

FCC PART 24TEST REPORT Part 24 Subpart E								
Report Reference No: HK1902130277-1E								
FCC ID: 2APRD-CATM								
Compiled by								
(position+printed name+signature): File administrators Gary Qian								
Supervised by		- ())						
(position+printed name+signature):	echnique principal Eden Hu	Edon Mu						
Approved by (position+printed name+signature):	Aanager Jason Zhou	Gogf Bianl Edan Hu Jason Zhou						
Date of issue F								
Testing Laboratory Name	Shenzhen HUAK Testing Technology	y Co., Ltd.						
Address	F, B2 Building, Junfeng Zhongcheng Z leping Community, Fuhai Street, Bao'	Zhizao Innovation Park, an District, Shenzhen,China						
Applicant's name								
Address2	2901 Tasman Drive Suite 107 Santa C	lara, CA 95054						
Test specification:								
FCC CFR Title 47 Part 2, Part 24E Standard								
TRF Originator: Shenzhen HUAK Testing Technology Co., Ltd.								
Shenzhen HUAK Testing Technolog	0,00							
This publication may be reproduced in Shenzhen HUAK Testing Technology HUAK Testing Technology Co., Ltd.tal resulting from the reader's interpretation	Co., Ltd.as copyright owner and source cess no responsibility for and will not a	e of the material. Shenzhen ssume liability for damages						
Test item description	Container tracker							
Trade Mark	N/A							
Manufacturer	iTraq Inc							
Model/Type reference	ULTRA M CATM							
Listed Models	1							
Modulation Type	QPSK, BPSK							
Rating	DC 10.5V From Battery							
Hardware version	V2.0							
Software version	V2.0							
Result	PASS							

TEST REPORT

Test Report No. : HK1		1902130277-1E	Feb. 21, 2019
			Date of issue
Equipment under Test	:	Container tracker	
Model /Type	:	ULTRA M CATM	
Listed Models	:	1	
Applicant	:	CHEP	
Address	:	2901 Tasman Drive Suit	e 107 Santa Clara, CA 95054
Manufacturer	:	iTraq Inc	
Address	:	7554 185th Ave NE STE 98052	200 Redmond Washington

Test Result:	PASS
--------------	------

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Revison History

Revision	Issue Date	Revisions	Revised By
V1.0	V1.0 2019-02-21		James Zhou

Contents

<u>1</u>	TEST STANDARDS	<u> 5</u>
<u>2</u>	<u>SUMMARY</u>	6
2.1	General Remarks	6
2.2	Product Description	6
2.3	Equipment under Test	6
2.4	Normal Accessory setting	6
2.5	EUT configuration	6
2.6	Related Submittal(s) / Grant (s)	7
2.7	Modifications	7
2.8	GeneralTest Conditions/Configurations	7
<u>3</u>	TEST ENVIRONMENT	8
3.1	Address of the test laboratory	8
3.2	Environmental conditions	8
3.3	Test Description	9
3.4	Equipments Used during the Test	10
<u>4</u>	TEST CONDITIONS AND RESULTS	<u> 11</u>
4.1	Output Power	11
4.2	Peak-to-Average Ratio (PAR)	15
4.3	Occupied Bandwidth and Emission Bandwidth	16
4.4	Band Edge compliance	17
4.5	Spurious Emssion on Antenna Port	18
4.6	Radiated Spurious Emssion	19
4.7	Frequency Stability	21
<u>5</u>	TEST SETUP PHOTOS OF THE EUT	<u> 22</u>

The tests were performed according to following standards:

FCC Part 24 : PUBLIC MOBILE SERVICES

TIA/EIA 603 D June 2010: Land Mobile FM or PM Communications Equipment Measurement and Performance Standards.

47 CFR FCC Part 15 Subpart B: - Unintentional Radiators

FCC Part 2: FREQUENCY ALLOCA-TIONS AND RADIO TREATY MAT-TERS; GENERAL RULES AND REG-ULATIONS

KDB971168 D01: v02r02MEASUREMENT GUIDANCE FOR CERTIFICATION OF LICENSED DIGITAL TRANSMITTERS

ANSI C63.4:2014: Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz

2.1 General Remarks

Date of receipt of test sample	:	Feb. 13, 2019
Testing commenced on	:	Feb. 13, 2019
Testing concluded on	:	Feb. 21, 2019

2.2 Product Description

Name of EUT	Container tracker
Model/Type reference:	ULTRA M CATM
List Model:	/
Power supply:	DC 10.5V From Battery
Adapter Information	N/A
Modilation Type	QPSK,BPSK
Antenna Type	Internal Antenna
Operation Frequency Band	NB-IoT eFDD 2
Operation frequency	NB-IoT eFDD 2: 1850.7~1909.3 MHz
LTE Release	R8
Extreme temp. Tolerance	-30°C to +50°C
Extreme vol. Limits	9.45VDC to 11.55VDC (nominal: 10.50VDC)

2.3 Equipment under Test

Power supply system utilised

Power supply voltage	:	0	120V/ 60 Hz	0	115V/60Hz
		0	12 V DC	0	24 V DC
		•	Other (specified in blank bel	ow)

DC 10.5V From Battery

2.4 Normal Accessory setting

Fully charged battery was used during the test.

2.5 EUT configuration

The following peripheral devices and interface cables were connected during the measurement:

- - supplied by the manufacturer
- $\odot\,$ supplied by the lab

0	Power Cable	Length (m) :	/
		Shield :	1
		Detachable :	1
0	Multimeter	Manufacturer :	1
		Model No. :	1

2.6 Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for FCC ID: 2APRD-CATM filing to comply with FCC Part 24, Rules.

2.7 Modifications

No modifications were implemented to meet testing criteria.

2.8 GeneralTest Conditions/Configurations

2.10.1 TestEnvironment

EnvironmentParameter	SelectedValuesDuringTests			
Relative Humidity	Ambient			
Temperature	TN	Ambient		
	VL	9.45V		
Voltage	VN	10.50V		
	VH	11.55V		

NOTE:VL=lowerextreme testvoltageVN=nominalvoltage VH=upperextreme testvoltageTN=normaltemperature

3 TEST ENVIRONMENT

3.1 Address of the test laboratory

Shenzhen HUAK Testing Technology Co., Ltd. Add.:1F, B2 Building, Junfeng Zhongcheng Zhizao Innovation Park,Heping Community, Fuhai Street, Bao'an District, Shenzhen, China

3.2 Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	15-35 ° C
Humidity:	30-60 %
Atmospheric pressure:	950-1050mbar

3.3 Test Description

PCSBand (1850-1915MHz pairedwith 1930-1995MHz)

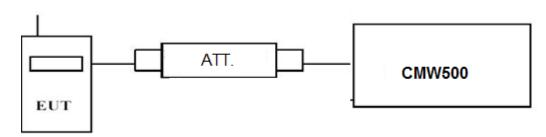
Test Item	FCCRuleNo.	Requirements	Verdict
Effective(Isotropic) Radiated Output Power	§2.1046, §22.913(a)(2)	EIRP ≤ 2W	Pass
Peak-Average Ratio	§24.232(d)	FCC:Limit≤13dB	compliance *
Modulation Characteristics	§2.1047	Digitalmodulation	compliance *
Bandwidth	§2.1049	OBW: Nolimit. EBW: Nolimit.	compliance *
Band Edges Compliance	§2.1051, §24.238	 ≤ -13dBm/1%*EBW, In1MHzbandsimmediatelyoutsideandadjacentto Thefrequency block. 	compliance *
Spurious Emissionat AntennaTerminals	§2.1051, §24.238	≤-13dBm/1MHz, from9kHzto10thharmonicsbut outsideauthorized Operatingfrequency ranges.	compliance *
Field Strength of Spurious Radiation	Clause 7of KDB971168 D01 v02r02	≤ -13dBm/1MHz.	Pass
Frequency Stability	§2.1055, §22.355, §24.235	FCC:withinauthorizedfrequency block.	compliance *
NOTE 1: For the verdict, t is:MDE_UBLOX_1708_F0		*" Test data refers to FCC ID:XPY2AGQN4NNN, and re	eport number

Remark: 1. The measurement uncertainty is not included in the test result.

3.4 Equipments Used during the Test

Test Equipment	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Due Date
LISN	ENV216	R&S	HKE-059	2018/12/28	2019/12/27
LISN	R&S	ENV216	HKE-002	2018/12/28	2019/12/27
Broadband antenna	Schwarzbeck	VULB 9163	HKE-012	2017/12/27	2019/12/26
Receiver	R&S	ESCI 7	HKE-010	2018/12/28	2019/12/27
Spectrum analyzer	Agilent	N9020A	HKE-048	2018/12/28	2019/12/27
RF automatic control unit	Tonscend	JS0806-2	HKE-060	2018/12/28	2019/12/27
Horn antenna	Schwarzbeck	9120D	HKE-013	2017/12/27	2019/12/26
Loop antenna	Schwarzbeck	FMZB 1519 B	HKE-014	2017/12/27	2019/12/26
Preamplifier	EMCI	EMC051845SE	HKE-015	2018/12/28	2019/12/27
Preamplifier	Agilent	83051A	HKE-016	2018/12/28	2019/12/27
Temperature and humidity meter	Boyang	HTC-1	HKE-075	2018/12/28	2019/12/27
High pass filter unit	Tonscend	JS0806-F	HKE-055	2018/12/28	2019/12/27
RF cable	Times	1-40G	HKE-034	2018/12/28	2019/12/27
Power meter	Agilent	E4419B	HKE-085	2018/12/28	2019/12/27
Power Sensor	Agilent	E9300A	HKE-086	2018/12/28	2019/12/27
Wireless Communication Test Set	R&S	CMW500	HKE-026	2018/12/28	2019/12/27

4 TEST CONDITIONS AND RESULTS


4.1 Output Power

4.1.1 Coducted Output Power

TEST APPLICABLE

During the process of testing, the EUT was controlled via R&S Digital Radio Communication tester (CMW500) to ensure max power transmission and proper modulation. This result contains output power and EIRP measurements for the EUT. In all cases, output power is within the specified limits.

TEST CONFIGURATION

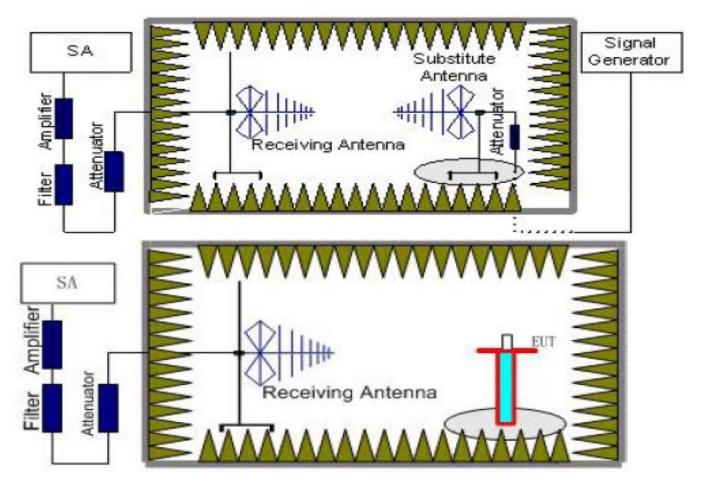
TEST PROCEDURE

Conducted Power Measurement:

- a) Place the EUT on a bench and set it in transmitting mode.
- b) Connect a low loss RF cable from the antenna port to a CMW500 by an Att.
- c) EUT Communicate with CMW500 then selects a channel for testing.
- d) Add a correction factor to the display CMW500, and then test.

TEST RESULTS

compliance *



4.1.2. Radiated Output Power

<u>LIMIT</u>

This is the test for the maximum radiated power from the EUT. Rule Part 24.232(b) specifies, "Mobile/portable stations are limited to 2 watts e.i.r.p.

TEST CONFIGURATION

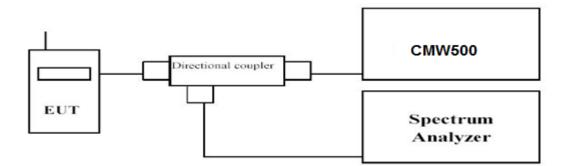
TEST PROCEDURE

- EUT was placed on a 1.50 meter high non-conductive stand at a 3 meter test distance from the receive antenna. A receiving antenna was placed on the antenna mast 3 meters from the EUT for emission measurements. The height of receiving antenna is 1.50m. Detected emissions were maximized at each frequency by rotating the EUT through 360° and adjusting the receiving antenna polarization. The radiated emission measurements of all transmit frequencies in three channels (High, Middle, Low) were measured with peak detector.
- 2. A log-periodic antenna or double-ridged waveguide horn antenna shall be substituted in place of the EUT. The log-periodic antenna will be driven by a signal generator and the level will be adjusted till the same power value on the spectrum analyzer or receiver. The level of the spurious emissions can be calculated through the level of the signal generator, cable loss, the gain of the substitution antenna and the reading of the spectrum analyzer or receiver.
- 3. The EUT is then put into continuously transmitting mode at its maximum power level during the test.Set Test Receiver or Spectrum RBW=1MHz,VBW=3MHz, And the maximum value of the receiver should be recorded as (P_r).
- 4. The EUT shall be replaced by a substitution antenna. In the chamber, an substitution antenna for the frequency band of interest is placed at the reference point of the chamber. An RF Signal source for the frequency band of interest isconnected to the substitution antenna with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A power (P_{Mea}) is applied to the input of the substitution antenna, and adjust the level of the signal generator output until the value of the receiver reach the previously recorded (P_r). The power of signal source (P_{Mea}) is recorded. The test should be performed by rotating the test item and adjusting the receiving antenna polarization.

Radiated Measurement:

Radio Technology	Modula tion	Reference Test	Channel	Sub- carrier	RMS Conducted	FCC EIRP Limit(W)
	Туре	Frequencies			(dBm)	()
NB-IoT eFDD 2	QPSK	Standalone	18601	12	21.40	2
NB-IoT eFDD 2	QPSK	Standalone	18900	12	21.61	2
NB-IoT eFDD 2	QPSK	Standalone	19199	12	21.30	2
NB-IoT eFDD 2	QPSK	In-land	18606	12	21.40	2
NB-IoT eFDD 2	QPSK	In-land	18660	12	21.52	2
NB-IoT eFDD 2	QPSK	In-land	18669	12	21.39	2
NB-IoT eFDD 2	QPSK	In-land	18891	12	21.46	2
NB-IoT eFDD 2	QPSK	In-land	18910	12	21.67	2
NB-IoT eFDD 2	QPSK	In-land	18919	12	21.36	2
NB-IoT eFDD 2	QPSK	In-land	19194	12	21.40	2
NB-IoT eFDD 2	QPSK	In-land	19160	12	21.41	2
NB-IoT eFDD 2	QPSK	In-land	19169	12	21.56	2
NB-IoT eFDD 2	QPSK	guard-band	18601	12	21.58	2
NB-IoT eFDD 2	QPSK	guard-band	18876	12	21.35	2
NB-IoT eFDD 2	QPSK	guard-band	19199	12	21.60	2
NB-IoT eFDD 2	QPSK	Standalone	18601	6	21.62	2
NB-IoT eFDD 2	QPSK	Standalone	18900	6	21.24	2
NB-IoT eFDD 2	QPSK	Standalone	19199	6	21.30	2
NB-IoT eFDD 2	QPSK	In-land	18606	6	21.54	2
NB-IoT eFDD 2	QPSK	In-land	18660	6	21.22	2
NB-IoT eFDD 2	QPSK	In-land	18669	6	21.56	2
NB-IoT eFDD 2	QPSK	In-land	18891	6	21.69	2
NB-IoT eFDD 2	QPSK	In-land	18910	6	21.59	2
NB-IoT eFDD 2	QPSK	In-land	18919	6	21.52	2
NB-IoT eFDD 2	QPSK	In-land	19194	6	21.27	2
NB-IoT eFDD 2	QPSK	In-land	19160	6	21.46	2
NB-IoT eFDD 2	QPSK	In-land	19169	6	21.26	2
NB-IoT eFDD 2	QPSK	guard-band	18601	6	21.43	2
NB-IoT eFDD 2	QPSK	guard-band	18876	6	21.66	2
NB-IoT eFDD 2	QPSK	guard-band	19199	6	21.21	2
NB-IoT eFDD 2	QPSK	Standalone	18601	3	21.98	2
NB-IoT eFDD 2	QPSK	Standalone	18900	3	21.70	2
NB-IoT eFDD 2	QPSK	Standalone	19199	-	21.99	2
NB-IoT eFDD 2	QPSK	In-land	18606	3	21.57	2
NB-IoT eFDD 2	QPSK	In-land	18660	3	21.94	2
NB-IoT eFDD 2	QPSK	In-land	18669	3	21.90	2
NB-IoT eFDD 2	QPSK	In-land	18891	3	21.90	2
NB-IoT eFDD 2	QPSK	In-land	18910	3	21.88	2
NB-IoT eFDD 2	QPSK	In-land	18919	3	21.81	2
NB-IoT eFDD 2	QPSK	In-land	19194	3	21.96	2
NB-IoT eFDD 2	QPSK	In-land	19160	3	21.76	2
NB-IoT eFDD 2	QPSK	In-land	19169	3	21.81	2

Radio	Modula	Reference	Channel	Sub-	RMS	FCC EIRP
Technology	tion	Test		carrier	Conducted	Limit(W)
	Туре	Frequencies			(dBm)	
NB-IoT eFDD 2	QPSK	guard-band	18601	3	22.28	2
NB-IoT eFDD 2	QPSK	guard-band	18876	3	22.30	2
NB-IoT eFDD 2	QPSK	guard-band	19199	3	22.26	2
NB-IoT eFDD 2	QPSK	Standalone	18601	1	22.08	2
NB-IoT eFDD 2	QPSK	Standalone	18900	1	22.12	2
NB-IoT eFDD 2	QPSK	Standalone	19199	1	22.29	2
NB-IoT eFDD 2	QPSK	In-land	18606	1	22.42	2
NB-IoT eFDD 2	QPSK	In-land	18660	1	22.11	2
NB-IoT eFDD 2	QPSK	In-land	18669	1	22.16	2
NB-IoT eFDD 2	QPSK	In-land	18891	1	22.24	2
NB-IoT eFDD 2	QPSK	In-land	18910	1	22.07	2
NB-IoT eFDD 2	QPSK	In-land	18919	1	22.20	2
NB-IoT eFDD 2	QPSK	In-land	19194	1	22.07	2
NB-IoT eFDD 2	QPSK	In-land	19160	1	22.24	2
NB-IoT eFDD 2	QPSK	In-land	19169	1	22.14	2
NB-IoT eFDD 2	QPSK	guard-band	18601	1	22.44	2
NB-IoT eFDD 2	QPSK	guard-band	18876	1	22.53	2
NB-IoT eFDD 2	QPSK	guard-band	19199	1	22.42	2
NB-IoT eFDD 2	BPSK	Standalone	18601	1	22.48	2
NB-IoT eFDD 2	BPSK	Standalone	18900	1	22.47	2
NB-IoT eFDD 2	BPSK	Standalone	19199	1	22.54	2
NB-IoT eFDD 2	BPSK	In-land	18606	1	22.37	2
NB-IoT eFDD 2	BPSK	In-land	18660	1	22.29	2
NB-IoT eFDD 2	BPSK	In-land	18669	1	22.31	2
NB-IoT eFDD 2	BPSK	In-land	18891	1	22.12	2
NB-IoT eFDD 2	BPSK	In-land	18910	1	22.38	2
NB-IoT eFDD 2	BPSK	In-land	18919	1	22.52	2
NB-IoT eFDD 2	BPSK	In-land	19194	1	22.41	2
NB-IoT eFDD 2	BPSK	In-land	19160	1	22.50	2
NB-IoT eFDD 2	BPSK	In-land	19169	1	22.36	2
NB-IoT eFDD 2	BPSK	guard-band	18601	1	22.51	2
NB-IoT eFDD 2	BPSK	guard-band	18876	1	22.12	2
NB-IoT eFDD 2	BPSK	guard-band	19199	1	22.31	2



4.2 Peak-to-Average Ratio (PAR)

<u>LIMIT</u>

The Peak-to-Average Ratio (PAR) of the transmission may not exceed 13 dB.

TEST CONFIGURATION

TEST PROCEDURE

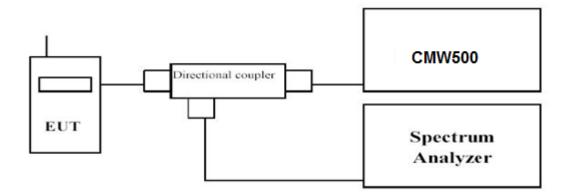
- 1. Refer to instrument's analyzer instruction manual for details on how to use the power statistics/CCDF function;
- 2. Set resolution/measurement bandwidth \geq signal's occupied bandwidth;
- 3. Set the number of counts to a value that stabilizes the measured CCDF curve;
- 4. Set the measurement interval as follows:
 - 1). for continuous transmissions, set to 1 ms,

2). for burst transmissions, employ an external trigger that is synchronized with the EUT burst timing sequence, or use the internal burst trigger with a trigger level that allows the burst to stabilize and set the measurement interval to a time that is less than or equal to the burst duration.

5. Record the maximum PAPR level associated with a probability of 0.1%.

TEST RESULTS

compliance *



4.3 Occupied Bandwidth and Emission Bandwidth

<u>LIMIT</u>

N/A

TEST CONFIGURATION

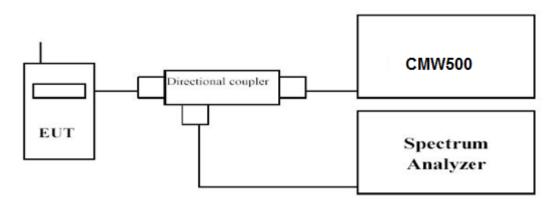
TEST PROCEDURE

The transmitter output was connected to a calibrated coaxial cable and coupler, the other end of which was connected to a spectrum analyzer. The occupied bandwidth was measured with the spectrum analyzer at low, middle and high channel in each band. The -26dBc Emission bandwidth was also measured and recorded. Set RBWwas set to about 1% of emission BW, VBW≥3 times RBW.

-26dBc display line was placed on the screen (or 99% bandwidth), the occupied bandwidth is the delta frequency between the two points where the display line intersects the signal trace.

TEST RESULTS

compliance *



4.4 Band Edge compliance

<u>LIMIT</u>

Per FCC §24.238 the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10log(P) dB.

TEST CONFIGURATION

TEST PROCEDURE

- 1. The transmitter output port was connected to base station.
- 2. The RF output of EUT was connected to the power meter by RF cable and attenuator, the path loss was compensated to the results for each measurement.
- 3. Set EUT at maximum power through base station.
- 4. Select lowestand highest channels for each band and different modulation.
- 5. Measure Band edge using RMS (Average) detector by spectrum

TEST RESULTS

compliance *

4.5 Spurious Emssion on Antenna Port

<u>LIMIT</u>

Per FCC §24.238, the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10log(P) dB.

TEST CONFIGURATION

TEST PROCEDURE

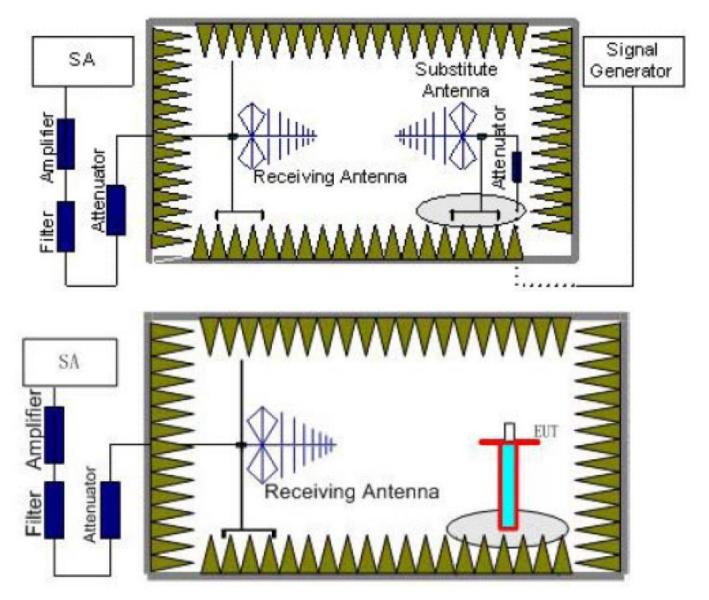
The EUT was setup according to EIA/TIA 603D

- a. Place the EUT on a bench and set it in transmitting mode.
- b. Connect a low loss RF cable from the antenna port to a spectrum analyzer and CMW500 by a Directional Couple.
- c. EUT Communicate with CMW500, then select a channel for testing.
- d. Add a correction factor to the display of spectrum, and then test.
- e. The resolution bandwidth of the spectrum analyzer was setsufficient scans were taken to show the out of band Emission if any up to10th harmonic.
- f. Please refer to following tables for test antenna conducted emissions.

Working Frequency	Sub range (GHz)	RBW	VBW	Sweep time (s)	
NB-IoT eFDD 2	0.01~20	1 MHz	3 MHz	Auto	

TEST RESULTS

compliance *



4.6 Radiated Spurious Emssion

TEST APPLICABLE

Per FCC §24.238, the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10log(P) dB.

TEST CONFIGURATION

TEST PROCEDURE

- EUT was placed on a 1.50 meter high non-conductive stand at a 3 meter test distance from the receive antenna. A receiving antenna was placed on the antenna mast 3 meters from the EUT for emission measurements. The height of receiving antenna is 1.50m. Detected emissions were maximized at each frequency by rotating the EUT through 360° and adjusting the receiving antenna polarization. The radiated emission measurements of all transmit frequencies in three channels (High, Middle, Low) were measured with peak detector.
- 2. A log-periodic antenna or double-ridged waveguide horn antenna shall be substituted in place of the EUT. The log-periodic antenna will be driven by a signal generator and the level will be adjusted till the same power value on the spectrum analyzer or receiver. The level of the spurious emissions can be calculated through the level of the signal generator, cable loss, the gain of the substitution antenna and the reading of the spectrum analyzer or receiver.

- 3. The EUT is then put into continuously transmitting mode at its maximum power level during the test.Set Test Receiver or Spectrum RBW=1MHz,VBW=3MHz, And the maximum value of the receiver should be recorded as (P_r).
- 4. The EUT shall be replaced by a substitution antenna. In the chamber, an substitution antenna for the frequency band of interest is placed at the reference point of the chamber. An RF Signal source for the frequency band of interest isconnected to the substitution antenna with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A power (P_{Mea}) is applied to the input of the substitution antenna, and adjust the level of the signal generator output until the value of the receiver reach the previously recorded (P_r). The power of signal source (P_{Mea}) is recorded. The test should be performed by rotating the test item and adjusting the receiving antenna polarization.
- A amplifier should be connected to the Signal Source output port. And the cable should be connect between the Amplifier and the Substitution Antenna. The cable loss (P_{cl}) ,the Substitution Antenna Gain (G_a) and the Amplifier Gain (P_{Ag}) should be recorded after test. The measurement results are obtained as described below: Power(EIRP)=P_{Mea}- P_{Ag} P_{cl}+ G_a
- 6. This value is EIRP since the measurement is calibrated using an antenna of known gain (2.15 dBi) and known input power.
- 7. ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP -2.15dBi.
- 8. In order to make sure test results more clearly, we set frequency range and sweep time for difference frequency range as follows table:

Working Frequency	Subrange (GHz)	RBW	VBW	Sweep time (s)
NB-IoT eFDD 2	0.03~1	100KHz	300KHz	10
	1~20	1 MHz	3 MHz	2

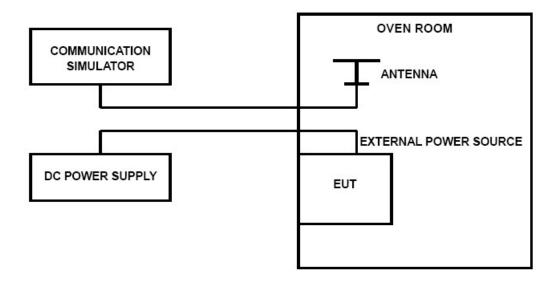
TEST LIMITS

According to 24.238 specify that the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB. The specification that emissions shall be attenuated below the transmitter power (P) by at least 43 + 10 log (P) dB, translates in the relevant power range (1 to 0.001 W) to -13 dBm. At 1 W the specified minimum attenuation becomes 43 dB and relative to a 30 dBm (1 W) carrier becomes a limit of -13 dBm. At 0.001 W (0 dBm) the minimum attenuation is 13 dB, which again yields a limit of -13 dBm. In this way a translation of the specification from relative to absolute terms is carried out.

Frequency	Channel	Frequency Range	Verdict
NB-IoT eFDD 2	Low	30MHz -20GHz	PASS
	Middle	30MHz -20GHz	PASS
	High	30MHz -20GHz	PASS

Radiated Measurement:

Radio Technology	Channel	Detector	Trace	Resolution Bandwidth /kHz	Frequency /MHz	Max Value /dBm	Limit /dBm	Margin to Limit /dB
eFDD 2 QPSK NBIoT	low	peak	maxhold	2	1849.9	-20.32	-13	7.32
eFDD 2 QPSK NBIoT	mid	peak	maxhold	-	-	-	-13	>20
eFDD 2 QPSK NBIoT	high	peak	maxhold	2	1910	-16.54	-13	3.54



4.7 Frequency Stability

<u>LIMIT</u>

According to §24.235, §2.1055 requirement, the frequency stability shall be sufficient to ensure that the fundamental emissions stay within the authorized bands of operation and should not exceed 2.5ppm.

TEST CONFIGURATION

TEST PROCEDURE

The EUT was setup according to EIA/TIA 603D

Frequency Stability Under Temperature Variations:

In order to measure the carrier frequency under the condition of AFC lock, it is necessary to make measurements with the EUT in a "call mode". This is accomplished with the use of R&S CMW500 DIGITAL RADIO COMMUNICATION TESTER.

1. Measure the carrier frequency at room temperature.

2. Subject the EUT to overnight soak at -30℃.

3. With the EUT, powered via nominal voltage, connected to the CMW500 and in a simulated call on middle channel for NB-IoT eFDD 2, measure the carrier frequency. These measurements should be made within 2 minutes of Powering up the EUT, to prevent significant self-warming.

4. Repeat the above measurements at 10° C increments from -30° C to $+50^{\circ}$ C. Allow at least 1.5 hours at each temperature, unpowered, before making measurements.

5. Re-measure carrier frequency at room temperature with nominal voltage. Vary supply voltage from minimum voltage to maximum voltage, in 0.1Volt increments re-measuring carrier frequency at each voltage. Pause at nominal voltage for 1.5 hours unpowered, to allow any self-heating to stabilize, before continuing. 6. Subject the EUT to overnight soak at +50 °C.

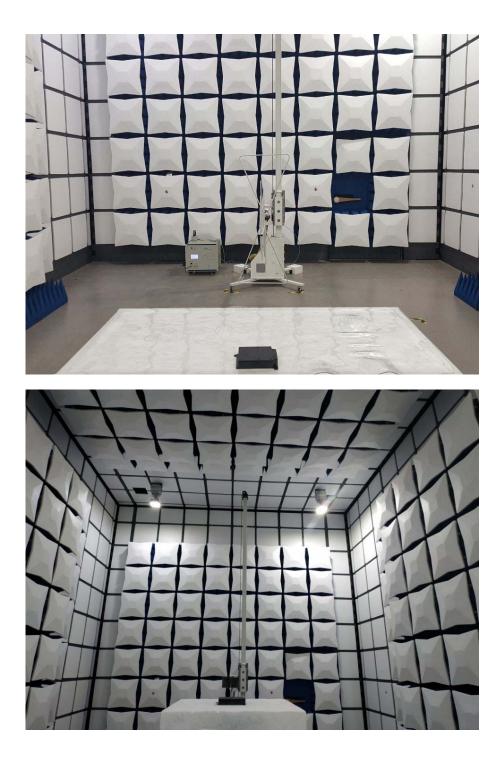
7. With the EUT, powered via nominal voltage, connected to the CMW500 and in a simulated call on the centre channel, measure the carrier frequency. These measurements should be made within 2 minutes of Powering up the EUT, to prevent significant self-warming.

8. Repeat the above measurements at 10 $^{\circ}$ C increments from +50 $^{\circ}$ C to -30 $^{\circ}$ C. Allow at least 1.5 hours at each temperature, unpowered, before making measurements

9. At all temperature levels hold the temperature to +/- 0.5° during the measurement procedure.

Frequency Stability Under Voltage Variations:

Set chamber temperature to 20° C. Use a variable AC power supply / DC power source to power the EUT and set the voltage to rated voltage. Set the spectrum analyzer RBW low enough to obtain the desired frequency resolution and recorded the frequency.


Reduce the input voltage to specify extreme voltage variation (±15%) and endpoint, record the maximum frequency change.

TEST RESULTS

<u>compliance *</u>

5 Test Setup Photos of the EUT

