

TEST REPORT

EMC Test for LCWB-008

APPLICANT LG Electronics Inc.

REPORT NO. HCT-EM-2501-FC004

DATE OF ISSUE January 24, 2025

> **Tested by** Jang-Ho Park

Technical Manager Jeong-Hyun Choi

Jang Zha

1/23

Accredited by KOLAS, Republic of KOREA

HCT CO., LTD. Bonejai Huh BongJai Huh **I** CEO

F-TP22-03(Rev.06)

The report shall not be (partly) reproduced except in full without approval of the laboratory. HCT CO., LTD. 2-6, 73, 74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, Republic of Korea Tel. +82 31 645 6300 Fax. +82 31 645 6401

HCT CO.,LTD.

2-6, 73, 74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, Republic of Korea Tel. +82 31 645 6300 Fax. +82 31 645 6401

TEST REPORT FCC SDoC	REPORT NO. HCT-EM-2501-FC004 DATE OF ISSUE January 24, 2025 FCC ID. BEJ-LCWB008
Applicant	LG Electronics Inc. 170, Seongsan Pachong-ro, Seongsan-gu, Changwon-si, Gyeongsangnam-do 51533, Republic of Korea
Product Name Model Name	RF Module LCWB-008
Date of Test	01.11.2025
Location of Test	Permanent Testing Lab On Site Testing Lab (Address: See clause 1.2)
Test Standard Used	FCC CFR 47 PART 15 Subpart B Class B ANSI C63.4-2014
Test Results	Refer to the present document
Manufacturer Brand Name	LG Electronics Inc. LG

REVISION HISTORY

The revision history for this test report is shown in table.

Revision No.	Date of Issue	Description	
0	January 24, 2025	Initial Release	

Notice

Content

The results shown in this test report only apply to the sample(s), as received, provided by the applicant, unless otherwise stated.

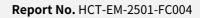
The test results have only been applied with the test methods required by the standard(s).

The laboratory is not accredited for the test results marked *.

Information provided by the applicant is marked **.

Test results provided by external providers are marked ***.

When confirmation of authenticity of this test report is required, please contact www.hct.co.kr


This test report provides test result(s) under the scope accredited by the Korea Laboratory Accreditation Scheme (KOLAS), which signed the ILAC-MRA.

(KOLAS (KS Q ISO/IEC 17025) Accreditation No. KT197)

CONTENTS

1. TE	ESTING LABORATORY	5
	1.1 General Information	5
	1.2 Location of the Test Site	5
2. GI	ENERAL INFORMATION	6
	2.1 Description of EUT	6
	2.2 Power Source	6
	2.3 Tested System Details	7
	2.4 Cable Description	7
	2.5 Noise Suppression Parts on Cable (I/O Cable)	7
	2.6 Test Facility	8
	2.7 Calibration of Measuring Instrument	8
	2.8 Measurement Uncertainty	8
3. DI	ESCRIPTION OF TEST	9
	3.1 Measurement of Conducted Emission	9
	3.2 Antenna Conducted Power Measurements	10
	3.3 Measurement of Radiated Emission	11
	3.4 Configuration of Tested System	12
4. 0	PERATION OF THE EUT	13
5. M	EASURING INSTRUMENTS	14
6. EN	MISSION TEST SUMMARY	15
	6.1 Conducted Emission	15
	6.2 Antenna Conducted Power Emission	16
	6.3 Radiated Emission Below 1 GHz	16
	6.4 Radiated Emission Above 1 GHz	20
APP	ENDIX A. TEST SETUP PHOTO	23

1. TESTING LABORATORY

1.1 General Information

Organization Name	HCT Co., Ltd.		
Address	2-6, 73, 74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do,		
	Republic of Korea		
Telephone	+82 31 645 6300		
FAX	+82 31 645 6401		

1.2 Location of the Test Site

The test site is located at the following address.;

Address	74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do,		
Auuress	Republic of Korea		
Telephone	+82 31 645 6300		
FAX	+82 31 645 6401		

2. GENERAL INFORMATION

2.1 Description of EUT

FCC ID.	BEJ-LCWB008	
Model Name	LCWB-008	
Product Name	RF Module	
Frequency Range	Bluetooth LE: 2 402 MHz to 2 480 MHz WiFi 2.4 GHz: 2 412 MHz to 2 462 MHz	
Power Rating	DC 3.3 V, DC 5 V	
Manufacturer	LG Electronics Inc.	

2.2 Power Source

During the test, the following power supply levels are utilized/provided.;

Power supply: AC 120 V, 60 Hz

2.3 Tested System Details

All equipment descriptions used in the tested system (including inserted cards) are:

Device Type	Model Name	Serial Number	Manufacturer
RF Module (EUT)	LCWB-008	-	LG Electronics Inc.
DC Power Supply	PWS-3003D	04050810	Protek

2.4 Cable Description

Product Name	Port	Power Cord Shielded (Y/N)	I/O Cable Shielded (Y/N)	Length (m)
	2 pin	N/A	Ν	0.4(D)
EUT	2 pin	Ν	N/A	0.6(P)

"(D)" data cable and "(P)" power cable.

2.5 Noise Suppression Parts on Cable (I/O Cable)

Product Name	Port	Ferrite Bead (Y/N)	Location	Metal Hood (Y/N)	Location
FUT	2pin	Ν	-	Ν	-
EUT	2pin	Ν	-	Ν	

2.6 Test Facility

Those measurement facilities are constructed in conformance with the requirements of ANSI C63.4-2014. The Normalized site attenuations (30 MHz to 1 GHz) and Site validation (1 GHz to 18 GHz) were performed in accordance with the standard in ANSI C63.4-2014 and ANSI C63.4a-2017 Our laboratories are accredited and designated in accordance with the provisions of Radio Waves ACT and International Standard ISO/IEC 17025:2017. (National Radio Research Agency, CABID No. KR0032)

2.7 Calibration of Measuring Instrument

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturers recommendations for utilizing calibration equipment, which is traceable to recognized national standards.

Especially, all antenna for measurement is calibrated in accordance with the requirements of C63.5:2017.

2.8 Measurement Uncertainty

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.4-2014. All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95 % level of confidence. The measurement data shown herein meets or exceeds the UCISPR measurement uncertainty values specified in CISPR 16-4-2 and, thus, can be compared directly to specified limits to determine compliance.

Test Item	Test Site (Chamber)	Expanded Uncertainty
Radiated Emission (30 MHz to 1 GHz)	3 m Semi Anechoic Chamber #1	5.8 dB
Radiated Emission (1 GHz to 18 GHz)	3 m Semi Anechoic Chamber #1	4.9 dB

3. DESCRIPTION OF TEST

3.1 Measurement of Conducted Emission

The test procedure was in accordance with ANSI C63.4-2014, Clause 7.3

a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN).

If the EUT is connected to the PC through USB, the AC power-line adapter of the PC is directly connected to a line impedance stabilization network (LISN).

Other support units were connected to the power mains through another LISN.

The two LISNs provide 50 $\,\Omega\,$ / 50 $\,\mu\text{H}$ of coupling impedance for the measuring instrument.

- b. Both conducted lines are measured in Quasi-Peak and Average mode, including the worst-case data points for each tested configuration.
- c. The frequency ranges from 150 $\,\rm kHz\,$ to 30 $\,\rm MHz\,$ was searched.

Frequency (배2)	Class A Quasi-Peak (dBµV)	Class A Average (dBµV)	Class B Quasi-Peak (dBµV)	Class B Average (dBµV)
0.15 to 0.5	79	66	66 to 56*	56 to 46*
0.5 to 5	73	60	56	46
5 to 30	73	60	60	50

Conducted Emission Limits

NOTE. The more stringent limit applies at transition frequencies.

[*] The limit level in dBµV decreases linearly with the logarithm of frequency.

3.2 Antenna Conducted Power Measurements

The test procedure was in accordance with ANSI C63.4-2014, Clause 12.2.6.

Antenna-conducted power measurements shall be performed on each broadcast reception tuner input in accordance with the requirements of the applicable regulatory authority. For example, see 47 CFR paragraph 15.111 and ANSI C63.4 paragraph 12.1.5 and Appendix H5 (test method) with the following clarifications:

- a. With the TV tuned to each channel [e.g., channel 2 to channel 69], the level of the local oscillator frequency and the second harmonic shall be measured and recorded for each tuner.
- b. Antenna-conducted power measurements shall be performed with the EUT antenna terminals connected directly to either a spectrum analyzer or another measurement instrument conforming to ANSI C63.2 or CISPR 16-1 or the latest revision thereof, if the antenna impedance matches the impedance of the measuring instrument.

Otherwise, use a balun or impedance-matching network to connect the measuring instrument to the antenna terminals of the EUT. Manufacturer-supplied interconnect cabling or wiring shall be used, or if none is supplied, the cable shall be commercially available and a maximum of 2 m in length. Losses in decibels in any balun or impedance-matching network used shall be added to the measured value in dBµV.

Frequency	Limits (dBµV)		
(MHz)	Quasi-Peak	Peak	
30 to 1 000	51.7	-	
1 000 to 2 150	-	51.7	

Antenna Conducted Power Emission Limits

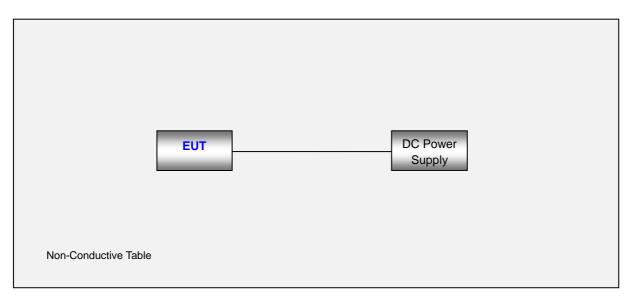
3.3 Measurement of Radiated Emission

The test procedure was in accordance with ANSI C63.4-2014, Clause 8.3

- a. The EUT was placed on the top of a turn table 0.8 meters above the ground at a semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 m away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from 1 m to 4 m above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 m to 4 m and the turn table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Quasi-Peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.
- f. The test-receiver system was set to Peak and Average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz.
- g. Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. (1 GHz to 40 GHz)

		Class A		Class B				
Frequency (Mz)	Antenna Distance (m)	Field Strength (µV/m)	Quasi-Peak (dBµV/m)	Antenna Distance (m)	Field Strength (µV/m)	Quasi-Peak (dBµV/m)		
30 to 88	10	90	39.0	3	100	40.0		
88 to 216	10	150	43.5	3	150	43.5		
216 to 960	10	210	46.4	3	200	46.0		
Above 960	10	300	49.5	3	500	54.0		
_			Clas	s A	Cla	Class B		
Frequency (Mb)	Antenna D (m		Реаk (dBµV/m)	Average (dBμV/m)	Реаk (dBµV/m)	Average (dBμV/m)		
Above 1 000	3		80	60	74	54		

Radiated Emission Limits



Frequency Range of Radiated Measurements

An unintentional radiator, including a digital device, the spectrum shall be investigated from the lowest radio frequency signal generated or used in the device, without going below the lowest frequency for which a Radiated Emission limit is specified, up to the frequency shown in the following table

Highest frequency generated or used in the device or on which the device operates or tunes (毗)	Upper frequency of measurement range (배고)
Below 1.705	30
1.705 to 108	1 000
108 to 500	2 000
500 to 1 000	5 000
Above 1 000	5th harmonic of the highest frequency or 40 앲, whichever is lower

3.4 Configuration of Tested System

4. OPERATION OF THE EUT

During preliminary test and final tests, the following operating mode was investigated. It was tested the following operating mode, after connecting all peripheral devices.

Operating Mode: Idle mode (3.3 V) Idle mode (5 V)

5. MEASURING INSTRUMENTS

	Туре	Model Name	Manufacturer	Serial Number	Cal. Cycle	Next Cal. Date (yy.mm.dd)
Con	ducted emission					
\Box	EMI Test Receiver	ESR7	Rohde&Schwarz	101910	1 year	2025.08.27
	LISN	ENV4200	Rohde & Schwarz	100054	1 year	2026.01.09
	LISN	ENV216	Rohde & Schwarz	102246	1 year	2025.11.19
	LISN	ENV216	Rohde & Schwarz	100073	1 year	2025.05.07
	Software	EMC32	Rohde & Schwarz	-	-	-
Ant	enna Conducted Pow	ver Emission				
	EMI Test Receiver	ESCI	Rohde & Schwarz	100584	1 year	2025.05.08
	Impedance Matching Pad	PE7070	PASTERNACK	5	1 year	2026.01.08
Rad	iated emission below	1 GHz	'			
\boxtimes	EMI Test Receiver	ESU40	Rohde & Schwarz	100524	1 year	2025.05.07
	Bilog Antenna	VULB9168	Schwarzbeck	255	1 year	2025.03.10
	Antenna master	MA4640-XP-ET	INNCO SYSTEM	-	N/A	-
	Antenna master controller	CO3000	INNCO SYSTEM	CO3000/870 /35990515/L	N/A	-
\boxtimes	Turn Table	1060	INNCO SYSTEM	-	N/A	-
	Turn Table controller	CO2000	INNCO SYSTEM	CO2000/095 /7590304/L	N/A	-
\boxtimes	Software	EMC32	Rohde&Schwarz	-	-	-
Rad	iated emission above	1 GHz				
\boxtimes	EMI test receiver	ESU40	Rohde & Schwarz	100524	1 year	2025.05.07
\boxtimes	Horn Antenna	HF907	Rohde & Schwarz	103160	1 year	2025.10.15
\square	Power Amplifier	TK-PA18H	TESTEK	170034-L	1 year	2025.10.14
\boxtimes	Antenna master	MA4640-XP-ET	INNCO SYSTEM	-	N/A	-
	Antenna master controller	CO3000	INNCO SYSTEM	CO3000/870 /35990515/L	N/A	-
\boxtimes	Turn Table	1060	INNCO SYSTEM	-	N/A	-
	Turn Table controller	CO2000	INNCO SYSTEM	CO2000/095 /7590304/L	N/A	-
	Horn Antenna	BBHA 9170	Schwarzbeck	BBHA 9170 #786	1 year	2025.10.30
	Power Amplifier	TK-PA1840H	TESTEK	170030-L	1 year	2025.02.20
$\overline{\mathbf{X}}$	Software	EMC32	Rohde & Schwarz	-	-	-

6. EMISSION TEST SUMMARY

6.1 Conducted Emission (Not Applicable)

6.1.1 Operating Condition

The test results of conducted emission at mains ports provide the following information:

Date of Test (yy.mm.dd)									
Tomorowski	min.		°C			min.	%		
Temperature	max.		°C		Relative Humidity	max.	%		
Test Site	EMI Shield Room								
Test Standard Used	FCC CFR 47 PART 15 Subpart B Class B ANSI C63.4-2014								
Frequency Range	0.15	MHz to 30) MHz						
Detector	Quas	i-Peak, (CISPI	R-Av	erage				
Bandwidth	9 kHz	(6 dB)							
Operating Mode									

A Conducted emission is calculated by the following equation:

Calculation Formula:	QuasiPeak or CAverage= Receiver Reading + Corr.
	Corr. = LISN Factor + Cable Loss
	Margin = Limit – QuasiPeak or CAverage

The measurements from both Live (L1) and Neutral (N) of the LISN are combined into a single graph.

6.1.2 Measurement Data

Not applicable

Since this product uses DC power source, this test does not apply.

F-TP22-03 (Rev. 06)

6.2 Antenna Conducted Power Emission (Not Applicable)

6.2.1 Operating Condition

The test results of antenna conducted power emission provide the following information.;

Date of Test (yy.mm.dd)								
Tanananakuna	min.	°C		min.	%			
Temperature	max.	°C	Relative Humidity	max.	%			
Test Site	EMI Shie	d Room						
Test Method Used	ANSI C63	ANSI C63.4-2014						
Frequency Range	30 MHz to	2150 MHz						
Detector / Bandwidth	For frequ	encies ≤ 1	GHz: Quasi-peak / 120 kHz	!				
	For frequ	encies ≥ 1	GHz:Peak/1 MHz					
Operating Mode								

6.2.2 Measurement Data

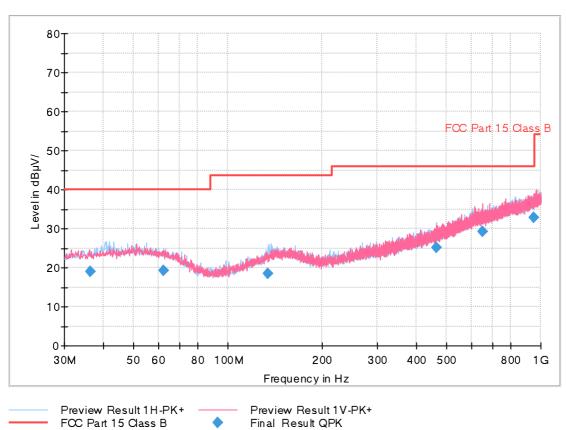
Not applicable

6.3 Radiated Emission Below 1 GHz

6.3.1 Operating Condition

The test results of radiated emission provide the following information:

Date of Test (yy.mm.dd)	2025.	2025.01.11								
	min.	18.3	°C			min.	26.4	%		
Temperature	max.	22.9	°C		Relative Humidity	max.	30.7	%		
Test Site	3 m S	3 m Semi Anechoic Chamber #1								
Used Test Standard		FCC CFR 47 PART 15 Subpart B Class B ANSI C63.4-2014								
Frequency Range	30 MHz to 1 000 MHz									
Detector	Quas	i-Peak								
Bandwidth	120	Hz (6 dE	3)							
Antenna Height	1 m t	o 4 m								
Measurement Distance	3 m									
Antenna Polarity	Horiz	Horizontal, Vertical								
Operating Mode		node (3								
	Idle n	node (5	V)							


A field strength is calculated by the following equation.

Calculation Formula: QuasiPeak = Reading (Receiver Reading) + Corr. Corr. (Correction Factor) = Antenna Factor + Cable Loss Margin = Limit - QuasiPeak

The measurements' polarities are H and V, where H means horizontal and V means vertical.

6.3.2 Measurement Data

[3.3 V] Idle Mode

Full Spectrum

Frequency	QuasiPeak	Limit	Margin	Height	Pol	Azimuth	Corr.
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(cm)		(deg)	(dB)
36.4034	19.00	40.00	21.00	198.1	Н	319.0	19.3
62.2221	19.20	40.00	20.80	198.7	Н	314.0	19.4
134.2379	18.50	43.50	25.00	198.8	Н	92.0	18.8
464.4771	25.10	46.00	10.90	181.4	Н	237.0	24.6
653.9958	29.20	46.00	16.80	181.8	V	359.0	28.2
946.1772	32.80	46.00	13.20	314.2	V	92.0	32.1

80-70 60 FCC Part 15 Class B 50 Level in dBµV/ 40 30 20 10 0. 80 100M 800 1G 30M 50 60 200 300 400 500 Frequency in Hz

[5 V] Idle Mode

Preview Result 1H-PK+ Preview Result 1V-PK+ FCC Part 15 Class B Final Result QPK

Frequency (MHz)	QuasiPeak (dBμV/m)	Limit (dBµV/m)	Margin (dB)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
42.1985	20.30	40.00	19.70	311.7	V	260.0	19.8
52.7625	21.50	40.00	18.50	398.0	V	46.0	20.2
61.2018	20.80	40.00	19.20	281.0	Н	337.0	19.5
461.0043	25.30	46.00	20.70	125.2	Н	107.0	24.5
695.7575	30.10	46.00	15.90	225.2	Н	289.0	28.8
934.4036	32.70	46.00	13.30	274.4	V	0.0	31.9

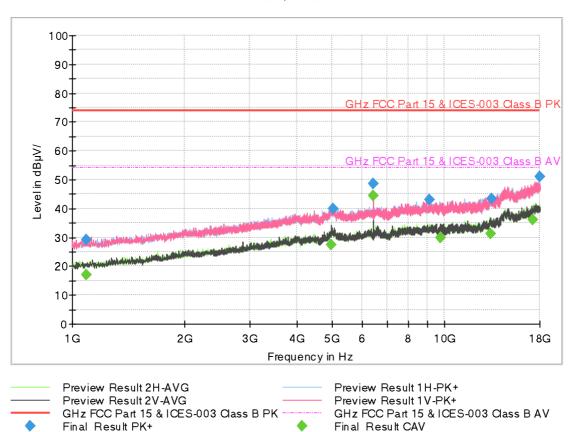
Full Spectrum

6.4 Radiated Emission Above 1 GHz

6.4.1 Operating Condition

The test results of radiated emission provide the following information:

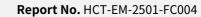
Date of Test (yy.mm.dd)	2025.	2025.01.11								
	min.	18.3	°C			min.	26.4	%		
Temperature	max.	22.9	°C		Relative Humidity	max.	30.7	%		
Test Site	3 m S	3 m Semi Anechoic Chamber #1								
Used Test Standard		FCC CFR 47 PART 15 Subpart B Class B ANSI C63.4-2014								
Detector	Peak,	Peak, CISPR-Average								
Bandwidth	1 MHz	1 MHz								
Highest Frequency	2480	MHz								
Tested Frequency Range	1 GHz	to 18 G	łz							
Antenna Height	1 m te	o 4 m								
Measurement Distance	3 m	3 m								
Operating Mode	Idle r	node (3	.3 V)							
	Idle r	node (5	V)							


A field strength is calculated by the following equation.

Calculation Formula: Peak or CAverage = Reading (Receiver Reading) + Corr. Corr. (Correction Factor) = Antenna Factor+ Cable Loss – Amplifier Gain Margin = Limit - Peak or CAverage

The measurements' polarities are H and V, where H means horizontal and V means vertical.

6.4.2 Measurement Data


[3.3 V] Idle Mode

Full Spectrum

Frequency	MaxPeak	Limit	Margin	Height	Pol	Azimuth	Corr.
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(cm)		(deg)	(dB)
1092.8600	29.01	74.00	44.99	181.3	V	1.0	-30.9
5007.6250	39.76	74.00	34.24	102.2	Н	71.0	-14.6
6432.0750	48.47	74.00	25.53	102.4	Н	105.0	-12.0
9073.3600	43.06	74.00	30.94	206.2	Н	266.0	-9.3
13397.8850	43.47	74.00	30.53	201.9	V	25.0	-3.5
17995.0921	50.90	74.00	23.10	321.4	Н	230.0	6.5

Frequency (MHz)	CAverage (dBμV/m)	Limit (dBµV/m)	Margin (dB)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
1087.7750	16.98	54.00	37.02	177.0	V	31.0	-30.9
4965.3850	27.30	54.00	26.70	125.1	V	20.0	-14.7
6431.8900	44.33	54.00	9.67	102.2	Н	105.0	-12.0
9760.2750	30.03	54.00	23.97	295.8	V	350.0	-8.3
13248.1500	31.21	54.00	22.79	324.9	Н	104.0	-3.8
17283.2150	36.11	54.00	17.89	208.1	н	354.0	3.4

F-TP22-03 (Rev. 06)

100_T 90 80 GHz FCC Part 15 & ICES-003 Class B PK 70 Level in dBµV/ 60 CES-003 Class B GH ΑV 50 40 30-20 10 0-1G 2G 3G 4G 5G 6 8 10G 18G Frequency in Hz Preview Result 2H-AVG Preview Result 1H-PK+ Preview Result 2V-AVG Preview Result 1V-PK+ GHz FCC Part 15 & ICES-003 Class B PK GHz FCC Part 15 & ICES-003 Class B AV Final Result PK+ Final Result CAV

[5 V] Idle Mode

Frequency (MHz)	MaxPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
3948.6950	38.97	74.00	35.03	100.0	V	104.0	-17.6
4993.2050	39.54	74.00	34.46	292.4	Н	0.0	-14.6
6432.0450	47.24	74.00	26.76	217.7	н	93.0	-12.0
8786.6200	41.79	74.00	32.21	323.0	н	3.0	-9.2
13265.4150	43.63	74.00	30.37	325.1	Н	120.0	-3.8
17677.3850	48.89	74.00	25.11	224.8	V	269.0	4.8

Frequency (MHz)	CAverage (dBμV/m)	Limit (dBµV/m)	Margin (dB)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
3986.5200	25.98	54.00	28.02	274.1	V	24.0	-17.5
5096.2200	27.65	54.00	26.35	174.4	V	123.0	-14.4
6432.1150	37.92	54.00	16.08	274.2	н	89.0	-12.0
9785.3950	30.28	54.00	23.72	108.9	н	0.0	-8.2
13285.2950	30.93	54.00	23.07	107.0	н	335.0	-3.8
17997.5121	38.34	54.00	15.66	109.3	V	69.0	6.5

Full Spectrum

F-TP22-03 (Rev. 06)

APPENDIX A. TEST SETUP PHOTO

Please refer to Appendix. A and test setup photo file no. as follows;

File No.	Date of Issue	Description
HCT-EM-2501-FC004-P	January 24, 2025	Initial Release

End of report