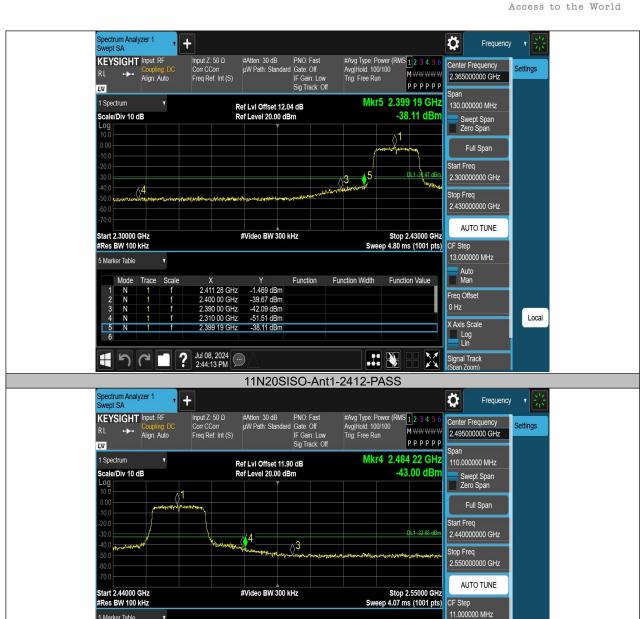

TestMode	Antenna	ChName	Frequency[MHz]	RefLevel[dBm]	Result[dBm]	Limit[dBm]	Verdict
11B	Ant1	Low	2412	5.95	-31.2	≤-24.05	PASS
11B	Ant1	High	2462	5.86	-34.29	≤-24.14	PASS
11G	Ant1	Low	2412	-1.66	-36.29	≤-31.66	PASS
11G	Ant1	High	2462	-2.51	-41.85	≤-32.51	PASS
11N20SISO	Ant1	Low	2412	-1.47	-38.11	≤-31.47	PASS
11N20SISO	Ant1	High	2462	-2.66	-43	≤-32.66	PASS
11N40SISO	Ant1	Low	2422	-5.96	-40.41	≤-35.96	PASS
11N40SISO	Ant1	High	2452	-6.07	-42.29	≤-36.07	PASS



11N20SISO-Ant1-2462-PASS

Mode

Trace Scale

1 5 C 7 Jul 08, 2024

2.461 56 GHz 2.483 50 GHz 2.500 00 GHz

2.484 22 GHz

-2.661 dBm

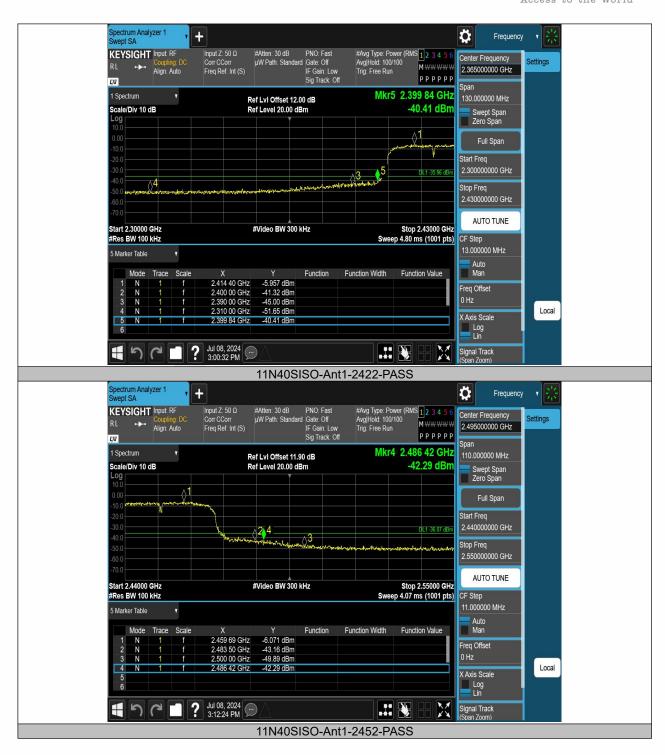
-43.13 dBm -50.18 dBm

-43 00 dBm

Function Function Width Function Value

Auto Man

Freq Offset


X Axis Scale Log Lin

Signal Track

X

Local

8.6 RADIATED SPURIOUS EMISSION

8.6.1 Applicable Standard

According to FCC Part 15.247(d), 15.205, 15.209 and KDB 558074 D01 15.247 Meas Guidance v05r02 According to IC RSS-Gen and RSS-247

8.6.2 Conformance Limit

According to FCC Part 15.247(d): radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). According to FCC Part15.205. Restricted bands

MHz MHz MHz GHz 0.090-0.110 16.42-16.423 399.9-410 4.5-5.15 10.495-0.505 16.69475-16.69525 608-614 5.35-5.46 2.1735-2.1905 16.80425-16.80475 960-1240 7.25-7.75 4.125-4.128 25.5-25.67 1300-1427 8.025-8.5 4.17725-4.17775 37.5-38.25 1435-1626.5 9.0-9.2 4.20725-4.20775 73-74.6 1645.5-1646.5 9.3-9.5 6.215-6.218 74.8-75.2 1660-1710 10.6-12.7 6.26775-6.26825 123-138 2200-2300 14.47-14.5 8.291-8.294 149.9-150.05 2310-2390 15.35-16.2 8.362-8.366 156.52475-156.52525 2483.5-2500 17.7-21.4 8.37625-8.38675 156.7-156.9 2690-2900 22.01-23.12 8.41425-8.41475 162.0125-167.17 3260-3267 23.6-24.0 12.29-12.293 167.72-173.2 3332-3339 31.2-31.8 12.51975-12.52025 240-285 3345.8-3358 36.43-36.5 12.57675-12.57725 322	According to FCC Part 15.205, Restricted bands									
10.495-0.505 16.69475-16.69525 608-614 5.35-5.46 2.1735-2.1905 16.80425-16.80475 960-1240 7.25-7.75 4.125-4.128 25.5-25.67 1300-1427 8.025-8.5 4.17725-4.17775 37.5-38.25 1435-1626.5 9.0-9.2 4.20725-4.20775 73-74.6 1645.5-1646.5 9.3-9.5 6.215-6.218 74.8-75.2 1660-1710 10.6-12.7 6.26775-6.26825 123-138 2200-2300 14.47-14.5 8.291-8.294 149.9-150.05 2310-2390 15.35-16.2 8.362-8.366 156.52475-156.52525 2483.5-2500 17.7-21.4 8.37625-8.38675 156.7-156.9 2690-2900 22.01-23.12 8.41425-8.41475 162.0125-167.17 3260-3267 23.6-24.0 12.29-12.293 167.72-173.2 3332-3339 31.2-31.8 12.51975-12.52025 240-285 3345.8-3358 36.43-36.5 12.57675-12.57725 322-335.4 3600-4400 (2)	MHz	MHz	MHz	GHz						
2.1735-2.1905 16.80425-16.80475 960-1240 7.25-7.75 4.125-4.128 25.5-25.67 1300-1427 8.025-8.5 4.17725-4.17775 37.5-38.25 1435-1626.5 9.0-9.2 4.20725-4.20775 73-74.6 1645.5-1646.5 9.3-9.5 6.215-6.218 74.8-75.2 1660-1710 10.6-12.7 6.26775-6.26825 123-138 2200-2300 14.47-14.5 8.291-8.294 149.9-150.05 2310-2390 15.35-16.2 8.362-8.366 156.52475-156.52525 2483.5-2500 17.7-21.4 8.37625-8.38675 156.7-156.9 2690-2900 22.01-23.12 8.41425-8.41475 162.0125-167.17 3260-3267 23.6-24.0 12.29-12.293 167.72-173.2 3332-3339 31.2-31.8 12.51975-12.52025 240-285 3345.8-3358 36.43-36.5 12.57675-12.57725 322-335.4 3600-4400 (2) 13.36-13.41 (2)	0.090-0.110	16.42-16.423	399.9-410	4.5-5.15						
4.125-4.128 25.5-25.67 1300-1427 8.025-8.5 4.17725-4.17775 37.5-38.25 1435-1626.5 9.0-9.2 4.20725-4.20775 73-74.6 1645.5-1646.5 9.3-9.5 6.215-6.218 74.8-75.2 1660-1710 10.6-12.7 6.26775-6.26825 123-138 2200-2300 14.47-14.5 8.291-8.294 149.9-150.05 2310-2390 15.35-16.2 8.362-8.366 156.52475-156.52525 2483.5-2500 17.7-21.4 8.37625-8.38675 156.7-156.9 2690-2900 22.01-23.12 8.41425-8.41475 162.0125-167.17 3260-3267 23.6-24.0 12.29-12.293 167.72-173.2 3332-3339 31.2-31.8 12.51975-12.52025 240-285 3345.8-3358 36.43-36.5 12.57675-12.57725 322-335.4 3600-4400 (2)	10.495-0.505	16.69475-16.69525	608-614	5.35-5.46						
4.17725-4.17775 37.5-38.25 1435-1626.5 9.0-9.2 4.20725-4.20775 73-74.6 1645.5-1646.5 9.3-9.5 6.215-6.218 74.8-75.2 1660-1710 10.6-12.7 6.26775-6.26825 123-138 2200-2300 14.47-14.5 8.291-8.294 149.9-150.05 2310-2390 15.35-16.2 8.362-8.366 156.52475-156.52525 2483.5-2500 17.7-21.4 8.37625-8.38675 156.7-156.9 2690-2900 22.01-23.12 8.41425-8.41475 162.0125-167.17 3260-3267 23.6-24.0 12.29-12.293 167.72-173.2 3332-3339 31.2-31.8 12.51975-12.52025 240-285 3345.8-3358 36.43-36.5 12.57675-12.57725 322-335.4 3600-4400 (2) 13.36-13.41	2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75						
4.20725-4.20775 73-74.6 1645.5-1646.5 9.3-9.5 6.215-6.218 74.8-75.2 1660-1710 10.6-12.7 6.26775-6.26825 123-138 2200-2300 14.47-14.5 8.291-8.294 149.9-150.05 2310-2390 15.35-16.2 8.362-8.366 156.52475-156.52525 2483.5-2500 17.7-21.4 8.37625-8.38675 156.7-156.9 2690-2900 22.01-23.12 8.41425-8.41475 162.0125-167.17 3260-3267 23.6-24.0 12.29-12.293 167.72-173.2 3332-3339 31.2-31.8 12.51975-12.52025 240-285 3345.8-3358 36.43-36.5 12.57675-12.57725 322-335.4 3600-4400 (2)	4.125-4.128	25.5-25.67	1300-1427	8.025-8.5						
6.215-6.218 74.8-75.2 1660-1710 10.6-12.7 6.26775-6.26825 123-138 2200-2300 14.47-14.5 8.291-8.294 149.9-150.05 2310-2390 15.35-16.2 8.362-8.366 156.52475-156.52525 2483.5-2500 17.7-21.4 8.37625-8.38675 156.7-156.9 2690-2900 22.01-23.12 8.41425-8.41475 162.0125-167.17 3260-3267 23.6-24.0 12.29-12.293 167.72-173.2 3332-3339 31.2-31.8 12.51975-12.52025 240-285 3345.8-3358 36.43-36.5 12.57675-12.57725 322-335.4 3600-4400 (2) 13.36-13.41	4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2						
6.26775-6.26825 123-138 2200-2300 14.47-14.5 8.291-8.294 149.9-150.05 2310-2390 15.35-16.2 8.362-8.366 156.52475-156.52525 2483.5-2500 17.7-21.4 8.37625-8.38675 156.7-156.9 2690-2900 22.01-23.12 8.41425-8.41475 162.0125-167.17 3260-3267 23.6-24.0 12.29-12.293 167.72-173.2 3332-3339 31.2-31.8 12.51975-12.52025 240-285 3345.8-3358 36.43-36.5 12.57675-12.57725 322-335.4 3600-4400 (2) 13.36-13.41 (2)	4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5						
8.291-8.294 149.9-150.05 2310-2390 15.35-16.2 8.362-8.366 156.52475-156.52525 2483.5-2500 17.7-21.4 8.37625-8.38675 156.7-156.9 2690-2900 22.01-23.12 8.41425-8.41475 162.0125-167.17 3260-3267 23.6-24.0 12.29-12.293 167.72-173.2 3332-3339 31.2-31.8 12.51975-12.52025 240-285 3345.8-3358 36.43-36.5 12.57675-12.57725 322-335.4 3600-4400 (2) 13.36-13.41 (2)	6.215-6.218	74.8-75.2	1660-1710	10.6-12.7						
8.362-8.366 156.52475-156.52525 2483.5-2500 17.7-21.4 8.37625-8.38675 156.7-156.9 2690-2900 22.01-23.12 8.41425-8.41475 162.0125-167.17 3260-3267 23.6-24.0 12.29-12.293 167.72-173.2 3332-3339 31.2-31.8 12.51975-12.52025 240-285 3345.8-3358 36.43-36.5 12.57675-12.57725 322-335.4 3600-4400 (2) 13.36-13.41 (2)	6.26775-6.26825	123-138	2200-2300	14.47-14.5						
8.37625-8.38675 156.7-156.9 2690-2900 22.01-23.12 8.41425-8.41475 162.0125-167.17 3260-3267 23.6-24.0 12.29-12.293 167.72-173.2 3332-3339 31.2-31.8 12.51975-12.52025 240-285 3345.8-3358 36.43-36.5 12.57675-12.57725 322-335.4 3600-4400 (2) 13.36-13.41	8.291-8.294	149.9-150.05	2310-2390	15.35-16.2						
8.41425-8.41475 162.0125-167.17 3260-3267 23.6-24.0 12.29-12.293 167.72-173.2 3332-3339 31.2-31.8 12.51975-12.52025 240-285 3345.8-3358 36.43-36.5 12.57675-12.57725 322-335.4 3600-4400 (2) 13.36-13.41 (2)	8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4						
12.29-12.293 167.72-173.2 3332-3339 31.2-31.8 12.51975-12.52025 240-285 3345.8-3358 36.43-36.5 12.57675-12.57725 322-335.4 3600-4400 (2) 13.36-13.41	8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12						
12.51975-12.52025 240-285 3345.8-3358 36.43-36.5 12.57675-12.57725 322-335.4 3600-4400 (2) 13.36-13.41 (2)	8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0						
12.57675-12.57725 322-335.4 3600-4400 (2) 13.36-13.41	12.29-12.293	167.72-173.2	3332-3339	31.2-31.8						
13.36-13.41	12.51975-12.52025	240-285	3345.8-3358	36.43-36.5						
	12.57675-12.57725	322-335.4	3600-4400	(2)						

According to FCC Part15.205 the level of any transmitter spurious emission in Restricted bands shall not exceed the level of the emission specified in the following table

Restricted	Field Strength (µV/m)	Field Strength	Measurement
Frequency(MHz)		(dBµV/m)	Distance
0.009-0.490	2400/F(KHz)	20 log (uV/m)	300
0.490-1.705	24000/F(KHz)	20 log (uV/m)	30
1.705-30	30	29.5	30
30-88	100	40	3
88-216	150	43.5	3
216-960	200	46	3
Above 960	500	54	3

8.6.3 Test Configuration

Test according to clause 6.2 radio frequency test setup

8.6.4 Test Procedure

This test is required for any spurious emission that falls in a Restricted Band, as defined in Section 15.205. It must be performed with the highest gain of each type of antenna proposed for use with the EUT. Use the following spectrum analyzer settings:

For Above 1GHz:

The EUT was placed on a turn table which is 1.5m above ground plane.

Maximum procedure was performed on the highest emissions to ensure EUT compliance.

Span = wide enough to fully capture the emission being measured

RBW = 1 MHz

 $VBW \ge RBW$

Sweep = auto

Detector function = peak

Trace = max hold

For Below 1GHz:

The EUT was placed on a turn table which is 0.8m above ground plane.

Maximum procedure was performed on the highest emissions to ensure EUT compliance.

Span = wide enough to fully capture the emission being measured

RBW = 100 kHz for

VBW ≥ RBW

Sweep = auto

Detector function = peak

Trace = max hold

For Below 30MHz:

The EUT was placed on a turn table which is 0.8m above ground plane.

Maximum procedure was performed on the highest emissions to ensure EUT compliance.

Span = wide enough to fully capture the emission being measured

RBW = 9kHz

 $VBW \ge RBW$

Sweep = auto

Detector function = peak

Trace = max hold

For Below 150KHz:

The EUT was placed on a turn table which is 0.8m above ground plane.

Maximum procedure was performed on the highest emissions to ensure EUT compliance.

Span = wide enough to fully capture the emission being measured

RBW = 200Hz

VBW ≥ RBW

Sweep = auto

Detector function = peak

Trace = max hold

Follow the guidelines in ANSI C63.10 with respect to maximizing the emission by rotating the EUT, measuring the emission while the EUT is situated in three orthogonal planes (if appropriate), adjusting the measurement antenna height and polarization, etc. A pre-amp and a high pass filter are required for this test, in order to provide the measuring system with sufficient sensitivity. Allow the trace to stabilize. The peak reading of the emission, after being corrected by the antenna factor, cable loss, pre-amp gain, etc., is the peak field strength, which must comply with the limit. Submit this data.

Now set the VBW to 10 Hz, while maintaining all of the other instrument settings. This peak level, once corrected, must comply with the limit. If the dwell time per channel of the hopping signal is less than 100 ms, then the reading obtained with the 10 Hz VBW may be further adjusted by a "duty cycle correction factor", derived from 20log(dwell time/100 ms), in an effort to demonstrate compliance with the limit. Submit this data.

Repeat above procedures until all frequency measured was complete.

8.6.5 Test Results

Temperature:	26° C
Relative Humidity:	54%
ATM Pressure:	1011 mbar

■ Spurious Emission below 30MHz(9KHz to 30MHz)

Freq. (MHz)	Ant.Pol.		ssion BuV/m)	Limit 3m(Limit 3m(dBuV/m)		Over(dB)	
(IVITZ)	H/V	PK	AV	PK	AV	PK	AV	

Note: the amplitude of spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.

Distance extrapolation factor =40log(Specific distance/ test distance)(dB);

Limit line=Specific limits(dBuV) + distance extrapolation factor

■ Spurious Emission Above 1GHz(1GHz to 25GHz)

All the antenna (Antenna 1) and modes (802.11b/g/n) have been tested and the worst (Antenna 1, 802.11b) result recorded was report as below:

Test mode:	802.	11b	Freque	ency:	y: Channel 1: 2412MHz					
Freq. (MHz)	Ant.Pol.	Emis Level(d	ssion BuV/m)	Limit 3m((dBuV/m)	IBuV/m) Over(dB)				
(IVII IZ)	H/V	PK	AV	PK	AV	PK	AV			
9840.00	V	59.25	46.38	74.00	54.00	-14.75	-7.62			
10112.00	V	58.79	46.56	74.00	54.00	-15.21	-7.44			
12560.00	V	58.73	45.91	74.00	54.00	-15.27	-8.09			
8276.00	Н	58.35	46.04	74.00	54.00	-15.65	-7.96			
10112.00	Н	58.05	44.86	74.00	54.00	-15.95	-9.14			
14090.00	Н	59.19	46.12	74.00	54.00	-14.81	-7.88			

rest mode:	802.110	Frequency:	Channel 6: 2437 MHZ
		-mission	

Freq. (MHz)	Ant.Pol. Emission Level(dBuV/m) Limit 3m(dBuV/m)		(dBuV/m)	Over(dB)			
(IVII IZ)	H/V	PK	AV	PK	AV	PK	AV
8242.00	V	58.38	45.46	74.00	54.00	-15.62	-8.54
9806.00	V	58.77	46.13	74.00	54.00	-15.23	-7.87
13580.00	V	59.30	45.77	74.00	54.00	-14.70	-8.23
8072.00	Н	57.48	44.43	74.00	54.00	-16.52	-9.57
13376.00	Н	58.52	45.24	74.00	54.00	-15.48	-8.76
14022.00	Н	58.59	45.10	74.00	54.00	-15.41	-8.90

Test mode:	802.	11b	Freque	ency:	ey: Channel 11: 2462MHz					
Freq. (MHz)	Ant.Pol.		ssion BuV/m)	Limit 3m((dBuV/m)	Over	(dB)			
	H/V	PK	AV	PK	AV	PK	AV			
7222.00	V	57.24	43.61	74.00	54.00	-16.76	-10.39			
9806.00	V	57.29	44.47	74.00	54.00	-16.71	-9.53			
13546.00	V	58.85	45.78	74.00	54.00	-15.15	-8.22			
8548.00	Н	56.90	44.10	74.00	54.00	-17.10	-9.90			
12866.00	Н	57.58	44.09	74.00	54.00	-16.42	-9.91			

Note:

15654.00

- (1) All Readings are Peak Value (VBW=3MHz) and Average Value (VBW=10Hz).
- (2) Emission Level= Reading Level+Correct Factor.

45.52

(3) Correct Factor= Ant_F + Cab_L - Preamp

58.06

(4) The reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

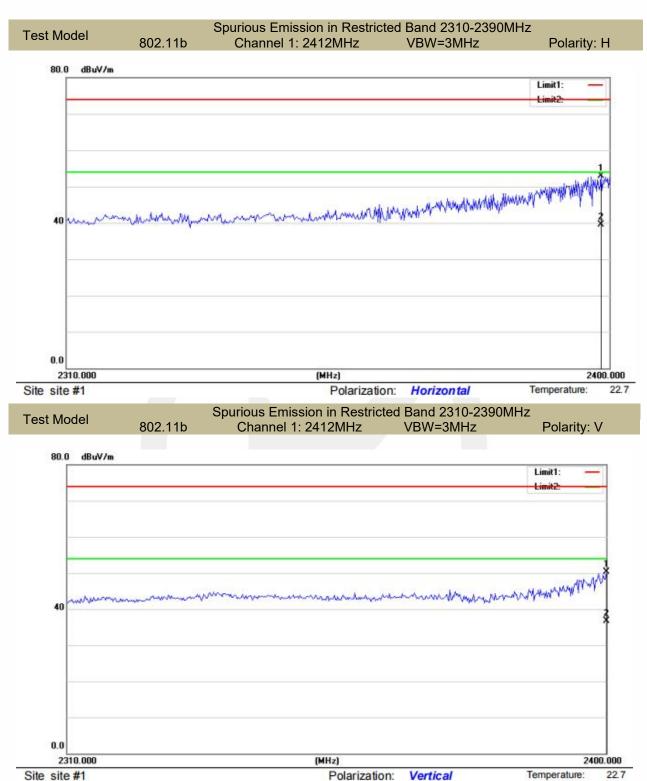
74.00

54.00

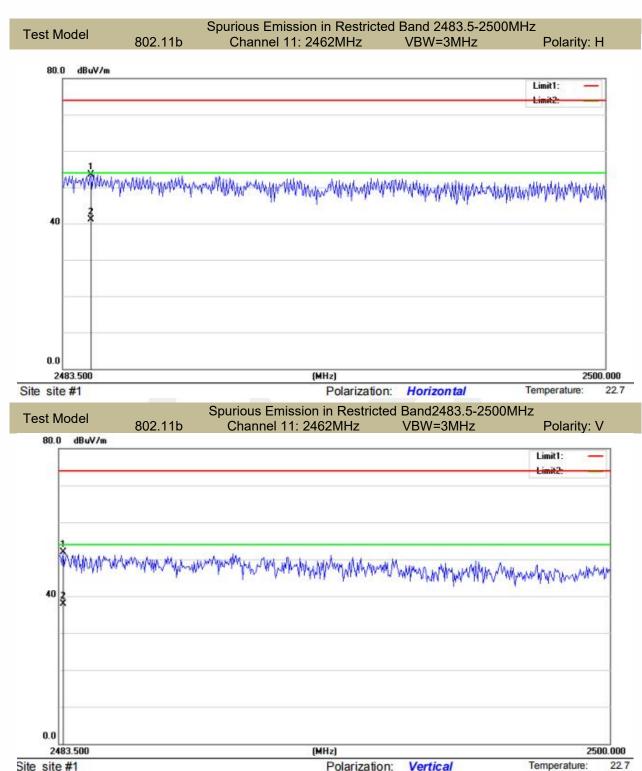
-15.94

-8.48

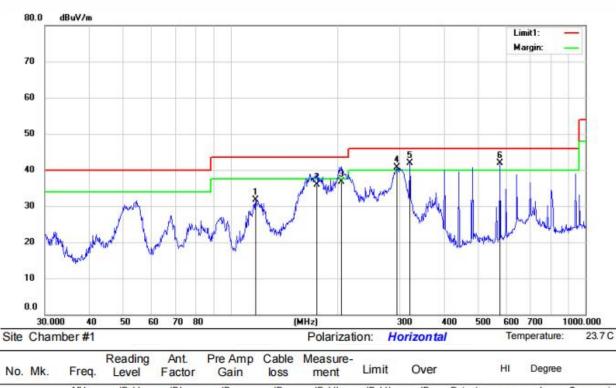
■ Spurious Emission in Restricted Band 2310-2390MHz and 2483.5-2500MHz All the antenna(Antenna 1) and modes(802.11b/g/n) have been tested and the worst(Antenna 1 , 802.11b) result recorded was report as below:


Test mode:	802.11n(HT40) Frequency: Channel 1: 2412MF				l z
Frequency (MHz)	Polarity	PK(dBuV/m) (VBW=3MHz)	Limit 3m (dBuV/m)	AV(dBuV/m) (VBW=10Hz)	Limit 3m (dBuV/m)
2399.28	Н	52.82	74.00	39.47	54.00
2400.00	V	50.29	74.00	36.62	54.00

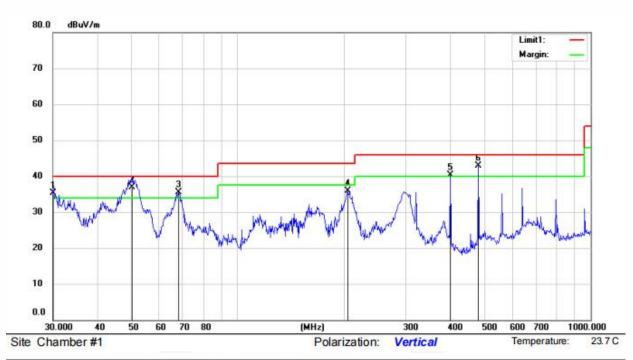
lest mode: 802.11n(HT40) Frequency: Channel 11: 2462MHz							
Frequency (MHz)	Polarity	PK(dBuV/m) (VBW=3MHz)	Limit 3m (dBuV/m)	AV(dBuV/m) (VBW=10Hz)	Limit 3m (dBuV/m)		
2483.50	Н	55.11	74.00	42.74	54.00		
2484.00	V	52.99	74.00	40.05	54.00		


Note:

- (1) All Readings are Peak Value (VBW=3MHz) and Average Value (VBW=10Hz).
- (2) Emission Level= Reading Level+Correct Factor.
- (3) Correct Factor= Ant_F + Cab_L Preamp
- (4) The reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.



■ Spurious Emission below 1GHz (30MHz to 1GHz) All the antenna(Antenna 1) and modes(802.11b/g/n) have been tested and the worst(Antenna 1, 802.11b) result recorded was report as below:


Mk	. Freq.	Reading Level	Ant. Factor	Pre Amp Gain	Cable	Measure- ment	Limit	Over		н	Degree	
	MHz	dBuV	dB/m	dB	dB	dBuV/m	dBuV/m	dB	Detector	cm	deg.	Comment
	117.7724	51.23	10.16	30.8	1.21	31.80	43.50	-11.70	QP			
	175.0365	55.32	9.6	30.49	1.57	36.00	43.50	-7.50	QP			
	204.9551	53.55	11.74	30.33	1.74	36.70	43.50	-6.80	QP			
1	294.1136	54.58	13.79	29.86	2.16	40.67	46.00	-5.33	QP			
*	319.9370	55.25	14.34	29.83	2.24	42.00	46.00	-4.00	QP			
!	574.6258	49.33	19.44	29.92	3.1	41.95	46.00	-4.05	QP			
	1	MHz 117.7724 175.0365 204.9551 ! 294.1136 * 319.9370	Mk. Freq. Level MHz dBuV 117.7724 51.23 175.0365 55.32 204.9551 53.55 ! 294.1136 54.58 * 319.9370 55.25	Mk. Freq. Level Factor MHz dBuV dB/m 117.7724 51.23 10.16 175.0365 55.32 9.6 204.9551 53.55 11.74 ! 294.1136 54.58 13.79 * 319.9370 55.25 14.34	Mk. Freq. Level Factor Gain MHz dBuV dB/m dB 117.7724 51.23 10.16 30.8 175.0365 55.32 9.6 30.49 204.9551 53.55 11.74 30.33 ! 294.1136 54.58 13.79 29.86 * 319.9370 55.25 14.34 29.83	Mk. Freq. Level Factor Gain loss MHz dBuV dB/m dB dB 117.7724 51.23 10.16 30.8 1.21 175.0365 55.32 9.6 30.49 1.57 204.9551 53.55 11.74 30.33 1.74 ! 294.1136 54.58 13.79 29.86 2.16 * 319.9370 55.25 14.34 29.83 2.24	Mk. Freq. Level Factor Gain loss ment MHz dBuV dB/m dB dB dBuV/m 117.7724 51.23 10.16 30.8 1.21 31.80 175.0365 55.32 9.6 30.49 1.57 36.00 204.9551 53.55 11.74 30.33 1.74 36.70 ! 294.1136 54.58 13.79 29.86 2.16 40.67 * 319.9370 55.25 14.34 29.83 2.24 42.00	Mk. Freq. Level Factor Gain loss ment Limit MHz dBuV dBuV dB dB dBuV/m dBuV/m dBuV/m 117.7724 51.23 10.16 30.8 1.21 31.80 43.50 175.0365 55.32 9.6 30.49 1.57 36.00 43.50 204.9551 53.55 11.74 30.33 1.74 36.70 43.50 ! 294.1136 54.58 13.79 29.86 2.16 40.67 46.00 * 319.9370 55.25 14.34 29.83 2.24 42.00 46.00	Mk. Freq. Level Factor Gain loss ment Limit Over MHz dBuV dBuV dB dB dBuV/m dBuV/m dB 117.7724 51.23 10.16 30.8 1.21 31.80 43.50 -11.70 175.0365 55.32 9.6 30.49 1.57 36.00 43.50 -7.50 204.9551 53.55 11.74 30.33 1.74 36.70 43.50 -6.80 ! 294.1136 54.58 13.79 29.86 2.16 40.67 46.00 -5.33 * 319.9370 55.25 14.34 29.83 2.24 42.00 46.00 -4.00	Mk. Freq. Level Factor Gain loss ment Limit Over MHz dBuV dB/m dB dB dBuV/m dBuV/m dB Detector 117.7724 51.23 10.16 30.8 1.21 31.80 43.50 -11.70 QP 175.0365 55.32 9.6 30.49 1.57 36.00 43.50 -7.50 QP 204.9551 53.55 11.74 30.33 1.74 36.70 43.50 -6.80 QP ! 294.1136 54.58 13.79 29.86 2.16 40.67 46.00 -5.33 QP * 319.9370 55.25 14.34 29.83 2.24 42.00 46.00 -4.00 QP	Mk. Freq. Level Factor Gain loss ment Limit Over HI MHz dBuV dB/m dB dB dBuV/m dBuV/m dB Detector cm 117.7724 51.23 10.16 30.8 1.21 31.80 43.50 -11.70 QP 175.0365 55.32 9.6 30.49 1.57 36.00 43.50 -7.50 QP 204.9551 53.55 11.74 30.33 1.74 36.70 43.50 -6.80 QP ! 294.1136 54.58 13.79 29.86 2.16 40.67 46.00 -5.33 QP * 319.9370 55.25 14.34 29.83 2.24 42.00 46.00 -4.00 QP	Mk. Freq. Level Factor Gain loss ment Limit Over HI Degree MHz dBuV dB/m dB dB dBuV/m dBuV/m dB Detector cm deg. 117.7724 51.23 10.16 30.8 1.21 31.80 43.50 -11.70 QP 175.0365 55.32 9.6 30.49 1.57 36.00 43.50 -7.50 QP 204.9551 53.55 11.74 30.33 1.74 36.70 43.50 -6.80 QP ! 294.1136 54.58 13.79 29.86 2.16 40.67 46.00 -5.33 QP * 319.9370 55.25 14.34 29.83 2.24 42.00 46.00 -4.00 QP

Remark:

- 1. Measurement (dB μ V/m) = Antenna Factor(dB) -Amp Factor(dB) +Cable Loss(dB) + Reading(dB μ V/m)
- 2. Over (dB) = Measurement (dB μ V/m) Limit (dB μ V/m)

^{*:}Maximum data x:Over limit !:over margin Operator: Ccyf

No.	Mk.	Freq.	Reading Level	Ant. Factor	Pre Amp Gain	Cable loss	Measure- ment	Limit	Over		н	Degree	П
		MHz	dBuV	dB/m	dB	dB	dBuV/m	dBuV/m	dB	Detector	cm	deg.	Comment
1	!	30.0000	54.19	11.2	30.57	0.58	35.40	40.00	-4.60	QP			
2	*	50.2323	52.71	13.98	30.48	0.79	37.00	40.00	-3.00	QP			
3	!	68.1512	54.73	10.27	30.55	1.1	35.55	40.00	-4.45	QP			
4	No.	204.9550	52.78	11.74	30.33	1.74	35.93	43.50	-7.57	QP			
5	1	400.4318	50.07	16.31	29.82	3.69	40.25	46.00	-5.75	QP			
6	1	480.5276	52.43	17.45	29.81	2.79	42.86	46.00	-3.14	QP			

Remark

- 1. Measurement (dB μ V/m) = Antenna Factor(dB) -Amp Factor(dB) +Cable Loss(dB) + Reading(dB μ V/m)
- 2. Over (dB) = Measurement (dB μ V/m) Limit (dB μ V/m)

^{*:}Maximum data x:Over limit !:over margin Operator: Ccyf

8.7 CONDUCTED EMISSION TEST

8.7.1 Applicable Standard

According to FCC Part 15.207(a) According to IC RSS-Gen 8.8

8.7.2 Conformance Limit

Conducted Emission Limit

Frequency(MHz)	Quasi-peak	Average
0.15-0.5	66-56	56-46
0.5-5.0	56	46
5.0-30.0	60	50

Note: 1. The lower limit shall apply at the transition frequencies

2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

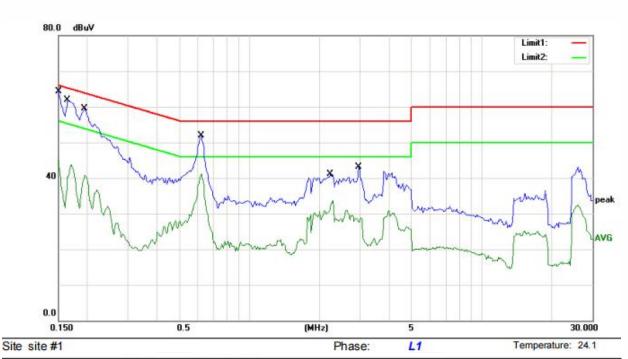
8.7.3 Test Configuration

Test according to clause 6.3 conducted emission test setup

8.7.4 Test Procedure

The EUT was placed on a table which is 0.8m above ground plane.

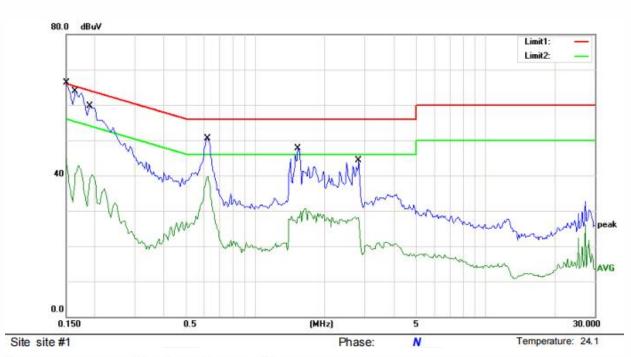
Maximum procedure was performed on the highest emissions to ensure EUT compliance.


Repeat above procedures until all frequency measured were complete.

8.7.5 Test Results

Pass

The AC120V &240V voltage have been tested, and the worst result recorded was report as below:


No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1500	62.30	0.00	62.30	66.00	-3.70	QP	
2		0.1500	45.07	0.00	45.07	56.00	-10.93	AVG	
3	*	0.1650	61.99	0.00	61.99	65.21	-3.22	QP	
4		0.1650	43.80	0.00	43.80	55.21	-11.41	AVG	
5		0.1950	59.57	0.00	59.57	63.82	-4.25	QP	
6		0.1950	40.74	0.00	40.74	53.82	-13.08	AVG	
7		0.6200	51.91	0.00	51.91	56.00	-4.09	QP	
8		0.6200	41.09	0.00	41.09	46.00	-4.91	AVG	
9		2.2300	41.02	0.00	41.02	56.00	-14.98	QP	
10		2.2300	33.70	0.00	33.70	46.00	-12.30	AVG	
11		2.9600	43.09	0.00	43.09	56.00	-12.91	QP	
12		2.9600	28.87	0.00	28.87	46.00	-17.13	AVG	

Remark:

- 1. Measurement (dB μ V) = AMN Factor (dB) + Cable Loss (dB) + Reading (dB μ V)
- 2. Over (dB) = Measurement (dB μ V) Limit (dB μ V)

^{*:}Maximum data x:Over limit !:over margin Comment: Factor build in receiver. Operator: Jian

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		2.1100	34.59	17.10	51.69	56.00	-4.31	QP	
2		2.1100	7.04	17.10	24.14	46.00	-21.86	AVG	
3	*	4.1900	36.14	16.98	53.12	56.00	-2.88	QP	
4		4.1900	0.90	16.98	17.88	46.00	-28.12	AVG	
5		5.3780	36.26	16.97	53.23	60.00	-6.77	QP	
6		5.3780	5.87	16.97	22.84	50.00	-27.16	AVG	
7		7.5820	38.29	17.04	55.33	60.00	-4.67	QP	
8		7.5820	7.41	17.04	24.45	50.00	-25.55	AVG	
9		8.9180	38.43	17.01	55.44	60.00	-4.56	QP	
10		8.9180	7.29	17.01	24.30	50.00	-25.70	AVG	
11		13.2500	36.56	16.92	53.48	60.00	-6.52	QP	
12		13.2500	5.70	16.92	22.62	50.00	-27.38	AVG	
444.4					7.5 - 7.5 - 7.5 - 7.5			20112001111	

^{*:}Maximum data x:Over limit !:over margin Comment: Factor build in receiver. Operator: Remark:

^{1.} Measurement (dB μ V) = AMN Factor (dB) + Cable Loss (dB) + Reading (dB μ V)

^{2.} Over (dB) = Measurement (dB μ V) - Limit (dB μ V)

8.8 ANTENNA APPLICATION

8.8.1 Antenna Requirement

Standard Requirement An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be FCC CRF Part 15.203 considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. If transmitting antennas of directional gain greater than 6dBi are used, FCC 47 CFR Part 15.247 the power shall be reduced by the amount in dB that the directional gain (b) of the antenna exceeds 6dBi. The applicant for equipment certification shall provide a list of all antenna types that may be used with the transmitter, where applicable (i.e. for transmitters with detachable antenna), indicating the maximum permissible antenna gain (in dBi) and the required impedance for each RSS-Gen Section 6.8 antenna. The test report shall demonstrate the compliance of the transmitter with the limit for maximum equivalent isotropically radiated power (e.i.r.p.) specified in the applicable RSS, when the transmitter is equipped with any antenna type, selected from this list. If the transmitter employs an antenna system that emits multiple directional beams, but does not emit multiple directional beams simultaneously, the total output power conducted to the array or arrays that comprise the device (i.e. the sum of the power supplied to all antennas, antenna elements, staves, etc., and summed across all carriers or frequency channels) shall not exceed the applicable output RSS-247 Section 5.4 power limit. However, the total conducted output power shall be reduced by 1 dB below the specified limits for each 3 dB that the directional gain of the antenna/antenna array exceeds 6 dBi. The directional antenna gain shall be computed as the sum of 10 log (number of array elements or staves) plus the directional gain of the element or stave having the highest gain. 8.8.2 Result PASS. Note: \checkmark Antenna use a permanently attached antenna which is not replaceable. Not using a standard antenna jack or electrical connector for antenna replacement The antenna has to be professionally installed (please provide method of installation) Please refer to the attached document Internal Photos to show the antenna connector.

东莞市信測科技有限公司 地址:广东省东莞市松山湖高新技术产业开发区新城大道9号中大海洋生物科技研发基地A区2号办公楼负一层、第二层 网址:Http://www.emtek.com.cn 邮箱:E-mail: project@emtek.com.cn EMTEK (Dongguan) Co., Ltd. Add: -182/F "Building 2,Zone A,Zhongda Marine Biotechnology Research and Development Base ,No.9, Xincheng Avenue,Songshanhu High-technology Industrial Development Zone, Dongguan, Guangdong,China Http://www.emtek.com.cn E-mail: project@emtek.com.cn

Detail of factor for radiated emission

Frequency(MHz)	Ant_F(dB)	Cab_L(dB)	Preamp(dB)	Correct Factor(dB)
0.009	20.6	0.03	\	20.63
0.15	20.7	0.1	\	20.8
1	20.9	0.15	\	21.05
10	20.1	0.28	1	20.38
30	18.8	0.45	1	19.25
30	11.7	0.62	27.9	-15.58
100	12.5	1.02	27.8	-14.28
300	12.9	1.91	27.5	-12.69
600	19.2	2.92	27	-4.88
800	21.1	3.54	26.6	-1.96
1000	22.3	4.17	26.2	0.27
1000	25.6	1.76	41.4	-14.04
3000	28.9	3.27	43.2	-11.03
5000	31.1	4.2	44.6	-9.3
8000	36.2	5.95	44.7	-2.55
10000	38.4	6.3	43.9	0.8
12000	38.5	7.14	42.3	3.34
15000	40.2	8.15	41.4	6.95
18000	45.4	9.02	41.3	13.12
18000	37.9	1.81	47.9	-8.19
21000	37.9	1.95	48.7	-8.85
25000	39.3	2.01	42.8	-1.49
28000	39.6	2.16	46.0	-4.24
31000	41.2	2.24	44.5	-1.06
34000	41.5	2.29	46.6	-2.81
37000	43.8	2.30	46.4	-0.3
40000	43.2	2.50	42.2	3.5

*** End of Report ***

声明

Statement

1. 本报告无授权批准人签字及"检验检测专用章"无效;

This report will be void without authorized signature or special seal for testing report.

2. 未经许可本报告不得部分复制;

This report shall not be copied partly without authorization.

3. 本报告的检测结果仅对送测样品有效,委托方对样品的代表性和资料的真实性负责;

The test results or observations are applicable only to tested sample. Client shall be responsible for representativeness of the sample and authenticity of the material.

4. 本检测报告中检测项目标注有特殊符号则该项目不在资质认定范围内,仅作为客户委托、科研、教学或内部质量控制等目的使用;

The observations or tests with special mark fall outside the scope of accreditation, and are only used for purpose of commission, research, training, internal quality control etc.

5. 本检测报告以实测值进行符合性判定,未考虑不确定度所带来的风险,本实验室不承担相关责任,特别约定、标准或规范中有明确规定的除外;

The test results or observations are provided in accordance with measured value, without taking risks caused by uncertainty into account. Without explicit stipulation in special agreements, standards or regulations, EMTEK shall not assume any responsibility.

6. 对本检验报告若有异议,请于收到报告之日起 20 日内提出;

Objections shall be raised within 20 days from the date receiving the report.