 | 18.6 | | 100.0 | 0.00 | VERTICAL | | 210.420000 | 24.70 | 14.0 | 43.5 | 18.8 | | 100.0 | 0.00 | VERTICAL | | 546.040000 | 31.80 | 20.1 | 46.0 | 14.2 | | 100.0 | 0.00 | VERTICAL | | 910.760000 | 37.90 | 25.8 | 46.0 | 8.1 | | 100.0 | 0.00 | VERTICAL | | | | | | | | | | | Operating Condition: Pi/4 DQPSK Transmitting Middle Channel (2441MHz) Comment: DC 5.8V(with a adapter input AC 120V/60Hz) Test Specification: Horizontal SWEEP TABLE: "test (30M-1G)" Short Description: Field Strength Start Stop Detector Meas. IF Frequency Frequency Time Bank IF Bandw. Transducer 30.0 MHz 1.0 GHz MaxPeak Coupled 100 kHz 9163-2015 # MEASUREMENT RESULT: "18AR016E08_red" | 2018-2-16 01:5
Frequency
MHz | 52PM
Level
dBuV/m | Transd
dB | Limit
dBuV/m | Margin
dB | Det. | Height
cm | Azimuth
deg | Polarization | |------------------------------------|-------------------------|--------------|-----------------|--------------|------|--------------|----------------|--------------| | 45.520000 | 27.80 | 16.8 | 40.0 | 12.2 | | 100.0 | 0.00 | HORIZONTAL | | 57.160000 | 26.60 | 15.7 | 40.0 | 13.4 | | 100.0 | 0.00 | HORIZONTAL | | 121.180000 | 24.10 | 13.2 | 43.5 | 19.4 | | 100.0 | 0.00 | HORIZONTAL | | 200.720000 | 24.70 | 14.0 | 43.5 | 18.8 | | 100.0 | 0.00 | HORIZONTAL | | 528.580000 | 32.50 | 19.7 | 46.0 | 13.5 | | 100.0 | 0.00 | HORIZONTAL | | 922.400000 | 38.10 | 25.8 | 46.0 | 7.9 | | 100.0 | 0.00 | HORIZONTAL | FCC Part 15.247 Test Specification: Vertical ### SWEEP TABLE: "test (30M-1G)" Short Description: Field Strength Stop Detector Meas. Start ΙF Transducer Frequency Frequency Time Bandw. 100 kHz 30.0 MHz 1.0 GHz Coupled 9163-2015 MaxPeak # MEASUREMENT RESULT: "18AR016E11 red" 2018-2-16 01:57PM Frequency Level Transd Limit Margin Det. Height Azimuth Polarization MHz dBuV/m dB dBuV/m dB cm deg 45.520000 27.90 16.8 40.0 12.1 100.0 0.00 VERTICAL 13.1 26.90 0.00 VERTICAL 57.160000 15.7 40.0 ___ 100.0 24.20 12.9 15.8 ---0.00 VERTICAL 86.260000 40.0 100.0 206.540000 24.50 14.1 43.5 19.0 ---100.0 0.00 VERTICAL 46.0 14.5 ---0.00 VERTICAL 553.800000 31.50 20.4 100.0 893.300000 37.70 25.6 46.0 8.3 ---100.0 0.00 VERTICAL Operating Condition: Pi/4 DQPSK Transmitting High Channel (2480MHz) Comment: DC 5.8V(with a adapter input AC 120V/60Hz) Test Specification: Horizontal SWEEP TABLE: "test (30M-1G)" Short Description: Fi Field Strength Detector Meas. Start Stop Transducer IF Time Bandw. Frequency Frequency 30.0 MHz 1.0 GHz MaxPeak Coupled 100 kHz 9163-2015 ### MEASUREMENT RESULT: "18AR016E09 red" | 2018-2-16 01:
Frequency
MHz | :54PM
Level
dBuV/m | Transd
dB | Limit
dBuV/m | Margin
dB | Det. | Height
cm | Azimuth
deg | Polarization | |-----------------------------------|--------------------------|--------------|-----------------|--------------|------|--------------|----------------|--------------------------| | 47.460000
55.220000 | 27.20
26.50 | 16.7
15.1 | 40.0 | 12.8 | | 100.0 | 0.00 | HORIZONTAL
HORIZONTAL | | 119.240000 | 25.10 | 13.2 | 43.5 | 18.4 | | 100.0 | 0.00 | HORIZONTAL | | 194.900000 | 24.10 | 13.7 | 43.5 | 19.4 | | 100.0 | 0.00 | HORIZONTAL | | 458.740000 | 31.20 | 18.6 | 46.0 | 14.8 | | 100.0 | 0.00 | HORIZONTAL | | 930.160000 | 37.70 | 25.9 | 46.0 | 8.3 | | 100.0 | 0.00 | HORIZONTAL | Test Specification: Vertical SWEEP TABLE: "test (30M-1G)" Short Description: Field Strength Start Stop Detector Meas. IF Transducer Frequency Frequency 30.0 MHz 1.0 GHz Bandw. Time MaxPeak Coupled 100 kHz 9163-2015 # MEASUREMENT RESULT: "18AR016E12 red" | 2018-2-16 01:5 | 58PM | | | | | | | | |------------------|-----------------|--------------|-----------------|--------------|------|--------------|----------------|--------------| | Frequency
MHz | Level
dBuV/m | Transd
dB | Limit
dBuV/m | Margin
dB | Det. | Height
cm | Azimuth
deg | Polarization | | 39.700000 | 27.30 | 15.7 | 40.0 | 12.7 | | 100.0 | 0.00 | VERTICAL | | 55.220000 | 26.20 | 15.1 | 40.0 | 13.8 | | 100.0 | 0.00 | VERTICAL | | 134.760000 | 23.80 | 12.6 | 43.5 | 19.7 | | 100.0 | 0.00 | VERTICAL | | 202.660000 | 25.40 | 14.0 | 43.5 | 18.1 | | 100.0 | 0.00 | VERTICAL | | 547.980000 | 32.50 | 20.3 | 46.0 | 13.5 | | 100.0 | 0.00 | VERTICAL | | 916.580000 | 38.10 | 25.8 | 46.0 | 7.9 | | 100.0 | 0.00 | VERTICAL | EUT: CH BLUETOOTH SOUNDBAR SPEAKER Tested Model: SBB-61250 Operating Condition: 8DPSK Transmitting Low Channel (2402MHz) DC 5.8V(with a adapter input AC 120V/60Hz) Comment: Test Specification: Horizontal SWEEP TABLE: "test (30M-1G)" Short Description: Fig. Field Strength Start Stop Detector Meas. IF Transducer Frequency Frequency Time Bandw. 30.0 MHz 1.0 GHz 100 kHz 9163-2015 MaxPeak Coupled ### MEASUREMENT RESULT: "18AR016E16 red" 2018-2-16 02:05PM | Frequency
MHz | Level
dBuV/m | | Limit
dBuV/m | Margin
dB | Det. | Height
cm | Azimuth
deg | Polarization | |------------------|-----------------|------|-----------------|--------------|------|--------------|----------------|--------------| | 45.520000 | 27.90 | 16.8 | 40.0 | 12.1 | | 100.0 | 0.00 | HORIZONTAL | | 61.040000 | 26.30 | 14.9 | 40.0 | 13.7 | | 100.0 | 0.00 | HORIZONTAL | | 86.260000 | 25.00 | 12.9 | 40.0 | 15.0 | | 100.0 | 0.00 | HORIZONTAL | | 200.720000 | 24.70 | 14.0 | 43.5 | 18.8 | | 100.0 | 0.00 | HORIZONTAL | | 511.120000 | 32.30 | 19.6 | 46.0 | 13.7 | | 100.0 | 0.00 | HORIZONTAL | | 935.980000 | 37.70 | 25.5 | 46.0 | 8.3 | | 100.0 | 0.00 | HORIZONTAL | | | | | | | | | | | Test Specification: Vertical SWEEP TABLE: "test (30M-1G)" Short Description: Fi Field Strength Detector Meas. Time Start ΙF Transducer Stop Bandw. Frequency Frequency 30.0 MHz 1.0 GHz MaxPeak Coupled 100 kHz 9163-2015 ## MEASUREMENT RESULT: "18AR016E13 red" 2018-2-16 02:00PM | 2010 2 10 02.0 | OLII | | | | | | | | |----------------|--------|------|--------|------|------|-------|------|--------------| | Frequency | Level | | | | Det. | _ | | Polarization | | MHz | dBuV/m | dB | dBuV/m | dB | | cm | deg | | | 45.520000 | 27.70 | 16.8 | 40.0 | 12.3 | | 100.0 | 0.00 | VERTICAL | | 59.100000 | 26.30 | 15.7 | 40.0 | 13.7 | | 100.0 | 0.00 | VERTICAL | | 117.300000 | 24.00 | 12.9 | 43.5 | 19.5 | | 100.0 | 0.00 | VERTICAL | | 202.660000 | 24.30 | 14.0 | 43.5 | 19.2 | | 100.0 | 0.00 | VERTICAL | | 549.920000 | 31.00 | 20.5 | 46.0 | 15.0 | | 100.0 | 0.00 | VERTICAL | | 920.460000 | 37.80 | 25.7 | 46.0 | 8.2 | | 100.0 | 0.00 | VERTICAL | | | | | | | | | | | Operating Condition: 8DPSK Transmitting Middle Channel (2441MHz) Comment: DC 5.8V(with a adapter input AC 120V/60Hz) Test Specification: Horizontal SWEEP TABLE: "test (30M-1G)" Short Description: Fi Start Stop Detector Field Strength Detector Meas. IF Transducer Frequency Frequency Bandw. Time MaxPeak Coupled 100 kHz 9163-2015 30.0 MHz 1.0 GHz # MEASUREMENT RESULT: "18AR016E17 red" | 2018-2-16 02:0 | 06PM | | | | | | | | |------------------|-----------------|--------------|-----------------|--------------|------|--------------|----------------|--------------| | Frequency
MHz | Level
dBuV/m | Transd
dB | Limit
dBuV/m | Margin
dB | Det. | Height
cm | Azimuth
deg | Polarization | | 41.640000 | 27.30 | 15.4 | 40.0 | 12.7 | | 100.0 | 0.00 | HORIZONTAL | | 61.040000 | 26.30 | 14.9 | 40.0 | 13.7 | | 100.0 | 0.00 | HORIZONTAL | | 86.260000 | 24.30 | 12.9 | 40.0 | 15.7 | | 100.0 | 0.00 | HORIZONTAL | | 204.600000 | 25.60 | 14.1 | 43.5 | 17.9 | | 100.0 | 0.00 | HORIZONTAL | | 549.920000 | 32.10 | 20.5 | 46.0 | 13.9 | | 100.0 | 0.00 | HORIZONTAL | | 864.200000 | 37.30 | 24.8 | 46.0 | 8.7 | | 100.0 | 0.00 | HORIZONTAL | Test Specification: Vertical SWEEP TABLE: "test (30M-1G)" Short Description: Field Strength Start Stop Detector Meas. IF Frequency Frequency Time Bandw. Transducer Frequency Frequency Time Bandw. 30.0 MHz 1.0 GHz MaxPeak Coupled 100 kHz 9163-2015 # MEASUREMENT RESULT: "18AR016E14 red" | 2018-2-16 02:0
Frequency
MHz | 02PM
Level
dBuV/m | Transd
dB | Limit
dBuV/m | Margin
dB | Det. | Height
cm | Azimuth
deg | Polarization | |------------------------------------|-------------------------|--------------|-----------------|--------------|------|--------------|----------------|--------------| | 45.520000 | 29.10 | 16.8 | 40.0 | 10.9 | | 100.0 | 0.00 | VERTICAL | | 57.160000 | 26.30 | 15.7 | 40.0 | 13.7 | | 100.0 | 0.00 | VERTICAL | | 119.240000 | 24.50 | 13.2 | 43.5 | 19.0 | | 100.0 | 0.00 | VERTICAL | | 179.380000 | 24.80 | 12.6 | 43.5 | 18.7 | | 100.0 | 0.00 | VERTICAL | | 553.800000 | 31.20 | 20.4 | 46.0 | 14.8 | | 100.0 | 0.00 | VERTICAL | | 937.920000 | 37.80 | 25.4 | 46.0 | 8.2 | | 100.0 | 0.00 | VERTICAL | Operating Condition: 8DPSK Transmitting High Channel (2480MHz) Comment: DC 5.8V(with a adapter input AC 120V/60Hz) Test Specification: Horizontal SWEEP TABLE: "test (30M-1G)" Short Description: Fi Field Strength Stop Start Detector Meas. IF Transducer Frequency Frequency Time Bandw. 30.0 MHz 1.0 GHz MaxPeak Coupled 100 kHz 9163-2015 # MEASUREMENT RESULT:
"18AR016E18_red" | 2018-2-16 02:07PM | | | | | | | | | | | |-------------------|------------------|-----------------|--------------|-----------------|--------------|------|--------------|----------------|--------------|--| | | Frequency
MHz | Level
dBuV/m | Transd
dB | Limit
dBuV/m | Margin
dB | Det. | Height
cm | Azimuth
deg | Polarization | | | | 45.520000 | 27.90 | 16.8 | 40.0 | 12.1 | | 100.0 | 0.00 | HORIZONTAL | | | | 59.100000 | 26.20 | 15.7 | 40.0 | 13.8 | | 100.0 | 0.00 | HORIZONTAL | | | | 86.260000 | 24.40 | 12.9 | 40.0 | 15.6 | | 100.0 | 0.00 | HORIZONTAL | | | | 206.540000 | 24.60 | 14.1 | 43.5 | 18.9 | | 100.0 | 0.00 | HORIZONTAL | | | | 536.340000 | 31.60 | 19.6 | 46.0 | 14.4 | | 100.0 | 0.00 | HORIZONTAL | | | | 941.800000 | 37.90 | 25.3 | 46.0 | 8.1 | | 100.0 | 0.00 | HORIZONTAL | | | | | | | | | | | | | | Test Specification: Vertical SWEEP TABLE: "test (30M-1G)" Short Description: Field Strength Start Stop Detector Meas. IF Transducer Frequency Frequency Time Bandw. 30.0 MHz 1.0 GHz MaxPeak Coupled 100 kHz 9163-2015 # MEASUREMENT RESULT: "18AR016E15 red" 2018-2-16 02:03PM | Frequency | | Transd | | _ | Det. | Height | | Polarization | |------------|--------|--------|--------|------|------|--------|------|--------------| | MHz | dBuV/m | dB | dBuV/m | dB | | cm | deg | | | 45 500000 | 0.7.40 | 4.6.0 | 40.0 | 400 | | 100 0 | | | | 45.520000 | 27.10 | 16.8 | 40.0 | 12.9 | | 100.0 | 0.00 | VERTICAL | | 59.100000 | 27.20 | 15.7 | 40.0 | 12.8 | | 100.0 | 0.00 | VERTICAL | | 86.260000 | 25.10 | 12.9 | 40.0 | 14.9 | | 100.0 | 0.00 | VERTICAL | | 202.660000 | 24.50 | 14.0 | 43.5 | 19.0 | | 100.0 | 0.00 | VERTICAL | | 555.740000 | 31.90 | 20.4 | 46.0 | 14.1 | | 100.0 | 0.00 | VERTICAL | | 871.960000 | 37.40 | 25.0 | 46.0 | 8.6 | | 100.0 | 0.00 | VERTICAL | Spurious Emissions Above 1GHz (GFSK) | Frequency | Reading | Correct | Result | Limit | Margin | Polar | Detector | |-----------|----------|---------|-------------|-------------|--------|-------|----------| | (MHz) | (dBuV/m) | dB | (dBuV/m) | (dBuV/m) | (dB) | H/V | | | | | | Low Channe | el-2402MHz | | | | | 4804 | 55.94 | -3.59 | 52.35 | 74 | -21.65 | Н | PK | | 4804 | 44.82 | -3.59 | 41.23 | 54 | -12.77 | Н | AV | | 7206 | 50.82 | -0.52 | 50.30 | 74 | -23.70 | Н | PK | | 7206 | 40.36 | -0.52 | 39.84 | 54 | -14.16 | Н | AV | | 4804 | 56.72 | -3.59 | 53.13 | 74 | -20.87 | V | PK | | 4804 | 45.89 | -3.59 | 42.30 | 54 | -11.70 | V | AV | | 7206 | 51.99 | -0.52 | 51.47 | 74 | -22.53 | V | PK | | 7206 | 44.35 | -0.52 | 43.83 | 54 | -10.17 | V | AV | | | | | Middle Chan | nel-2441MHz | | | | | 4884 | 57.36 | -3.49 | 53.87 | 74 | -20.13 | Н | PK | | 4884 | 46.14 | -3.49 | 42.65 | 54 | -11.35 | Н | AV | | 7326 | 50.60 | -0.47 | 50.13 | 74 | -23.87 | Н | PK | | 7326 | 41.12 | -0.47 | 40.65 | 54 | -13.35 | Н | AV | | 4884 | 53.83 | -3.49 | 50.34 | 74 | -23.66 | V | PK | | 4884 | 43.59 | -3.49 | 40.10 | 54 | -13.90 | V | AV | | 7326 | 51.78 | -0.47 | 51.31 | 74 | -22.69 | V | PK | | 7326 | 41.58 | -0.47 | 41.11 | 54 | -12.89 | V | AV | | | | | High Chann | el-2480MHz | | | | | 4960 | 56.62 | -3.41 | 53.21 | 74 | -20.79 | Н | PK | | 4960 | 45.61 | -3.41 | 42.20 | 54 | -11.80 | Н | AV | | 7440 | 50.87 | -0.42 | 50.45 | 74 | -23.55 | Н | PK | | 7440 | 42.02 | -0.42 | 41.60 | 54 | -12.40 | Н | AV | | 4960 | 54.66 | -3.41 | 51.25 | 74 | -22.75 | V | PK | | 4960 | 44.54 | -3.41 | 41.13 | 54 | -12.87 | V | AV | | 7440 | 52.72 | -0.42 | 52.30 | 74 | -21.70 | V | PK | | 7440 | 41.32 | -0.42 | 40.90 | 54 | -13.10 | V | AV | Note: Testing is carried out with frequency rang 9kHz to the tenth harmonics, other than listed in the table above are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured. Spurious Emissions Above 1GHz (Pi/4 DQPSK) | Frequency | Reading | Correct | Result | Limit | Margin | Polar | Detector | |-----------|----------|---------|-------------|-------------|--------|-------|----------| | (MHz) | (dBuV/m) | dB | (dBuV/m) | (dBuV/m) | (dB) | H/V | | | | | | Low Chann | el-2402MHz | | | | | 4804 | 57.52 | -3.59 | 53.93 | 74 | -20.07 | Н | PK | | 4804 | 46.4 | -3.59 | 42.81 | 54 | -11.19 | Н | AV | | 7206 | 52.4 | -0.52 | 51.88 | 74 | -22.12 | Н | PK | | 7206 | 41.94 | -0.52 | 41.42 | 54 | -12.58 | Н | AV | | 4804 | 58.3 | -3.59 | 54.71 | 74 | -19.29 | V | PK | | 4804 | 47.47 | -3.59 | 43.88 | 54 | -10.12 | V | AV | | 7206 | 53.57 | -0.52 | 53.05 | 74 | -20.95 | V | PK | | 7206 | 45.93 | -0.52 | 45.41 | 54 | -8.59 | V | AV | | | | | Middle Chan | nel-2441MHz | | | | | 4884 | 58.94 | -3.49 | 55.45 | 74 | -18.55 | Н | PK | | 4884 | 47.72 | -3.49 | 44.23 | 54 | -9.77 | Н | AV | | 7326 | 52.18 | -0.47 | 51.71 | 74 | -22.29 | Н | PK | | 7326 | 42.7 | -0.47 | 42.23 | 54 | -11.77 | Н | AV | | 4884 | 55.41 | -3.49 | 51.92 | 74 | -22.08 | V | PK | | 4884 | 45.17 | -3.49 | 41.68 | 54 | -12.32 | V | AV | | 7326 | 53.36 | -0.47 | 52.89 | 74 | -21.11 | V | PK | | 7326 | 43.16 | -0.47 | 42.69 | 54 | -11.31 | V | AV | | | | | High Chann | el-2480MHz | | | | | 4960 | 58.2 | -3.41 | 54.79 | 74 | -19.21 | Н | PK | | 4960 | 47.19 | -3.41 | 43.78 | 54 | -10.22 | Н | AV | | 7440 | 52.45 | -0.42 | 52.03 | 74 | -21.97 | Н | PK | | 7440 | 43.6 | -0.42 | 43.18 | 54 | -10.82 | Н | AV | | 4960 | 56.24 | -3.41 | 52.83 | 74 | -21.17 | V | PK | | 4960 | 46.12 | -3.41 | 42.71 | 54 | -11.29 | V | AV | | 7440 | 54.3 | -0.42 | 53.88 | 74 | -20.12 | V | PK | | 7440 | 42.9 | -0.42 | 42.48 | 54 | -11.52 | V | AV | Note: Testing is carried out with frequency rang 9kHz to the tenth harmonics, other than listed in the table above are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured. Spurious Emissions Above 1GHz (8DPSK) | Frequency | Reading | Correct | Result | Limit | Margin | Polar | Detector | |-----------|----------|---------|-------------|-------------|--------|-------|----------| | (MHz) | (dBuV/m) | dB | (dBuV/m) | (dBuV/m) | (dB) | H/V | | | | | | Low Chann | el-2402MHz | | | | | 4804 | 58.15 | -3.59 | 54.56 | 74 | -19.44 | Н | PK | | 4804 | 47.03 | -3.59 | 43.44 | 54 | -10.56 | Н | AV | | 7206 | 53.03 | -0.52 | 52.51 | 74 | -21.49 | Н | PK | | 7206 | 42.57 | -0.52 | 42.05 | 54 | -11.95 | Н | AV | | 4804 | 58.93 | -3.59 | 55.34 | 74 | -18.66 | V | PK | | 4804 | 48.1 | -3.59 | 44.51 | 54 | -9.49 | V | AV | | 7206 | 54.2 | -0.52 | 53.68 | 74 | -20.32 | V | PK | | 7206 | 46.56 | -0.52 | 46.04 | 54 | -7.96 | V | AV | | | | | Middle Chan | nel-2441MHz | | | | | 4884 | 59.57 | -3.49 | 56.08 | 74 | -17.92 | Н | PK | | 4884 | 48.35 | -3.49 | 44.86 | 54 | -9.14 | Н | AV | | 7326 | 52.81 | -0.47 | 52.34 | 74 | -21.66 | Н | PK | | 7326 | 43.33 | -0.47 | 42.86 | 54 | -11.14 | Н | AV | | 4884 | 56.04 | -3.49 | 52.55 | 74 | -21.45 | V | PK | | 4884 | 45.8 | -3.49 | 42.31 | 54 | -11.69 | V | AV | | 7326 | 53.99 | -0.47 | 53.52 | 74 | -20.48 | V | PK | | 7326 | 43.79 | -0.47 | 43.32 | 54 | -10.68 | V | AV | | | | | High Chann | el-2480MHz | | | | | 4960 | 58.83 | -3.41 | 55.42 | 74 | -18.58 | Н | PK | | 4960 | 47.82 | -3.41 | 44.41 | 54 | -9.59 | Н | AV | | 7440 | 53.08 | -0.42 | 52.66 | 74 | -21.34 | Н | PK | | 7440 | 44.23 | -0.42 | 43.81 | 54 | -10.19 | Н | AV | | 4960 | 56.87 | -3.41 | 53.46 | 74 | -20.54 | V | PK | | 4960 | 46.75 | -3.41 | 43.34 | 54 | -10.66 | V | AV | | 7440 | 54.93 | -0.42 | 54.51 | 74 | -19.49 | V | PK | | 7440 | 43.53 | -0.42 | 43.11 | 54 | -10.89 | V | AV | Note: Testing is carried out with frequency rang 9kHz to the tenth harmonics, other than listed in the table above are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured. #### 11. Out of Band Emissions #### 11.1 Standard Applicable According to §15.247 (d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a). #### 11.2 Test Procedure According to ANSI C63.10-2013 section 7.8.6, the Band-edge measurements for RF conducted emissions test method as follows. - a) Connect the EMI receiver or spectrum analyzer to the EUT using an appropriate RF cable connected to the EUT output. Configure the spectrum analyzer settings as described in step e) (be sure to enter all losses between the unlicensed wireless device output and the spectrum analyzer). - b) Set the EUT to the lowest frequency channel (for the hopping on test, the hopping sequence shall include the lowest frequency channel). - c) Set the EUT to operate at maximum output power and 100% duty cycle, or equivalent "normal mode of operation" as specified in 6.10.3. - d) If using the radiated method, then use the applicable procedure(s) of 6.4, 6.5, or 6.6, and orient the EUT and measurement antenna positions to produce the highest emission level. - e) Perform the test as follows: - 1) Span: Wide enough to capture the peak level of the emission operating on the channel closest to the band edge, as well as any modulation products that fall outside of the authorized band of operation. - 2) Reference level: As required to keep the signal from exceeding the maximum instrument input mixer
level for linear operation. In general, the peak of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level. Specific guidance is given in 4.1.5.2. - 3) Attenuation: Auto (at least 10 dB preferred). - 4) Sweep time: Coupled. - 5) Resolution bandwidth: 100 kHz. - 6) Video bandwidth: 300 kHz. - 7) Detector: Peak.8) Trace: Max hold. - f) Allow the trace to stabilize. For the test with the hopping function turned ON, this can take several minutes to achieve a reasonable probability of intercepting any emissions due to oscillator overshoot. - g) Set the marker on the emission at the band edge, or on the highest modulation product outside of the band, if this level is greater than that at the band edge. Enable the marker-delta function, and then use the marker-to-peak function to move the marker to the peak of the in-band emission. - h) Repeat step c) through step e) for every applicable modulation. - i) Set the EUT to the highest frequency channel (for the hopping on test, the hopping sequence shall include the highest frequency channel) and repeat step c) through step d). - j) The band-edge measurement shall be reported by providing plot(s) of the measuring instrument display; the plot axes and the scale units per division shall be clearly labeled. Tabular data may be reported in addition to the plot(s). Restricted-band band-edge test method please refers to ANSI C63.10-2013 section 6.10.5. The emission must comply with the 15.209 limit for fall in the restricted bands listed in section 15.205. Note that the method of measurement KDB publication number: 913591 may be used for the radiated band-edge measurements. According to ANSI C63.10-2013 section 7.8.8, Conducted spurious emissions shall be measured for the transmit frequency, per 5.5 and 5.6, and at the maximum transmit powers. Connect the primary antenna port through an attenuator to the spectrum analyzer input; in the results, account for all losses between the unlicensed wireless device output and the spectrum analyzer. The instrument shall span 30 MHz to 10 times the operating frequency in GHz, with a resolution bandwidth of 100 kHz, video bandwidth of 300 kHz, and a coupled sweep time with a peak detector. The band 30 MHz to the highest frequency may be split into smaller spans, as long as the entire spectrum is covered. #### 11.3 Environmental Conditions | Temperature: | 23°C | |--------------------|-----------| | Relative Humidity: | 54% | | ATM Pressure: | 1011 mbar | #### 11.4 Summary of Test Results/Plots Band edge (Radiated) Lowest Band edge Horizontal (GFSK) SWEEP TABLE: "test (1M-7G)" Short Description: Field Strength Start Stop Detector Meas. IF Time Bandw. Frequency Frequency Time Bandw. 1.0 GHz 7.0 GHz MaxPeak Coupled 100 kHz BBHA 9120A NEW Transducer Average #### MEASUREMENT RESULT: "18AR016E21 red" | 2018-2-16 02:2 | 8PM | | | | | | | | |------------------|-----------------|--------------|-----------------|--------------|------|--------------|----------------|--------------| | Frequency
MHz | Level
dBuV/m | Transd
dB | Limit
dBuV/m | Margin
dB | Det. | Height
cm | Azimuth
deg | Polarization | | 2319.000000 | 29.90 | -4.1 | 74.0 | 44.1 | | 100.0 | 0.00 | HORIZONTAL | | 2340.400000 | 29.20 | -4.1 | 74.0 | 44.8 | | 100.0 | 0.00 | HORIZONTAL | | 2363.000000 | 28.80 | -4.1 | 74.0 | 45.2 | | 100.0 | 0.00 | HORIZONTAL | | 2377.800000 | 29.80 | -4.1 | 74.0 | 44.2 | | 100.0 | 0.00 | HORIZONTAL | | 2400.800000 | 33.90 | -4.0 | 74.0 | 40.1 | | 100.0 | 0.00 | HORIZONTAL | | 2402.200000 | 61.70 | -4.0 | 74.0 | 12.3 | | 100.0 | 0.00 | HORIZONTAL | | | | | | | | | | | #### MEASUREMENT RESULT: "18AR016E21 red2" | 2018-2-16 02:2 | 28PM | | | | | | | | |----------------|--------|--------|--------|--------|------|--------|---------|--------------| | Frequency | Level | Transd | Limit | Margin | Det. | Height | Azimuth | Polarization | | MHz | dBuV/m | dB | dBuV/m | dB | | cm | deg | | | | | | | | | | | | | 2316.400000 | 25.50 | -4.1 | 54.0 | 28.5 | | 100.0 | 0.00 | HORIZONTAL | | 2337.600000 | 25.40 | -4.1 | 54.0 | 28.6 | | 100.0 | 0.00 | HORIZONTAL | | 2364.200000 | 25.70 | -4.1 | 54.0 | 28.3 | | 100.0 | 0.00 | HORIZONTAL | | 2382.600000 | 25.80 | -4.1 | 54.0 | 28.2 | | 100.0 | 0.00 | HORIZONTAL | | 2401.600000 | 45.10 | -4.0 | 54.0 | 8.9 | | 100.0 | 0.00 | HORIZONTAL | | 2402.200000 | 59.60 | -4.0 | 54.0 | -5.6 | | 100.0 | 0.00 | HORIZONTAL | ## Highest Bandedge Horizontal (GFSK) SWEEP TABLE: "test (1M-7G)" Short Description: Field Strength Start Stop Detector Meas. IF Transducer Time Bandw. Time Bandw. Time Bandw. BBHA 9120A Frequency Frequency Time Bandw. 1.0 GHz 7.0 GHz MaxPeak Coupled 100 kHz BBHA 9120A NEW Average ### MEASUREMENT RESULT: "18AR016E22_red" | 2018-2-16 02: | 38PM | | | | | | | | |------------------|-----------------|--------------|-----------------|--------------|------|--------------|----------------|--------------| | Frequency
MHz | Level
dBuV/m | Transd
dB | Limit
dBuV/m | Margin
dB | Det. | Height
cm | Azimuth
deg | Polarization | | 2479.550000 | 37.60 | -3.4 | 74.0 | 36.4 | | 100.0 | 0.00 | HORIZONTAL | | 2479.850000 | 58.00 | -3.4 | 74.0 | 16.0 | | 100.0 | 0.00 | HORIZONTAL | | 2480.050000 | 57.40 | -3.4 | 74.0 | 16.6 | | 100.0 | 0.00 | HORIZONTAL | | 2480.150000 | 54.80 | -3.4 | 74.0 | 19.2 | | 100.0 | 0.00 | HORIZONTAL | | 2480.450000 | 41.50 | -3.4 | 74.0 | 32.5 | | 100.0 | 0.00 | HORIZONTAL | | 2488.950000 | 30.80 | -3.3 | 74.0 | 43.2 | | 100.0 | 0.00 | HORIZONTAL | #### MEASUREMENT RESULT: "18AR016E22 red2" | 2018-2-16 02: | 38PM | | | | | | | | |------------------|-----------------|--------------|-----------------|--------------|------|--------------|----------------|--------------| | Frequency
MHz | Level
dBuV/m | Transd
dB | Limit
dBuV/m | Margin
dB | Det. | Height
cm | Azimuth
deg | Polarization | | 2479.450000 | 35.40 | -3.4 | 54.0 | 18.6 | | 100.0 | 0.00 | HORIZONTAL | | 2479.850000 | 57.40 | -3.4 | 54.0 | -3.4 | | 100.0 | 0.00 | HORIZONTAL | | 2480.400000 | 39.60 | -3.4 | 54.0 | 14.4 | | 100.0 | 0.00 | HORIZONTAL | | 2480.550000 | 35.80 | -3.4 | 54.0 | 18.2 | | 100.0 | 0.00 | HORIZONTAL | | 2488.950000 | 30.40 | -3.3 | 54.0 | 23.6 | | 100.0 | 0.00 | HORIZONTAL | | 2492.550000 | 29.50 | -3.3 | 54.0 | 24.5 | | 100.0 | 0.00 | HORIZONTAL | #### Lowest Band edge #### Horizontal (Pi/4 DQPSK) ### SWEEP TABLE: "test (1M-7G)" Short Description: Field Strength Start Stop Detector Meas. IF Transducer Frequency Frequency Time Bandw. 1.0 GHz 7.0 GHz MaxPeak Coupled 100 kHz BBHA 9120A NEW Average ### MEASUREMENT RESULT: "18AR016E23_red" | 2018-2-16 02:
Frequency
MHz | 31PM
Level
dBuV/m | Transd
dB | Limit
dBuV/m | Margin
dB | Det. | Height
cm | Azimuth
deg | Polarization | |-----------------------------------|-------------------------|--------------|-----------------|--------------|------|--------------|----------------|--------------| | 2322.200000 | 29.60 | -4.1 | 74.0 | 44.4 | | 100.0 | 0.00 | HORIZONTAL | | 2343.400000 | 29.00 | -4.1 | 74.0 | 45.0 | | 100.0 | 0.00 | HORIZONTAL | | 2359.800000 | 29.00 | -4.1 | 74.0 | 45.0 | | 100.0 | 0.00 | HORIZONTAL | | 2379.800000 | 29.00 | -4.1 | 74.0 | 45.0 | | 100.0 | 0.00 | HORIZONTAL | | 2400.800000 | 31.60 | -4.0 | 74.0 | 42.4 | | 100.0 | 0.00 | HORIZONTAL | | 2402.000000 | 62.50 | -4.0 | 74.0 | 11.5 | | 100.0 | 0.00 | HORIZONTAL | #### MEASUREMENT RESULT: "18AR016E23 red2" | 2018-2-16 02:3
Frequency
MHz | B1PM
Level
dBuV/m | Transd
dB | Limit
dBuV/m | Margin
dB | Det. | Height
cm | Azimuth
deg | Polarization | |--|--|--------------------------------------|--|--|------|---|--------------------------------------|--| | 2320.200000
2332.800000
2343.400000
2375.800000
2379.800000
2402.000000 | 27.00
25.60
26.40
26.30
26.50
60.60 | -4.1
-4.1
-4.1
-4.1
-4.1 | 54.0
54.0
54.0
54.0
54.0
54.0 | 27.0
28.4
27.6
27.7
27.5
-6.6 | | 100.0
100.0
100.0
100.0
100.0 | 0.00
0.00
0.00
0.00
0.00 | HORIZONTAL
HORIZONTAL
HORIZONTAL
HORIZONTAL
HORIZONTAL
HORIZONTAL | #### Highest Bandedge #### Horizontal (Pi/4 DQPSK) SWEEP TABLE: "test (1M-7G)" Short Description: Field Strength Start Stop Detector Meas. IF Transducer Time Bandw. Frequency Frequency Time Bandw. 1.0 GHz 7.0 GHz MaxPeak Coupled 100 kHz BBHA 9120A NEW Average #### MEASUREMENT RESULT: "18AR016E24_red" | 2018-2-16 02: | 41PM | | | | | | | | |------------------|-----------------|--------------|-----------------|--------------|------|--------------|----------------|--------------| | Frequency
MHz | Level
dBuV/m | Transd
dB | Limit
dBuV/m | Margin
dB | Det. | Height
cm | Azimuth
deg | Polarization | | 2479.450000 | 33.20 | -3.4 | 74.0 | 40.8 | | 100.0 | 0.00 | HORIZONTAL | | 2479.850000 | 57.70 | -3.4 | 74.0 | 16.3 | | 100.0 | 0.00 | HORIZONTAL | | 2480.150000 | 56.20 | -3.4 | 74.0 | 17.8 | | 100.0 | 0.00 | HORIZONTAL | | 2480.350000 | 45.60 | -3.4 | 74.0 | 28.4 | | 100.0 | 0.00 | HORIZONTAL | | 2491.850000 | 29.60 | -3.3 | 74.0 | 44.4 | | 100.0 | 0.00 | HORIZONTAL | | 2499.050000 | 29.10 | -3.2 | 74.0 | 44.9 | | 100.0 | 0.00 | HORIZONTAL | ### MEASUREMENT RESULT: "18AR016E24_red2" | 2018-2-16 02: | 41PM | | | | | | | | |------------------|-----------------|--------------|-----------------|--------------|------|--------------|----------------|--------------| | Frequency
MHz | Level
dBuV/m | Transd
dB | Limit
dBuV/m | Margin
dB | Det. | Height
cm | Azimuth
deg | Polarization | | 2479.450000 | 31.70 | -3.4 | 54.0 | 22.3 | |
100.0 | 0.00 | HORIZONTAL | | 2479.850000 | 56.90 | -3.4 | 54.0 | -2.9 | | 100.0 | 0.00 | HORIZONTAL | | 2480.150000 | 55.20 | -3.4 | 54.0 | -1.2 | | 100.0 | 0.00 | HORIZONTAL | | 2480.350000 | 45.40 | -3.4 | 54.0 | 8.6 | | 100.0 | 0.00 | HORIZONTAL | | 2491.850000 | 28.10 | -3.3 | 54.0 | 25.9 | | 100.0 | 0.00 | HORIZONTAL | | 2499.050000 | 29.00 | -3.2 | 54.0 | 25.0 | | 100.0 | 0.00 | HORIZONTAL | #### Lowest Band edge #### Horizontal (8DPSK) SWEEP TABLE: "test (1M-7G)" Short Description: Field Strength Start Stop Detector Meas. IF Transducer Frequency Frequency Time Bandw. 1.0 GHz 7.0 GHz MaxPeak Coupled 100 kHz BBHA 9120A NEW Average #### MEASUREMENT RESULT: "18AR016E25 red" | 2018-2-16 02: | 33PM | | | | | | | | |------------------|-----------------|--------------|-----------------|--------------|------|--------------|----------------|--------------| | Frequency
MHz | Level
dBuV/m | Transd
dB | Limit
dBuV/m | Margin
dB | Det. | Height
cm | Azimuth
deg | Polarization | | 2316.600000 | 28.60 | -4.1 | 74.0 | 45.4 | | 100.0 | 0.00 | HORIZONTAL | | 2332.400000 | 28.30 | -4.1 | 74.0 | 45.7 | | 100.0 | 0.00 | HORIZONTAL | | 2343.600000 | 29.50 | -4.1 | 74.0 | 44.5 | | 100.0 | 0.00 | HORIZONTAL | | 2374.200000 | 28.40 | -4.1 | 74.0 | 45.6 | | 100.0 | 0.00 | HORIZONTAL | | 2377.800000 | 29.50 | -4.1 | 74.0 | 44.5 | | 100.0 | 0.00 | HORIZONTAL | | 2402.200000 | 61.60 | -4.0 | 74.0 | 12.4 | | 100.0 | 0.00 | HORIZONTAL | #### MEASUREMENT RESULT: "18AR016E25 red2" | 2018-2-16 02:3
Frequency
MHz | 33PM
Level
dBuV/m | Transd
dB | Limit
dBuV/m | Margin
dB | Det. | Height
cm | Azimuth
deg | Polarization | |------------------------------------|-------------------------|--------------|-----------------|--------------|------|--------------|----------------|--------------| | 2336.800000 | 26.60 | -4.1 | 54.0 | 27.4 | | 100.0 | 0.00 | HORIZONTAL | | | | -4.1 | | | | | 0.00 | | | 2348.200000 | 25.90 | -4.1 | 54.0 | 28.1 | | 100.0 | 0.00 | HORIZONTAL | | 2374.200000 | 25.30 | -4.1 | 54.0 | 28.7 | | 100.0 | 0.00 | HORIZONTAL | | 2389.400000 | 26.40 | -4.1 | 54.0 | 27.6 | | 100.0 | 0.00 | HORIZONTAL | | 2401.800000 | 43.10 | -4.0 | 54.0 | 10.9 | | 100.0 | 0.00 | HORIZONTAL | | 2402.200000 | 59.50 | -4.0 | 54.0 | -5.5 | | 100.0 | 0.00 | HORTZONTAL | #### Highest Bandedge #### Horizontal (8DPSK) SWEEP TABLE: "test (1M-7G)" Short Description: Field Strength Start Stop Detector Meas. IF Transducer Time Bandw. Frequency Frequency Time Bandw. 1.0 GHz 7.0 GHz MaxPeak Coupled 100 kHz BBHA 9120A NEW Average #### MEASUREMENT RESULT: "18AR016E26 red" | 2018-2-16 02: | 42PM | | | | | | | | |------------------|-----------------|--------------|-----------------|--------------|------|--------------|----------------|--------------| | Frequency
MHz | Level
dBuV/m | Transd
dB | Limit
dBuV/m | Margin
dB | Det. | Height
cm | Azimuth
deg | Polarization | | 2479.500000 | 35.60 | -3.4 | 74.0 | 38.4 | | 100.0 | 0.00 | HORIZONTAL | | 2479.850000 | 57.80 | -3.4 | 74.0 | 16.2 | | 100.0 | 0.00 | HORIZONTAL | | 2484.150000 | 28.90 | -3.3 | 74.0 | 45.1 | | 100.0 | 0.00 | HORIZONTAL | | 2490.750000 | 28.70 | -3.3 | 74.0 | 45.3 | | 100.0 | 0.00 | HORIZONTAL | | 2495.250000 | 28.60 | -3.2 | 74.0 | 45.4 | | 100.0 | 0.00 | HORIZONTAL | | 2497.000000 | 28.50 | -3.2 | 74.0 | 45.5 | | 100.0 | 0.00 | HORIZONTAL | #### MEASUREMENT RESULT: "18AR016E26 red2" | 2018-2-16 02:4
Frequency
MHz | Level
dBuV/m | Transd
dB | Limit
dBuV/m | Margin
dB | Det. | Height
cm | Azimuth
deg | Polarization | |------------------------------------|-----------------|--------------|-----------------|--------------|--------------------|--------------|----------------|--------------| | 2478.000000 | 27.70 | -3.4 | 54.0 | 26.3 | | 100.0 | 0.00 | HORIZONTAL | | 2479.500000 | 34.80 | -3.4 | 54.0 | 19.2 | | 100.0 | 0.00 | HORIZONTAL | | 2479.850000 | 57.00 | -3.4 | 54.0 | -3.0 | | 100.0 | 0.00 | HORIZONTAL | | 2484.150000 | 28.30 | -3.3 | 54.0 | 25.7 | | 100.0 | 0.00 | HORIZONTAL | | 2492.850000 | 27.50 | -3.3 | 54.0 | 26.5 | | 100.0 | 0.00 | HORIZONTAL | | 2497.000000 | 27.60 | -3.2 | 54.0 | 26.4 | : <u>100001145</u> | 100.0 | 0.00 | HORIZONTAL | | | | | | | | | | | # Band edge (Conducted) Lowest (GFSK) FCC Part 15.247 #### Middle Channel FCC Part 15.247 #### Highest ## Band edge (Conducted) Lowest (Pi/4 DQPSK) #### Middle Channel #### Highest # Bandedge (Conducted) Lowest (8DPSK) #### Middle Channel #### Highest Band edge with Hopping on: Lowest Band edge (Worst case: GFSK) #### Highest Band edge ### 12. Conducted Emissions #### **12.1 Test Procedure** The setup of EUT is according with per ANSI C63.10-2013 measurement procedure. The specification used was with the FCC Part 15.207 Limit. The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle. The spacing between the peripherals was 10 cm. ### 12.2 Basic Test Setup Block Diagram #### 12.3 Environmental Conditions | Temperature: | 25 °C | |--------------------|-----------| | Relative Humidity: | 52% | | ATM Pressure: | 1012 mbar | # 12.4 Test Receiver Setup During the conducted emission test, the test receiver was set with the following configurations: | Start Frequency | . 150 kHz | |------------------------------|-----------| | Stop Frequency | . 30 MHz | | Sweep Speed | . Auto | | IF Bandwidth | . 10 kHz | | Quasi-Peak Adapter Bandwidth | . 9 kHz | | Quasi-Peak Adapter Mode | . Normal | # 12.5 Summary of Test Results/Plots We test all the modes, and the mode of charging & BT Transmitting has the *worst* margin. ### 12.6 Conducted Emissions Test Data #### **Plot of Conducted Emissions Test Data** EUT: CH BLUETOOTH SOUNDBAR SPEAKER Tested Model: SBB-61250 Operating Condition: Charging & BT Transmitting GFSK Comment: DC 5.8V(with a adapter input AC 120V/60Hz) Test Specification: Neutral #### SCAN TABLE: "Voltage (150K-30M) FIN" Short Description: 150K-30M Voltage #### MEASUREMENT RESULT: "18AR016E12_fin" | 2/16/2018 1 | 1:27AM | | | | | | | |-------------|--------|--------|-------|--------|----------|------|-----| | Frequency | Level | Transd | Limit | Margin | Detector | Line | PE | | MHz | dB | dB | dB | dB | | | | | | | | | | | | | | 0.610000 | 50.90 | 10.4 | 56 | 5.1 | QP | N | GND | | 0.640000 | 50.60 | 10.4 | 56 | 5.4 | QP | N | GND | | 0.675000 | 49.30 | 10.3 | 56 | 6.7 | QP | N | GND | | 4.350000 | 42.50 | 13.3 | 56 | 13.5 | QP | N | GND | | 4.620000 | 42.30 | 13.4 | 56 | 13.7 | QP | N | GND | ## MEASUREMENT RESULT: "18AR016E12_fin2" | 2/16/2018 11:
Frequency
MHz | :27AM
Level
dB | Transd
dB | Limit
dB | Margin
dB | Detector | Line | PE | |-----------------------------------|----------------------|--------------|-------------|--------------|----------|------|-----| | 0.465000 | 36.60 | 10.8 | 47 | 10.0 | AV | N | GND | | 0.605000 | 42.30 | 10.4 | 46 | 3.7 | AV | N | GND | | 0.610000 | 42.20 | 10.4 | 46 | 3.8 | AV | N | GND | | 0.645000 | 41.10 | 10.4 | 46 | 4.9 | AV | N | GND | | 0.675000 | 40.00 | 10.3 | 46 | 6.0 | AV | N | GND | | 1.460000 | 32.60 | 12.0 | 46 | 13.4 | AV | N | GND | Test Specification: Line SCAN TABLE: "Voltage (150K-30M) FIN" Short Description: 150K-30M Voltage #### MEASUREMENT RESULT: "18AR016E13_fin" | 2/16/2018 11 | L:44AM | | | | | | | |--------------|--------|--------|-------|--------|----------|------|-----| | Frequency | Level | Transd | Limit | Margin | Detector | Line | PE | | MHz | dB | dB | dB | dB | | | | | | | | | | | | | | 0.610000 | 45.40 | 10.4 | 56 | 10.6 | QP | L1 | GND | | 0.615000 | 43.60 | 10.4 | 56 | 12.4 | QP | L1 | GND | | 0.645000 | 42.40 | 10.4 | 56 | 13.6 | QP | L1 | GND | | 0.680000 | 42.10 | 10.3 | 56 | 13.9 | QP | L1 | GND | | 7.815000 | 41.40 | 13.6 | 60 | 18.6 | QP | L1 | GND | | 8.635000 | 41.40 | 13.6 | 60 | 18.6 | QP | L1 | GND | #### MEASUREMENT RESULT: "18AR-0160E13_fin2" | 2/16/2018 11 | :44AM | | | | | | | |--------------|-------|--------|-------|--------|----------|------|-----| | Frequency | Level | Transd | Limit | Margin | Detector | Line | PE | | MHz | dB | dB | dB | dB | | | | | | | | | | | | | | 0.465000 | 32.10 | 10.8 | 47 | 14.5 | AV | L1 | GND | | 0.610000 | 37.40 | 10.4 | 46 | 8.6 | AV | L1 | GND | | 0.640000 | 34.50 | 10.4 | 46 | 11.5 | AV | L1 | GND | | 0.680000 | 34.80 | 10.3 | 46 | 11.2 | AV | L1 | GND | | 0.965000 | 28.80 | 10.4 | 46 | 17.2 | AV | L1 | GND | #### **Plot of Conducted Emissions Test Data** EUT: CH BLUETOOTH SOUNDBAR SPEAKER Tested Model: SBB-61250 Operating Condition: Charging & BT Transmitting pi/4 DQPSK Comment: DC 5.8V(with a adapter input AC 120V/60Hz) Test Specification: Neutral #### SCAN TABLE: "Voltage (150K-30M) FIN" Short Description: 150K-30M Voltage ### MEASUREMENT RESULT: "18AR016E14_fin" | 2/16/2018 11: | 29AM | | | | | | | |---------------|-------|--------|-------|--------|----------|------|-----| | Frequency | Level | Transd | Limit | Margin | Detector | Line | PE | | MHz | dB | dB | dB | dB | | | | | | | | | | | | | | 0.610000 | 51.70 | 10.4 | 56 | 4.3 | QP | N | GND | | 0.640000 | 51.30 | 10.4 | 56 | 4.7 | QP | N | GND | | 0.675000 | 49.70 | 10.3 | 56 | 6.3 | QP | N | GND | | 2.215000 | 44.40 | 13.0 | 56 | 11.6 | QP | N | GND | | 4.320000 | 42.90 | 13.3 | 56 | 13.1 | QP | N | GND | #### MEASUREMENT RESULT: "18AR016E14_fin2" | 29AM | | | | | | | |-------|--|--|--|---|--|--| | Level | Transd | Limit | Margin |
Detector | Line | PE | | dB | dB | dB | dB | | | | | | | | | | | | | 37.70 | 10.8 | 47 | 8.9 | AV | N | GND | | 43.30 | 10.4 | 46 | 2.7 | AV | N | GND | | 43.70 | 10.4 | 46 | 2.3 | AV | N | GND | | 41.70 | 10.4 | 46 | 4.3 | AV | N | GND | | 41.80 | 10.3 | 46 | 4.2 | AV | N | GND | | 33.00 | 10.3 | 46 | 13.0 | AV | N | GND | | | Level dB 37.70 43.30 43.70 41.70 41.80 | Level Transd dB 37.70 10.8 43.30 10.4 43.70 10.4 41.70 10.4 41.80 10.3 | Level Transd Limit dB dB dB dB 37.70 10.8 47 43.30 10.4 46 43.70 10.4 46 41.70 10.4 46 41.80 10.3 46 | Level Transd Limit Margin dB dB dB dB 37.70 10.8 47 8.9 43.30 10.4 46 2.7 43.70 10.4 46 2.3 41.70 10.4 46 4.3 41.80 10.3 46 4.2 | Level Transd Limit Margin Detector dB dB dB dB dB AV 37.70 10.8 47 8.9 AV 43.30 10.4 46 2.7 AV 43.70 10.4 46 2.3 AV 41.70 10.4 46 4.3 AV 41.80 10.3 46 4.2 AV | Level Transd Limit Margin Detector Line dB dB dB dB dB N N N N N N N N N N N N | Test Specification: Line SCAN TABLE: "Voltage (150K-30M) FIN" Short Description: 150K-30M Voltage #### MEASUREMENT RESULT: "18AR016E15_fin" | 2/ | 16/2018 11: | 41AM | | | | | | | |----|-------------|-------|--------|-------|--------|----------|------|-----| | | Frequency | Level | Transd | Limit | Margin | Detector | Line | PE | | | MHz | dB | dB | dB | dB | | | | | | | | | | | | | | | | 0.610000 | 45.50 | 10.4 | 56 | 10.5 | QP | L1 | GND | | | 0.640000 | 42.90 | 10.4 | 56 | 13.1 | QP | L1 | GND | | | 0.680000 | 42.00 | 10.3 | 56 | 14.0 | QP | L1 | GND | | | 4.870000 | 36.00 | 13.4 | 56 | 20.0 | QP | L1 | GND | | | 7.900000 | 40.10 | 13.6 | 60 | 19.9 | QP | L1 | GND | # MEASUREMENT RESULT: "18AR016E15_fin2" | 2/16/2018 11: | :41AM | | | | | | | |---------------|-------|--------|-------|--------|----------|------|-----| | Frequency | Level | Transd | Limit | Margin | Detector | Line | PE | | MHz | dB | dB | dB | dB | | | | | | | | | | | | | | 0.465000 | 31.70 | 10.8 | 47 | 14.9 | AV | L1 | GND | | 0.610000 | 37.50 | 10.4 | 46 | 8.5 | AV | L1 | GND | | 0.645000 | 34.80 | 10.4 | 46 | 11.2 | AV | L1 | GND | | 0.715000 | 33.20 | 10.3 | 46 | 12.8 | AV | L1 | GND | | 1.210000 | 25.30 | 11.2 | 46 | 20.7 | AV | L1 | GND | #### **Plot of Conducted Emissions Test Data** EUT: CH BLUETOOTH SOUNDBAR SPEAKER Tested Model: SBB-61250 Operating Condition: Charging & BT Transmitting 8DPSK DC 5.8V(with a adapter input AC 120V/60Hz) Comment: Test Specification: Neutral # SCAN TABLE: "Voltage (150K-30M) FIN" Short Description: 150K-30M 150K-30M Voltage #### MEASUREMENT RESULT: "18AR016E18 fin" | 2/ | 16/2018 11:
Frequency
MHz | 35AM
Level
dB | Transd
dB | Limit
dB | Margin
dB | Detector | Line | PE | |----|---------------------------------|---------------------|--------------|-------------|--------------|----------|------|-----| | | 0.605000 | 53.20 | 10.4 | 56 | 2.8 | QP | N | GND | | | 0.610000 | 53.20 | 10.4 | 56 | 2.8 | QP | N | GND | | | 0.640000 | 51.90 | 10.4 | 56 | 4.1 | QP | N | GND | | | 0.675000 | 50.30 | 10.3 | 56 | 5.7 | QP | N | GND | | | 1.965000 | 45.90 | 13.2 | 56 | 10.1 | QP | N | GND | | | 4.115000 | 44.00 | 13.3 | 56 | 12.0 | QP | N | GND | #### MEASUREMENT RESULT: "18AR016E18 fin2" | 2/16/2018 | 11:35AM | | | | | | | |-----------|----------|----------|-------|--------|----------|------|-----| | Frequen | cy Leve. | l Transd | Limit | Margin | Detector | Line | PE | | M | Hz dB | dB | dB | dB | | | | | | | | | | | | | | 0.4650 | 00 39.1 | 0 10.8 | 47 | 7.5 | AV | N | GND | | 0.6100 | 00 44.9 | 0 10.4 | 46 | 1.1 | AV | N | GND | | 0.6800 | 00 42.6 | 0 10.3 | 46 | 3.4 | AV | N | GND | Test Specification: Line # SCAN TABLE: "Voltage (150K-30M) FIN" Short Description: 150K-30M 150K-30M Voltage ## MEASUREMENT RESULT: "18AR016E17 fin" | 2/16/2018 | 11:39AM | | | | | | | |-----------|---------|-----------|-------|--------|----------|------|-----| | Frequen | cy Lev | el Transd | Limit | Margin | Detector | Line | PE | | M | Hz dB | dB | dB | dB | | | | | | | | | | | | | | 0.6050 | 00 44. | 60 10.4 | 56 | 11.4 | QP | L1 | GND | | 0.6100 | 00 45. | 20 10.4 | 56 | 10.8 | QP | L1 | GND | | 0.6400 | 00 42. | 90 10.4 | 56 | 13.1 | QP | L1 | GND | | 0.6800 | 00 41. | 90 10.3 | 56 | 14.1 | QP | L1 | GND | | 2.1300 | 00 36. | 20 13.1 | 56 | 19.8 | QP | L1 | GND | | 7.3500 | 00 39. | 70 13.5 | 60 | 20.3 | QP | L1 | GND | #### MEASUREMENT RESULT: "18AR016E17_fin2" | 2 | /16/2018 11: | 39AM | | | | | | | |---|--------------|-------|--------|-------|--------|----------|------|-----| | | Frequency | Level | Transd | Limit | Margin | Detector | Line | PE | | | MHz | dB | dB | dB | dB | | | | | | | | | | | | | | | | 0.465000 | 31.40 | 10.8 | 47 | 15.2 | AV | L1 | GND | | | 0.610000 | 37.10 | 10.4 | 46 | 8.9 | AV | L1 | GND | | | 0.640000 | 33.80 | 10.4 | 46 | 12.2 | AV | L1 | GND | | | 0.680000 | 34.60 | 10.3 | 46 | 11.4 | AV | L1 | GND | | | 7.775000 | 29.40 | 13.6 | 50 | 20.6 | AV | L1 | GND | ***** END OF REPORT *****