

Supplen	nental "Transmit Simultaneously" Test Report
Report No.:	RF180104E04-2
FCC ID:	PY317300396
Test Model:	CBR40
Received Date:	Jan. 04, 2018
Test Date:	Jan. 10 to 23, 2018
Issued Date:	Feb. 01, 2018
	NETGEAR, Inc. 350 East Plumeria Drive San Jose, CA 95134
Issued By:	Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch Hsin Chu Laboratory
Lab Address:	E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300, Taiwan R.O.C.
	E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300, Taiwan R.O.C.
FCC Registration / Designation Number:	723255 / TW2022

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific mention, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification. This report should not be used by the client to claim product certification, approval, or endorsement by TAF or any government agencies.

Table of Contents

Relea	se Control Record	3
1	Certificate of Conformity	4
2	Summary of Test Results	5
2.1 2.2	Measurement Uncertainty Modification Record	
3	General Information	6
3.1 3.1. 3.2 3.2.	General Description of EUT 1 Test Mode Applicability and Tested Channel Detail Description of Support Units 1 Configuration of System under Test	8 . 10
4	Test Types and Results	12
4.1. 4.1. 4.1. 4.1. 4.2. 4.2. 4.2. 4.2.	Radiated Emission and Bandedge Measurement Limits of Radiated Emission and Bandedge Measurement Test Instruments Test Procedures. Deviation from Test Standard Test Setup EUT Operating Conditions. 7 Test Results. Conducted Emission Measurement Limits of Conducted Emission Measurement. 1 Limits of Conducted Emission Measurement. 2 Test Instruments. 3 Test Procedures. 4 Deviation from Test Standard 5 EUT Operating Conditions. 7 Test Results. Conducted Emission Measurement. 1 Limits of Conducted Emission Measurement. 2 Test Instruments. 3 Test Procedures. 6 EUT Operating Conditions. 7 Test Results (Mode 1). 3 Test Results (Mode 2). Conducted Out of Band Emission Measurement. 1 Limits of Conducted Out of Band Emission Measurement. 1 Limits of Conducted Out of Band Emission Measurement. 2 Test Instruments. 4 Test Procedures. 5 Deviation from Test Standard 5 Deviation from Test Standard 6 EUT Operating Conditions. 7 Test Results	$\begin{array}{c} 12 \\ 13 \\ 15 \\ 16 \\ 17 \\ 18 \\ 20 \\ 20 \\ 21 \\ 21 \\ 21 \\ 22 \\ 24 \\ 26 \\ 26 \\ 26 \\ 26 \\ 26 \\ 26$
5	Pictures of Test Arrangements	
Арре	ndix – Information on the Testing Laboratories	29

Release Control Record Description Issue No. Date Issued RF180104E04-2 Original release. Feb. 01, 2018

1 Certificate of Conformity

Product:	Orbi Cable Router
Brand:	NETGEAR
Test Model:	CBR40
Sample Status:	ENGINEERING SAMPLE
Applicant:	NETGEAR, Inc.
Test Date:	Jan. 10 to 23, 2018
Standards:	47 CFR FCC Part 15, Subpart C (Section 15.247)
	47 CFR FCC Part 15, Subpart E (Section 15.407)
	ANSI C63.10: 2013

The above equipment has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

Prepared by :	Phone is Huand	7_, Date:	Feb. 01, 2018	
	Phoenix Huang / Specialist			
Approved by :	May Chen / Manager	, Date:	Feb. 01, 2018	

2 Summary of Test Results

47 CFR FCC Part 15, Subpart C, E (SECTION 15.247, 15.407)							
FCC Clause	Test Item	Result	Remarks				
15.207 15.407(b)(6)	AC Power Conducted Emission	PASS	Meet the requirement of limit. Minimum passing margin is -3.95dB at 0.34922MHz.				
15.205 / 15.209 / 15.247(d) 15.407(b) (1/2/3/4(i/ii)/6)	Radiated Emissions and Band Edge Measurement	PASS	Meet the requirement of limit. Minimum passing margin is -5.7dB at 10400MHz.				

2.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Measurement	Frequency	Expanded Uncertainty (k=2) (±)
Conducted Emissions at mains ports	150kHz ~ 30MHz	2.70 dB
Radiated Emissions up to 1 GHz	30MHz ~ 1GHz	5.53 dB
	1GHz ~ 6GHz	5.08 dB
Radiated Emissions above 1 GHz	6GHz ~ 18GHz	4.98 dB
	18GHz ~ 40GHz	5.19 dB

2.2 Modification Record

There were no modifications required for compliance.

3 General Information

3.1 General Description of EUT

3.1 General Description of EUT					
Product	Orbi Cable Router				
Brand	NETGEAR				
Test Model	CBR40				
Status of EUT	ENGINEERING SAMPLE				
Power Supply Rating	12Vdc from power adapter				
Modulation Type	CCK, DQPSK, DBPSK for DSSS 64QAM, 16QAM, QPSK, BPSK for OFDM 256QAM for OFDM in 11ac mode and VHT (20/40) mode in 2.4GHz				
Modulation Technology	DSSS, OFDM				
Transfer Rate	802.11b: up to 11Mbps 802.11a/g: up to 54Mbps 802.11n: up to 300Mbps 802.11ac: up to 866.7Mbps				
Operating Frequency	2.4GHz: 2.412 ~ 2.462GHz 5GHz: 5.18~ 5.24GHz, 5.745 ~ 5.825GHz				
Number of Channel	2.4GHz: 802.11b, 802.11g, 802.11n (HT20), VHT20: 11 802.11n (HT40), VHT40: 7 5GHz: 802.11a, 802.11n (HT20), 802.11ac (VHT20): 9 802.11n (HT40), 802.11ac (VHT40): 4 802.11ac (VHT80): 2				
Antenna Type	Dipole antenna				
Antenna Connector	i-pex(MHF)				
Accessory Device	Adapter x1				
Data Cable Supplied	Ethernet Cable x1 (Unshielded, 2m)				

Note:

1. Simultaneously transmission condition.

Con	ndition	Technology					
	1	WLAN 2.4GHz		WLAN 5GHz		WLAN 5GHz	
	'	VV L			(low bar	nd)	(high band)
Note	: The em	ission of th	e simultaneou	s ope	ration has been eva	aluated and n	o non-compliance was found.
2. Th	ne EUT p	ower need	s to be supplie	d fror	n power adapters, t	the informatio	n is as below table:
No.	Brand		Model No.		P/N	Spec.	
						Input: 100-240Vac, 1.0A, 50/60Hz	
1	NETGE	AR	AD2080F20		332-10883-01	Output: 12	/, 3.5A
						DC output cable: Unshielded 1.8m	
						Input: 100-2	240Vac, 1.5A, 50/60Hz
2	NETGE	NETGEAR 2ABN042F NA		NA	332-10888-01 Output: 12V, 3.5A		/, 3.5A
	DC output cable: Unshielded 1.8m						
Note: From the above models, the worst radiated emission test was found in Adapter 2. Therefore only the							
test	data of th	ne modes w	vere recorded	in this	s report.		

	ed to the EUT, please refer t					
	ncy Range GHz)	Directional Antenna Gain (dBi)				
1	-2.4835	6.02				
5.1	5~5.25	(6.07			
5.72	25~5.85	(6.23			
4. The EUT incorporates a MIMO function.						
		Hz Band				
Modulation Mode	Data Rate (MCS)	TX & RX C	Configuration			
802.11b	1 ~ 11Mbps	2TX	2RX			
802.11g	6 ~ 54Mbps	2TX	2RX			
000 44 m (UT00)	MCS 0~7	2TX	2RX			
802.11n (HT20)	MCS 8~15	2TX	2RX			
000 44 m (UT 40)	MCS 0~7	2TX	2RX			
802.11n (HT40)	MCS 8~15	2TX	2RX			
802.11n (VHT20)	MCS 0~8, Nss=1	2TX	2RX			
	MCS 0~8, Nss=2	2TX	2RX			
	MCS 0~9, Nss=1	2TX	2RX			
802.11n (VHT40)	MCS 0~9, Nss=2	2TX	2RX			
	5GI	Iz Band				
Modulation Mode	Data Rate (MCS)	TX & RX C	Configuration			
802.11a	6 ~ 54Mbps	2TX	2RX			
802.11n (HT20)	MCS 0~7	2TX	2RX			
002.1111 (FT 20)	MCS 8~15	2TX	2RX			
802.11n (HT40)	MCS 0~7	2TX	2RX			
002.1111 (FTT40)	MCS 8~15	2TX	2RX			
802.11ac (VHT20)	MCS 0~8, Nss=1	2TX	2RX			
002.11ac (V11120)	MCS 0~8, Nss=2	2TX	2RX			
802.11ac (VHT40)	MCS 0~9, Nss=1	2TX	2RX			
002.11ac (V11140)	MCS 0~9, Nss=2	2TX	2RX			
802.11ac (VHT80)	MCS 0~9, Nss=1	2TX	2RX			
002.11ac (VH100)	MCS 0~9, Nss=2	2TX	2RX			
Note: All of modulation n	ando auroport beomforming f	unation avaant 902 11 a/b/a	modulation mode			

3. The antennas provided to the EUT, please refer to the following table:

Note: All of modulation mode support beamforming function except 802.11a/b/g modulation mode.

5. The above EUT information is declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications or user's manual.

3.1.1	Test Mode Applicability and Tested Channel Detail
-------	---

EUT Configure		Applic	able To		Description	
Mode	RE≥1G	RE<1G	PLC	ОВ	Description	
1	\checkmark	\checkmark	\checkmark	\checkmark	Power from Adapter 2	
2	-	-	\checkmark	-	Power from Adapter 1	
Whore	DENIC Dedict	d Emission of		DE -10. D	Padiatad Emission balow 10Uz	

Where **RE>1G:** Radiated Emission above 1GHz **PLC:** Power Line Conducted Emission RE<1G: Radiated Emission below 1GHz

Note: "-"means no effect.

OB: Conducted Out-Band Emission Measurement

Radiated Emission Test (Above 1GHz):

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

MODE	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY	MODULATION TYPE
802.11b	1 to 11	6	DSSS	DBPSK
+ 802.11ac (VHT20)	36 to 48	40	OFDM	BPSK
+ 802.11ac (VHT40)	149 to 165	159	OFDM	BPSK

Radiated Emission Test (Below 1GHz):

Following channel(s) was (were) selected for the final test as listed below.

MODE	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY	MODULATION TYPE
802.11b	1 to 11	6	DSSS	DBPSK
802.11ac (VHT20)	36 to 48	40	OFDM	BPSK
+ 802.11ac (VHT40)	149 to 165	159	OFDM	BPSK

Power Line Conducted Emission Test:

Following channel(s) was (were) selected for the final test as listed below.

MODE	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY	MODULATION TYPE	
802.11b	1 to 11	6	DSSS	DBPSK	
+ 802.11ac (VHT20)	36 to 48	40	OFDM	BPSK	
+ 802.11ac (VHT40)	149 to 165	159	OFDM	BPSK	

Conducted Out-Band Emission Measurement:

Following channel(s) was (were) selected for the final test as listed below.

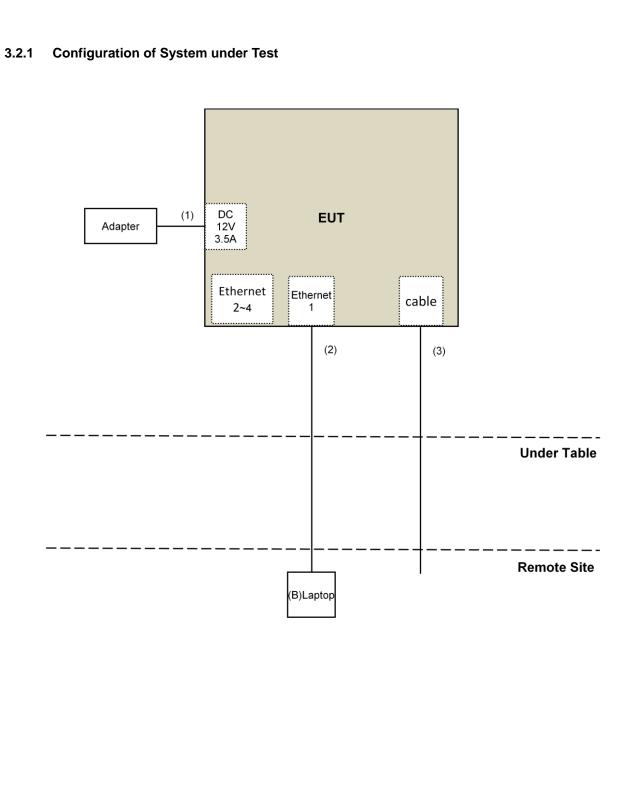
MODE	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY	MODULATION TYPE
802.11b	1 to 11	6	DSSS	DBPSK
+ 802.11ac (VHT40)	149 to 165	159	OFDM	BPSK

Test Condition:

APPLICABLE TO	ENVIRONMENTAL CONDITIONS	INPUT POWER	TESTED BY
RE≥1G	22deg. C, 66%RH	120Vac, 60Hz	Weiwei Lo
RE<1G	23deg. C, 69%RH	120Vac, 60Hz	Weiwei Lo
PLC	25deg. C, 70%RH	120Vac, 60Hz	Weiwei Lo
OB	25deg. C, 70%RH	120Vac, 60Hz	Weiwei Lo

3.2 Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.


ID	Product	Brand	Model No.	Serial No.	FCC ID	Remarks
Α.	Laptop	DELL	Inspiron 7570	DW3CSJ2	R43004	Provided by Lab

Note:

1. All power cords of the above support units are non-shielded (1.8m).

ID	Descriptions	Qty.	Length (m)	Shielding (Yes/No)	Cores (Qty.)	Remarks
1.	DC Cable	1	1.8	No	0	Supplied by client
2.	RJ-45 Cable	1	10	No	0	Provided by Lab
3.	Coaxial Cable	1	10	Yes	0	Provided by Lab

4 Test Types and Results

4.1 Radiated Emission and Bandedge Measurement

4.1.1 Limits of Radiated Emission and Bandedge Measurement

Radiated emissions which fall in the restricted bands must comply with the radiated emission limits specified as below table.

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

NOTE:

1. The lower limit shall apply at the transition frequencies.

2. Emission level (dBuV/m) = 20 log Emission level (uV/m).

3. For frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

Limits of unwanted emission out of the restricted bands

Applic	cable	То	Limit			
789033 D02 General UNII Test Procedure			Field Strength at 3m			
New Ru	les v()2r01	PK:74 (dBµV/m)	AV:54 (dBµV/m)		
Frequency Band		Applicable To	EIRP Limit	Equivalent Field Strength at 3m		
5150~5250 MHz		15.407(b)(1)				
5250~5350 MHz		15.407(b)(2) PK:-27 (dBm/MHz)		PK:68.2(dBµV/m)		
5470~5725 MHz		15.407(b)(3)				
5725~5850 MHz	\boxtimes	15.407(b)(4)(i)	PK:-27 (dBm/MHz) ^{*1} PK:10 (dBm/MHz) ^{*2} PK:15.6 (dBm/MHz) ^{*3} PK:27 (dBm/MHz) ^{*4}	PK: 68.2(dBµV/m) ^{*1} PK:105.2 (dBµV/m) ^{*2} PK: 110.8(dBµV/m) ^{*3} PK:122.2 (dBµV/m) ^{*4}		
		15.407(b)(4)(ii)	Emission limits in	section 15.247(d)		
^{*1} beyond 75 MHz or ^{*3} below the band ed of 15.6 dBm/MHz a	ge in	creasing linearly to				
Note:			the band edge.			

Note:

The following formula is used to convert the equipment isotropic radiated power (eirp) to field strength:

 $E = \frac{1000000\sqrt{30P}}{3} \quad \mu V/m, \text{ where P is the eirp (Watts).}$

For Below 1GHz:					
DESCRIPTION &		SERIAL NO.	CALIBRATED	CALIBRATED	
MANUFACTURER	MODEL NO.	SERIAL NO.	DATE	UNTIL	
Test Receiver	N9038A	MY50010156	Luby 12, 2017	July 11 2019	
Agilent	N9036A	WIT50010156	July 12, 2017	July 11, 2018	
Loop Antenna ^(*) TESEQ	HLA 6121	45745	May 19, 2017	May 18, 2018	
Pre-Amplifier	ZFL-1000VH2B	AMP-ZFL-05	May 06, 2017	May 05, 2018	
Mini-Circuits	21 E-1000 0112B		Way 00, 2017		
Trilog Broadband Antenna SCHWARZBECK	VULB 9168	9168-361	Nov. 29, 2017	Nov. 28, 2018	
		966-3-1			
RF Cable	8D	966-3-2	Apr. 01, 2017	Mar. 31, 2018	
		966-3-3			
Fixed attenuator	UNAT-5+	PAD-3m-3-01	Oct. 03, 2017	Oct. 02, 2018	
Mini-Circuits	UNAT-5+	PAD-SIII-S-UT	001.03,2017	001. 02, 2016	
Software	ADT_Radiated_V8.7.08	NA	NA	NA	
Antenna Tower & Turn Table	MF-7802	MF780208406	NA	NA	
Max-Full	1011 -7 002	1011 7 00200400		NA	

4.1.2 Test Instruments

Note:

1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. *The calibration interval of the above test instruments is 24 months and the calibrations are traceable to NML/ROC and NIST/USA.

- 3. The test was performed in 966 Chamber No. 3.
- 4. The CANADA Site Registration No. is 20331-1
- 5. Loop antenna was used for all emissions below 30 MHz.
- 6. Tested Date: Jan. 10, 2018

For Other Test: DESCRIPTION &			CALIBRATED	CALIBRATED	
MANUFACTURER	MODEL NO.	SERIAL NO.	DATE	UNTIL	
Test Receiver Agilent	N9038A	MY50010156	July 12, 2017	July 11, 2018	
Horn_Antenna SCHWARZBECK	BBHA9120-D	9120D-406	Dec. 12, 2017	Dec. 11, 2018	
Pre-Amplifier EMCI	EMC12630SE	980384	Feb. 02, 2017	Feb. 01, 2018	
RF Cable	EMC104-SM-SM-1200 EMC104-SM-SM-2000 EMC104-SM-SM-5000	160922 150317 150322	Feb. 02, 2017 Mar. 29, 2017 Mar. 29, 2017	Feb. 01, 2018 Mar. 28, 2018 Mar. 28, 2018	
Spectrum Analyzer Keysight	N9030A	MY54490679	July 25, 2017	July 24, 2018	
Pre-Amplifier EMCI	EMC184045SE	980386	Feb. 02, 2017	Feb. 01, 2018	
Horn_Antenna SCHWARZBECK	BBHA 9170	BBHA9170608	Dec. 14, 2017	Dec. 13, 2018	
RF Cable	SUCOFLEX 102	36432/2 36433/2	Jan. 11, 2018	Jan. 10, 2019	
Software	ADT_Radiated_V8.7.08	NA	NA	NA	
Antenna Tower & Turn Table Max-Full	MF-7802	MF780208406	NA	NA	
Boresight Antenna Fixture	FBA-01	FBA-SIP01	NA	NA	
Spectrum Analyzer R&S	FSV40	100964	July 1, 2017	June 30, 2018	
Power meter Anritsu	ML2495A	1014008	May 11, 2017	May 10, 2018	
Power sensor Anritsu	MA2411B	0917122	May 11, 2017	May 10, 2018	

Note:

- 2. The test was performed in 966 Chamber No. 3.
- 3. The CANADA Site Registration No. is 20331-1
- 4. Tested Date: Jan. 23, 2018

^{1.} The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

4.1.3 Test Procedures

For Radiated emission below 30MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. Both X and Y axes of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Quasi-Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

NOTE:

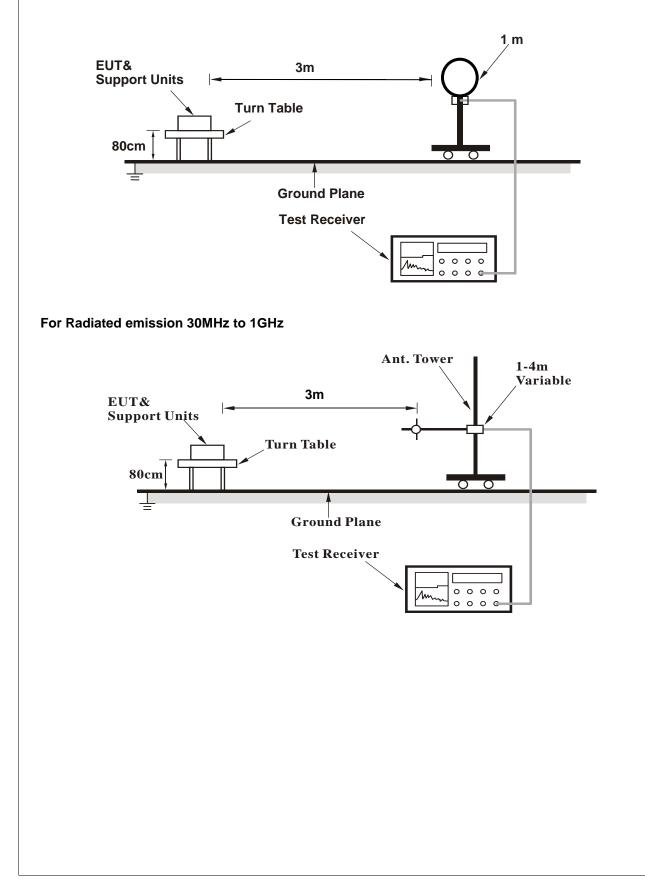
1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 9kHz at frequency below 30MHz.

For Radiated emission above 30MHz

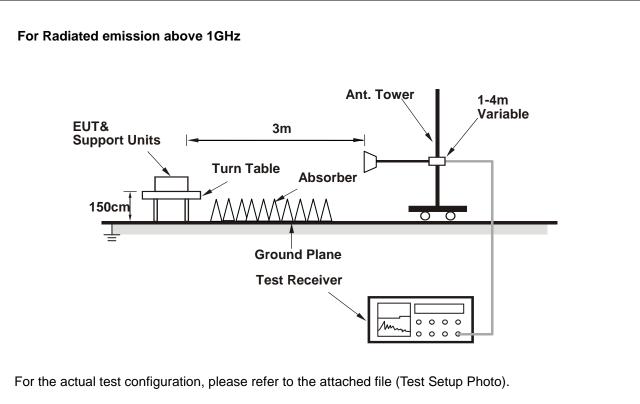
- a. The EUT was placed on the top of a rotating table 0.8 meters (for 30MHz ~ 1GHz) / 1.5 meters (for above 1GHz) above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.
- f. The test-receiver system was set to peak and average detects function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary.

Note:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection (QP) at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) at frequency above 1GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is ≥ 1/T (Duty cycle < 98%) or 10Hz (Duty cycle ≥ 98%) for Average detection (AV) at frequency above 1GHz.
- 4. All modes of operation were investigated and the worst-case emissions are reported.


4.1.4 Deviation from Test Standard

No deviation.



4.1.5 Test Setup

For Radiated emission below 30MHz

4.1.6 EUT Operating Conditions

- a. Connected the EUT with the Notebook Computer which is placed on remote site.
- b. Controlling software (QCA Radio Control Toolkit Version3.0.264.0) has been activated to set the EUT on specific status.

4.1.7 Test Results

Above 1GHz Data

FREQUENCY RANGE 10			1GHz ~ 40GH	GHz ~ 40GHz		DETECTOR FUNCTION		V)				
	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M											
NO.	FREQ. (MHz)	EMISSIC LEVEI (dBuV/I	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)				
1	4874.00	52.3 P	K 74.0	-21.7	2.06 H	52	49.1	3.2				
2	4874.00	48.2 A	V 54.0	-5.8	2.06 H	52	45.0	3.2				
3	7311.00	41.6 P	K 74.0	-32.4	1.36 H	334	32.7	8.9				
4	7311.00	32.3 A	V 54.0	-21.7	1.36 H	334	23.4	8.9				
5	10400.00	46.1 P	K 74.0	-27.9	1.41 H	99	33.4	12.7				
6	10400.00	43.0 A	V 54.0	-11.0	1.41 H	99	30.3	12.7				
7	11590.00	46.5 P	K 74.0	-27.5	1.38 H	113	32.6	13.9				
8	11590.00	43.0 A	√ 54.0	-11.0	1.38 H	113	29.1	13.9				
9	15600.00	41.8 P	K 74.0	-32.2	1.42 H	253	28.7	13.1				
10	15600.00	32.8 A	V 54.0	-21.2	1.42 H	253	19.7	13.1				
11	17385.00	42.7 P	K 74.0	-31.3	1.48 H	249	25.2	17.5				
12	17385.00	33.0 A	√ 54.0	-21.0	1.48 H	249	15.5	17.5				
		ANTE	NNA POLARIT	Y & TEST	DISTANCE: V	ERTICAL A	AT 3 M					
NO.	FREQ. (MHz)	EMISSIC LEVEI (dBuV/I	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)				
1	4874.00	46.2 P	K 74.0	-27.8	1.09 V	38	43.0	3.2				
2	4874.00	43.2 A	V 54.0	-10.8	1.09 V	38	40.0	3.2				
3	7311.00	42.3 P	K 74.0	-31.7	1.70 V	48	33.4	8.9				
4	7311.00	33.6 A	√ 54.0	-20.4	1.70 V	48	24.7	8.9				
5	10400.00	52.0 P	K 74.0	-22.0	1.59 V	219	39.3	12.7				
6	10400.00	48.3 A	V 54.0	-5.7	1.59 V	219	35.6	12.7				
7	11590.00	51.3 P	K 74.0	-22.7	1.53 V	210	37.4	13.9				
8	11590.00	47.6 A	V 54.0	-6.4	1.53 V	210	33.7	13.9				
9	15600.00	41.2 P	K 74.0	-32.8	2.44 V	140	28.1	13.1				
10	15600.00	32.9 A	V 54.0	-21.1	2.44 V	140	19.8	13.1				
11	17385.00	41.2 P	K 74.0	-32.8	2.47 V	152	23.7	17.5				
12	17385.00	32.5 A	V 54.0	-21.5	2.47 V	152	15.0	17.5				

REMARKS:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. The other emission levels were very low against the limit.

4. Margin value = Emission Level – Limit value

Below 1GHz Data:

QUENCY R	9kHz	(Hz ~ 1(GHz		DETECTOR FUNCTION		Quasi-Peak (QP)					
ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M											
FREQ. (MHz)	LEVEL		LIMIT dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)			
97.85	36.4 Q	Р	43.5	-7.1	2.00 H	96	49.4	-13.0			
144.00	36.0 Q	Р	43.5	-7.5	1.50 H	51	44.2	-8.2			
199.34	30.0 Q	Р	43.5	-13.5	1.00 H	274	41.2	-11.2			
370.86	38.4 Q	Р	46.0	-7.6	1.00 H	123	44.1	-5.7			
530.37	32.6 Q	Р	46.0	-13.4	1.50 H	328	34.8	-2.2			
750.01	34.5 Q	Р	46.0	-11.5	1.00 H	320	32.5	2.0			
	ANTE	NNA P	OLARITY	& TEST	DISTANCE: V	ERTICAL A	AT 3 M				
FREQ. (MHz)	LEVEL		LIMIT dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)			
96.01	37.4 Q	Р	43.5	-6.1	1.50 V	0	50.6	-13.2			
125.01	35.8 Q	P	43.5	-7.7	1.00 V	57	45.4	-9.6			
375.03	39.2 Q	P	46.0	-6.8	1.50 V	236	44.8	-5.6			
525.99	33.3 Q	P	46.0	-12.7	1.00 V	154	35.5	-2.2			
672.99	32.2 Q	P	46.0	-13.8	1.00 V	360	31.8	0.4			
859.98	34.6 Q	P	46.0	-11.4	1.50 V	0	31.6	3.0			
	FREQ. (MHz) 97.85 144.00 199.34 370.86 530.37 750.01 FREQ. (MHz) 96.01 125.01 375.03 525.99 672.99	FREQ. (MHz) EMISSIC LEVEL (dBuV/r (dBuV/r 97.85 97.85 36.4 Q 144.00 36.0 Q 199.34 30.0 Q 370.86 38.4 Q 530.37 32.6 Q 750.01 34.5 Q FREQ. (MHz) EMISSIC LEVEL (dBuV/r 96.01 96.01 37.4 Q 125.01 35.8 Q 375.03 39.2 Q 525.99 33.3 Q 672.99 32.2 Q 859.98 34.6 Q	ANTENNA PO EMISSION (MHz) EMISSION (dBuV/m) (dBuV/m) 97.85 36.4 QP (dBuV/m) 144.00 36.0 QP (dBuV/m) 199.34 30.0 QP (dBuV/m) 370.86 38.4 QP (dBuV/m) 530.37 32.6 QP (dBuV/m) 750.01 34.5 QP (dBuV/m) FREQ. (MHz) EMISSION LEVEL (dBuV/m) (dBuV/m) 96.01 37.4 QP (dBuV/m) 375.03 39.2 QP (dBuV/m) 525.99 33.3 QP (dF2.99 672.99 32.2 QP (dF2.99 859.98 34.6 QP (dF2.90	Emission Limit (dBuV/m) 97.85 36.4 QP 43.5 144.00 36.0 QP 43.5 144.00 36.0 QP 43.5 370.86 38.4 QP 46.0 530.37 32.6 QP 46.0 750.01 34.5 QP 46.0 96.01 37.4 QP 43.5 125.01 35.8 QP 43.5 375.03 39.2 QP 46.0 525.99 33.3 QP 46.0 672.99 32.2 QP 46.0 859.98 34.6 QP 46.0	ANTENNA POLARITY & TEST DI FREQ. (MHz) EMISSION LEVEL (dBuV/m) LIMIT (dBuV/m) MARGIN (dB) 97.85 36.4 QP 43.5 -7.1 144.00 36.0 QP 43.5 -7.5 199.34 30.0 QP 43.5 -13.5 370.86 38.4 QP 46.0 -7.6 530.37 32.6 QP 46.0 -11.5 ANTENNA POLARITY & TEST I MARGIN (dB) MARGIN (dB) 96.01 37.4 QP 46.0 -11.5 FREQ. (MHz) EMISSION LEVEL (dBuV/m) LIMIT (dBuV/m) MARGIN (dB) 96.01 37.4 QP 43.5 -6.1 125.01 35.8 QP 43.5 -7.7 375.03 39.2 QP 46.0 -6.8 525.99 33.3 QP 46.0 -12.7 672.99 32.2 QP 46.0 -13.8 859.98 34.6 QP 46.0 -11.4	BUENCY RANGE 9kHz ~ 1GHz FUNCTION ANTENNA POLARITY & TEST DISTANCE: HO ANTENNA FREQ. (MHz) EMISSION LEVEL (dBuV/m) LIMIT (dBuV/m) MARGIN (dB) ANTENNA HEIGHT (m) 97.85 36.4 QP 43.5 -7.1 2.00 H 144.00 36.0 QP 43.5 -7.5 1.50 H 199.34 30.0 QP 43.5 -13.5 1.00 H 370.86 38.4 QP 46.0 -7.6 1.00 H 370.86 38.4 QP 46.0 -11.5 1.00 H 530.37 32.6 QP 46.0 -11.5 1.00 H 530.37 32.6 QP 46.0 -11.5 1.00 H 50.01 34.5 QP 46.0 -11.5 1.00 H ANTENNA POLARITY & TEST DISTANCE: V FREQ. (MHz) EMISSION LEVEL (dBuV/m) LIMIT (dBuV/m) MARGIN (dB) ANTENNA HEIGHT (m) 96.01 37.4 QP 43.5 -7.7 1.00 V 125.01 35.8 QP 43.5 -7.7 1.00 V 125.01 35.8 QP	BUENCY RANGE 9kHz ~ 1GHz FUNCTION FUNCTION ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL FREQ. (MHz) EMISSION LEVEL (dBuV/m) LIMIT (dBuV/m) MARGIN (dB) ANTENNA HEIGHT (dB) TABLE ANGLE (Degree) 97.85 36.4 QP 43.5 -7.1 2.00 H 96 144.00 36.0 QP 43.5 -7.5 1.50 H 51 199.34 30.0 QP 43.5 -13.5 1.00 H 274 370.86 38.4 QP 46.0 -7.6 1.00 H 123 530.37 32.6 QP 46.0 -11.5 1.00 H 328 750.01 34.5 QP 46.0 -11.5 1.00 H 320 ANTENNA POLARITY & TEST DISTANCE: VERTICAL A FREQ. (MHz) EMISSION LEVEL (dBuV/m) LIMIT (dBuV/m) MARGIN (dB) ANTENNA HEIGHT (m) TABLE ANGLE (Degree) 96.01 37.4 QP 43.5 -6.1 1.50 V 0 125.01 35.8 QP 43.5 -7.7 1.00 V 57 </td <td>ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M FREQ. (MHz) EMISSION LEVEL (dBuV/m) LIMIT (dBuV/m) MARGIN (dB) ANTENNA HEIGHT (m) TABLE ANGLE (Degree) RAW VALUE (dBuV) 97.85 36.4 QP 43.5 -7.1 2.00 H 96 49.4 144.00 36.0 QP 43.5 -7.5 1.50 H 51 44.2 199.34 30.0 QP 43.5 -7.5 1.00 H 274 41.2 370.86 38.4 QP 46.0 -7.6 1.00 H 328 34.8 750.01 34.5 QP 46.0 -11.5 1.00 H 320 32.5 ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M MARGIN (dB) ANTENNA HEIGHT (m) TABLE ANGLE (Degree) RAW VALUE (dBuV) 96.01 37.4 QP 43.5 -6.1 1.50 V 0 50.6 125.01 35.8 QP 43.5 -7.7 1.00 V 57 45.4 375.03 39.2 QP 46.0 -6.8 1.50 V</td>	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M FREQ. (MHz) EMISSION LEVEL (dBuV/m) LIMIT (dBuV/m) MARGIN (dB) ANTENNA HEIGHT (m) TABLE ANGLE (Degree) RAW VALUE (dBuV) 97.85 36.4 QP 43.5 -7.1 2.00 H 96 49.4 144.00 36.0 QP 43.5 -7.5 1.50 H 51 44.2 199.34 30.0 QP 43.5 -7.5 1.00 H 274 41.2 370.86 38.4 QP 46.0 -7.6 1.00 H 328 34.8 750.01 34.5 QP 46.0 -11.5 1.00 H 320 32.5 ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M MARGIN (dB) ANTENNA HEIGHT (m) TABLE ANGLE (Degree) RAW VALUE (dBuV) 96.01 37.4 QP 43.5 -6.1 1.50 V 0 50.6 125.01 35.8 QP 43.5 -7.7 1.00 V 57 45.4 375.03 39.2 QP 46.0 -6.8 1.50 V			

REMARKS:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. The other emission levels were very low against the limit.

4. Margin value = Emission Level – Limit value

4.2 Conducted Emission Measurement

4.2.1 Limits of Conducted Emission Measurement

Frequency (MHz)	Conducted Limit (dBuV)					
Flequency (MHz)	Quasi-peak	Average				
0.15 - 0.5	66 - 56	56 - 46				
0.50 - 5.0	56	46				
5.0 - 30.0	60	50				

Note: 1. The lower limit shall apply at the transition frequencies.

2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

4.2.2 Test Instruments

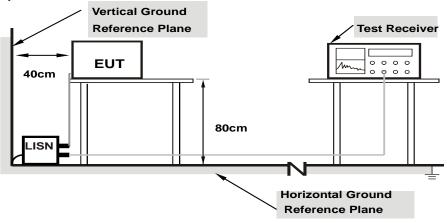
DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
Test Receiver R&S	ESCS 30	847124/029	Nov. 01, 2017	Oct. 31, 2018
Line-Impedance Stabilization Network (for EUT) R&S	ESH3-Z5	848773/004	Nov. 15, 2017	Nov. 14, 2018
Line-Impedance Stabilization Network (for Peripheral) R&S	ENV216	100072	June 03, 2017	June 02, 2018
50 ohms Terminator	N/A	EMC-02	Sep. 22, 2017	Sep. 21, 2018
RF Cable	5D-FB	COCCAB-001	Sep. 29, 2017	Sep. 28, 2018
10 dB PAD Mini-Circuits	HAT-10+	CONATT-004	June 18, 2017	June 17, 2018
Software BVADT	BVADT_Cond_ V7.3.7.4	NA	NA	NA

Note:

1. The calibration interval of the above test instruments are 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. The test was performed in Conduction 1.

3 Tested Date: Jan. 10, 2018


4.2.3 Test Procedures

- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- c. The frequency range from 150kHz to 30MHz was searched. Emission levels under (Limit 20dB) was not recorded.
- **NOTE:** The resolution bandwidth and video bandwidth of test receiver is 9kHz for quasi-peak detection (QP) and average detection (AV) at frequency 0.15MHz-30MHz.

4.2.4 Deviation from Test Standard

No deviation.

4.2.5 Test Setup

Note: 1.Support units were connected to second LISN.

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.2.6 EUT Operating Conditions

Same as 4.1.6.


4.2.7 Test Results (Mode 1)

Phase Line (L)	Detector Function	Quasi-Peak (QP) / Average (AV)
----------------	-------------------	-----------------------------------

	Phase Of Power : Line (L)											
No	Frequency	Correction Factor		g Value uV)	Emission Level (dBuV)		Limit (dBuV)		Margin (dB)			
	(MHz)	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.		
1	0.15781	10.14	42.54	33.40	52.68	43.54	65.58	55.58	-12.90	-12.04		
2	0.16953	10.14	39.61	26.33	49.75	36.47	64.98	54.98	-15.23	-18.51		
3	0.27109	10.17	33.22	20.03	43.39	30.20	61.08	51.08	-17.69	-20.88		
4	0.35703	10.19	39.33	32.44	49.52	42.63	58.80	48.80	-9.28	-6.17		
5	0.41172	10.20	31.67	25.52	41.87	35.72	57.61	47.61	-15.74	-11.89		
6	1.88281	10.29	29.02	21.64	39.31	31.93	56.00	46.00	-16.69	-14.07		

Remarks:


- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value

Phase Neutral (N)					Dete				· · ·	eak (QP) /	
								Average	(~~)		
	Phase Of Power : Neutral (N)										
	Frequency Correction Reading Value				mission Level Lii			mit Margin			
No		Factor		(dBuV)		(dBuV)		(dBuV)		(dB)	
	(MHz)	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	
1	0.15391	10.05	40.00	29.12	50.05	39.17	65.79	55.79	-15.74	-16.62	
2	0.34922	10.09	38.91	34.94	49.00	45.03	58.98	48.98	-9.98	-3.95	
3	0.44297	10.10	32.55	26.02	42.65	36.12	57.01	47.01	-14.36	-10.89	
4	0.62266	10.11	30.17	22.85	40.28	32.96	56.00	46.00	-15.72	-13.04	
5	0.98203	10.12	28.19	20.36	38.31	30.48	56.00	46.00	-17.69	-15.52	
6	1.58594	10.16	30.45	23.57	40.61	33.73	56.00	46.00	-15.39	-12.27	

Remarks:

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value

4.2.8 Test Results (Mode 2)

Phase	Line (L)	Detector Function	Quasi-Peak (QP) / Average (AV)				
Phase Of Power : Line (L)							

Na	Frequency	Correction	Reading Value (dBuV)		Emission Level (dBuV)		Limit (dBuV)		Margin (dB)	
No	(MHz)	Factor (dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	B) AV.
1	0.15391	10.14	40.47	27.34	50.61	37.48	65.79	55.79	-15.18	-18.31
2	0.21641	10.15	31.67	17.22	41.82	27.37	62.96	52.96	-21.14	-25.59
3	0.37656	10.19	26.17	20.06	36.36	30.25	58.35	48.35	-21.99	-18.10
4	0.70859	10.23	19.70	12.94	29.93	23.17	56.00	46.00	-26.07	-22.83
5	4.53906	10.47	17.43	10.97	27.90	21.44	56.00	46.00	-28.10	-24.56
6	14.50000	11.13	20.87	15.92	32.00	27.05	60.00	50.00	-28.00	-22.95

Remarks:

1. Q.P. and AV. are abbreviations of quasi-peak and average individually.

2. The emission levels of other frequencies were very low against the limit.

3. Margin value = Emission level – Limit value

4. Correction factor = Insertion loss + Cable loss

5. Emission Level = Correction Factor + Reading Value

Phase Neutral (N)				Dete	ctor Func	tion	Quasi-Pe Average	eak (QP) / (AV)	'	
Phase Of Power : Neutral (N)										
No	Frequency	Correction Factor	Reading Value (dBuV)		Reading Value Emission Level (dBuV) (dBuV)		Limit (dBuV)		Margin (dB)	
	(MHz)	(dB)	Q.P.	ÁV.	Q.P.	ÁV.	Q.P.	ÁV.	Q.P.	ÁV.
1	0.15391	10.05	40.31	27.28	50.36	37.33	65.79	55.79	-15.43	-18.46
2	0.18906	10.05	34.67	18.52	44.72	28.57	64.08	54.08	-19.36	-25.51
3	0.38047	10.10	26.43	21.76	36.53	31.86	58.27	48.27	-21.74	-16.41
4	0.85313	10.12	19.88	12.28	30.00	22.40	56.00	46.00	-26.00	-23.60
5	4.64844	10.33	17.94	10.25	28.27	20.58	56.00	46.00	-27.73	-25.42
6	14.45313	10.94	20.31	14.99	31.25	25.93	60.00	50.00	-28.75	-24.07

Remarks:

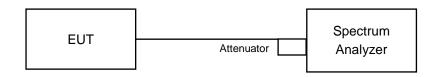
1. Q.P. and AV. are abbreviations of quasi-peak and average individually.

2. The emission levels of other frequencies were very low against the limit.

3. Margin value = Emission level - Limit value

4. Correction factor = Insertion loss + Cable loss

5. Emission Level = Correction Factor + Reading Value



4.3 Conducted Out of Band Emission Measurement

4.3.1 Limits of Conducted Out of Band Emission Measurement

Below 30dB of the highest emission level of operating band (in 100kHz Resolution Bandwidth).

4.3.2 Test Setup

4.3.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.3.4 Test Procedures

MEASUREMENT PROCEDURE REF

- 1. Set the RBW = 100 kHz.
- 2. Set the VBW \geq 300 kHz.
- 3. Detector = peak.
- 4. Sweep time = auto couple.
- 5. Trace mode = max hold.
- 6. Allow trace to fully stabilize.
- 7. Use the peak marker function to determine the maximum power level in any 100 kHz band segment within the fundamental EBW.

MEASUREMENT PROCEDURE OOBE

- 1. Set RBW = 100 kHz.
- 2. Set VBW ≥ 300 kHz.
- 3. Detector = peak.
- 4. Sweep = auto couple.
- 5. Trace Mode = max hold.
- 6. Allow trace to fully stabilize.
- 7. Use the peak marker function to determine the maximum amplitude level.

4.3.5 Deviation from Test Standard

No deviation.

4.3.6 EUT Operating Conditions

The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest channel frequencies individually.

4.3.7 Test Results

The spectrum plots are attached on the following pages. D1 line indicates the highest level, and D2 line indicates the 30dB offset below D1. It shows compliance with the requirement.

2.4GHz_802.11b CH6 + 5GHz_802.11ac (VHT40) CH159 Chain 0 Chain 1 Marker 1 [T1] -30.42 dBm 694.50 MHz RBW 100 kHz VBW 300 kHz SWT 4 s RBW 100 kHz VBW 300 kHz SWT 4 s [T1] MP VIEW [T1] MP VIEW Marker 1 [T1] -30.33 dBm 694.50 MHz 31.5 <u>- Ref 31.5 dBm</u> Offset 21.5 dB 20 - <u>D1 19.02 dBm</u> 31.5 - Ref 31.5 dBm Offset 21.5 dB 20 - D1 19.02 dBm Att 20 d Att 20 dE 1] 18.41 dBm 2.43319 GHz 4er 3 [T1] -36.22 dBm 3.19262 GHz 10 10 Marker 4 IT11 Marker 4 [T1] 13.29 dBm 5.20111 GHz Marker 5 [T1] -17.81 dBm 39.76517 GHz Marker 4 [T1] 13.90 dBm 5.19112 GHz Marker 5 [T1] -19.70 dBm 39.69522 GHz 0-0 -10 -10 -20 -20 with many and the second s -30 -30 -40 -4(-50 -50 ()-60 -60 -68.5 --68.5 -BUREAU BUREAU Stop 40 GHz Start 30 MHz Stop 40 GHz Start 30 MHz I 3.997 GHz/ I 3.997 GHz/

5 Pictures of Test Arrangements

Please refer to the attached file (Test Setup Photo).

Appendix – Information on the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are accredited and approved according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Linko EMC/RF Lab Tel: 886-2-26052180 Fax: 886-2-26051924 Hsin Chu EMC/RF/Telecom Lab Tel: 886-3-6668565 Fax: 886-3-6668323

Hwa Ya EMC/RF/Safety Lab Tel: 886-3-3183232 Fax: 886-3-3270892

Email: <u>service.adt@tw.bureauveritas.com</u> Web Site: <u>www.bureauveritas-adt.com</u>

The address and road map of all our labs can be found in our web site also.

--- END ---