TCT通测检测 TESTING CENTRE TECHNOLOGY				
	TEST REPOR	Т		
FCC ID :	2AON4-BC1026			
Test Report No:	TCT250224E006			
Date of issue:	Mar. 07, 2025			
Testing laboratory: :	SHENZHEN TONGCE TESTING	S LAB		
Testing location/ address:	2101 & 2201, Zhenchang Factory, Renshan Industrial Zone, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, 518103, People's Republic of China			
Applicant's name: :	Global Media Industry Group Co	., Ltd.		
Address:	2F, Bldg A, No. 46, Xingye 1st Rd, Fenghuang, Fuyong, Bao'an, Shenzhen, China			
Manufacturer's name :	Global Media Industry Group Co., Ltd.			
Address:	2F, Bldg A, No. 46, Xingye 1st Rd, Fenghuang, Fuyong, Bao'an, Shenzhen, China			
Standard(s):	FCC CFR Title 47 Part 15 Subpa FCC KDB 558074 D01 15.247 N ANSI C63.10:2020			
Product Name::	Carplay & Android Auto DVR Mir	rror		
Trade Mark:	imirror	(\mathcal{G})		
Model/Type reference :	BC1026			
Rating(s):	DC 12-24V			
Date of receipt of test item	Feb. 24, 2025			
Date (s) of performance of test:	Feb. 24, 2025 ~ Mar. 07, 2025			
Tested by (+signature) :	Onnado YE	Onnador Janges		
Check by (+signature) :	Beryl ZHAO	Boy 2 TCT		
Approved by (+signature):	Tomsin	Tomsines 3		
General disclaimer:				

This report shall not be reproduced except in full, without the written approval of SHENZHEN TONGCE TESTING LAB. This document may be altered or revised by SHENZHEN TONGCE TESTING LAB personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample.

Table of Contents

TCT通测检测 TESTING CENTRE TECHNOLOGY

1. General Product Information 1.1. EUT description	
1.2. Model(s) list	
1.3. Operation Frequency	
2. Test Result Summary	
3. General Information	
3.1. Test environment and mode	
3.2. Description of Support Units	
4. Facilities and Accreditations	
4.1. Facilities	6
4.2. Location	6
4.3. Measurement Uncertainty	6
5. Test Results and Measurement Data	7
5.1. Antenna requirement	7
5.2. Conducted Emission	
5.3. Conducted Output Power	9
5.4. Emission Bandwidth	
5.5. Power Spectral Density	11
5.6. Conducted Band Edge and Spurious Emission Measuremen	
5.7. Radiated Spurious Emission Measurement	
Appendix A: Test Result of Conducted Test	
Appendix B: Photographs of Test Setup	
Appendix C: Photographs of EUT	

1. General Product Information

1.1. EUT description

Product Name:	Carplay & Android Auto DVR Mi	rror	
Model/Type reference:	BC1026		
Sample Number:	TCT250224E005-0101		
Bluetooth Version:	V4.2 (This report is for BLE)		
Operation Frequency:	2402MHz~2480MHz		
Channel Separation:	2MHz	(\mathbf{c})	
Number of Channel:	40		
Modulation Type:	GFSK		
Antenna Type:	FPC Antenna		
Antenna Gain:	2.16dBi		
Rating(s):	DC 12-24V	(\mathbf{C})	

Note: The antenna gain listed in this report is provided by applicant, and the test laboratory is not responsible for this parameter.

1.2. Model(s) list

None.

1.3. Operation Frequency

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
	(\mathbf{C})	(<u>(</u>)	(, ć	·)		
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz
Remark: Ch	nannel 0, 19	& 39 have b	been tested.				

Report No.: TCT250224E006

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

2. Test Result Summary

Requirement	CFR 47 Section	Result
Antenna requirement	§15.203/§15.247 (c)	PASS
AC Power Line Conducted Emission	§15.207	N/A
Conducted Peak Output Power	§15.247 (b)(3)	PASS
6dB Emission Bandwidth	§15.247 (a)(2)	PASS
Power Spectral Density	§15.247 (e)	PASS
Band Edge	§15.247(d)	PASS
Spurious Emission	§15.205/§15.209	PASS

Note:

1. PASS: Test item meets the requirement.

2. Fail: Test item does not meet the requirement.

3. N/A: Test case does not apply to the test object.

4. The test result judgment is decided by the limit of test standard.

Page 4 of 44

3. General Information

3.1. Test environment and mode

Operating Environment:			
Condition	Radiated Em	ission	
Temperature:	23.9 °C		
Humidity:	53 % RH	KC)	KC)
Atmospheric Pressure:	1010 mbar		
Test Software:	·		
Software Information:	SSCOM V5.1	3.1	
Power Level:	Default		
Test Mode:			
Engineer mode:	Keep the EU channel.	T in continuous trans	smitting by select
The sample was placed 0.3 above the ground plane of 3 polarities were performed. If the EUT continuously worki	m chamber. Me During the test,	asurements in both each emission was	horizontal and vertical maximized by: having

axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case (Z axis) are shown in Test Results of the following pages.

3.2. Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Equipment	Model No.	Serial No.	FCC ID	Trade Name
۲ (

Note:

use.

All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
 Grounding was established in accordance with the manufacturer's requirements and conditions for the intended

3. For conducted measurements (Output Power, 6dB Emission Bandwidth, Power Spectral Density, Spurious Emissions), the antenna of EUT is connected to the test equipment via temporary antenna connector, the antenna connector is soldered on the antenna port of EUT, and the temporary antenna connector is listed in the Test Instruments.

4. Facilities and Accreditations

4.1. Facilities

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 645098

SHENZHEN TONGCE TESTING LAB

Designation Number: CN1205

The testing lab has been registered and fully described in a report with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

- IC Registration No.: 10668A
- SHENZHEN TONGCE TESTING LAB
- CAB identifier: CN0031

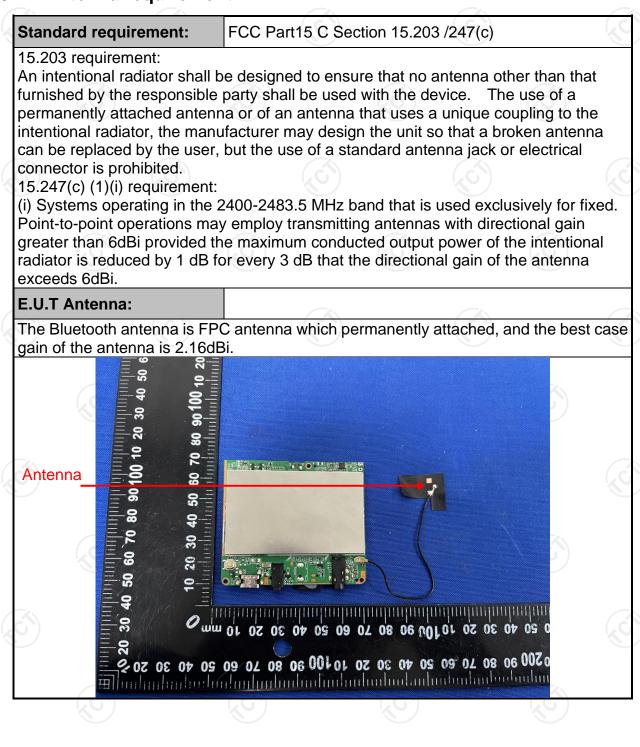
The testing lab has been registered by Innovation, Science and Economic Development Canada for radio equipment testing.

4.2. Location

SHENZHEN TONGCE TESTING LAB

Address: 2101 & 2201, Zhenchang Factory, Renshan Industrial Zone, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, 518103, People's Republic of China TEL: +86-755-27673339

4.3. Measurement Uncertainty


The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	MU
1	Conducted Emission	± 3.10 dB
2	RF power, conducted	± 0.12 dB
3	Spurious emissions, conducted	± 0.11 dB
4	All emissions, radiated(<1 GHz)	± 4.56 dB
5	All emissions, radiated(1 GHz - 18 GHz)	± 4.22 dB
6	All emissions, radiated(18 GHz- 40 GHz)	± 4.36 dB

5. Test Results and Measurement Data

5.1. Antenna requirement

5.2. Conducted Emission

5.2.1. Test Specification

Test Requirement:	FCC Part15 C Section	15.207		
Test Method:	ANSI C63.10:2020			
Frequency Range:	150 kHz to 30 MHz			
Receiver setup:	RBW=9 kHz, VBW=30 kHz, Sweep time=auto			
	Frequency range	Limit (dBuV)	
	(MHz)	Quasi-peak	Average	
Limits:	0.15-0.5	66 to 56*	56 to 46*	
	0.5-5	56	46	
	5-30	60	50	
	Referenc		1.01	
Test Setup:	E.U.T AC powe Test table/Insulation plane Remark: E.U.T: Equipment Under Test LISN: Line Impedence Stabilization Na Test table height=0.8m	EMI Receiver	- AC power	
Test Mode:	Transmitting Mode		0	
	 The E.U.T is connected to an adapter through impedance stabilization network (L.I.S.N.). provides a 50ohm/50uH coupling impedance measuring equipment. The peripheral devices are also connected to th power through a LISN that provides a 50ohm coupling impedance with 50ohm termination. (refer to the block diagram of the test setu photographs). Both sides of A.C. line are checked for ma conducted interference. In order to find the ma emission, the relative positions of equipment an the interface cables must be changed accord ANSI C63.10:2020 on conducted measurement 			
Test Procedure:	 2. The peripheral device power through a Licoupling impedance refer to the block photographs). 3. Both sides of A.C. conducted interferer emission, the relative the interface cables 	ces are also conne ISN that provides with 50ohm tern diagram of the line are checkence. In order to fin e positions of equ s must be chang	a 50ohm/50uh nination. (Please test setup and ed for maximun nd the maximun ipment and all o jed according to	

5.3. Conducted Output Power

5.3.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (b)(3)		
Test Method:	KDB 558074 D01 v05r02		
Limit:	30dBm		
Test Setup:	Spectrum Analyzer EUT		
Test Mode:	Refer to item 3.1		
Test Procedure:	 Set spectrum analyzer as following: a) Set the RBW ≥ DTS bandwidth. b) Set VBW ≥ 3 × RBW. c) Set span ≥ 3 x RBW d) Sweep time = auto couple. e) Detector = peak. f) Trace mode = max hold. g) Allow trace to fully stabilize. h) Use peak marker function to determine the peak amplitude level. 		
Test Result:	PASS		

5.3.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 26, 2025
Combiner Box	Ascentest	AT890-RFB	1	1

5.4. Emission Bandwidth

5.4.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (a)(2)
Test Method:	KDB 558074 D01 v05r02
Limit:	>500kHz
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Refer to item 3.1
Test Procedure:	 Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6dB bandwidth must be greater than 500 kHz. Measure and record the results in the test report.
Test Result:	PASS C

5.4.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 26, 2025
Combiner Box	Ascentest	AT890-RFB		

5.5. Power Spectral Density

5.5.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (e)
Test Method:	KDB 558074 D01 v05r02
Limit:	The peak power spectral density shall not be greated than 8dBm in any 3kHz band at any time interval of continuous transmission.
Test Setup:	
	spectrum Analyzer
Test Mode:	Refer to item 3.1
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW): 3 kHz ≤ RBW ≤ 100 kHz. Video bandwidth VBW ≥ 3 x RBW. In order to make an accurate measurement, set the span to 1.5 times DTS Channel Bandwidth. (6dB BW) Detector = peak, Sweep time = auto couple, Trace mode = max hold, Allow trace to fully stabilize. Use the peak marker function to determine the maximum power level. Measure and record the results in the test report.
Test Result:	PASS

5.5.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 26, 2025
Combiner Box	Ascentest	AT890-RFB	/	1

5.6. Conducted Band Edge and Spurious Emission Measurement

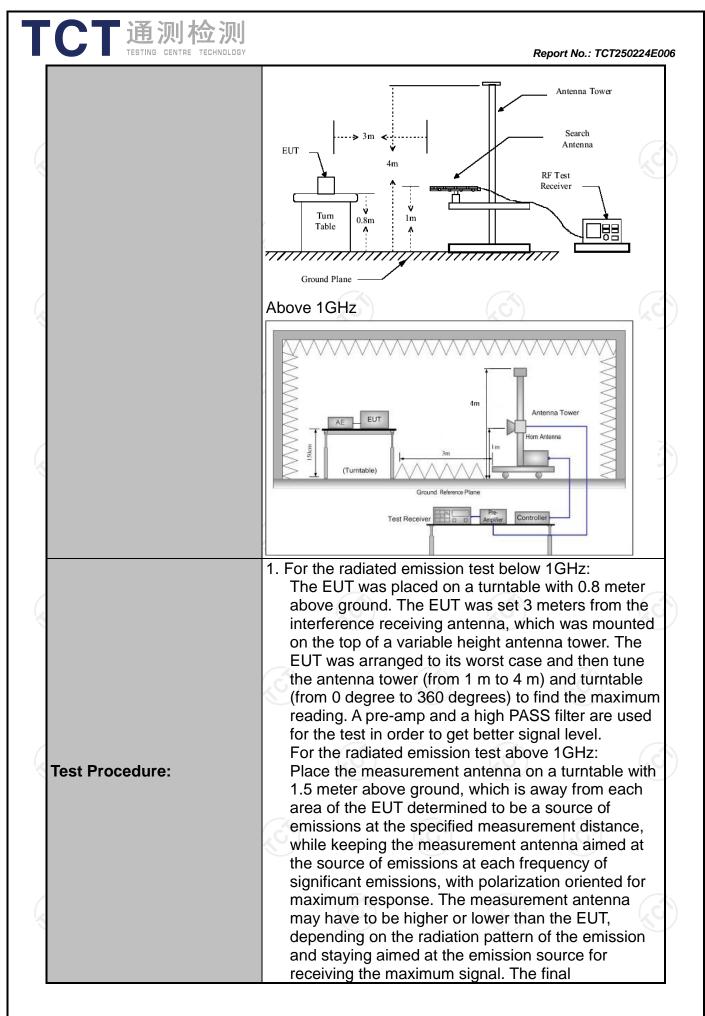
5.6.1. Test Specification

TCT 通测检测 TESTING CENTRE TECHNOLOGY

Test Requirement:	FCC Part15 C Section	15.247 (d)	
Test Method:	KDB 558074 D01 v05r0)2	C
Limit:	In any 100 kHz band frequency band, the non-restricted bands sh 30dB relative to the ma RF conducted measur which fall in the restrict 15.205(a), must also co limits specified in Section	emissions which fa nall be attenuated at lea aximum PSD level in 10 rement and radiated ted bands, as defined comply with the radiated	II in the ast 20 dB a 00 kHz by emissions in Sectior
Test Setup:	Spectrum Analyzer	EUT	
Test Mode:	Refer to item 3.1		
Test Procedure:	compensated to the 2. Set to the maximum EUT transmit contin 3. Set RBW = 100 kHz, Unwanted Emission bandwidth outside of shall be attenuated maximum in-band p maximum peak cond used. If the transmit power limits based of a time interval, the a	e. The path loss was results for each measu power setting and enab uously. VBW=300 kHz, Peak I s measured in any 100 f the authorized frequen by at least 20 dB relativ eak PSD level in 100 kl ducted output power pro- ter complies with the co on the use of RMS avera- attenuation required unc 30 dB instead of 20 dB the results in the test re-	rement. le the Detector. kHz ncy band re to the Hz when ocedure is onducted aging over der this per
		in the operating freque	

5.6.2. Test Instruments

- <u>C</u> -	Name	Manufacture	er Model No.	Serial Num	ber Calibratio	n Due
o Sp Ar	ectrum alyzer	Agilent	N9020A	MY491006	19 Jun. 26, 2	2025
	biner Box	Ascentest	AT890-RFB	/	1	


5.7. Radiated Spurious Emission Measurement

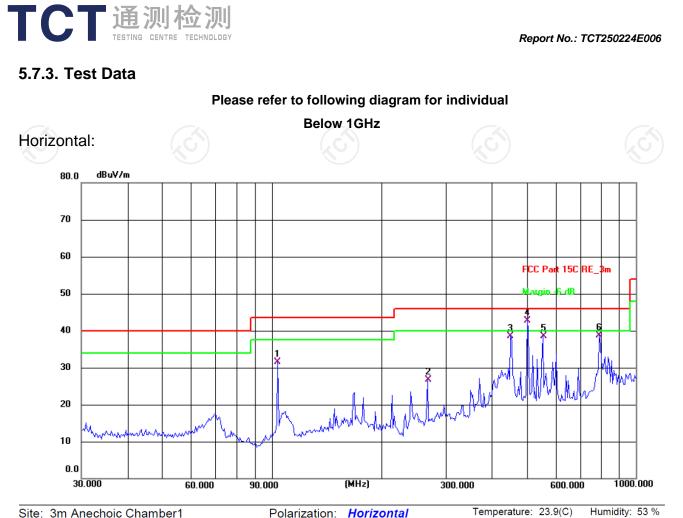
5.7.1. Test Specification

TCT 通测检测 TESTING CENTRE TECHNOLOGY

Test Requirement:	FCC Part15	C Sectior	n 15.209		
Test Method:	ANSI C63.10):2020			
Frequency Range:	9 kHz to 25 (GHz			
Measurement Distance:	3 m	X			
Antenna Polarization:	Horizontal &	Vertical			
Operation mode:	Refer to item	n 3.1	(<i>(</i>)	
	Frequency 9kHz- 150kHz 150kHz-	Detector Quasi-pea Quasi-pea		VBW 1kHz 30kHz	Remark Quasi-peak Value Quasi-peak Value
Receiver Setup:	30MHz 30MHz-1GHz Above 1GHz	Quasi-pea Peak Peak	k 120KHz 1MHz 1MHz	300KHz 3MHz 10Hz	Quasi-peak Value Peak Value Average Value
	Frequen 0.009-0.4	icy 490	Field Stro (microvolts) 2400/F(I	ength /meter) KHz)	Measurement Distance (meters) 300
	0.490-1.7 1.705-3 30-88	30	24000/F(30 100)	30 30 3
Limit:	88-216 216-96 Above 9	0	150 200 500)	3 3 3
	Frequency		ld Strength ovolts/meter)	Measure Distan (meter	ce Detector
	Above 1GHz	z	500 5000	3	Average Peak
	For radiated		s below 30	OMHz	
	+	stance = 3m		Pre -A	Computer
Test setup:	0.8m	Turn table			oceiver
	30MHz to 10		d Plane		

Page 14 of 44

CT 通测检测 TESTING CENTRE TECHNOLOGY	Report No.: TCT250224E0
	 measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane. 2. Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level 3. For measurement below 1GHz, If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported. 4. Use the following spectrum analyzer settings: (1) Span shall wide enough to fully capture the emission being measured; (2) Set RBW=120 kHz for f < 1 GHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold; (3) Set RBW = 1 MHz, VBW= 3MHz for f >1 GHz for peak measurement. For average measurement: VBW = 10 Hz, when duty cycle is no less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.
Test mode:	Refer to section 3.1 for details
Test results:	PASS

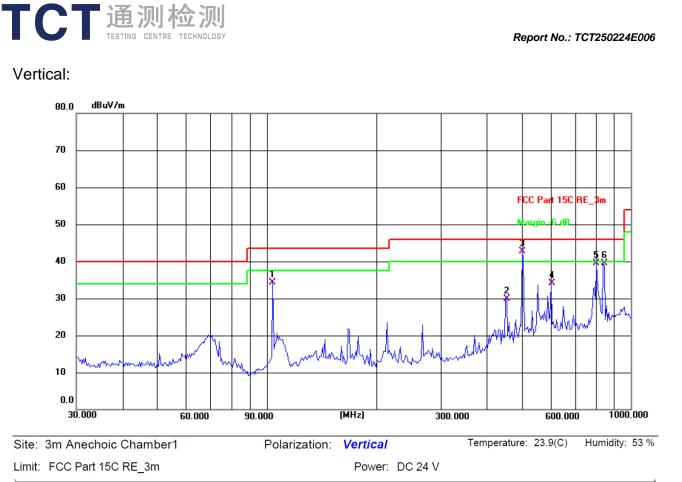

5.7.2. Test Instruments

TCT通测检测 TESTING CENTRE TECHNOLOGY

	Radiated En	nission Test Site	e (966)	
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
EMI Test Receiver	R&S	ESCI7	100529	Jan. 20, 2026
Spectrum Analyzer	R&S	FSQ40	200061	Jun. 26, 2025
Pre-amplifier	SKET	LNPA_0118G- 45	SK2021012 102	Jan. 20, 2026
Pre-amplifier	SKET	LNPA_1840G- 50	SK2021092 03500	Jan. 20, 2026
Pre-amplifier	HP	8447D	2727A05017	Jun. 26, 2025
Loop antenna	Schwarzbeck	FMZB1519B	00191	Jun. 26, 2025
Broadband Antenna	Schwarzbeck	VULB9163	340	Jun. 28, 2025
Horn Antenna	Schwarzbeck	BBHA 9120D	631	Jun. 28, 2025
Horn Antenna	Schwarzbeck	BBHA 9170	00956	Jan. 22, 2026
Coaxial cable	SKET	RE-03-D	/	Jun. 26, 2025
Coaxial cable	SKET	RE-03-M		Jun. 26, 2025
Coaxial cable	SKET	RE-03-L	/	Jun. 26, 2025
Coaxial cable	SKET	RE-04-D		Jun. 26, 2025
Coaxial cable	SKET	RE-04-M	K	Jun. 26, 2025
Coaxial cable	SKET	RE-04-L	/	Jun. 26, 2025
Antenna Mast	Keleto	RE-AM		
EMI Test Software	EZ_EMC	FA-03A2 RE+	1.1.4.2	

Page 17 of 44

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com


Site: 3m Anechoic Chamber1

Polarization: Horizontal

Limit:	FCC Part 15C R	RE_3m				Power:	DC 24 V		
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1	103.8054	46.62	-15.09	31.53	43.50	-11.97	QP	Ρ	
2	267.5453	39.31	-12.60	26.71	46.00	-19.29	QP	Ρ	
3	452.7196	46.75	-8.25	38.50	46.00	-7.50	QP	Ρ	
4 *	502.9395	50.42	-7.67	42.75	46.00	-3.25	QP	Ρ	
5	554.8253	45.04	-6.57	38.47	46.00	-7.53	QP	Ρ	
6	793.3958	41.51	-2.81	38.70	46.00	-7.30	QP	Ρ	

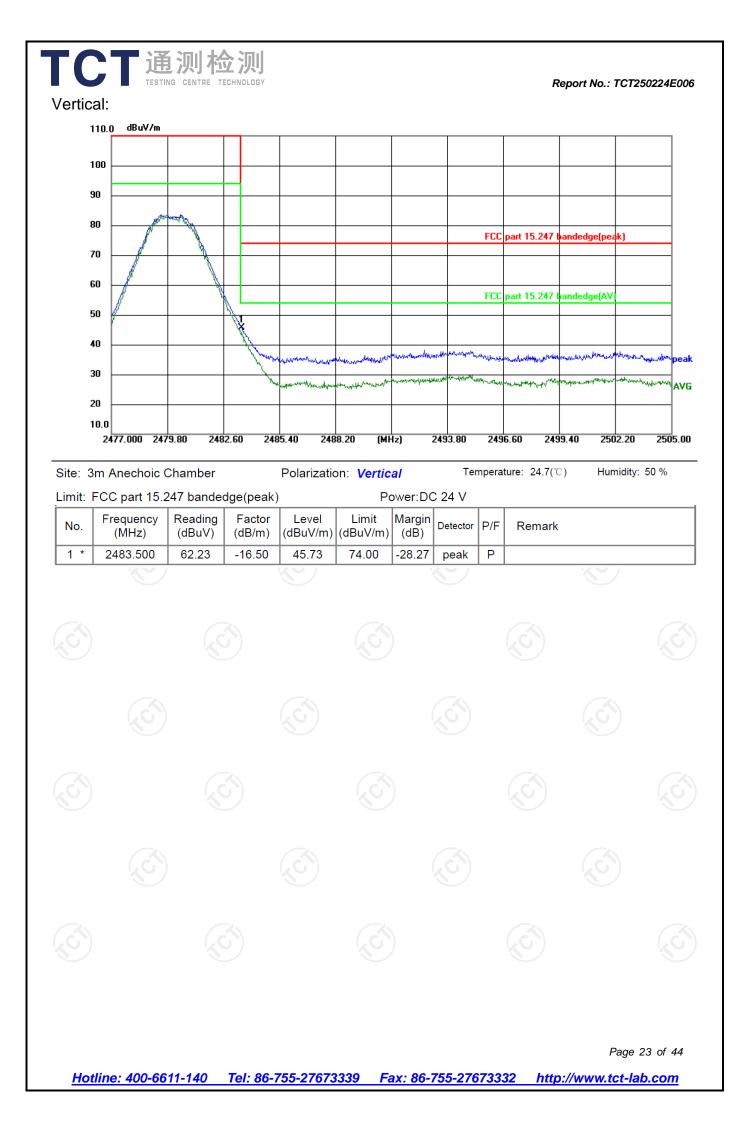
Page 18 of 44

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1	103.8054	49.47	-15.09	34.38	43.50	-9.12	QP	Ρ	
2	455.9057	38.15	-8.22	29.93	46.00	-16.07	QP	Ρ	
3 *	502.9395	50.37	-7.67	42.70	46.00	-3.30	QP	Р	
4	603.5390	39.14	-5.03	34.11	46.00	-11.89	QP	Ρ	
5	804.6027	42.07	-2.56	39.51	46.00	-6.49	QP	Ρ	
6	839.1817	41.55	-2.08	39.47	46.00	-6.53	QP	Ρ	

Note: 1. The low frequency, which started from 9KHz~30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported

2. Measurements were conducted in all three channels (high, middle, low), and the worst case Mode (Lowest channel) was submitted only.

- 3. Freq. = Emission frequency in MHz
 - Measurement $(dB\mu V/m) = Reading level (dB\mu V) + Corr. Factor (dB)$ Correction Factor= Antenna Factor + Cable loss – Pre-amplifier Limit (dB μ V/m) = Limit stated in standard Margin (dB) = Measurement (dB μ V/m) – Limits (dB μ V/m)
 - * is meaning the worst frequency has been tested in the test frequency range


Page 19 of 44

rizo	ntal:											
1	10.0 dBuV/m							FCC	part 15.247	bandedg	ge(peak)	
1									. 15			
9	ı ———							FLU	part 15.247	bandedg		۵
8												
7	,											
6	,											
5	,											
4	,									1	Ļ.	<u> </u>
-	and a sugar sugar sugar	and the galanter tool	may with the second	- March ware and	and with the the	many	wany	Yer www.Wo	porting many many many many many many many many	washing	Sunday w	
3)								Landon Carlora			
3	anter 1944, and a set and		********	all the contraction of the contr	and the second second	ingramiting white the	ton man	hurunah-eko	internet and a stars	hale and a second	Mr.ardina W.	
3 2	anter 1944, and a set and		an a	ath Webperidenteer	and the second second	ngramithal white rap	And programme	turneterede	for an all the second	hole open "	%h	
3 2 1 1 te: 3)).0 2300.000 231	Chamber	21.00 23	331.50 23 Polarizati	42.00 (Mi on: <i>Horiz</i>	Hz]				B4.00	2394.50	0 24 ry: 50 %
3 2 1 e: 3 nit: F)).0 2300.000 23	Chamber	21.00 23	Polarizati	42.00 (M on: <i>Horiz</i>	ontal	Te	empera	3.50 23	B4.00	2394.50	
3 2 1 e: 3	n Anechoic (CCC part 15.2	Chamber 247 bande Reading	21.00 23 dge(peak	Polarizati	42.00 (M on: <i>Horiz</i> P Limit	ontal ower:D Margin	те С 24 V	empera	3.50 234 ture: 24.7(*	B4.00	2394.50	
3 2 1 e: 3 nit: F o.	n Anechoic (CC part 15.2 Frequency (MHz)	Chamber 247 bande Reading (dBuV)	dge(peak Factor (dB/m)	Polarizati	42.00 (M on: <i>Horiz</i> P Limit (dBuV/m)	ontal ower:D Margin (dB)	Te C 24 V Detector	empera	3.50 234 ture: 24.7(*	B4.00	2394.50	
3 2 1 e: 3 nit: F o.	n Anechoic (CC part 15.2 Frequency (MHz)	Chamber 247 bande Reading (dBuV)	dge(peak Factor (dB/m)	Polarizati	42.00 (M on: <i>Horiz</i> P Limit (dBuV/m)	ontal ower:D Margin (dB)	Te C 24 V Detector	empera	3.50 234 ture: 24.7(*	B4.00	2394.50	
3 2 1 e: 3 nit: F o.	n Anechoic (CC part 15.2 Frequency (MHz)	Chamber 247 bande Reading (dBuV)	dge(peak Factor (dB/m)	Polarizati	42.00 (M on: <i>Horiz</i> P Limit (dBuV/m)	ontal ower:D Margin (dB)	Te C 24 V Detector	empera	3.50 234 ture: 24.7(*	B4.00	2394.50	
3 2 1 e: 3 nit: F o.	n Anechoic (CC part 15.2 Frequency (MHz)	Chamber 247 bande Reading (dBuV)	dge(peak Factor (dB/m)	Polarizati	42.00 (M on: <i>Horiz</i> P Limit (dBuV/m)	ontal ower:D Margin (dB)	Te C 24 V Detector	empera	3.50 234 ture: 24.7(*	B4.00	2394.50	
3 2 1 e: 3 nit: F o.	n Anechoic (CC part 15.2 Frequency (MHz)	Chamber 247 bande Reading (dBuV)	dge(peak Factor (dB/m)	Polarizati	42.00 (M on: <i>Horiz</i> P Limit (dBuV/m)	ontal ower:D Margin (dB)	Te C 24 V Detector	empera	3.50 234 ture: 24.7(*	B4.00	2394.50	
3 2 1 e: 3 nit: F o.	n Anechoic (CC part 15.2 Frequency (MHz)	Chamber 247 bande Reading (dBuV)	dge(peak Factor (dB/m)	Polarizati	42.00 (M on: <i>Horiz</i> P Limit (dBuV/m)	ontal ower:D Margin (dB)	Te C 24 V Detector	empera	3.50 234 ture: 24.7(*	B4.00	2394.50	
3 2 1 e: 3 nit: F o.	n Anechoic (CC part 15.2 Frequency (MHz)	Chamber 247 bande Reading (dBuV)	dge(peak Factor (dB/m)	Polarizati	42.00 (M on: <i>Horiz</i> P Limit (dBuV/m)	ontal ower:D Margin (dB)	Te C 24 V Detector	empera	3.50 234 ture: 24.7(*	B4.00	2394.50	
3 2 1 e: 3 nit: F o.	n Anechoic (CC part 15.2 Frequency (MHz)	Chamber 247 bande Reading (dBuV)	dge(peak Factor (dB/m)	Polarizati	42.00 (M on: <i>Horiz</i> P Limit (dBuV/m)	ontal ower:D Margin (dB)	Te C 24 V Detector	empera	3.50 234 ture: 24.7(*	B4.00	2394.50	
3 2 1 e: 3 nit: F o.	n Anechoic (CC part 15.2 Frequency (MHz)	Chamber 247 bande Reading (dBuV)	dge(peak Factor (dB/m)	Polarizati	42.00 (M on: <i>Horiz</i> P Limit (dBuV/m)	ontal ower:D Margin (dB)	Te C 24 V Detector	empera	3.50 234 ture: 24.7(*	B4.00	2394.50	
3 2 1 e: 3 nit: F o.	n Anechoic (CC part 15.2 Frequency (MHz)	Chamber 247 bande Reading (dBuV)	dge(peak Factor (dB/m)	Polarizati	42.00 (M on: <i>Horiz</i> P Limit (dBuV/m)	ontal ower:D Margin (dB)	Te C 24 V Detector	empera	3.50 234 ture: 24.7(*	B4.00	2394.50	

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

	10.0 dBuV/m							FCC	part 15.247	bandedg	je(peak)	
1	00							FCC	part 15.247	andeda	IEÍAVÍ	
9	0											
8	0											\mathbb{A}
7	0											++
	0	Manaman	-Pashot-rabilitantia	and the second second	and how we wanted	not made and he	ever the states of the states	and the	have a second and the second days where	mour	ersham, ghear hat	
	0	ways and was shown	,,1,,4,4,4,,,	en grit provident de dertry	for the stream of the	una ant	N/WH WHITH	mithe	- made and a state of the state	have a start	All Coperations	
	0.0											
			21.00 23		42.00 (MI	-	2363.00			84.00	2394.5	
	m Anechoic (FCC part 15.2		dae(peak		ion: Vertic Pr	al ower:D		mpera	iture: 24.7(°C	2)	Humidi	ity: 50 %
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level		Margin (dB)		P/F	Remark			
1 *	2390.000	52.50	-16.76	35.74	74.00	-38.26	peak	Ρ				

izont												
100												
90												
80								ECC	part 15.247	andodao(no	-41	
70								ruu	part 13.247 1	Janueuye(pe	dkj	_
60	1							FCC	part 15.247	andedge(AV	1	
50	2											
40			A free	malanapara	ound hat seems	and a start of the second	mandrus	and the second of the second s	manten	a Marcala and the second	monte	merin
30												
30 20				a and a start was a second	ge any of the second	17	en an	hore the second s	understangen	acanonshin water	hologendes	mandala .
20 10.0	477.000 24	79.80 24	B2.60 2	485.40 24	ы ^к арариянын каланын кал 1888.20 (М	₩ ¹	2493.80				(Molyander 02.20	
20 10.0 2	477.000 24		82.60 2			-	2493.80	249	6.60 245	39.40 25 0		250
20 10.0 2 e: 3m	1	Chamber		Polarizati	ion: <i>Horiz</i>	-	2493.80 Te	249		39.40 25 0	02.20	250
20 10.0 2 e: 3m it: FC	477.000 24 Anechoic	Chamber		Polarizati k) Level	ion: <i>Horiz</i> P	ontal	2493.80 Te C 24 V	249	6.60 245	39.40 25 0	02.20	250
20 10.0 2 e: 3m iit: FC o. Fi	477.000 24 Anechoic C part 15.: requency	Chamber 247 bande Reading	dge(pea Factor	Polarizati k) Level	ion: <i>Horiz</i> P Limit	ontal ower:D Margin	2493.80 Te C 24 V	249 empera	6.60 245 iture: 24.7(*(39.40 25 0	02.20	2505
20 10.0 2 e: 3m nit: FC p. F	Anechoic C part 15. equency (MHz)	Chamber 247 bande Reading (dBuV)	edge(pea Factor (dB/m)	Polarizati k) Level (dBuV/m)	ion: <i>Horiz</i> P Limit (dBuV/m)	ontal ower:D Margin (dB)	2493.80 Te C 24 V Detector	249 empera	6.60 245 iture: 24.7(*(39.40 25 0	02.20	250
20 10.0 2 e: 3m it: FC 0. F	Anechoic C part 15. equency (MHz)	Chamber 247 bande Reading (dBuV)	edge(pea Factor (dB/m)	Polarizati k) Level (dBuV/m)	ion: <i>Horiz</i> P Limit (dBuV/m)	ontal ower:D Margin (dB)	2493.80 Te C 24 V Detector	249 empera	6.60 245 iture: 24.7(*(39.40 25 0	02.20	2505
20 10.0 2 :: 3m it: FC . F	Anechoic C part 15. equency (MHz)	Chamber 247 bande Reading (dBuV)	edge(pea Factor (dB/m)	Polarizati k) Level (dBuV/m)	ion: <i>Horiz</i> P Limit (dBuV/m)	ontal ower:D Margin (dB)	2493.80 Te C 24 V Detector	249 empera	6.60 245 iture: 24.7(*(39.40 25 0	02.20	2505
20 10.0 2 e: 3m it: FC 0. F	Anechoic C part 15. equency (MHz)	Chamber 247 bande Reading (dBuV)	edge(pea Factor (dB/m)	Polarizati k) Level (dBuV/m)	ion: <i>Horiz</i> P Limit (dBuV/m)	ontal ower:D Margin (dB)	2493.80 Te C 24 V Detector	249 empera	6.60 245 iture: 24.7(*(39.40 25 0	02.20	2505
20 10.0 2 e: 3m it: FC 0. F	Anechoic C part 15. equency (MHz)	Chamber 247 bande Reading (dBuV)	edge(pea Factor (dB/m)	Polarizati k) Level (dBuV/m)	ion: <i>Horiz</i> P Limit (dBuV/m)	ontal ower:D Margin (dB)	2493.80 Te C 24 V Detector	249 empera	6.60 245 iture: 24.7(*(39.40 25 0	02.20	2505
20 10.0 2 e: 3m it: FC 0. F	Anechoic C part 15. equency (MHz)	Chamber 247 bande Reading (dBuV)	edge(pea Factor (dB/m)	Polarizati k) Level (dBuV/m)	ion: <i>Horiz</i> P Limit (dBuV/m)	ontal ower:D Margin (dB)	2493.80 Te C 24 V Detector	249 empera	6.60 245 iture: 24.7(*(39.40 25 0	02.20	2505
20 10.0 2 e: 3m it: FC 0. F	Anechoic C part 15. equency (MHz)	Chamber 247 bande Reading (dBuV)	edge(pea Factor (dB/m)	Polarizati k) Level (dBuV/m)	ion: <i>Horiz</i> P Limit (dBuV/m)	ontal ower:D Margin (dB)	2493.80 Te C 24 V Detector	249 empera	6.60 245 iture: 24.7(*(39.40 25 0	02.20	2505
20 10.0 2 e: 3m it: FC 0. F	Anechoic C part 15. equency (MHz)	Chamber 247 bande Reading (dBuV)	edge(pea Factor (dB/m)	Polarizati k) Level (dBuV/m)	ion: <i>Horiz</i> P Limit (dBuV/m)	ontal ower:D Margin (dB)	2493.80 Te C 24 V Detector	249 empera	6.60 245 iture: 24.7(*(39.40 25 0	02.20	250 50 %
20 10.0 2 e: 3m it: FC 0. F	Anechoic C part 15. equency (MHz)	Chamber 247 bande Reading (dBuV)	edge(pea Factor (dB/m)	Polarizati k) Level (dBuV/m)	ion: <i>Horiz</i> P Limit (dBuV/m)	ontal ower:D Margin (dB)	2493.80 Te C 24 V Detector	249 empera	6.60 245 iture: 24.7(*(39.40 25 0	02.20	2505

0 4 0 0 N 4

Above 1GHz

Low channe	ei: 2402 iv	IHZ							
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBuV)	Correction Factor (dB/m)	Peak	A\/	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4804	Н	53.63		-9.51	44.12		74	54	-9.88
7206	Н	44.55		-1.41	43.14		74	54	-10.86
	Н								
4804	V	53.45		-9.51	43.94		74	54	-10.06
7206	V	44.09		-1.41	42.68	St-	74	54	-11.32
	V				``				

Middle channel: 2440 MHz

Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Peak	Peak limit (dBµV/m)		Margin (dB)
4880	Н	53.43		-9.36	44.07	 74	54	-9.93
7320	Н	43.99		-1.15	42.84	 74	54	-11.16
	Н			·	/	 		
			Ň					
4880	V	54.01		-9.36	44.65	74	54	-9.35
7320	V	43.55		-1.15	42.40	 74	54	-11.60
	V					 		

				(.0					(.c
High chanr	nel: 2480 N	ЛНz		0					<u> </u>
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Peak	n Level AV (dBµV/m)	Peak limit (dBµV/m)		Margin (dB)
4960	Н	53.13		-9.20	43.93		74	54	-10.07
7440	С H	43.79		-0.96	42.83	54	74	54	-11.17
	Н								
4960	V	54.73		-9.20	45.53		74	54	-8.47
7440	V	42.01		-0.96	41.05		74	54	-12.95
J	V				ノ				<i></i>

Note:

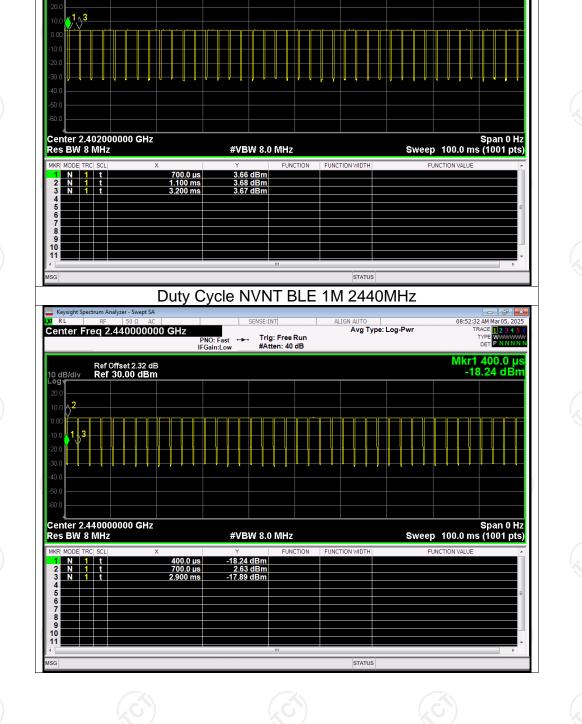
1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss - Pre-amplifier

2. Margin (dB) = Emission Level (Peak) (dBµV/m)-Average limit (dBµV/m)

3. The emission levels of other frequencies are very lower than the limit and not show in test report.

4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency.

5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.


6. All the restriction bands are compliance with the limit of 15.209.

Appendix A: Test Result of Conducted Test

		Du	ity Cycle		
Condition	Mode	Frequency (MHz)	Duty Cycle (%)	Correction Factor (dB)	1/T (kHz)
NVNT	BLE 1M	2402	88.01	0.55	0.48
NVNT	BLE 1M	2440	92.01	0.36	0.45
NVNT	BLE 1M	2480	92.01	0.36	0.45

Hotlin	e: 400-6611-	140 Tel: 8	6-755-27673	339 Fax:	86-755-2767	3332 http	Page ://www.tct-la	25 of 44 1 <mark>b.com</mark>

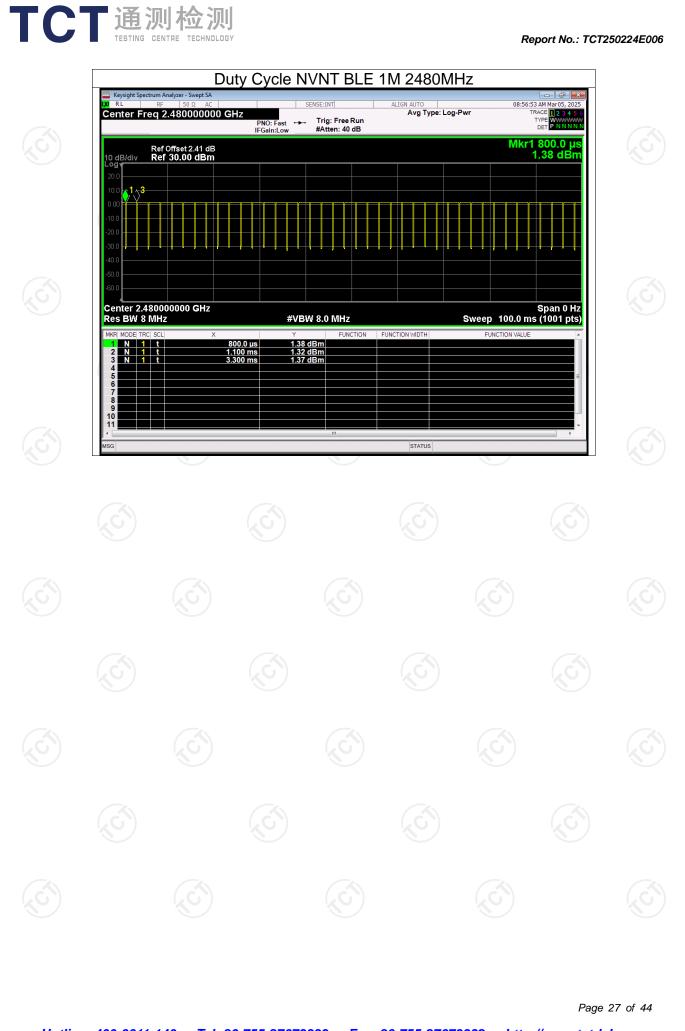
Test Graphs
Duty Cycle NVNT BLE 1M 2402MHz

PNO: Fast ---- Trig: Free Run IFGain:Low #Atten: 40 dB Avg Type: Log-Pwr

10 dB/div Log**√**

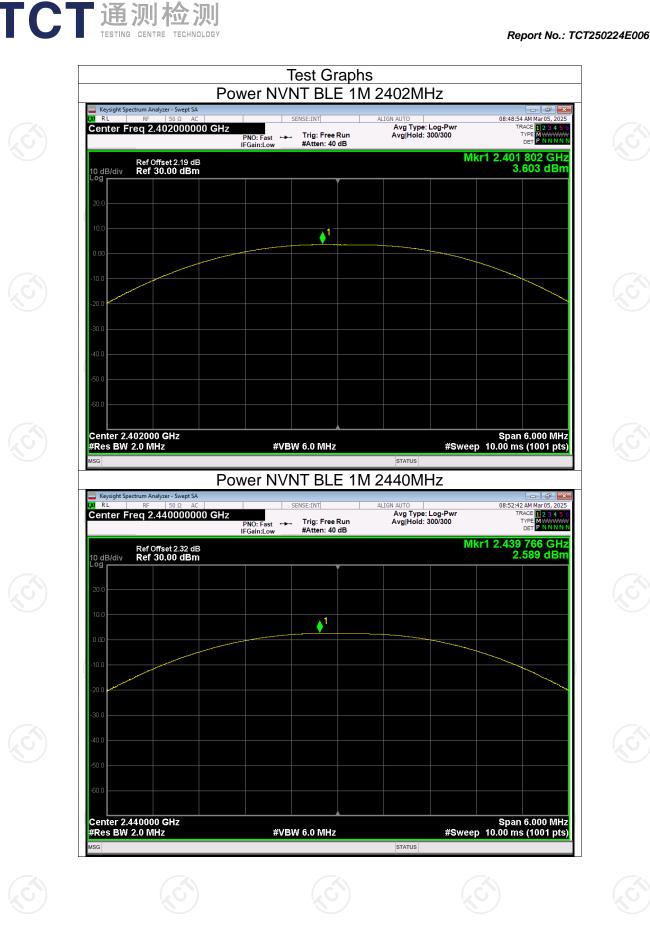
Keysight Spectrum Analyzer - Swept SA

Center Freq 2.402000000 GHz


Ref Offset 2.19 dB Ref 30.00 dBm Report No.: TCT250224E006

Page 26 of 44

08:48:44 AM Mar 05, 2025


Mkr1 700.0 μs 3.66 dBm

TRACE 1 2 3 4 5 (TYPE WWWWWW DET P N N N N

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

ГС	通; TESTING	则检测 CENTRE TECHNOLOGY					ort No.: TCT25	0224E00
Co	ondition	Max Mode	kimum Cond Frequency	/ Con	ducted	Limit	Verdic	:t
	NVNT NVNT NVNT	BLE 1M BLE 1M BLE 1M	(MHz) 2402 2440 2480		er (dBm) 3.60 2.59 1.35	(dBm) 30 30 30	Pass Pass Pass	
							Page 2	8 of 44

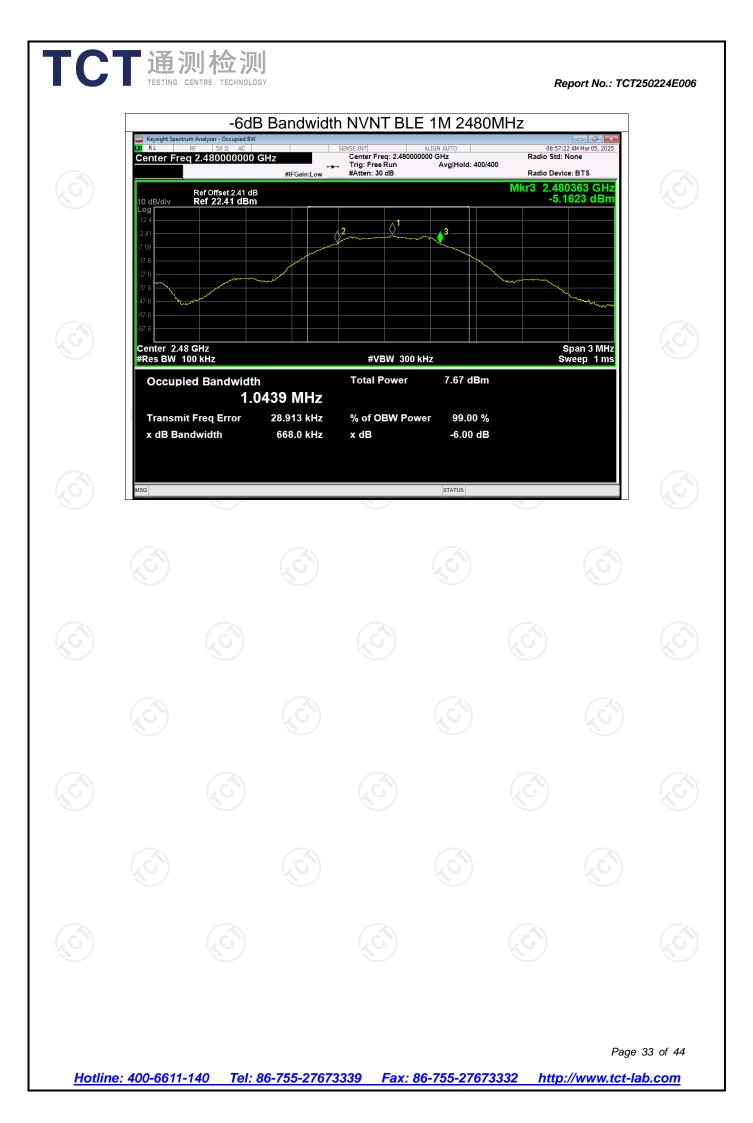
Page 29 of 44

Keysight Spectrum Analyzer - Swept SA RL RF 50 Ω AC	SI	ENSE:INT	ALIGN AUTO	08:57:04 AM Mar 05, 2025
enter Freq 2.480000000 GH		Trig: Free Run #Atten: 40 dB	Avg Type: Log-Pwr Avg Hold: 300/300	TRACE 123456 TYPE MWWWW DET PNNNNN
Ref Offset 2.41 dB 0 dB/div Ref 30.00 dBm			N	kr1 2.479 790 GHz 1.348 dBm
		Ĭ		
20.0				
0.0		<u></u> 1		
).00				
0.0				
0.0				
0.0				
0.0				
50.0				
50.0				
				Span 6.000 MHz p 10.00 ms (1001 pts)

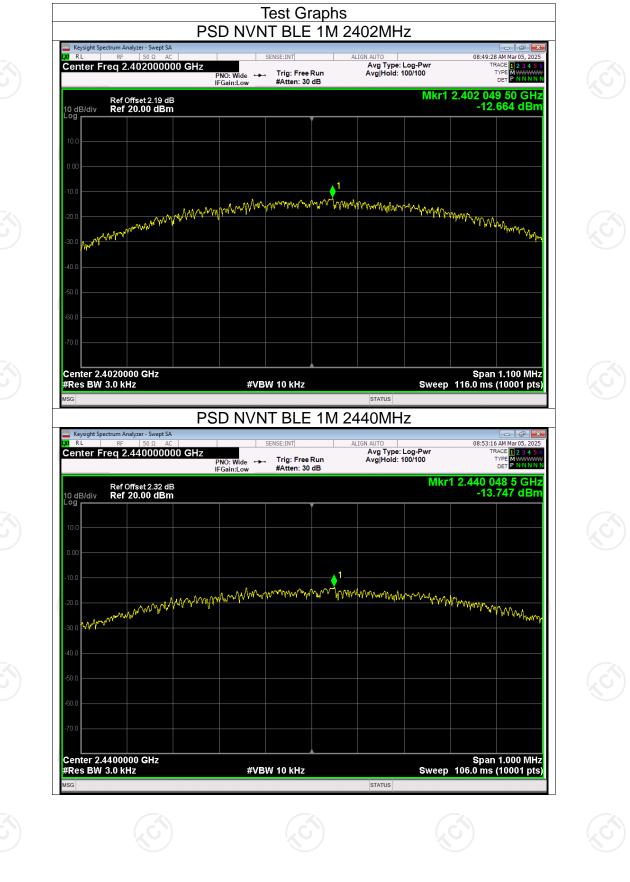
Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

	Hotline: 400-6611-140	Tel: 86-755-27673339	Fax: 86-755-27673332	http://www.tct-lab.com
--	-----------------------	----------------------	----------------------	------------------------

o: 400 6644	140 Tol. 0	220 For	96 766 9767	2222 bits	Page	31 of 44


		-6	6dB Bandwidth		
Condition	Mode	Frequency (MHz)	-6 dB Bandwidth (MHz)	Limit -6 dB Bandwidth (MHz)	Verdict
NVNT	BLE 1M	2402	0.657	0.5	Pass
NVNT	BLE 1M	2440	0.672	0.5	Pass
NVNT	BLE 1M	2480	0.668	0.5	Pass

Page 32 of 44



Cond	dition	Mode	Frequency (MHz)	Spectral Dens Conducted (dBm/3kH	PSD Limit	Verdict
	/NT /NT	BLE 1M BLE 1M	2402 2440	-12.66 -13.75	8	Pass Pass
	/NT	BLE 1M	2440	-14.92	8	Pass

TCT通测检测 TESTING CENTRE TECHNOLOGY

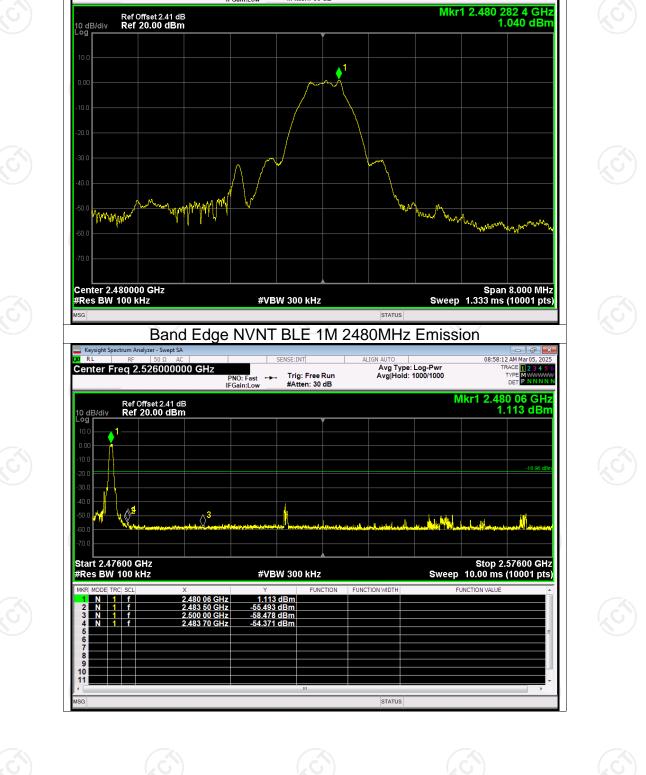
Page 34 of 44

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

TCT通测检测 TESTING CENTRE TECHNOLOGY

- Report No.: TCT250224E006

08:57:40 AM Mar 05, 2025 TRACE 12 3 4 5 6 TYPE MUNICIPAL OF TYPE DET PNNNNN	ALIGN AUTO Avg Type: Log-Pwr Avg Hold: 100/100	SENSE:INT Trig: Free Run #Atten: 30 dB	PNO: Wide ↔	rum Analyzer - Swept SA RF 50 Ω AC eq 2.480000000 C	LXI RL	
80 049 39 GHz -14.917 dBm	Mkr1 2.4	#Atten: 30 dB	IFGain:Low	Ref Offset 2.41 dB Ref 20.00 dBm	10 dB/div 10.0	
MMMMMMMMM			www.markeral.	ynninin wyrth	-100 -200 -300 -300 -400 -500 -500	
Span 1.100 MHz 6.0 ms (10001 pts)	Sweep 11	W 10 kHz	#VB	300000 GHz .0 kHz	-70.0 Center 2.48 #Res BW 3. Msg	


Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

Condi	tion	Mode F	requency (N	Band Edg MHz) Ma	e x Value (dE	Bc) Lim	nit (dBc)	Verdict
NVN	IT E	BLE 1M	2402		-57.10		-20	Pass
NVN	IT E	BLE 1M	2480	- E	-55.41		-20	Pass

TCT通测检测 TESTING CENTRE TECHNOLOGY

Report No.: TCT250224E006

Band Edge NVNT BLE 1M 2480MHz Ref

Trig: Free Run #Atten: 30 dB

PNO: Wide IFGain:Low -----

Avg Type: Log-Pwr Avg|Hold: 1000/1000

TCT通测检测 TESTING CENTRE TECHNOLOGY

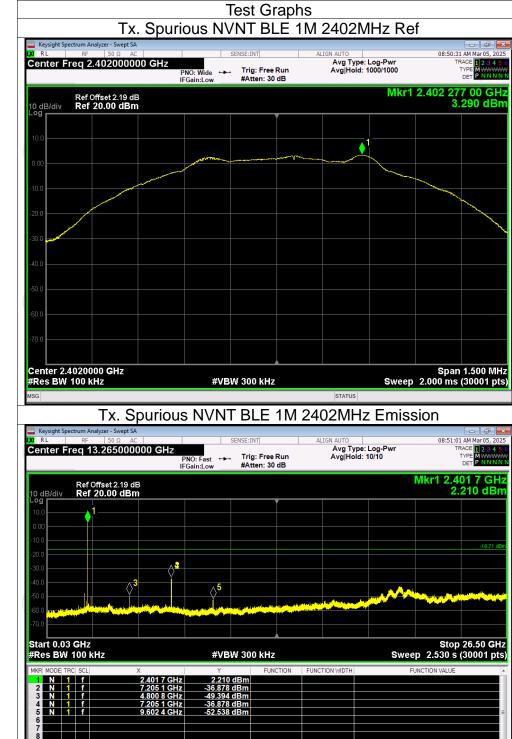
🔤 Keysight S

Center Freg 2.480000000 GHz

KI RL

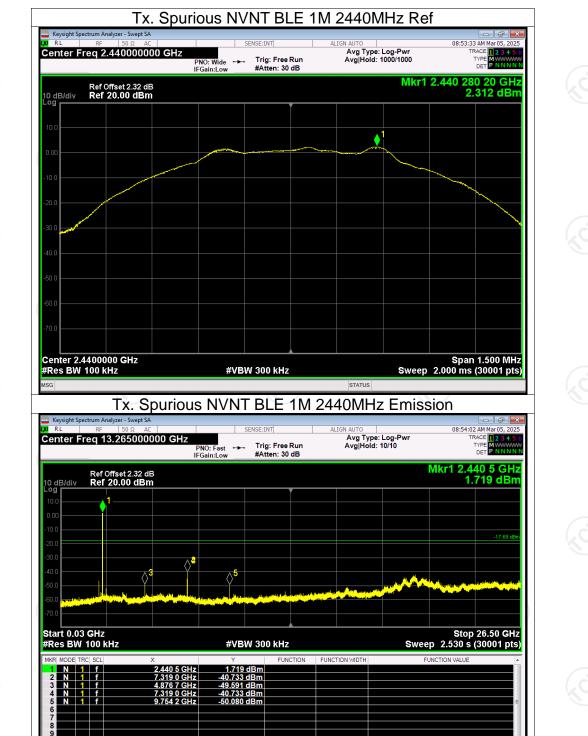
Report No.: TCT250224E006

Page 39 of 44


08:57:54 AM Mar 05, 2025 TRACE 1 2 3 4 5 (TYPE MWWWW DET P N N N N

Verdict	nit (dBc)	Bc)	x Value (d	Hz) Ma	quency (N	de Fre	tion Mo	Conditi
Pass Pass	-20 -20		-40.16 -43.04		2402 2440	1M 1M		
Pass	-20		-43.8	$\langle 0 \rangle$	2480	1M		NVN

Span 1.500 MHz Sweep 2.000 ms (30001 pts)

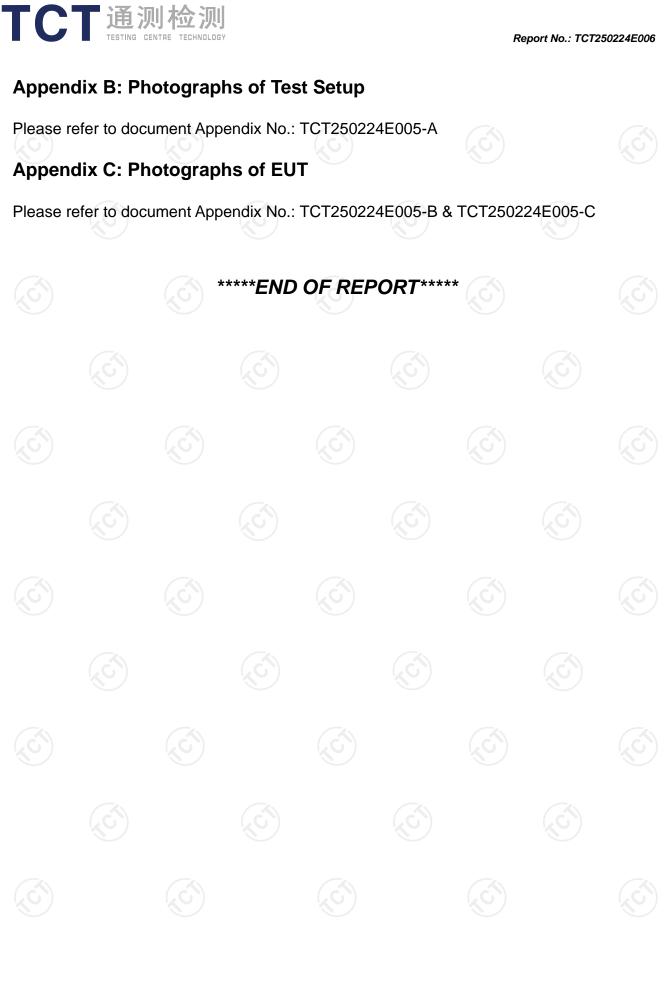

TCT通测检测 TESTING CENTRE TECHNOLOGY

Report No.: TCT250224E006

Page 41 of 44

STATUS

TCT通测检测 TESTING CENTRE TECHNOLOGY


Report No.: TCT250224E006

TCT通测检测 TESTING CENTRE TECHNOLOGY

Report No.: TCT250224E006

Page 43 of 44

Page 44 of 44