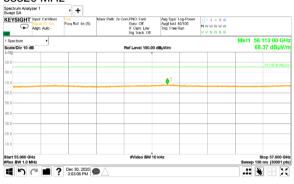

Test specification:	FCC Section 15.255(d)(3), RSS-210 section J.3, Out of band radiated emissions above 40 GHz			
Test procedure:	ANSI C63.10, Sections 9.9, 9.12			
Test mode:	Compliance	Verdict:	PASS	
Date(s):	18-Jan-21	verdict: PASS		
Temperature: 20 °C	Relative Humidity: 68 %	Air Pressure: 1015 hPa	Power: 48 VDC	
Remarks:				

Plot 7.4.3 Spurious emission measurements in 55 - 57 GHz range

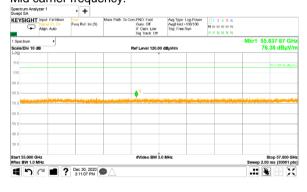
ANTENNA POLARIZATION:

DETECTOR: Peak RBW = 1 MHz; VBW = 3 MHz

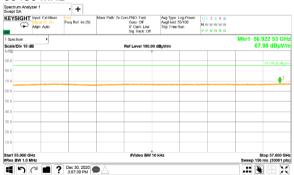
Low carrier frequency:

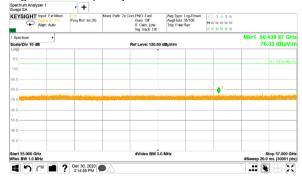


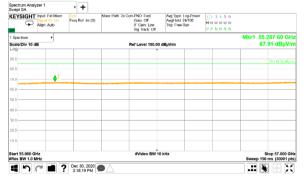
OATS 3 m QPSK


Vertical and Horizontal

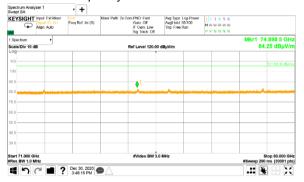
DETECTOR: Peak RBW = 1 MHz; VBW = 10 kHz


58320 MHz


Mid carrier frequency:

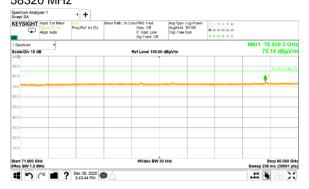


High carrier frequency:

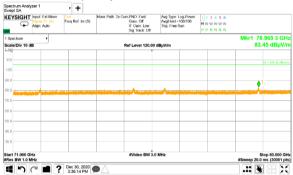

Test specification:	FCC Section 15.255(d)(3), RSS-210 section J.3, Out of band radiated emissions above 40 GHz			
Test procedure:	ANSI C63.10, Sections 9.9, 9.12			
Test mode:	Compliance	Verdict:	PASS	
Date(s):	18-Jan-21	Verdict: PASS		
Temperature: 20 °C	Relative Humidity: 68 %	Air Pressure: 1015 hPa	Power: 48 VDC	
Remarks:				

Plot 7.4.4 Spurious emission measurements in 71 - 80 GHz range

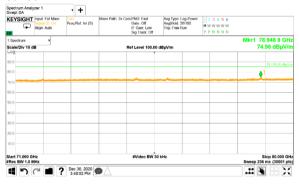
ANTENNA POLARIZATION:

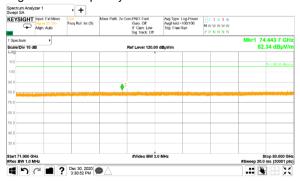

DETECTOR: Peak RBW = 1 MHz; VBW = 3 MHz

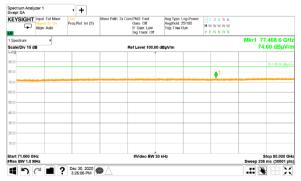
Low carrier frequency:



OATS 3 m QPSK Vertical

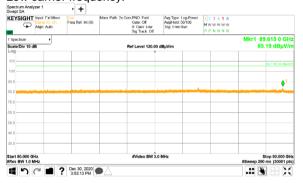

DETECTOR: Peak RBW = 1 MHz; VBW = 30 kHz 58320 MHz


Mid carrier frequency:



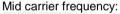
60480 MHz

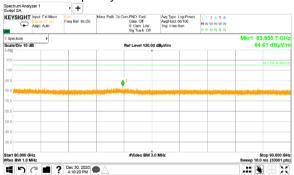
High carrier frequency:

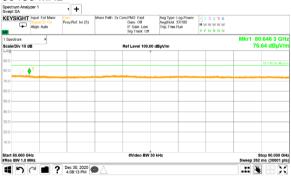


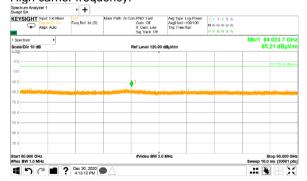
Test specification:	FCC Section 15.255(d)(3), RSS-210 section J.3, Out of band radiated emissions above 40 GHz			
Test procedure:	ANSI C63.10, Sections 9.9, 9.1	2		
Test mode:	Compliance	Verdict:	PASS	
Date(s):	18-Jan-21	verdict: PASS		
Temperature: 20 °C	Relative Humidity: 68 %	Air Pressure: 1015 hPa	Power: 48 VDC	
Remarks:				

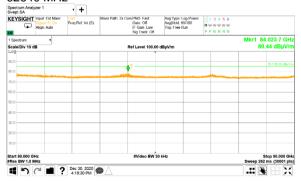
Plot 7.4.5 Spurious emission measurements in 80 - 90 GHz range


ANTENNA POLARIZATION:


DETECTOR: Peak Low carrier frequency:

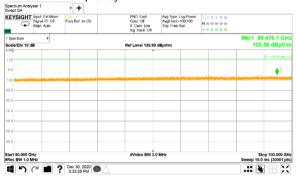

OATS
3 m
QPSK
Vertical and Horizontal
RBW = 1 MHz; VBW = 3 MHz



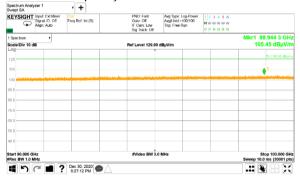


60480 MHz

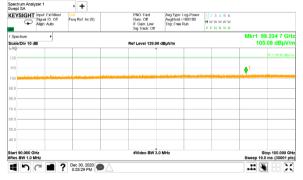
High carrier frequency:


Test specification:	FCC Section 15.255(d)(3), RSS-210 section J.3, Out of band radiated emissions above 40 GHz			
Test procedure:	ANSI C63.10, Sections 9.9, 9.12	2		
Test mode:	Compliance	Verdict:	PASS	
Date(s):	18-Jan-21	verdict: PASS		
Temperature: 20 °C	Relative Humidity: 68 %	Air Pressure: 1015 hPa	Power: 48 VDC	
Remarks:				

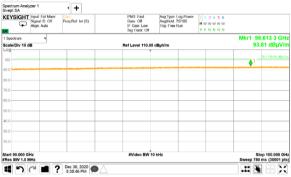
Plot 7.4.6 Spurious emission measurements in 90 - 100 GHz range


ANTENNA POLARIZATION:

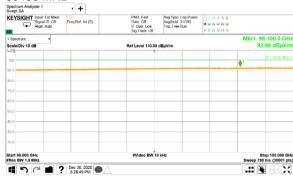
DETECTOR: Peak RBW = 1 MHz; VBW = 3 MHz

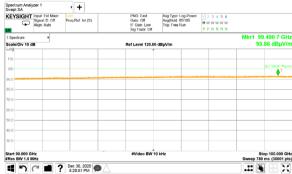

Low carrier frequency:

Mid carrier frequency:



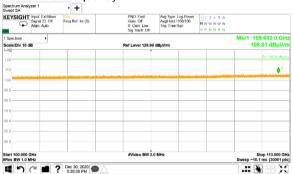
OATS 0.5 m **QPSK**


Vertical and Horizontal

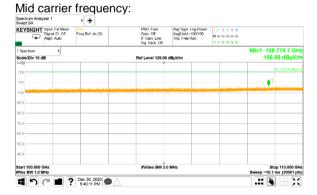

DETECTOR: Peak RBW = 1 MHz; VBW = 10 kHz

58320 MHz

60480 MHz


Test specification:	FCC Section 15.255(d)(3), RSS-210 section J.3, Out of band radiated emissions above 40 GHz			
Test procedure:	ANSI C63.10, Sections 9.9, 9.12			
Test mode:	Compliance	Verdict:	PASS	
Date(s):	18-Jan-21	verdict: PASS		
Temperature: 20 °C	Relative Humidity: 68 %	Air Pressure: 1015 hPa	Power: 48 VDC	
Remarks:				

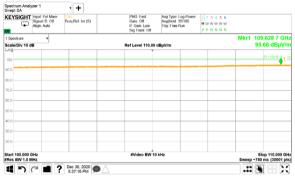
Plot 7.4.7 Spurious emission measurements in 100 - 110 GHz range


ANTENNA POLARIZATION:

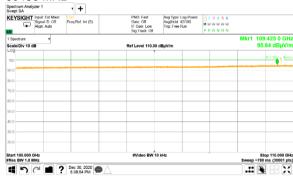
DETECTOR: Peak RBW = 1 MHz; VBW = 3 MHz

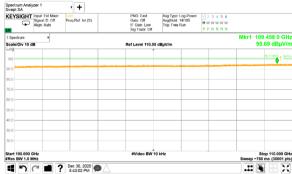
Low carrier frequency:

High carrier frequency:


	Input: Ext Mixer Signal ID: Off Align: Auto	Corr Freq Ref. Int (S)	PND: Fast Gale: Off IF Gain: Low Sig Track: Off	Avg Type: Log-Power Avg[Hold.>100/100 Trig: Free Run	1 2 3 4 5 6 MWWWWW PPNNNN		
1 Spectrum	•						08.898 0 GH
cale/Div 10 di .og	В		Ref Level 129.99	авил/ш		11	06.53 dBµV/r
120							DL1 120.00 dByW
110							A1
er-shake		And the land of the land		between dat minutes	and the state of the		. I de la companya de
100	***						
0.0							
10.0	_					-	
70.D							
10.0							
50.0							
40.D							
tart 100.000 G			#Video BW 3.0	MHz		Sweep ~1	Stop 110.000 GF 0.1 ms (30001 pt
# 5	ା 🔳 ?	Dec 30, 2020 5:41:42 PM				1.11	¥ # >:

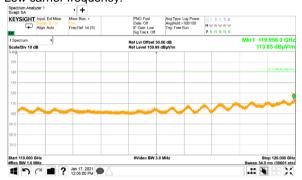
OATS 0.5 m **QPSK**


Vertical and Horizontal


DETECTOR: Peak RBW = 1 MHz; VBW = 10 kHz

58320 MHz

60480 MHz


Test specification:	FCC Section 15.255(d)(3), RSS-210 section J.3, Out of band radiated emissions above 40 GHz			
Test procedure:	ANSI C63.10, Sections 9.9, 9.12			
Test mode:	Compliance	Verdict:	PASS	
Date(s):	18-Jan-21	verdict: PASS		
Temperature: 20 °C	Relative Humidity: 68 %	Air Pressure: 1015 hPa	Power: 48 VDC	
Remarks:				

Plot 7.4.8 Spurious emission measurements in 110 - 120 GHz range

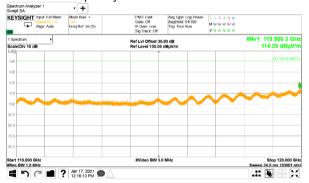
ANTENNA POLARIZATION:

DETECTOR: Peak RBW = 1 MHz; VBW = 3 MHz

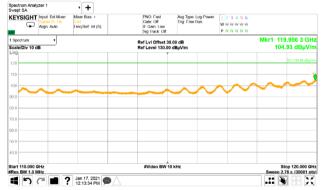
Low carrier frequency:

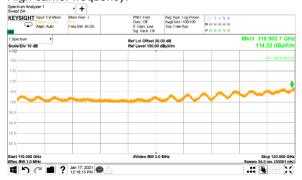


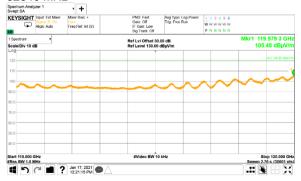
OATS 0.05 m QPSK


Vertical and Horizontal

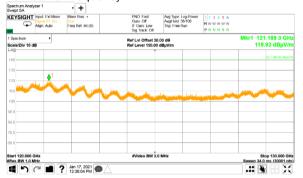
DETECTOR: Peak RBW = 1 MHz; VBW = 10 kHz


58320 MHz


Mid carrier frequency:

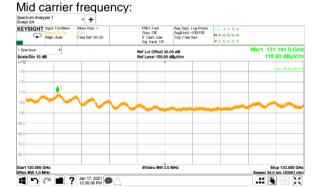


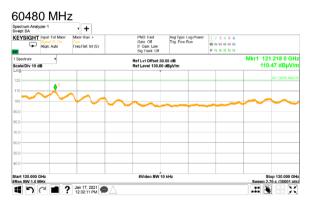
High carrier frequency:

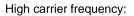

Test specification:	FCC Section 15.255(d)(3), RSS-210 section J.3, Out of band radiated emissions above 40 GHz			
Test procedure:	ANSI C63.10, Sections 9.9, 9.12			
Test mode:	Compliance	Verdict:	PASS	
Date(s):	18-Jan-21	verdict: PASS		
Temperature: 20 °C	Relative Humidity: 68 %	Air Pressure: 1015 hPa	Power: 48 VDC	
Remarks:				

Plot 7.4.9 Spurious emission measurements in 120 - 130 GHz range

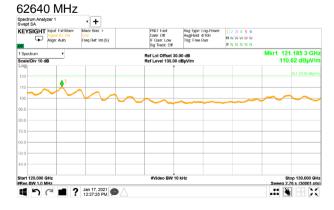
ANTENNA POLARIZATION:

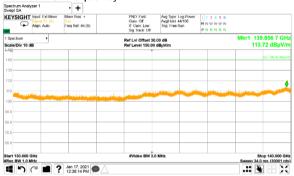

DETECTOR: Peak RBW = 1 MHz; VBW = 3 MHz


Low carrier frequency:



OATS
0.05 m
QPSK
Vertical and Horizontal
DETECTOR: Peak RBW = 1 MHz; VBW = 10 kHz



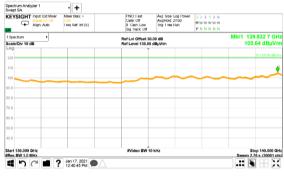

Test specification:	FCC Section 15.255(d)(3), RSS-210 section J.3, Out of band radiated emissions above 40 GHz			
Test procedure:	ANSI C63.10, Sections 9.9, 9.12			
Test mode:	Compliance	Verdict:	PASS	
Date(s):	18-Jan-21	verdict: PASS		
Temperature: 20 °C	Relative Humidity: 68 %	Air Pressure: 1015 hPa	Power: 48 VDC	
Remarks:				

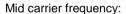
Plot 7.4.10 Spurious emission measurements in 130 - 140 GHz range

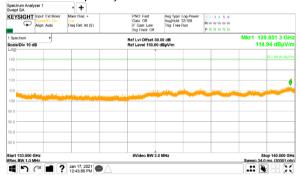
ANTENNA POLARIZATION:

DETECTOR: Peak RBW = 1 MHz; VBW = 3 MHz

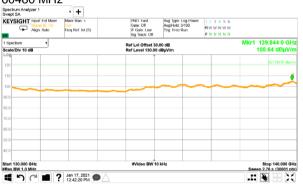
Low carrier frequency:

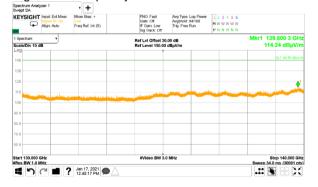


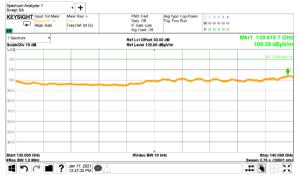

OATS 0.05 m QPSK


Vertical and Horizontal

DETECTOR: Peak RBW = 1 MHz; VBW = 10 kHz

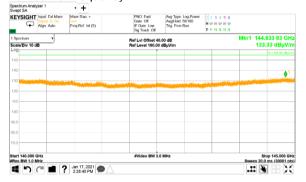

58320 MHz

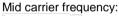


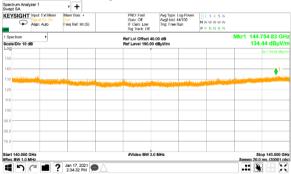


High carrier frequency:

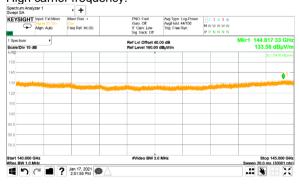
62640 MHz


Test specification:	FCC Section 15.255(d)(3), RSS-210 section J.3, Out of band radiated emissions above 40 GHz			
Test procedure:	ANSI C63.10, Sections 9.9, 9.12			
Test mode:	Compliance	Verdict:	PASS	
Date(s):	18-Jan-21	verdict: PASS		
Temperature: 20 °C	Relative Humidity: 68 %	Air Pressure: 1015 hPa	Power: 48 VDC	
Remarks:				

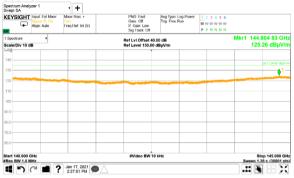

Plot 7.4.11 Spurious emission measurements in 140 - 145 GHz range


ANTENNA POLARIZATION:

DETECTOR: Peak RBW = 1 MHz; VBW = 3 MHz


Low carrier frequency:

High carrier frequency:



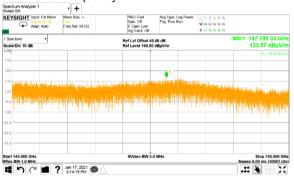
OATS 0.01 m **QPSK**

Vertical and Horizontal

DETECTOR: Peak RBW = 1 MHz; VBW = 10 kHz

58320 MHz

60480 MHz

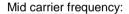

Test specification:	FCC Section 15.255(d)(3), RSS-210 section J.3, Out of band radiated emissions above 40 GHz			
Test procedure:	ANSI C63.10, Sections 9.9, 9.12			
Test mode:	Compliance	Verdict:	PASS	
Date(s):	18-Jan-21	Verdict: PASS		
Temperature: 20 °C	Relative Humidity: 68 %	Air Pressure: 1015 hPa	Power: 48 VDC	
Remarks:				

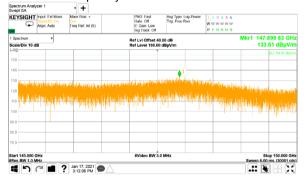
Plot 7.4.12 Spurious emission measurements in 145 - 150 GHz range

ANTENNA POLARIZATION:

DETECTOR: Peak RBW = 1 MHz; VBW = 3 MHz

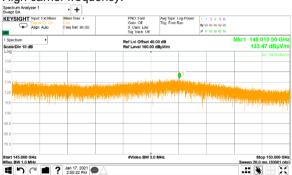
Low carrier frequency:




OATS 0.01 m **QPSK**

Vertical and Horizontal

DETECTOR: Peak RBW = 1 MHz; VBW = 10 kHz 58320 MHz



High carrier frequency:

