

4740 Discovery Drive | Lincoln, NE 68521 tel- 402.323.6233 | tel -888.657.6860 | fax - 402.323.6238 info@nceelabs.com | http://nceelabs.com

FCC/ISED Test Report

Prepared for:

Appareo

Address:

1810 NDSU Research Circle Fargo, ND 58102

Product:

AT-130

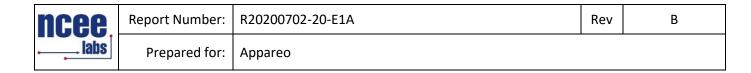
Test Report No:

R20200702-20-E1B

Approved by:

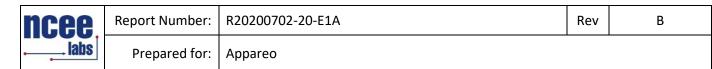
Nic S. Johnson, NCE Technical Manager iNARTE Certified EMC Engineer #EMC-003337-NE

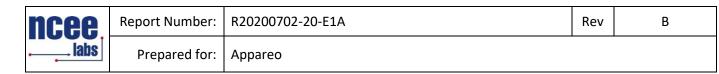
DATE:


5 February 2021

30

Total Pages:


The Nebraska Center for Excellence in Electronics (NCEE) authorizes the above named company to reproduce this report provided it is reproduced in its entirety for use by the company's employees only. Any use that a third party makes of this report, or any reliance on or decisions made based on it, are the responsibility of such third parties. NCEE accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report. This report applies only to the items tested.


REVISION PAGE

Rev. No.	Date	Description
0	28 October 2020	Original – NJohnson
		Prepared by KVepuri/FLane
А	13 January 2021	1. Table under section 4.0 is updated.
		2. Appendix C is updated with the tables for band edge
		measurements.
В	5 February 2021	1. Corrected DCCF and updated reported average values
		accordingly

CONTENTS

Revi	sion Pa	ge2
1.0	Sum	nmary of test results4
2.0	EUT	Description5
	2.1	Equipment under test
	2.2	Description of test modes
	2.3	Description of support units
3.0	Labo	oratory and General Test Description6
	3.1	Laboratory description
	3.2	Test personnel
	3.3	Test equipment7
	3.4	General Test Procedure and Setup for Radio Measuremnts
4.0	Res	ults9
	4.1	Output Power
	4.2	Bandwidth
	4.3	Duty Cycle
	4.4	Radiated emissions
	4.5	Band edges
Арр	endix A	: Sample Calculation
Арр	endix B	- Measurement Uncertainty 21
Арр	endix C	– Graphs and Tables
REP		ID

1.0 SUMMARY OF TEST RESULTS

The worst-case measurements were reported in this report. Summary of test results presented in this report correspond to the following section

FCC Part 15.249

The EUT has been tested according to the following specifications:

- (1) US Code of Federal Regulations, Title 47, Part 15
- (2) ISED RSS-Gen, Issue 5
- (3) ISED RSS-210, Issue 10

SUMMARY							
Requirement	Test Type and Limit	Result	Remark				
FCC 15.203	Unique Antenna Requirement	Pass	PCB Antenna				
FCC 15.35 RSS-Gen, 6.10	Duty cycle of pulsed emissions	N/A	Not required				
NA	Maximum Peak Output Power	N/A	Informational Purpose Only				
NA	Minimum Bandwidth	N/A	Informational Purpose Only				
FCC 15.209 RSS-Gen, 7.1	Receiver Radiated Emissions	Pass	Meets the requirement of the limit.				
FCC 15.209 RSS-Gen, 8.9 RSS-210 A1.2 FCC 15.249(a)	Transmitter Radiated Emissions	Pass	Meets the requirement of the limit.				
FCC 15.209, 15.205, 15.249(d) RSS-Gen, 8.9 RSS-210, 5.5	Band Edge Measurement	Pass	Meets the requirement of the limit.				
FCC 15.207 RSS-Gen. 8.8	Conducted AC Emissions	N/A	Battery Powered Device				

Rev

В

2.0 EUT DESCRIPTION

2.1 EQUIPMENT UNDER TEST

Summary and Operating Condition:

EUT	MN: AT-130
EUT Received	9 October 2020
EUT Tested	16 October 2020- 27 October 2020
Serial No.	000075
Operating Band	2400 – 2483.5 MHz
Device Type	⊠ BLE
Power Supply / Voltage	3.6 VDC Primary Lithium-Thionyl Chloride Battery

NOTE: For more detailed features description, please refer to the manufacturer's specifications or user's manual.

2.2 DESCRIPTION OF TEST MODES

The operating range of the EUT is dependent on the device type found in section 2.1:

For Bluetooth Transmissions:						
Frequency						
2402 MHz						
2440/2441 MHz						
High 2480 MHz						

These are the only representative channels tested in the frequency range according to FCC Part 15.31 and RSS-Gen Table A1. See the operational description for a list of all channel frequency and designations.

2.3 DESCRIPTION OF SUPPORT UNITS

The EUT was tested with the plastic back removed. In order to achieve continuous transmission and control of test firmware, an evaluation board was connected to the EUT during testing. To change modes, the board was plugged into a PC via USB. Testing was performed to ensure the removal of the back cover and the addition of the evaluation board did not effect the results by more than 1 dB.

3.0 LABORATORY AND GENERAL TEST DESCRIPTION

3.1 LABORATORY DESCRIPTION

All testing was performed at the following Facility:

The Nebraska Center for Excellence in Electronics (NCEE Labs) 4740 Discovery Drive Lincoln, NE 68521 Rev

В

A2LA Certificate Number:	1953.01
FCC Accredited Test Site Designation No:	US1060
Industry Canada Test Site Registration No:	4294A-1
NCC CAB Identification No:	US0177

Environmental conditions varied slightly throughout the tests:

Relative humidity of $35 \pm 4\%$ Temperature of $22 \pm 3^{\circ}$ Celsius

3.2 TEST PERSONNEL

No.	PERSONNEL	TITLE	ROLE
1	Nic Johnson	Technical Manager	Review/editing
2	Karthik Vepuri	Test Engineer	Testing and report
3	Fox Lane	Test Engineer	Testing and report

Notes:

All personnel are permanent staff members of NCEE Labs. No testing or review was sub-contracted or performed by sub-contracted personnel.

3.3 **TEST EQUIPMENT**

Notes:

All equipment is owned by NCEE Labs and stored permanently at NCEE Labs facilities.

Rev

В

DESCRIPTION AND MANUFACTURER	MODEL NO.	SERIAL NO.	LAST CALIBRATION DATE	CALIBRATION DUE DATE
Keysight MXE Signal Analyzer (26.5GHz)	N9038A	MY56400083	May 5, 2020	May 5, 2022
Keysight EXA Signal Analyzer	N9010A	MY56070862	December 14, 2018	December 14, 2020***
SunAR RF Motion	JB1	A091418	March 6, 2020	March 6, 2021
EMCO Horn Antenna	3115	6415	March 16, 2020	March 16, 2022
EMCO Horn Antenna	3116	2576	March 9, 2020	March 9, 2022
Rohde & Schwarz Preamplifier**	TS-PR18	3545700803	April 14, 2020	April 14, 2022
Trilithic High Pass Filter*	6HC330	23042	April 14, 2020	April 14, 2022
MiniCircuits High Pass Filter*	VHF-1320+	15542	April 14, 2020	April 14, 2022
RF Cable (preamplifier to antenna)*	MFR-57500	01-07-002	April 14, 2020	April 14, 2022
RF Cable (antenna to 10m chamber bulkhead)*	FSCM 64639	01E3872	April 14, 2020	April 14, 2022
RF Cable (10m chamber bulkhead to control room bulkhead)*	FSCM 64639	01E3874	April 14, 2020	April 14, 2022
RF Cable (control room bulkhead to test receiver)*	FSCM 64639	01F1206	April 14, 2020	April 14, 2022
N connector bulkhead (10m chamber)*	PE9128	NCEEBH1	April 14, 2020	April 14, 2022
N connector bulkhead (control room)*	PE9128	NCEEBH2	April 14, 2020	April 14, 2022
TDK Emissions Lab Software	V11.25	700307	NA	NA

*Internal Characterization

2-year calibration cycle * Extended Cal

3.4 GENERAL TEST PROCEDURE AND SETUP FOR RADIO MEASUREMNTS

Measurement type presented in this report

Radiated \boxtimes

All the radiated measurements were taken at a distance of 3m from the EUT. The information regarding resolution bandwidth, video bandwidth, span and the detector used can be found in the graphs provided in the Appendix C. All the radio measurements were performed using the sections from ANSI C63.10, details about the section used can be found in the spectrum analyzer titles on the graph.

Rev

В

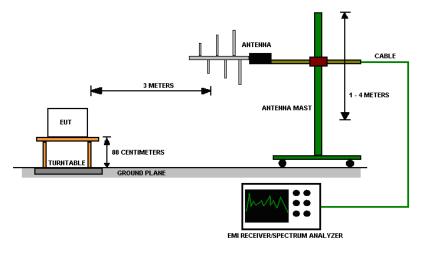
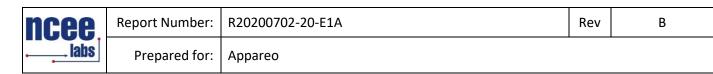



Figure 1 - Radiated Emissions Test Setup

4.0 RESULTS

DTS Radio B2:I35Measurements								
CHANNEL	Transmitter	Occupied Bandwidth (kHz)	6 dB Bandwidth (kHz)	OUTPUT POWER - EIRP (dBm)	PEAK OUTPUT POWER (mW)	PSD (dBm)	RESULT	
Low	BLE	1090.90	NA	-2.87	0.516	NA	PASS	
Mid	BLE	1087.80	NA	-4.648	0.343	NA	PASS	
High	BLE	1111.00	NA	-6.274	0.236	NA	PASS	
Occupied Band	dwidth = N/A; 6 dE	Bandwidth Limit =	= N/A	Peak O	utput Power Limit =	NA; PSD Limit =	N/A	
			Output Powe	r EIRP Correction				
CHANNEL	Measurement	Raw SA uncorrected value (dBm)	Antenna Factor (dB)	Cable Loss (dB)	Corrected Level (dB)	3m EIRP conversion*	EIRP (dBm)	
Low	Output Power	-48.98	28.38	5.96	-14.64	11.77	-2.87	
Mid	Output Power	-50.64	28.32	5.90	-16.42	11.77	-4.65	
	Outrout Danuar	-52.41	28.39	5.98	-18.04	11.77	-6.27	
Corrected Leve	el= Raw SA Value+) - 95.23(EIRP Conv Antenna Factor+ (=11.77;				
* 107 (dBm to Corrected Leve	dBuV Conversion) - 95.23(EIRP Conv Antenna Factor+ (Cable Loss;	=11.77; ed Band-Edge				
* 107 (dBm to Corrected Leve	dBuV Conversion) el= Raw SA Value+) - 95.23(EIRP Conv Antenna Factor+ (Cable Loss;		Limit (dBuV/m @ 3m)*	Margin	Result	
* 107 (dBm to Corrected Leve EIRP=Correcte	dBuV Conversion) el= Raw SA Value+ d Value+3 m EIRP) - 95.23(EIRP Conv Antenna Factor+ (conversion; Band edge /Measurement Frequency	Cable Loss; Unrestrict Highest out of band level (dBuV/m @	ed Band-Edge Measurement		Margin 18.06	Result PASS	
* 107 (dBm to Corrected Leve EIRP=Correcte CHANNEL	dBuV Conversion el= Raw SA Value+ d Value+3 m EIRP Mode	Band edge /Measurement Frequency (MHz)	Cable Loss; Unrestrict Highest out of band level (dBuV/m @ 3m)	ed Band-Edge Measurement Type	@ 3m)*			
* 107 (dBm to Corrected Leve EIRP=Correcte CHANNEL Low	dBuV Conversion) el= Raw SA Value+ d Value+3 m EIRP Mode BLE	- 95.23(EIRP Conv Antenna Factor+ (conversion; Band edge /Measurement Frequency (MHz) 2400.00	Cable Loss; Unrestrict Highest out of band level (dBuV/m @ 3m) 55.92	ed Band-Edge Measurement Type Peak	@ 3m)* 73.98	18.06	PASS	
* 107 (dBm to Corrected Leve EIRP=Correcte CHANNEL Low High	dBuV Conversion) el= Raw SA Value+ d Value+3 m EIRP Mode BLE BLE	- 95.23(EIRP Conv Antenna Factor+ (conversion; Band edge /Measurement Frequency (MHz) 2400.00 2483.50	Cable Loss; Unrestrict Highest out of band level (dBuV/m @ 3m) 55.92 50.22	ed Band-Edge Measurement Type Peak Peak	@ 3m)* 73.98 73.98	18.06 23.76	PASS	
* 107 (dBm to Corrected Leve EIRP=Correcte CHANNEL Low High Low High *Limit shown i	dBuV Conversion) el= Raw SA Value+ d Value+3 m EIRP Mode BLE BLE BLE BLE BLE s taken from FCC	 95.23(EIRP Conv Antenna Factor+ C conversion; Band edge /Measurement Frequency (MHz) 2400.00 2483.50 2400.00 2483.50 	Cable Loss; Unrestrict Highest out of band level (dBuV/m @ 3m) 55.92 50.22 49.63 43.93 n Appendix C sho	ed Band-Edge Measurement Type Peak Peak Average**	@ 3m)* 73.98 73.98 53.98 53.98	18.06 23.76 4.35	PASS PASS PASS	
* 107 (dBm to Corrected Leve EIRP=Correcte CHANNEL Low High Low High *Limit shown i	dBuV Conversion) el= Raw SA Value+ d Value+3 m EIRP Mode BLE BLE BLE BLE BLE s taken from FCC	 95.23(EIRP Conv Antenna Factor+ (conversion; Band edge /Measurement Frequency (MHz) 2400.00 2483.50 2400.00 2483.50 Part 15.209; Plots i 	Cable Loss; Unrestrict Highest out of band level (dBuV/m @ 3m) 55.92 50.22 49.63 43.93 n Appendix C sho	ed Band-Edge Measurement Type Peak Peak Average** Average**	@ 3m)* 73.98 73.98 53.98 53.98	18.06 23.76 4.35	PASS PASS PASS	
* 107 (dBm to Corrected Leve EIRP=Correcte CHANNEL Low High Low High *Limit shown i	dBuV Conversion) el= Raw SA Value+ d Value+3 m EIRP Mode BLE BLE BLE BLE BLE s taken from FCC	 95.23(EIRP Conv Antenna Factor+ (conversion; Band edge /Measurement Frequency (MHz) 2400.00 2483.50 2400.00 2483.50 Part 15.209; Plots i 	Cable Loss; Unrestrict Highest out of band level (dBuV/m @ 3m) 55.92 50.22 49.63 43.93 n Appendix C sho	ed Band-Edge Measurement Type Peak Peak Average** Average** ws uncorrected mea	@ 3m)* 73.98 73.98 53.98 53.98	18.06 23.76 4.35	PASS PASS PASS	
* 107 (dBm to Corrected Leve EIRP=Correcte CHANNEL Low High Low High *Limit shown i **Average = P	dBuV Conversion) el= Raw SA Value+ d Value+3 m EIRP Mode BLE BLE BLE BLE s taken from FCC eak – DCCF (-5.51	 95.23(EIRP Conv Antenna Factor+ (conversion; Band edge /Measurement Frequency (MHz) 2400.00 2483.50 2400.00 2483.50 Part 15.209; Plots i dB per Section 4.3 Band edge /Measurement Frequency 	Cable Loss; Unrestrict Highest out of band level (dBuV/m @ 3m) 55.92 50.22 49.63 43.93 n Appendix C sho Band Edg Measurement	ed Band-Edge Measurement Type Peak Peak Average** Average** ws uncorrected mea e Corrections Raw SA uncorrected level	@ 3m)* 73.98 73.98 53.98 53.98 surements Antenna Factor	18.06 23.76 4.35 10.05	PASS PASS PASS PASS Corrected Level	

Test Method: All the radio measurements were performed using the sections from ANSI C63.10, details about the section used can be found in the spectrum analyzer titles on the graph.

Rev

В

Limits of power measurements: For FCC Part 15.249 Device: For Informational Purposes only

Test procedures:

Details can be found in section 3.4 of this report.

Deviations from test standard:

No deviation.

Test setup:

Details can be found in section 3.4 of this report.

EUT operating conditions:

Details can be found in section 2.1 of this report.

Test results:

Pass

Comments:

- 1. All the output power plots can be found in the Appendix C.
- 2. All data is in the table in results section 4.0.
- 3. All the measurements were found to be compliant.

Test Method: All the radio measurements were performed using the sections from ANSI C63.10, details about the section used can be found in the spectrum analyzer titles on the graph.

Rev

В

Limits of bandwidth measurements:

For FCC Part 15.249 Device: For Informational Purposes only

Test procedures:

Details can be found in section 3.4 of this report.

Deviations from test standard:

No deviation.

Test setup:

Test setup details can be found in section 3.4 of this report.

EUT operating conditions:

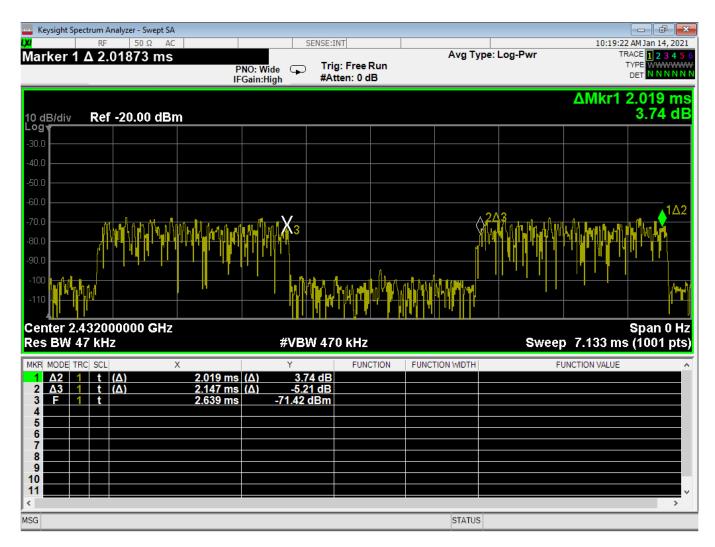
Details can be found in section 2.1 of this report.

Test results:

Pass

Comments:

- 1. All the bandwidth plots can be found in the Appendix C.
- 2. All data is in the table in results section 4.0.
- 3. All the measurements were found to be compliant.


В

Rev

Prepared for: Appareo

4.3 DUTY CYCLE

Test Method: Since the device featured pulsed emissions, a duty cycle correction factor was applied to peak measurements to calculate the average measurement per ANSI C63.10-2013, Section 7.5.

Duty cycle = 2.019 / (2.019 + 2.147) = 48.5%

Duty Cycle Correction Factor (DCCF) = 20 x log(0.485) = -6.29 dB

Test Method: ANSI C63.10-2013, Section 6.5, 6.6

Limits for radiated emissions measurements:

Emissions radiated outside of the specified bands shall be applied to the limits in 15.209 as followed:

В

Rev

FREQUENCIES (MHz)	FIELD STRENGTH (μV/m)	MEASUREMENT DISTANCE (m)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	3
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

NOTE:

1. The lower limit shall apply at the transition frequencies.

2. Emission level (dBuV/m) = 20 * log * Emission level (μ V/m).

3. As shown in 15.35(b), for frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits by more than 20dB under any condition of modulation.

4. The EUT was tested for spurious emissions while running off of battery power and external USB power. The worse-case emissions were produced while running off of USB power, so results from this mode are presented.

В

Rev

Test procedures:

a. The EUT was placed on the top of a rotating table above the ground plane in a 10 meter semianechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation. The table was 0.8m high for measurements from 30MHz-1Ghz and 1.5m for measurements from 1GHz and higher.

b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

c. The antenna was a broadband antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are used to make the measurement.

d. For each suspected emission, the EUT was arranged to maximize its emissions and then the antenna height was varied from 1 meter to 4 meters and the rotating table was turned from 0 degrees to 360 degrees to find the maximum emission reading.

e. The test-receiver system was set to use a peak detector with a specified resolution bandwidth. For spectrum analyzer measurements, the composite maximum of several analyzer sweeps was used for final measurements.

f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10 dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

g. The EUT was maximized in all 3 orthogonal positions. The results are presented for the axis that had the highest emissions.

h. Emissions were investigated with the 2.4 GHz radio radios transmitting simultaneously with the pre-certified cellular radio to detect any potential intermodulation products. No additional emissions were found within the labs measurement sensitivity as a result of the simultaneous transmissions. The cellular radio was tested in the PCS band (1850.0 – 1915.0 MHz) and Part 90 / 27 band (699 – 716 MHz).

ncee.	Report Number:	R20200702-20-E1A	Rev	В
labs	Prepared for:	Appareo		

Test setup:

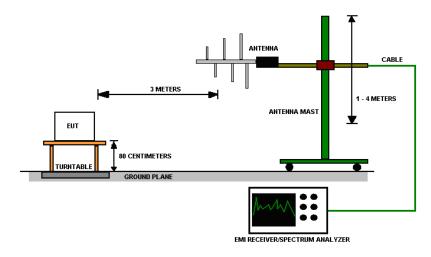


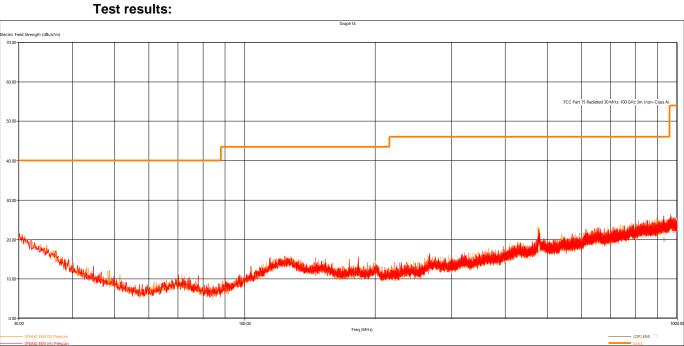
Figure 2 - Radiated Emissions Test Setup

NOTE:

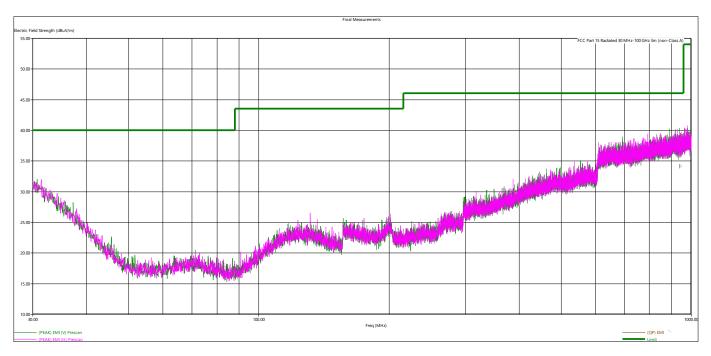
1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Peak detection (PK) and Quasi-peak detection (QP) at frequencies below 1GHz.

2. The resolution bandwidth 1 MHz for all measurements and at frequencies above 1GHz, A peak detector was used for all measurements above 1GHz. Measurements were made with an EMI Receiver.

Deviations from test standard:


No deviation.

EUT operating conditions


Details can be found in section 2.1 of this report.

Prepared for: Appareo

Figure 4 - Radiated Emissions Plot, Low Channel, Worst Case

REMARKS:

- 1. Emission level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission level Limit value

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 16 of 30

В

Rev

Prepared for: Appareo

Quasi-Peak Measurements, BLE								
Frequency	Level	Limit	Margin	Height	Angle	Pol	Mode	Modulation
MHz	MHz dBµV/m dB cm. deg.							
476.543280	16.93	46.02	29.09	160.00	23.00	V	Receive	BLE
931.291920	19.91	46.02	26.11	175.00	360.00	V	Receive	BLE

	Quasi-Peak Measurements, BLE, Transmit Mode									
Frequency	Level	Limit	Margin	Height	Angle	Pol	Channel	Modulation		
MHz	dBµV/m	dBµV/m	dB	cm.	deg.					
941.35248	34.05	46.02	11.97	278	75	V	Low	BLE		

	Peak Measurements, BLE, Transmit Mode										
Frequency	requency Level Limit Margin Height Angle Pol Channel Modul										
MHz	dBµV/m	dBµV/m	dB	cm.	deg.						
2402.406000	92.14	113.98	21.84	209	150	Н	Low	BLE			
2440.358000	90.41	113.98	23.57	128	9	Н	Mid	BLE			
2479.892000	88.28	113.98	25.70	156	7	Н	High	BLE			
4804.682000	51.51	73.98	22.47	187	155	Н	Low	BLE			
4880.526000	51.20	73.98	22.78	214	145	Н	Mid	BLE			
4960.874000	50.46	73.98	23.52	213	328	Н	High	BLE			

	Average Measurements, BLE, Transmit Mode											
Frequency	ency Level Limit Margin Height Angle Pol Channel Modulatio											
MHz	dBµV/m	dBµV/m	dB	cm.	deg.							
2402.406000	87.95	93.98	6.03	209	150	Н	Low	BLE				
2440.360000	86.54	93.98	7.44	128	9	Н	Mid	BLE				
2479.892000	83.80	93.98	10.18	156	7	Н	High	BLE				
4804.682000	44.87	53.98	9.11	187	155	Н	Low	BLE				
4880.526000	43.82	53.98	10.16	214	145	Н	Mid	BLE				
4960.874000	42.23	53.98	11.75	213	328	Н	High	BLE				

The EUT was maximized in all 3 orthogonal axis. The worst-case is shown in the plot and table above.

Test Method: All the radio measurements were performed using the sections from ANSI C63.10, details about the section used can be found in the spectrum analyzer titles on the graph.

Rev

В

Limits of band-edge measurements:

For FCC Part 15.249 Device:

For emissions outside of the allowed band of operation, the emission level needs to be 50dB under the maximum fundamental field strength. However, if the emissions fall within one of the restricted bands from 15.205 the field strength levels need to be under that of the limits in 15.209.

Test procedures:

The highest emissions level beyond the band-edge was measured and recorded. All band edge measurements were evaluated to the general limits in Part 15.209. More details can be found in section 3.4 of this report.

Deviations from test standard:

No deviation.

Test setup: Test setup details can be found in section 3.4 of this report.

EUT operating conditions:

Details can be found in section 2.1 of this report.

Test results:

Pass

Comments:

- 1. All the band edge plots can be found in the Appendix C.
- 2. All data is in the table in results section 4.0.
- If the device falls under FCC Part 15.249 (Details can be found in summary of test results), compliance is shown in the unrestricted band edges by showing the compliance to 15.209 Limits.
- 4. The restricted band edge compliance is shown by comparing to the general limit defined in Part 15.209. The limit shown in the graph accounts for the antenna gain of the device.
- 5. The compliance was shown in unrestricted band comparing the highest out of band measurements to FCC Part 15.209 Limits.

ncee.	Report Number:	R20200702-20-E1A	Rev	В
iabs	Prepared for:	Appareo		

APPENDIX A: SAMPLE CALCULATION

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows: FS = RA + AF - (-CF + AG) + AV

where FS = Field Strength

RA = Receiver Amplitude AF = Antenna Factor CF = Cable Attenuation Factor AG = Amplifier Gain AV = Averaging Factor (if applicable)

Assume a receiver reading of 55 dB μ V is obtained. The Antenna Factor of 12 and a Cable Factor of 1.1 is added. The Amplifier Gain of 20 dB is subtracted, giving a field strength of 48.1 dB μ V/m.

 $FS = 55 + 12 - (-1.1 + 20) + 0 = 48.1 \text{ dB}\mu\text{V/m}$

The 48.1 dB μ V/m value can be mathematically converted to its corresponding level in μ V/m.

Level in μ V/m = Common Antilogarithm [(48.1 dB μ V/m)/20]= 254.1 μ V/m

AV is calculated by the taking the $20^{100}(T_{on}/100)$ where T_{on} is the maximum transmission time in any 100ms window.

ncee,	Report Number:	R20200702-20-E1A	Rev	В
labs	Prepared for:	Appareo		

EIRP Calculations

In cases where direct antenna port measurement is not possible or would be inaccurate, output power is measured in EIRP. The maximum field strength is measured at a specified distance and the EIRP is calculated using the following equation;

EIRP (Watts) = [Field Strength (V/m) x antenna distance (m)]² / 30

Power (watts) = 10^[Power (dBm)/10] / 1000

Voltage $(dB\mu V)$ = Power (dBm) + 107 (for 50 Ω measurement systems)

Field Strength (V/m) = 10^{Field} Strength (dB μ V/m) / 20] / 10^{6}

Gain = 1 (numeric gain for isotropic radiator)

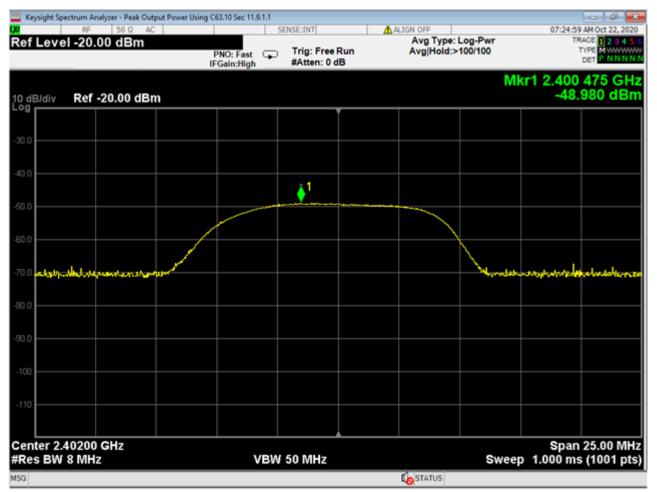
Conversion from 3m field strength to EIRP (d=3):

 $EIRP = [FS(V/m) \times d^2]/30 = FS[0.3]$ for d = 3

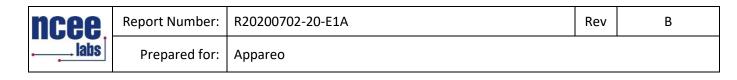
 $EIRP(dBm) = FS(dB\mu V/m) - 10(log 10^9) + 10log[0.3] = FS(dB\mu V/m) - 95.23$

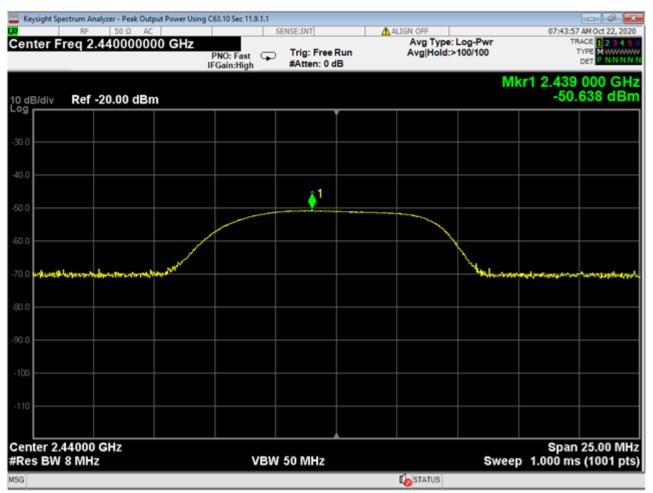
10log(10^9) is the conversion from micro to milli

APPENDIX B – MEASUREMENT UNCERTAINTY

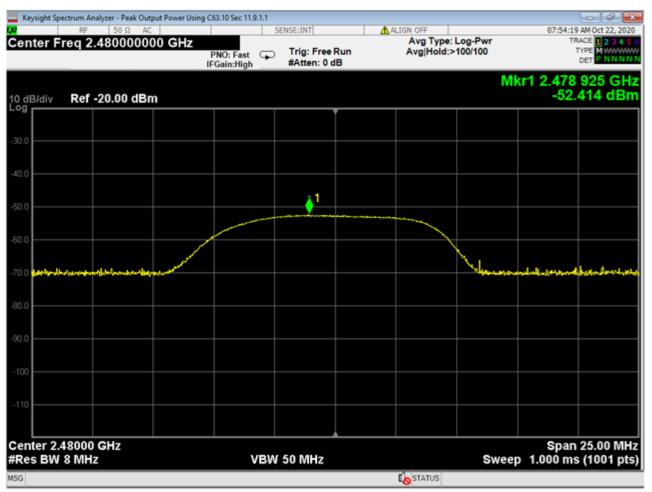

Where relevant, the following measurement uncertainty levels have been for tests performed in this test report:

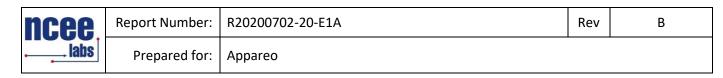
Test	Frequency Range	Uncertainty Value (dB)
Radiated Emissions, 3m	30MHz - 1GHz	3.82
Radiated Emissions, 3m	1GHz - 18GHz	4.44
Emissions limits, conducted	30MHz – 18GHz	±3.30 dB


Expanded uncertainty values are calculated to a confidence level of 95%.


ncee.	Report Number:	R20200702-20-E1A	Rev	В
labs	Prepared for:	Appareo		

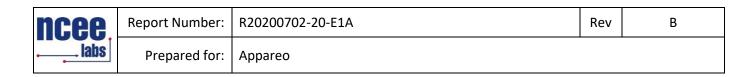
APPENDIX C – GRAPHS AND TABLES


Low Channel Power

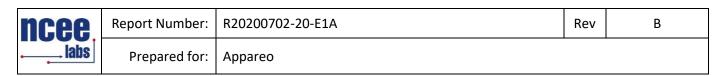


Mid Channel Power

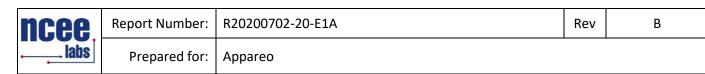
ncee.	Report Number:	R20200702-20-E1A	Rev	В
	Prepared for:	Appareo		

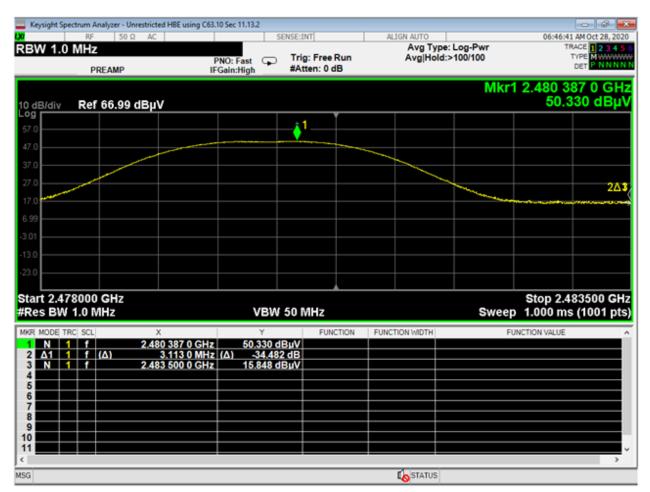


High Channel Power


Keysight Spectrum Analyzer - BW using C6	3.10 Sec 11.8.1			
RF 50Ω AC		SENSE:INT Center Freq: 2.4021179	ALIGN OFF	07:29:05 AM Oct 22, 20 Radio Std: None
nter Freq 2.402117900	GHZ	Tries Free Durn	Avg Hold:>10/10	Radio Std: None
	#IFGain:Low	#Atten: 0 dB		Radio Device: BTS
dB/div Ref -10.00 dBr	n			
g 📃 🗌 🗌				
0				
)				
0				
D				
,				
	- AMA			
				and the second s
0				
nter 2.402118 GHz				Enon 2 000 Mil
es BW 100 kHz		VBW 1 MHz		Span 3.000 Ml Sweep 1 n
C3 BW 100 KHZ				5466p 11
Occupied Bandwidt	h	Total Power	-43.4 dBm	
	0909 MHz			
Fransmit Freq Error	11.062 kHz	% of OBW Powe	r 99.00 %	
dB Bandwidth	762.4 kHz	x dB	-6.00 dB	

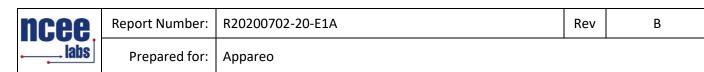
Bandwidth - Low Channel

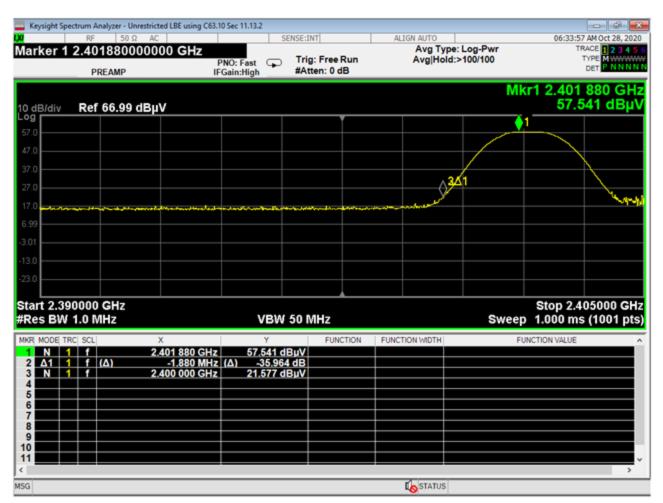

Keysight Spectrum Analyzer - BW using C63	.10 Sec 11.8.1	cruce-and 1 A a		07:45:22 AM Oct 22, 2020
Center Freq 2.440098400	GHz	Center Freq: 2.44009840		Radio Std: None
	#IFGain:Low	Trig: Free Run #Atten: 0 dB	Avg Hold:>10/10	Radio Device: BTS
10 dB/div Ref -22.00 dBr	n			
-32.0				
-42.0				
-52.0				
-62.0				
-72.0				
-82.0				~~~~
·92.0 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				
-102				
-112				
Center 2.440098 GHz #Res BW 100 kHz		VBW 1 MHz		Span 3.000 MHz Sweep 1 ms
TOO KIIZ				oweep 1 ms
Occupied Bandwidt	h	Total Power	-44.8 dBm	
1.0	0878 MHz			
Transmit Freq Error	34.594 kHz	% of OBW Power	r 99.00 %	
x dB Bandwidth	728.9 kHz	x dB	-6.00 dB	
ISG			STATUS	


Bandwidth - Mid Channel

Keysight Spectrum Analyzer - BW using C63.	10 Sec 11.8.1			- 0
ef Value -18.00 dBm		SENSE:INT AL Center Freq: 2.48000000	IGN OFF GHz	07:51:54 AM Oct 22, 202 Radio Std: None
	#IFGain:Low	Tries Free Durn	Avg Hold:>10/10	Radio Device: BTS
dB/div Ref -18.00 dBm	<u> </u>			
29				
.0				
0				
0			\sim	
0				
o				
0	~~~~~			mun
0				
8				
enter 2.480000 GHz				Span 3.000 Mi
tes BW 100 kHz		VBW 1 MHz		Sweep 1 m
Occupied Bandwidth	1	Total Power	-48.3 dBm	
1.1	110 MHz			
Transmit Freq Error	134.69 kHz	% of OBW Power	99.00 %	
x dB Bandwidth	750.8 kHz	x dB	-6.00 dB	

Bandwidth - High Channel




Higher Band Edge Peak

	Unrestricted Band-Edge											
CHANNEL	Mode	Band edge /Measurement Frequency (MHz)	Highest out of band level (dBuV/m @ 3m)	Measurement Type	Limit (dBuV/m @ 3m)	Margin	Result					
High	BLE	2483.50	50.22	Peak	73.98	23.76	PASS					
High	BLE	2483.50	43.93	Avg**	53.98	10.05	PASS					
	*Limit shown is take	en from FCC Part 15.20	09; Plots in Appendix	C shows uncorrected	measurements *	*Avg = peak - DCC	F					
			Band Edge	Corrections								
CHANNELMeasurementBand edge /Measurement Frequency (MHz)Measurement TypeRaw SA uncorrected value (dBuV)Antenna Factor (dB)Cable Loss (dB)Corrected Level (dBuV)												
High	Band Edge	2483.50	Peak	15.85	28.39	5.98	50.22					
	Plots show	ws uncorrected measu	rements; Corrected L	evel= Raw SA level +	Antenna Factor + C	Cable Loss;						
The Nebraska Center for Excellence in Electronics												

The Nebraska Center for Excellence in Electroni 4740 Discovery Drive Lincoln, NE 68521

Page 28 of 30

Lower Band Edge Peak

Unrestricted Band-Edge										
CHANNEL	Mode	Band edge /Measurement Frequency (MHz)	Highest out of band level (dBuV/m @ 3m)	Measurement Type	Limit (dBuV/m @ 3m)	Margin	Result			
Low	BLE	2400.00	55.917	Peak	73.98	18.06	PASS			
Low	BLE	2400.00	49.63	Avg**	53.98	4.35	PASS			
*Limit shown is taken from FCC Part 15.209; Plots shows uncorrected measurements **Avg = peak - DCCF										
Band Edge Corrections										
CHANNEL	Measurement	Band edge /Measurement Frequency (MHz)	Measurement Type	Raw uncorrected value (dBuV)	Antenna Factor (dB)	Cable Loss (dB)	Corrected Level (dBuV)			
Low	Band Edge	2400.00	Peak	21.58	28.38	5.96	55.92			
	Plots shows uncorrected measurements; Corrected Level= Raw SA level + Antenna Factor + Cable Loss;									
The Nebraska Center for Excellence in Electronics										

The Nebraska Center for Excellence in Electronic 4740 Discovery Drive Lincoln, NE 68521

Page 29 of 30

ncee.	Report Number:	R20200702-20-E1A	Rev	В
labs	Prepared for:	Appareo		

REPORT END