Shenzhen Huatongwei International Inspection Co.,Ltd. Huatongwei Building, keji'nan 12th Road, High-Tech Industrial Park, Nanshan District, Shenzhen, Guangdong, China.

Phone:86-755-26715499 E-mail: cs@szhtw.com.cn Website:http://www.szhtw.com.cn

TEST REPORT

Report Reference No....: CHTEW22060050 Report Verification:

Project No..... SHT2204047901EW

FCC ID.....: 2A3OORM20

Applicant's name....: Shenzhen Ysair Technology Co., LTD

6/F, building 6, Yunli intelligent park, No. 3, Changfa Middle Road, Yangmei community, Bantian street, Longgang District, Address:

Shenzhen, Guangdong, China

VHF Marine Radio Test item description:

Trade Mark: **RETEVIS**

Model/Type reference: RM20

Listed Model(s)....:

Standard....: **IEC 62238**

Apr.27, 2022 Date of receipt of test sample.....

Apr.28, 2022-Jun.06, 2022 Date of testing.....

Date of issue....: Jun.07, 2022

Result: **PASS**

Compiled by

(position+printed name+signature) .: File administrators Fanghui Zhu

Supervised by

(position+printed name+signature) .: Project Engineer Cheng Xiao fanghwi Zhu Chengxiao Homs Hu

Approved by

(position+printedname+signature) ...: RF Manager Hans Hu

Shenzhen Huatongwei International Inspection Co., Ltd Testing Laboratory Name.....

Address: 1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road,

Tianliao, Gongming, Shenzhen, China

Shenzhen Huatongwei International Inspection Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen Huatongwei International Inspection Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen Huatongwei International Inspection Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

The test report merely correspond to the test sample.

Report No : CHTEW22060050 Page 2 of 53 Issued: 2022-06-07

Contents

<u>1.</u>	TEST ST	TANDARDS AND REPORT VERSION	4_			
1.1.	Test Stan	dards	4			
1.2.		ersion information	4			
1.2.	report ve		7			
_			_			
<u>2.</u>	TEST DI	ESCRIPTION	5			
<u>3.</u>	SUMMA	RY	7			
3.1.	Client Info	ormation	7			
3.2.		Description	7			
3.3.	Test frequ		8			
3.4.		ation mode	8			
3.5.		EUT configuration				
<u>4 .</u>	TEST E	ENVIRONMENT	9			
	<u> </u>	THE TRUE TO THE TENT OF THE TE	<u> </u>			
			_			
4.1.		of the test laboratory	9			
4.2.	Test Facil		9			
4.3.		nental conditions	10			
4.4.		t of the measurement uncertainty	11			
4.5.	Equipmer	nts Used during the Test	12			
<u>5.</u>	TEST C	CONDITIONS AND RESULTS	13			
5.1.	Environm	nental Requirement	13			
•	5.1.1.	Vibration test	13			
	5.1.2.	Dry heat	14			
	5.1.3.	Damp heat	15			
	5.1.4.	Low temperature	16			
5.2.	Transmitt	ter Requirement	17			
	5.2.1.	Frequency error	17			
	5.2.2.	Carrier Power (Conducted)	18			
	5.2.3.	Frequency Deviation	19			
	5.2.4.	Sensitivity of the modulator, including microphone	21			
	5.2.5.	Audio frequency response	22			
	5.2.6.	Audio frequency harmonic distortion of the emission	23			
	5.2.7.	Adjacent Channel Power	24			
	5.2.8.	Conducted spurious emissions conveyed to the antenna	25			
	5.2.9.	Transient frequency behaviour of the transmitter	26			
	5.2.10.	Residual modulation of the transmitter	27			
	5.2.11.	Frequency error (demodulated DSC signal)	28			
	5.2.12.	Modulation index for DSC	29			
	5.2.13.	Modulation rate for DSC	30			
	5.2.14.	Testing of generated call sequences	31			
5.3.		for Radiotelephone Requirement	32			
	5.3.1.	Harmonic distortion and rated audio frequency output power	32			
	5.3.2.	Audio frequency response	33			
	5.3.3.	Maximum Usable Sensitivity	34			
	5.3.4.	Co-channel rejection	35			
	5.3.5.	Adjacent channel selectivity	36			
	5.3.6.	Spurious Response Rejection	37			
	5.3.7.	Intermodulation response	38			
	5.3.8.	Blocking or Desensitization	39			
	5.3.9.	Conducted spurious emissions	40			
	5.3.10.	Receiver noise and hum level	41			

	5.3.11.	Squelch operation	42
	5.3.12.	Squelch hysteresis	43
	5.3.13.	Multiple watch characteristic	44
5.4.	Receiver	for DSC decoder Requirement	45
	5.4.1.	Maximum usable sensitivity	45
	5.4.2.	Co-channel rejection	46
	5.4.3.	Adjacent channel selectivity	47
	5.4.4.	Spurious response and blocking immunity	48
	5.4.5.	Intermodulation response	49
	5.4.6.	Dynamic range	50
	5.4.7.	Spurious emissions	51
	5.4.8.	Verification of correct decoding of various types of DSC calls	52
	5.4.9.	Reaction to VTS and AIS channel management DSC transmissions	52
	5.4.10.	Simultaneous reception	53
<u>6.</u>	EXTER	NAL AND INTERNAL PHOTOS OF THE EUT	53

Page 3 of 53

Issued: 2022-06-07

Report No : CHTEW22060050

Report No : CHTEW22060050 Page 4 of 53 Issued: 2022-06-07

1. TEST STANDARDS AND REPORT VERSION

1.1. Test Standards

The tests were performed according to following standards:

<u>IEC 62238:2003</u>-Maritime navigation and radiocommunication equipment and systems –VHF radiotelephone equipment incorporating Class "D" Digital Selective Calling (DSC) – Methods of testing and required test results

1.2. Report version information

Revision No.	Date of issue	Description
N/A	2022-06-07	Original

Report No : CHTEW22060050 Page 5 of 53 Issued: 2022-06-07

2. Test Description

	Environmental	Requirement		
Test item		Standards requirement (IEC62238)	Result	Test Engineer
Vibrati	on test	Sub-clause 7.4	Pass	Caspar Chen
	Dry heat	Sub-clause 7.5	Pass	Caspar Chen
Temperature tests	Damp heat	Sub-clause 7.5	Pass	Caspar Chen
	Low temperature	Sub-clause 7.5	Pass	Caspar Chen
	Transmitter R	equirement		
Test	item	Standards requirement (IEC62238)	Result	Test Engineer
Frequer	cy error	Sub-clause 8.1	Pass	Caspar Chen
Carrier	power	Sub-clause 8.2	Pass	Caspar Chen
Frequency	deviation	Sub-clause 8.3	Pass	Caspar Chen
Sensitivity of the modulat	or, including microphone	Sub-clause 8.4	Pass	Caspar Chen
Audio freque	ncy response	Sub-clause 8.5	Pass	Caspar Chen
Audio frequency harmonic	distortion of the emission	Sub-clause 8.6	Pass	Caspar Chen
Adjacent cha	annel power	Sub-clause 8.7	Pass	Caspar Chen
Conducted spurious em ante	•	Sub-clause 8.8	Pass	Caspar Chen
Transient frequency beh	aviour of the transmitter	Sub-clause 8.9	Pass	Caspar Chen
Residual modulation of the transmitter		Sub-clause 8.10	Pass	Caspar Chen
Frequency error (DSC signal)		Sub-clause 8.11	Pass	Caspar Chen
Modulation index for DSC		Sub-clause 8.12	Pass	Caspar Chen
Modulation i	ate for DSC	Sub-clause 8.13	Pass	Caspar Chen
Testing of generated call sequences		Sub-clause 8.14	Pass	Caspar Chen
	phone Requirement			
Test	item	Standards requirement (IEC62238)	Result	Test Engineer
Harmonic distortion and ra	ted audio frequency output wer	Sub-clause 9.1	Pass	Caspar Chen
Audio freque	ncy response	Sub-clause 9.2	Pass	Caspar Chen
Maximum usa	ble sensitivity	Sub-clause 9.3	Pass	Caspar Chen
Co-channe	el rejection	Sub-clause 9.4	Pass	Caspar Chen
Adjacent char	nel selectivity	Sub-clause 9.5	Pass	Caspar Chen
Spurious response rejection		Sub-clause 9.6	Pass	Caspar Chen
Intermodulation response		Sub-clause 9.7	Pass	Caspar Chen
Blocking or de	Blocking or desensitization		Pass	Caspar Chen
Spurious	emissions	Sub-clause 9.9	Pass	Caspar Chen
Receiver resid	ual noise level	Sub-clause 9.10	Pass	Caspar Chen
Squelch	operation	Sub-clause 9.11	Pass	Caspar Chen
Squelch h	nysteresis	Sub-clause 9.12	Pass	Caspar Chen
Multiple watch	characteristic	Sub-clause 9.13	Pass	Caspar Chen

Report No : CHTEW22060050 Page 6 of 53 Issued: 2022-06-07

Receiver for DSC decoder Requirement				
Test item	Standards requirement (IEC62238)	Result	Test Engineer	
Maximum usable sensitivity	Sub-clause 10.1	Pass	Caspar Chen	
Co-channel rejection	Sub-clause 10.2	Pass	Caspar Chen	
Adjacent channel selectivity	Sub-clause 10.3	Pass	Caspar Chen	
Spurious response and blocking immunity	Sub-clause 10.4	Pass	Caspar Chen	
Intermodulation response	Sub-clause 10.5	Pass	Caspar Chen	
Dynamic range	Sub-clause 10.6	Pass	Caspar Chen	
Spurious emissions	Sub-clause 10.7	Pass	Caspar Chen	
Verification of correct decoding of various types of DSC calls	Sub-clause 10.8	Pass	Caspar Chen	
Reaction to VTS and AIS channel management DSC transmissions	Sub-clause 10.9	Pass	Caspar Chen	
Simultaneous reception	Sub-clause 10.10	Pass	Caspar Chen	

Report No : CHTEW22060050 Page 7 of 53 Issued: 2022-06-07

3. SUMMARY

3.1. Client Information

Applicant:	Shenzhen Ysair Technology Co., LTD
Address:	6/F, building 6, Yunli intelligent park, No. 3, Changfa Middle Road, Yangmei community, Bantian street, Longgang District, Shenzhen, Guangdong, China
Manufacturer:	Shenzhen Ysair Technology Co., LTD
Address:	6/F, building 6, Yunli intelligent park, No. 3, Changfa Middle Road, Yangmei community, Bantian street, Longgang District, Shenzhen, Guangdong, China

3.2. Product Description

Main unit		
Name of EUT:	VHF Marine Radio	
Trade Mark:	RETEVIS	
Model/Type reference:	RM20	
Listed Model(s)	-	
Power supply:	DC13.8V	
Hardware version:	M-200BM-J150618	
Software version:	V6PD7-2008-BME	

RF Specification			
156.025~162.025MH	z		
☐ High Power: 25W			
Analog:	FM		
Digital Data(DSC):	AFSK		
Analog:	⊠ 25kHz		
Digital Data(DSC):	⊠ 25kHz		
Analog:	16K0F3E		
Digital Data(DSC):	16K0G2B		
detachable			
	Analog: Digital Data(DSC): Analog: Digital Data(DSC): Analog: Digital Data(DSC):		

Note:

- (1) *1 According to FCC Part 2.202 requirements, the Necessary Bandwidth is calculated as follows:
 - For FM Voice Modulation

Channel Spacing = 25 KHz, D = 5KHz max, K = 1, M = 3KHz

Bn = 2M + 2DK = 2*3 + 2*5*1 =**16 KHz**

Emission designation: 16K0F3E

- Digital Data(DSC)

Channel Spacing = 25 KHz, D = 5KHz max, K = 1, M = 3KHz

Bn = 2M + 2DK = 2*3 + 2*5*1 =**16 KHz**

Emission designation: 16K0G2B

Report No : CHTEW22060050 Page 8 of 53 Issued: 2022-06-07

3.3. Test frequency list

Madulation Type	Channel Separation	Test Channel	Test Frequency (MHz)		
Modulation Type			TX	RX	
	25kHz	CH _L (CH60)	156.025	160.625	
Analog Voice		CH _M (CH16)	156.800	156.800	
		CH _H (CH88)	157.425	162.025	
Digital Data(DSC)	25kHz	CH _{M1} (CH70)	156.525	156.525	

3.4. EUT operation mode

Toot mode	Transmitting	Receiving	Power level		Test channel	
Test mode			High	Low	CH16	CH70
TX-AWH	√		√		√	
TX-AWL	√			√	√	
TX-DSC	√		√			√
RX-AW		√			√	
RX-DSC		√				√

 $[\]checkmark$: is operation mode.

3.5. EUT configuration

The following peripheral devices and interface cables were connected during the measurement:

- supplied by the manufacturer
- \circ supplied by the lab

0	Power Cable	Length (m):	/
		Shield:	Unshielded
		Detachable :	Undetachable
0	Multimeter	Manufacturer:	/
		Model No.:	/

Report No : CHTEW22060050 Page 9 of 53 Issued: 2022-06-07

4. TEST ENVIRONMENT

4.1. Address of the test laboratory

Laboratory: Shenzhen Huatongwei International Inspection Co., Ltd.

Address: 1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road, Tianliao, Gongming, Shenzhen, China

Phone: 86-755-26748019 Fax: 86-755-26748089

4.2. Test Facility

Laboratory Name	Shenzhen Huatongwei International Inspection Co., Ltd.		
Laboratory Location	1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road, Tianliao, Gongming, Shenzhen, China		
Connect information:	Tel: 86-755-26715499 E-mail: cs@szhtw.com.cn http://www.szhtw.com.cn		
Qualifications	Туре	Accreditation Number	
Qualifications	FCC	762235	

Report No : CHTEW22060050 Page 10 of 53 Issued: 2022-06-07

4.3. Environmental conditions

	Temperature	15 °C to 35 °C					
Name	Relative humidity	20 % to 75 %.					
Normal Conditon		☐Mains voltage	Nominal mains voltage				
Condition	Voltage	Lead-acid battery	1.1 * the nominal voltage of the battery				
		⊠Other	the normal test voltage shall be that declared by the equipment provider				
			quipment intended for mounting below deck				
	Temperature						
		-10 °C to +55 °C for Base stations for indoor/controlled climate conditions					
Extreme	Voltage	☐Mains voltage	\pm 10 %* the nominal mains voltage				
Conditon		Secondary battery power sources	1,3 and 0,9 multiplied by the nominal voltage of the battery				
		⊠Other	For equipment using other power sources, the extreme test voltages shall be as stated by the manufacturer.				
Normal Cor	aditon	V _N =nominal Voltage	DC 13.8V				
Nomai Coi	iditori	T _N =normal Temperature	25 °C				
		V _L =lower Voltage	DC 11.22V				
Extreme Co	anditan	T _L =lower Temperature	-20 °C				
Extreme Co	JIIGIGII	V _H =higher Voltage	DC 15.18V				
		T _H =higher Temperature	55 °C				

Report No : CHTEW22060050 Page 11 of 53 Issued: 2022-06-07

4.4. Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods — Part 4: Uncertainty in EMC Measurements" and is documented in the Shenzhen Huatongwei International Inspection Co., Ltd quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for Shenzhen Huatongwei laboratory is reported:

Test Items	Measurement Uncertainty	Notes
Frequency stability & Occupied Bandwidth	15Hz for <1GHz 70Hz for >1GHz	(1)
Conducted Output Power	0.51dB	(1)
ERP / EIRP / RSE	2.66dB for <1GHz 3.44dB for >1GHz	(1)
Conducted Emission 9KHz-30MHz	3.02dB	(1)
Radiated Emission 30~1000MHz	4.90dB	(1)
Radiated Emission 1~18GHz	4.96dB	(1)
FM deviation	25 Hz	(1)
Audio level	0.62 dB	(1)
Low Pass Filter Response	0.76 dB	(1)
Modulation Limiting	0.42 %	(1)
Transient Frequency Behavior	6.8 %	(1)

⁽¹⁾ This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

Report No : CHTEW22060050 Page 12 of 53 Issued: 2022-06-07

4.5. Equipments Used during the Test

•	TS8613 Test s	ystem					
Used	Test Equipment	Manufacturer	Equipment No.	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)
•	Spectrum Analyzer	Agilent	HTWE0286	N9020A	MY50510187	2021/09/13	2022/09/12
•	Signal & Spectrum Analyzer	R&S	HTWE0262	FSW26	103440	2021/09/13	2022/09/12
0	RF Communication Test Set	HP	HTWE0038	8920A	3813A10206	2021/09/13	2022/09/12
•	Digital intercom communication tester	Aeroflex	HTWE0255	3920B	1001682041	2021/09/13	2022/09/12
•	Signal Generator	R&S	HTWE0191	SML02	100507	2021/09/13	2022/09/12
•	Signal Generator	R&S	HTWE0337	SMC100A	107268	2021/09/13	2022/09/12
•	RF Control Unit	Tonscend	HTWE0294	JS0806-2	N/A	N/A	N/A
•	Filter-VHF	Microwave	HTWE0309	N26460M1	498702	N/A	N/A
0	Filter-UHF	Microwave	HTWE0311	N25155M2	498704	N/A	N/A
•	Power Divider	Microwave	HTWE0043	OPD1040-N-4	N/A	2022/05/16	2023/05/15
•	Attenuator	JFW	HTWE0292	50FH-030-100	N/A	2022/05/16	2023/05/15
•	Attenuator	JFW	HTWE0293	50-A-MFN-20	0322	2022/05/16	2023/05/15
•	Test software	HTW	N/A	Radio ATE	N/A	N/A	N/A

•	Auxiliary Equipment										
Used	Test Equipment	Manufacturer	Equipment No.	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)				
•	Climate chamber	ESPEC	HTWE0254	GPL-2	N/A	2021/09/14	2022/09/13				
•	DC Power Supply	Gwinstek	HTWE0274	SPS-2415	GER835793	N/A	N/A				

Report No: CHTEW22060050 Page 13 of 53 Issued: 2022-06-07

5. TEST CONDITIONS AND RESULTS

5.1. Environmental Requirement

5.1.1. Vibration test

TEST RESULTS:

Complies

Please refer to the below test data:

Frequency Error:

Operation Mode	Test	conditions		Frequency Error(kHz)	Limit	
	Temperature (°C)	Voltage (V)	Vibration Frequency (Hz)	CH _M	Limit (KHz)	Result
TX-AWH	T _N	V_N	2.5~100	0.014	±1.5	Pass

Carrier power:

Operation Mode	Temperature (°C)	Voltage (V)	Vibration Frequency (Hz)	Test Channel	Measured power (dBm)	Limit (dB)	Result
TX-AWH	T_N	V_N	2.5~100	CH _M	43.95	42.47~45.47	Pass

Maximum usable sensitivity:

Operation Mode	Temperature (°C)	Voltage (V)	Vibration Frequency (Hz)	Test Channel	Measured SINAD (dB)	Limit (dB)	Result
				CH∟	30.24		
RX-AW	T_N	V_N	2.5~100	CH _M	31.54	≥20	Pass
				CH _H	30.21		

Operation Mode	Temperature (°C)	Voltage (V)	Vibration Frequency (Hz)	Test Channel	Measured (error ratio)	Limit (error ratio)	Result
RX-DSC	T_N	V_N	2.5~100	CH _{M1}	0.007	≤10 ⁻²	Pass

Report No : CHTEW22060050 Page 14 of 53 Issued: 2022-06-07

5.1.2. Dry heat

TEST RESULTS:

Complies

Please refer to the below test data:

Frequency Error:

Operation	Test condition	ıs	Frequency Error(kHz)	Limit	
Operation Mode	Temperature(℃)	Voltage (V)	CH _M	Limit (kHz)	Result
TX-AWH	55	V_N	0.128	±1.5	Pass

Carrier power:

Operation Mode	Temperature (°C)	Voltage (V)	Test Channel	Measured power (dBm)	Limit (dB)	Result
TX-AWH	55	V_N	CH _M	43.93	42.47~45.47	Pass

Maximum usable sensitivity:

Operation Mode	Temperature (°C)	Voltage (V)	Test Channel	Measured SINAD (dB)	Limit (dB)	Result
			CH _L	31.84		
RX-AW	55	V_N	CH _M	31.17	≥20	Pass
			CH _H	30.96		

Operation Mode	Temperature $(^{\mathbb{C}}$)	Voltage (V)	Test Channel	Measured (error ratio)	Limit (error ratio)	Result
RX-DSC	55	V_N	CH _{M1}	0.004	≤10 ⁻²	Pass

Report No : CHTEW22060050 Page 15 of 53 Issued: 2022-06-07

5.1.3. Damp heat

TEST RESULTS:

Complies

Please refer to the below test data:

Frequency Error:

Operation	Tes	t conditions	Frequency Error(kHz) Limit		Result	
Mode	Temperature(℃)	Humidity(%)	Voltage (V)	CH _M	(kHz)	Nesult
TX-AWH	40	93	V _N	0.141	±1.5	Pass

Carrier power:

Operation Mode	Temperature(°C)	Humidity(%)	Voltage (V)	Test Channel	Measured power (dBm)	Limit (dB)	Result
TX-AWH	40	93	V_N	CH _M	44.26	42.47~45.47	Pass

Maximum usable sensitivity:

Operation Mode	Humidity(%)	Voltage (V)	Voltage (V)	Test Channel	Measured SINAD (dB)	Limit (dB)	Result
				CH∟	31.27		
RX-AW	40	93	V_N	CH _M	30.69	≥20	Pass
				CH _H	31.21		

Operation Mode	Temperature(°C)	Humidity(%)	Voltage (V)	Test Channel	Measured (error ratio)	Limit (error ratio)	Result
RX-DSC	40	93	V_N	CH _{M1}	0.004	≤10 ⁻²	Pass

Report No : CHTEW22060050 Page 16 of 53 Issued: 2022-06-07

5.1.4. Low temperature

TEST RESULTS:

Complies

Please refer to the below test data:

Frequency Error:

Operation	Test condition	IS	Frequency Error(kHz)	Limit	
Operation Mode	Temperature(℃)	Voltage (V)	CH _M	Limit (kHz)	Result
TX-AWH	-15	V_N	0.169	±1.5	Pass

Carrier power:

Operation Mode	Temperature $(^{\mathbb{C}}$)	Voltage (V)	Test Channel	Measured power (dBm)	Limit (dB)	Result
TX-AWH	-15	V_N	CH _M	44.27	42.47~45.47	Pass

Maximum usable sensitivity:

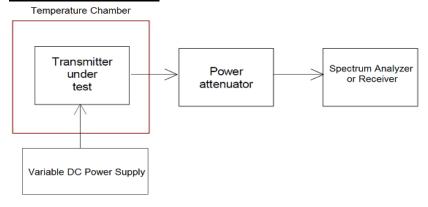
Operation Mode	Temperature (°C)	Voltage (V)	Test Channel	Measured SINAD (dB)	Limit (dB)	Result
			CH _L	31.24		
RX-AW	-15	V_N	CH _M	33.25	≥20	Pass
			CH _H	32.48		

Operation Mode	Temperature (°C)	Voltage (V)	Test Channel	Measured (error ratio)	Limit (error ratio)
RX-DSC	-15	V_N	CH _{M1}	0.009	≤10 ⁻²

Report No: CHTEW22060050 Page 17 of 53 Issued: 2022-06-07

5.2. Transmitter Requirement

5.2.1. Frequency error


The frequency error is the difference between the measured carrier frequency and its nominal value.

LIMIT

IEC 62238 Sub-clause 8.1.3

The frequency error shall be within $\pm 1,5$ kHz.

TEST CONFIGURATION

TEST PROCEDURE

- 1. The test conditions.
- □ In Image: In Image: Image:
- 2. Please refer to IEC 62238 Sub-clause 8.1.2 for the measurement method.

TEST MODE:

Please reference to the section 3.4

TEST RESULTS

Please refer to appendix A on the section 8 appendix report

Report No: CHTEW22060050 Page 18 of 53 Issued: 2022-06-07

5.2.2. Carrier Power (Conducted)

The carrier power is the mean power delivered to the artificial antenna during one radio frequency cycle in the absence of modulation. The rated output power is the carrier power declared by the manufacturer.

LIMIT

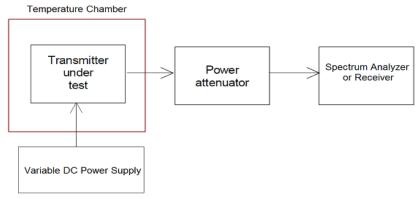
IEC 62238 Sub-clause 8.2.3

Normal test conditions:

The rated output power of the equipment shall be between 6 W and 25 W.

With the output power switch set at maximum, the carrier power shall be within ±1,5 dB of the rated output power under normal test conditions. The output power shall never however exceed 25 W.

With the output power switch set at minimum the carrier power shall remain between 0,1 W and 1 W.


The maximum continuous transmission time shall be between 5 min and 6 min.

Extreme test conditions:

With the output power switch set at maximum, the carrier power shall remain between 6 W and 25 W and be within +2 dB, -3 dB of the rated output power under extreme conditions. The output power shall never however exceed 25 W.

With the output power switch set at minimum the carrier power shall remain between 0,1 W and 1 W. The maximum continuous transmission time shall be between 5 min and 6 min.

TEST CONFIGURATION

TEST PROCEDURE

- 1. The test conditions.
- Normal condition

□ Extreme conditions

2. Please refer to IEC 62238 Sub-clause 8.2.2 for the measurement method.

TEST MODE:

Please reference to the section 3.4

TEST RESULTS

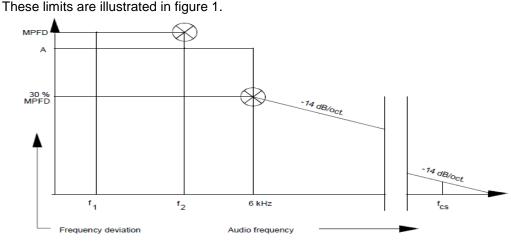
Please refer to appendix B on the section 8 appendix report

Page 19 of 53 Report No: CHTEW22060050 Issued: 2022-06-07

5.2.3. Frequency Deviation

For the purpose of the present document, the frequency deviation is the difference between the instantaneous frequency of the modulated radio frequency signal and the carrier frequency.

LIMIT


IEC 62238 Sub-clause 8.3.3

The maximum permissible frequency deviation shall be:

25 kHz channels: \pm 5 kHz. 12.5 kHz channels: \pm 2.5 kHz.

between 3,0 kHz/2,55 kHz and 6,0 kHz: shall not exceed the frequency deviation at a modulation frequency of 3,0 kHz/2,55 kHz.

At 6,0 kHz the deviation shall be not more than 30,0 % of the maximum permissible frequency deviation. between 6,0 kHz and a frequency equal to the channel separation for which the equipment is intended shall not exceed that given by a linear representation of the frequency deviation (dB) relative to the modulation frequency, starting at the 6,0 kHz limit and having a slope of -14,0 dB per octave.

NOTE:

Abbreviations: Iowest appropriate frequency

3,0 kHz (for 25 kHz channel separation), or f_2

2,55 kHz (for 12,5 kHz channel separation)

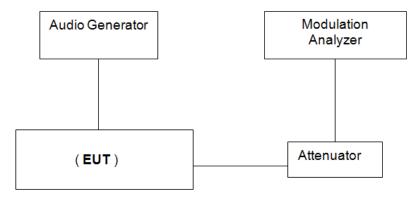

Maximum Permissible Frequency Deviation, clause 8.3.2.1 measured frequency deviation at f2 frequency equal to channel separation MPFD

Figure 1: Frequency deviation

TEST PROCEDURE

- 1. The test conditions.
- normal condition Extreme conditions
- 2. Please refer to IEC 62238 Sub-clause 8.3.2 for the measurement method.

TEST CONFIGURATION

Report No : CHTEW22060050 Page 20 of 53 Issued: 2022-06-07 **TEST MODE:** Please reference to the section 3.4 **TEST RESULTS ⊠** Passed ■ Not Applicable Please refer to appendix C on the section 8 appendix report

Report No: CHTEW22060050 Page 21 of 53 Issued: 2022-06-07

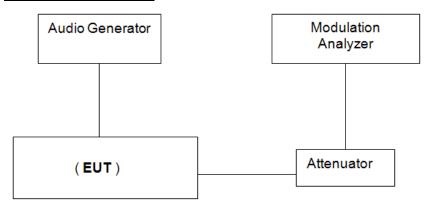
5.2.4. Sensitivity of the modulator, including microphone

This characteristic expresses the capability of the transmitter to produce sufficient modulation when an audio frequency signal corresponding to the normal mean speech level is applied to the microphone.

LIMIT

IEC 62238 Sub-clause 8.4.3

The resulting frequency deviation shall be between \pm 1,5 kHz and \pm 3 kHz.


TEST PROCEDURE

1. The test conditions.

□ In Image: In Image: In Image: In Image: In Image: Image: In Image

2. Please refer to IEC 62238 Sub-clause 8.4.2 for the measurement method.

TEST CONFIGURATION

TEST MODE:

Please reference to the section 3.4

TEST RESULTS

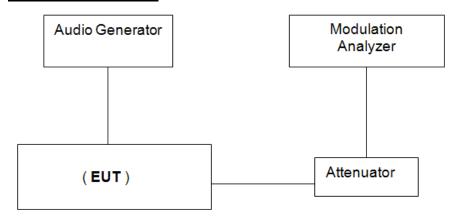
Please refer to appendix D on the section 8 appendix report

Report No: CHTEW22060050 Page 22 of 53 Issued: 2022-06-07

5.2.5. Audio frequency response

The audio frequency response is the frequency deviation of the transmitter as a function of the modulating frequency.

LIMIT


IEC 62238 Sub-clause 8.5.3

The audio frequency response shall be within +1 dB and -3 dB of a 6 dB/octave line passing through the reference point (see figure 2). The upper limit frequency shall be 2,55 kHz for 12,5 kHz channels.

Figure 2: Audio frequency response

TEST CONFIGURATION

TEST PROCEDURE

- 1. The test conditions.
- □ In Image: In Image: Image:
- 2. Please refer to IEC 62238 Sub-clause 8.5.2 for the measurement method.

TEST MODE:

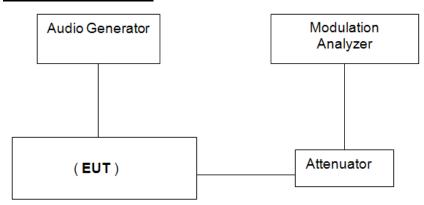
Please reference to the section 3.4

TEST RESULTS

Please refer to appendix E on the section 8 appendix report

Report No: CHTEW22060050 Page 23 of 53 Issued: 2022-06-07

5.2.6. Audio frequency harmonic distortion of the emission


The harmonic distortion of the emission modulated by an audio frequency signal is defined as the ratio, expressed as a percentage, of the root mean square (rms) voltage of all the harmonic components of the fundamental modulation frequency to the total rms voltage of the modulation signal after linear demodulation

LIMIT

IEC 62238 Sub-clause 8.6.3

The harmonic distortion shall not exceed 10 %.

TEST CONFIGURATION

TEST PROCEDURE

- 1. The test conditions.
- 2.Please refer to IEC 62238 Sub-clause 8.6.2 for the measurement method.

TEST MODE:

Please reference to the section 3.4

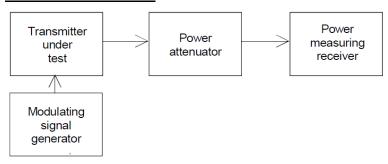
TEST RESULTS

Please refer to appendix F on the section 8 appendix report

Report No: CHTEW22060050 Page 24 of 53 Issued: 2022-06-07

5.2.7. Adjacent Channel Power

The adjacent channel power is that part of the total power output of a transmitter under defined conditions of modulation, which falls within a specified passband centred on the nominal frequency of either of the adjacent channels. This power is the sum of the mean power produced by the modulation, hum and noise of the transmitter.


LIMIT

IEC 62238 Sub-clause 8.7.3

The adjacent channel power shall not exceed a value of:

25 kHz channel: 70 dB below the carrier power of the transmitter without any need to be below 0,2 μ W. 12 kHz channel: 60 dB below the carrier power of the transmitter without any need to be below 0,2 μ W.

TEST CONFIGURATION

TEST PROCEDURE

- 1. The test conditions.
- □ normal condition
 □ Extreme conditions
- 2.Please refer to IEC 62238 Sub-clause 8.7.2 for the measurement method.

TEST MODE:

Please reference to the section 3.4

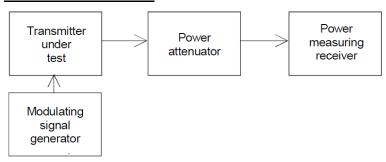
TEST RESULTS

Please refer to appendix G on the section 8 appendix report

Report No: CHTEW22060050 Page 25 of 53 Issued: 2022-06-07

5.2.8. Conducted spurious emissions conveyed to the antenna

Conducted spurious emissions are emissions on a frequency or frequencies which are outside the necessary bandwidth and the level of which may be reduced without affecting the corresponding transmission of information. Spurious emissions include harmonic emissions, parasitic emissions, intermodulation products and frequency conversion products, but exclude out of band emissions.


.

LIMIT

IEC 62238 Sub-clause 8.8.3

The power of any conducted spurious emission on any discrete frequency shall not exceed 0,25µW(-36dBm).

TEST CONFIGURATION

TEST PROCEDURE

- 1. The test conditions.
- 2. Please refer to IEC 62238 Sub-clause 8.8.2 for the measurement method.

TEST MODE:

Please reference to the section 3.4

TEST RESULTS

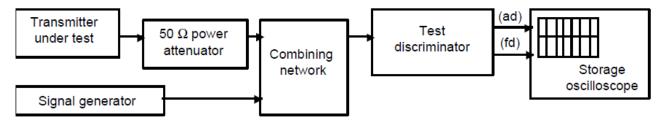
Please refer to appendix H on the section 8 appendix report

Report No: CHTEW22060050 Page 26 of 53 Issued: 2022-06-07

5.2.9. Transient frequency behaviour of the transmitter

The residual modulation of the transmitter is the ratio, in decibels, of the demodulated radiofrequency signal in the absence of wanted modulation, to the modulated radiofrequency signal produced when the normal test modulation is applied.

.


LIMIT

IEC 62238 Sub-clause 8.9.3

During the period of time t_1 and t_3 the frequency difference shall not exceed the value of one channel separation. The frequency difference, after the end of t_2 , shall be within the limit of the frequency error of $\pm 1,5$ kHz.

During the period of time t_2 the frequency difference shall not exceed the value of half a channel separation. Before the start of t_3 the frequency difference shall be within the limit of the frequency error of $\pm 1,5$ kHz.

TEST CONFIGURATION

TEST PROCEDURE

- 1. The test conditions.
- □ In Image: In Image: In Image: In Image: In Image: Imag
- 2. Please refer to IEC 62238 Sub-clause 8.9.2 for the measurement method.

TEST MODE:

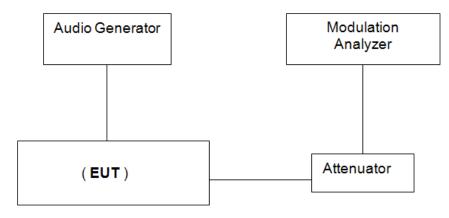
Please reference to the section 3.4

TEST RESULTS

Please refer to appendix I on the section 8 appendix report

Report No: CHTEW22060050 Page 27 of 53 Issued: 2022-06-07

5.2.10. Residual modulation of the transmitter


The residual modulation of the transmitter is the ratio, in dB, of the demodulated RF signal in the absence of wanted modulation, to the demodulated RF signal produced when the normal test modulation is applied.

LI<u>MIT</u>

IEC 62238 Sub-clause 8.10.3

The residual modulation shall not exceed -40 dB on either 25 kHz or 12,5 kHz channels.

TEST CONFIGURATION

TEST PROCEDURE

- 1. The test conditions.
- □ In Image: In Image: In Image: In Image: In Image: Image: In Image
- 2. Please refer to IEC 62238 Sub-clause 8.10.2 for the measurement method.

TEST MODE:

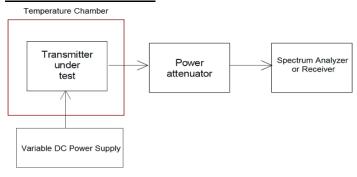
Please reference to the section 3.4

TEST RESULTS

Please refer to appendix J on the section 8 appendix report

Report No: CHTEW22060050 Page 28 of 53 Issued: 2022-06-07

5.2.11. Frequency error (demodulated DSC signal)


The frequency error for the B- and the Y-state is the difference between the measured frequency from the demodulator and the nominal values.

LIMIT

IEC 62238 Sub-clause 8.11.3

The measured frequency from the demodulator at any time for the B-state shall be within 2 100 Hz \pm 10 Hz and for the Y-state within 1 300 Hz \pm 10 Hz.

TEST CONFIGURATION

TEST PROCEDURE

- 1. The test conditions.
- 2. Please refer to IEC 62238 Sub-clause 8.11.2 for the measurement method.

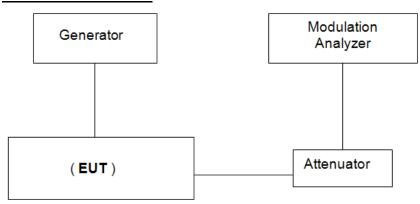
TEST MODE:

Please reference to the section 3.4

TEST RESULTS

Please refer to appendix K on the section 8 appendix report

Report No : CHTEW22060050 Page 29 of 53 Issued: 2022-06-07


5.2.12. Modulation index for DSC

This test measures the modulation index in the B and Y states.

<u>LIMIT</u>

IEC 62238 Sub-clause 8.12.3 The modulation index shall be 2.0 ± 10 %.

TEST CONFIGURATION

TEST PROCEDURE

- 1. The test conditions.
- □ In Image: In Image: Image:
- 2.Please refer to IEC 62238 Sub-clause 8.12.2 for the measurement method.

TEST MODE:

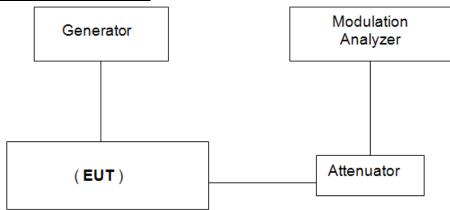
Please reference to the section 3.4

TEST RESULTS

Please refer to appendix L on the section 8 appendix report

Report No: CHTEW22060050 Page 30 of 53 Issued: 2022-06-07

5.2.13. Modulation rate for DSC


The modulation rate is the bit stream speed measured in bit/s.

LIMIT

IEC 62238 Sub-clause 8.13.3

The frequency shall be 600 Hz \pm 30 ppm corresponding to a modulation rate of 1 200 baud.

TEST CONFIGURATION

TEST PROCEDURE

- 1. The test conditions.
- 2. Please refer to IEC 62238 Sub-clause 8.13.2 for the measurement method.

TEST MODE:

Please reference to the section 3.4

TEST RESULTS

Please refer to appendix M on the section 8 appendix report

Report No: CHTEW22060050 Page 31 of 53 Issued: 2022-06-07

5.2.14. Testing of generated call sequences

Generated call sequences are call which comply with the requirements of ITU-R. Recommendation M.493-10.

Requirement

IEC 62238 Sub-clause 8.14.3

The requirements of ITU-R Recommendation M.493-14 regarding message composition and content shall be met.

The generated calls shall be analyzed with the calibrated apparatus for correct configuration of the signal format, including time diversity. It shall be verified that, after transmission of a DSC call, the transmitter re-tunes to the original channel. However, in the case of a distress call, the transmitter shall tune to channel 16 and automatically select the maximum power. The telecommands used and the channels tested for switching shall be stated in the test report.

TEST RESULTS

⊠ Passed	☐ Not Applicable
Please refer to app	endix N on the section 8 appendix report

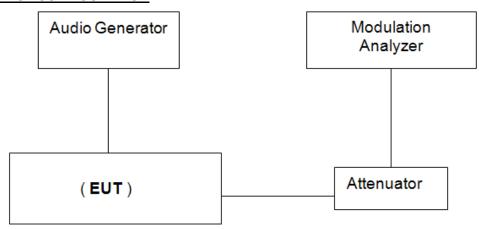
Report No : CHTEW22060050 Page 32 of 53 Issued: 2022-06-07

5.3. Receiver for Radiotelephone Requirement

5.3.1. Harmonic distortion and rated audio frequency output power

The harmonic distortion at the receiver output is defined as the ratio, expressed as a percentage, of the total rms voltage of all the harmonic components of the modulation audio frequency to the total rms voltage of the signal delivered by the receiver.

The rated audio frequency output power is the value stated by the manufacturer to be the maximum power available at the output, for which all the requirements of the present document are met.


LIMIT

IEC 62238 Sub-clause 9.1.3

- 2 W in a loudspeaker:
- 1 mW in the handset earphone.

The harmonic distortion shall not exceed 10 %.

TEST CONFIGURATION

TEST PROCEDURE

- 1. The test conditions.
- normal condition
- 2. Please refer to IEC 62238 Sub-clause 9.1.2 for the measurement method.

☐ Extreme conditions

TEST MODE:

Please reference to the section 3.4

TEST RESULTS

Please refer to appendix O on the section 8 appendix report

Report No: CHTEW22060050 Page 33 of 53 Issued: 2022-06-07

5.3.2. Audio frequency response

The audio frequency response is the variation in the receiver's audio frequency output level as a function of the modulating frequency of a received radio frequency signal modulated with constant deviation.

LIMIT

IEC 62238 Sub-clause 9.2.3

The audio frequency response shall not deviate by more than +1 dB or -3 dB from a characteristic giving the output level as a function of the audio frequency, decreasing by 6 dB per octave and passing through the measured point at 1 kHz (figure 5).

Certified Intrinsically Safe equipment need not comply with the limits below 700 Hz.

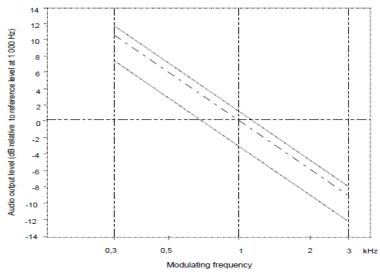
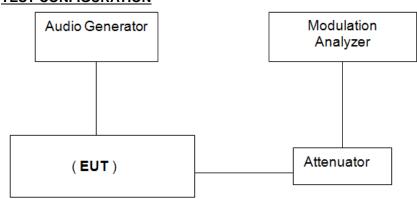



Figure 5: Audio frequency response

TEST CONFIGURATION

TEST PROCEDURE

- 1. The test conditions.
- □ In Image: In Image: In Image: In Image: In Image: Image: In Image
- 2.Please refer to IEC 62238 Sub-clause 9.2.2 for the measurement method.

TEST MODE:

Please reference to the section 3.4

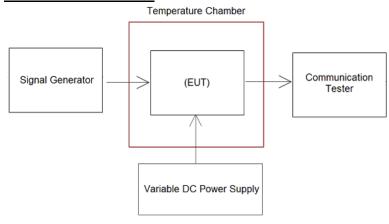
TEST RESULTS

Please refer to appendix P on the section 8 appendix report

Report No: CHTEW22060050 Page 34 of 53 Issued: 2022-06-07

5.3.3. Maximum Usable Sensitivity

The maximum usable sensitivity of the receiver is the minimum level of the signal (emf) at the nominal frequency of the receiver which, when applied to the receiver input with normal test modulation (clause 6.4), will produce:


- in all cases, an audio frequency output power of at least 50 % of the rated output power (clause 9.1); and
- a SINAD ratio of 20 dB, measured at the receiver output through a psophometric telephone filtering network such as described in ITU-T Recommendation O.41 [6].

LIMIT

IEC 62238 Sub-clause 9.3.3

The maximum usable sensitivity for either 25 kHz or 12,5 kHz channels shall not exceed +6 dB μ V (emf) under normal test conditions and +12 dB μ V (emf) under extreme test conditions.

TEST CONFIGURATION

TEST PROCEDURE

- 1. The test conditions.
- □ normal condition
 □ Extreme conditions
- 2.Please refer to IEC 62238 Sub-clause 9.3.2 for the measurement method.

TEST MODE:

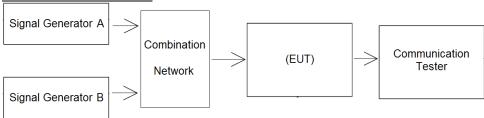
Please reference to the section 3.4

TEST RESULTS

Please refer to appendix Q on the section 8 appendix report

Report No: CHTEW22060050 Page 35 of 53 Issued: 2022-06-07

5.3.4. Co-channel rejection


The co-channel rejection is a measure of the capability of the receiver to receive a wanted modulated signal without exceeding a given degradation due to the presence of an unwanted modulated signal, both signals being at the nominal frequency of the receiver.

LIMIT

IEC 62238 Sub-clause 9.4.3

The co-channel rejection ratio, at any frequency of the unwanted signal within the specified range, shall be between: -10 dB and 0 dB.

TEST CONFIGURATION

TEST PROCEDURE

- 1. The test conditions.
- 2. Please refer to IEC 62238 Sub-clause 9.4.2 for the measurement method.

TEST MODE:

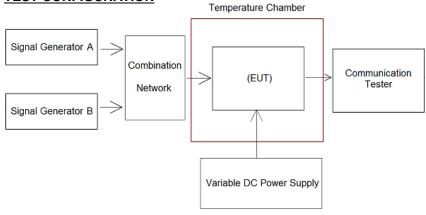
Please reference to the section 3.4

TEST RESULTS

Please refer to appendix R on the section 8 appendix report

Report No: CHTEW22060050 Page 36 of 53 Issued: 2022-06-07

5.3.5. Adjacent channel selectivity


The adjacent channel selectivity is a measure of the capability of the receiver to receive a wanted modulated signal without exceeding a given degradation due to the presence of an unwanted modulated signal which differs in frequency from the wanted signal by the nominal channel spacing.

LIMIT

IEC 62238 Sub-clause 9.5.3

The adjacent channel selectivity shall be not less than 70 dB under normal test conditions and not less than 60 dB under extreme test conditions.

TEST CONFIGURATION

TEST PROCEDURE

- 1. The test conditions.
- 2. Please refer to IEC 62238 Sub-clause 9.5.2 for the measurement method.

TEST MODE:

Please reference to the section 3.4

TEST RESULTS

Please refer to appendix S on the section 8 appendix report

Report No: CHTEW22060050 Page 37 of 53 Issued: 2022-06-07

5.3.6. Spurious Response Rejection

The spurious response rejection is a measure of the capability of the receiver to discriminate between the wanted modulated signal at the nominal frequency and an unwanted signal at any other frequency at which a response is obtained.

LIMIT

IEC 62238 Sub-clause 9.6.3

At any frequency separated from the nominal frequency of the receiver by more than 25 kHz, the spurious response rejection ratio shall be not less than 70 dB.

Signal Generator A Combination Network Signal Generator B

TEST PROCEDURE

- 1. The test conditions.☑ normal condition☑ Extreme conditions
- 2. Please refer to IEC 62238 Sub-clause 9.6.2 for the measurement method.

TEST MODE:

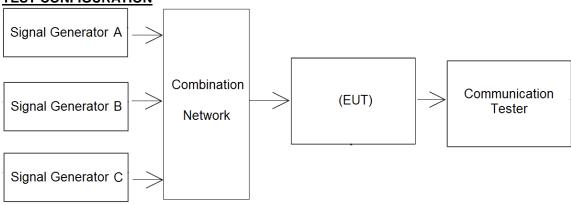
Please reference to the section 3.4

TEST RESULTS

Please refer to appendix T on the section 8 appendix report

Report No: CHTEW22060050 Page 38 of 53 Issued: 2022-06-07

5.3.7. Intermodulation response


The intermodulation response is a measure of the capability of a receiver to receive a wanted modulated signal without exceeding a given degradation due to the presence of two or more unwanted signals with a specific frequency relationship to the wanted signal frequency.

LIMIT

IEC 62238 Sub-clause 9.7.3

The intermodulation response ratio shall not be less than 68 dB.

TEST CONFIGURATION

TEST PROCEDURE

- 1. The test conditions.
- □ In Image: In Image: Image:
- 2. Please refer to IEC 62238 Sub-clause 9.7.2 for the measurement method.

TEST MODE:

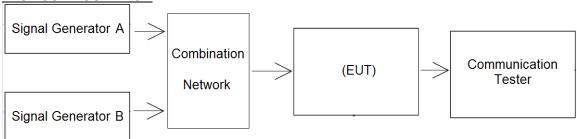
Please reference to the section 3.4

TEST RESULTS

Please refer to appendix U on the section 8 appendix report

Report No: CHTEW22060050 Page 39 of 53 Issued: 2022-06-07

5.3.8. Blocking or Desensitization


Blocking is a change (generally a reduction) in the wanted output power of the receiver or a reduction of the SINAD ratio due to an unwanted signal on another frequency.

LIMIT

IEC 62238 Sub-clause 9.8.3

The blocking level for any frequency within the specified ranges, shall be not less than 90 dBµV (emf), except at frequencies on which spurious responses are found

TEST CONFIGURATION

TEST PROCEDURE

- 1. The test conditions.
- normal condition
- ☐ Extreme conditions

2.Please refer to IEC 62238 Sub-clause 9.8.2 for the measurement method.

TEST MODE:

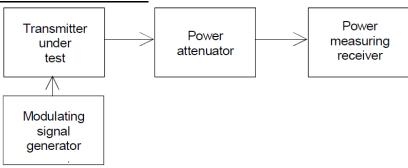
Please reference to the section 3.4

TEST RESULTS

Please refer to appendix V on the section 8 appendix report

Report No: CHTEW22060050 Page 40 of 53 Issued: 2022-06-07

5.3.9. Conducted spurious emissions


Conducted spurious emissions from the receiver are components at any frequency, present at the receiver input port.

LIMIT

IEC 62238 Sub-clause 9.9.3

The power of any spurious radiation shall not exceed 2 nw(-57dBm) at any frequency in the range between 9 kHz and 2 GHz.

TEST CONFIGURATION

TEST PROCEDURE

- 1. The test conditions.
- □ In Image: In a section in the section in
- 2. Please refer to IEC 62238 Sub-clause 9.9.2 for the measurement method.

TEST MODE:

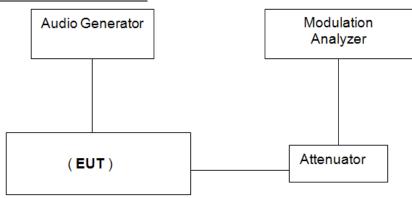
Please reference to the section 3.4

TEST RESULTS

Please refer to appendix W on the section 8 appendix report

Report No: CHTEW22060050 Page 41 of 53 Issued: 2022-06-07

5.3.10. Receiver noise and hum level


The receiver noise and hum level is defined as the ratio, in dB, of the audio frequency power of the noise and hum resulting from spurious effects of the power supply system or from other causes, to the audio frequency power produced by a high frequency signal of average level, modulated by the normal test modulation and applied to the receiver input.

LIMIT

IEC 62238 Sub-clause 9.10.3

The receiver noise and hum level shall not exceed -40 dB, relative to the modulated signal.

TEST CONFIGURATION

TEST PROCEDURE

- The test conditions.
- 2. Please refer to IEC 62238 Sub-clause 9.10.2 for the measurement method.

TEST MODE:

Please reference to the section 3.4

TEST RESULTS

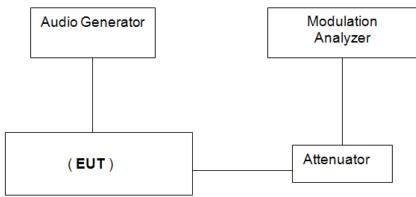
Please refer to appendix X on the section 8 appendix report

Report No: CHTEW22060050 Page 42 of 53 Issued: 2022-06-07

5.3.11. Squelch operation

The purpose of the squelch facility is to mute the receiver audio output signal when the level of the signal at the receiver input is less than a given value.

LIMIT


IEC 62238 Sub-clause 9.11.3

Under the conditions specified in a) clause 9.11.2, the audio frequency output power shall not exceed -40 dB relative to the rated output power.

Under the conditions specified in b) clause 9.11.2, the input level shall not exceed +6 dB μ V (emf) and the SINAD ratio shall be at least 20 dB.

Under the conditions specified in c) clause 9.11.2, the input signal shall not exceed +6 dB μ V (emf) when the control is set at maximum.

TEST CONFIGURATION

TEST PROCEDURE

- 1. The test conditions.
 - □ In Image: In Image: In Image: In Image: In Image: Image: In Image
- 2. Please refer to IEC 62238 Sub-clause 9.11.2 for the measurement method.

TEST MODE:

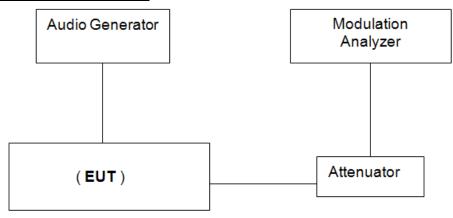
Please reference to the section 3.4

TEST RESULTS

Please refer to appendix Y on the section 8 appendix report

Report No: CHTEW22060050 Page 43 of 53 Issued: 2022-06-07

5.3.12. Squelch hysteresis


Squelch hysteresis is the difference in dB between the receiver input signal levels at which the squelch opens and closes.

LIMIT

IEC 62238 Sub-clause 9.12.3

The squelch hysteresis shall be between 3 dB and 6 dB.

TEST CONFIGURATION

TEST PROCEDURE

- 1. The test conditions.
- □ In Implication
 □ In Implication
- 2. Please refer to IEC 62238 Sub-clause 9.12.2 for the measurement method.

TEST MODE:

Please reference to the section 3.4

TEST RESULTS

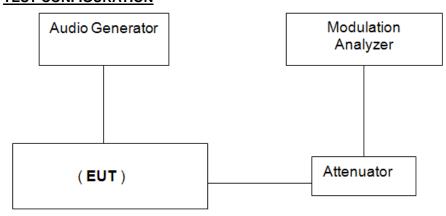
Please refer to appendix Z on the section 8 appendix report

Report No: CHTEW22060050 Page 44 of 53 Issued: 2022-06-07

5.3.13. Multiple watch characteristic

The scanning period is the time between the start of two successive samples of the priority channel in the absence of a signal on that channel.

LIMIT


IEC 62238 Sub-clause 9.13.3

The scanning period shall not exceed 2 s.

The dwell time on the priority channel shall not exceed 150 ms.

The dwell time on the additional channel shall be between 850 ms and 2 s as indicated by the time of the gap between two output bursts.

TEST CONFIGURATION

TEST PROCEDURE

- 1. The test conditions.
- Normal condition
- □ Extreme conditions
- 2. Please refer to IEC 62238 Sub-clause 9.13.2 for the measurement method.

TEST MODE:

Please reference to the section 3.4

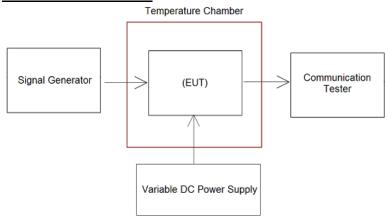
TEST RESULTS

Please refer to appendix AA on the section 8 appendix report

Report No: CHTEW22060050 Page 45 of 53 Issued: 2022-06-07

5.4. Receiver for DSC decoder Requirement

5.4.1. Maximum usable sensitivity


The maximum usable sensitivity of the receiver is the minimum level of the signal (e.m.f.) at the nominal frequency of the receiver which when applied to the receiver input with a test modulation will produce a bit error ratio of 10⁻²

LIMIT

IEC 62238 Sub-clause 10.1.3

The bit error ratio shall be equal to or less than 10⁻²

TEST CONFIGURATION

TEST PROCEDURE

- 1. The test conditions.
- □ normal condition
- □ Extreme conditions
- 2. Please refer to IEC 62238 Sub-clause 10.1.2 for the measurement method.

TEST MODE:

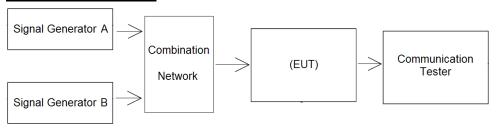
Please reference to the section 3.4

TEST RESULTS

Please refer to appendix AB on the section 8 appendix report

Report No: CHTEW22060050 Page 46 of 53 Issued: 2022-06-07

5.4.2. Co-channel rejection


The co-channel rejection is a measure of the capability of the receiver to receive a wanted modulated signal without exceeding a given degradation due to the presence of an unwanted modulated signal, both signals being at the nominal frequency of the receiver.

LIMIT

IEC 62238 Sub-clause 10.2.3

The bit error ratio shall be equal to or less than 10⁻².

TEST CONFIGURATION

TEST PROCEDURE

- 1. The test conditions.
- □ In Image: In Image: Image:
- 2. Please refer to IEC 62238 Sub-clause 10.2.2 for the measurement method.

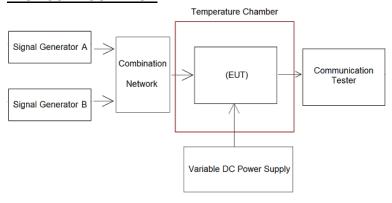
TEST MODE:

Please reference to the section 3.4

TEST RESULTS

Please refer to appendix AC on the section 8 appendix report

Report No: CHTEW22060050 Page 47 of 53 Issued: 2022-06-07


5.4.3. Adjacent channel selectivity

The adjacent channel selectivity is a measure of the capability of the receiver to receive a wanted modulated signal without exceeding a given degradation due to the presence of an unwanted modulated signal which differs in frequency from the wanted signal by 25 kHz.

LIMIT

IEC 62238 Sub-clause 10.3.3 The bit error ratio shall be equal to or less than 10⁻²

TEST CONFIGURATION

TEST PROCEDURE

- 1. The test conditions.
- □ normal condition
 □ Extreme conditions
- 2. Please refer to IEC61138 Sub-clause 10.3.2 for the measurement method.

TEST MODE:

Please reference to the section 3.4

TEST RESULTS

Please refer to appendix AD on the section 8 appendix report

Report No: CHTEW22060050 Page 48 of 53 Issued: 2022-06-07

5.4.4. Spurious response and blocking immunity

The spurious response and blocking immunity is a measure of the capability of the receiver to receive a wanted modulated signal without exceeding a given degradation due to the presence of an unwanted modulated signal with frequencies outside the pass band of the receiver.

LIMIT

IEC 62238 Sub-clause 10.4.3

The bit error ratio shall be equal to or less than 10⁻²

TEST CONFIGURATION

TEST PROCEDURE

- 1. The test conditions.
- □ In Image: In Image: In Image: In Image: In Image: Image: In Image
- 2. Please refer to IEC 62238 Sub-clause 10.4.2 for the measurement method

TEST MODE:

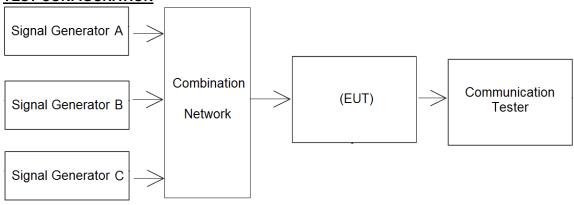
Please reference to the section 3.4

TEST RESULTS

Please refer to appendix AE on the section 8 appendix report

Report No: CHTEW22060050 Page 49 of 53 Issued: 2022-06-07

5.4.5. Intermodulation response


The intermodulation response is a measure of the capability of the receiver to receive a wanted modulated signal without exceeding a given degradation due to the presence of two or more unwanted signals with a specific frequency relationship to the wanted signal frequency.

LIMIT

IEC 62238 Sub-clause 10.5.3

The bit error ratio shall be equal to or less than 10⁻²

TEST CONFIGURATION

TEST PROCEDURE

- 1. The test conditions.
- □ In Image: In Image: In Image: In Image: In Image: Image: In Image
- 2. Please refer to IEC 62238 Sub-clause 10.5.2 for the measurement method.

TEST MODE:

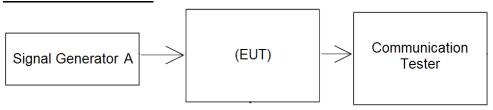
Please reference to the section 3.4

TEST RESULTS

Please refer to appendix AF on the section 8 appendix report

Report No: CHTEW22060050 Page 50 of 53 Issued: 2022-06-07

5.4.6. Dynamic range


The dynamic range of the equipment is the range from the minimum to the maximum level of a radio frequency input signal at which the bit error ratio in the output of the decoder does not exceed a specified value.

Limit

IEC 62238 Sub-clause 10.6.3

The bit error ratio shall be equal to or less than 10⁻².

TEST CONFIGURATION

TEST PROCEDURE

- 1. The test conditions.
- □ In Image: Market Ma
- 2. Please refer to IEC 62238 Sub-clause 10.6.2 for the measurement method

TEST MODE:

Please reference to the section 3.4

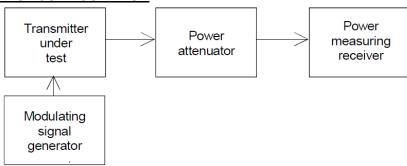
TEST RESULTS

Please refer to appendix AG on the section 8 appendix report

Report No: CHTEW22060050 Page 51 of 53 Issued: 2022-06-07

5.4.7. Spurious emissions

Spurious emissions from the receiver are components at any frequency, present at the receiver input port.


The level of spurious emissions shall be measured as the power level at the antenna.

Limit

IEC 62238 Sub-clause 10.7.3

The power of any spurious emission shall not exceed 2 nW at any frequency in the range between 9 kHz and 2 GHz.

TEST CONFIGURATION

TEST PROCEDURE

- 1. The test conditions.
- $oxed{oxed}$ normal condition $oxed{oxed}$ Extreme conditions
- 2. Please refer to IEC 62238 Sub-clause 10.7.2 for the measurement method.

TEST MODE:

Please reference to the section 3.4

TEST RESULTS

Please refer to appendix AH on the section 8 appendix report

Report No: CHTEW22060050 Page 52 of 53 Issued: 2022-06-07

5.4.8. Verification of correct decoding of various types of DSC calls

DSC call sequences are calls that comply with ITU-R Recommendation M.493-14.

Requirement

The requirements of ITU-R Recommendation M.493-14 regarding message composition and content shall be met.

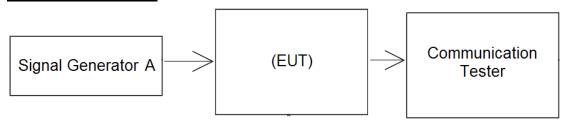
The decoded call sequences at the output of the receiver shall be examined for correct technical format, including error-check characters.

When receiver measurements are made by use of a printer or a computer, a check shall be made to

ensure accordance between printer output and display indication. It shall be verified that the equipment is capable of switching to a channel identified in the DSC call.
TEST RESULTS
Please refer to appendix AI on the section 8 appendix report
5.4.9. Reaction to VTS and AIS channel management DSC transmissions VTS and AIS channel management DSC transmissions are any DSC transmissions that are in accordance with Recommendation ITU-R M.825 or M.1371.
Requirement The equipment shall not sound an alarm, display a message (an accurate, imformative display is permissible but not required), transmit a response or suggest a transmitted response, lock up, or require operator intervention.
TEST RESULTS
Please refer to appendix AJ on the section 8 appendix report

Report No: CHTEW22060050 Page 53 of 53 Issued: 2022-06-07

5.4.10. Simultaneous reception


Simultaneous reception is the ability of the unit to correctly receive DSC traffic and radiotelephony traffic at the same time.

Limit

IEC 62238 Sub-clause 10.10.3

The bit error ratio shall be equal to or less than 10⁻²

TEST CONFIGURATION

TEST PROCEDURE

- 1. The test conditions.
- □ In Implication
 □ In Implication
- 2. Please refer to IEC 62238 Sub-clause 10.10.2 for the measurement method.

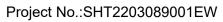
TEST MODE:

Please reference to the section 3.4

TEST RESULTS

Please refer to appendix AK on the section 8 appendix report

6. External and Internal Photos of the EUT


Reference to the test report No.: CHTEW22060048

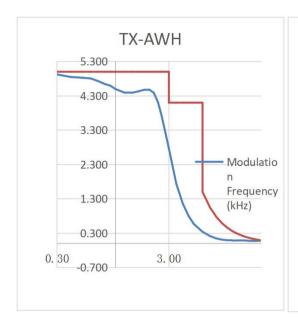
-----End of Report-----

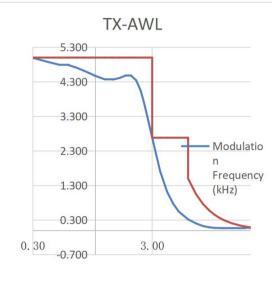
Appendix A: Frequency Error

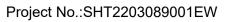
Operation Mode Test		nditions	Frequency Error (kHz)	Limit (kHz)	Result
·	Temperature	Voltage	CH _M	,	
TX-AWH	T_N	V_N	-0.633	±1.5	PASS
TX-AWH	T_L	V_{L}	-0.629	±1.5	PASS
TX-AWH	T _H	V_{H}	-0.643	±1.5	PASS
TX-AWL	T_N	V_N	-0.629	±1.5	PASS
TX-AWL	T _L	V_L	-0.621	±1.5	PASS
TX-AWL	T _H	V_{H}	-0.636	±1.5	PASS

Appendix B: Carrier power

Operation Mode	Temperatu re	Voltage	Test Channel	Measured power (dBm)	Rated power(W)	Difference (dB)	Limit (dB)	Result
TX-AWH	T_N	V_N	CH _L	43.96	25.00	-0.02	±1.5	PASS
TX-AWH	T_N	V_N	CH _M	43.72	25.00	-0.26	±1.5	PASS
TX-AWH	T_N	V_N	CH _H	43.87	25.00	-0.11	±1.5	PASS
TX-AWH	T_L	V_L	CH _M	43.58	25.00	-0.40	-3 ~ +2	PASS
TX-AWH	T _H	V_{H}	CH _M	43.88	25.00	-0.10	-3 ~ +2	PASS
TX-AWL	T_N	V_N	CH _L	28.89	1.00	-1.11	±1.5	PASS
TX-AWL	T_N	V_N	CH _M	28.85	1.00	-1.15	±1.5	PASS
TX-AWL	T_N	V_N	CH _H	28.89	1.00	-1.11	±1.5	PASS
TX-AWL	T_L	V_L	CH _M	28.71	1.00	-1.29	-3 ~ +2	PASS
TX-AWL	T _H	V_{H}	CH _M	28.94	1.00	-1.06	-3 ~ +2	PASS


Appendix C: Frequency Deviation


Modulation Frequency (kHz)	Frequency Deviation (kHz) TX-AWH	Limit (kHz)	Result	Modulation Frequency (kHz)	Frequency Deviation (kHz) TX-AWL	Limit (kHz)	Result
0.30	4.921	5.00	PASS	0.30	4.992	5.00	PASS
0.40	4.846	5.00	PASS	0.40	4.876	5.00	PASS
0.50	4.827	5.00	PASS	0.50	4.792	5.00	PASS
0.60	4.805	5.00	PASS	0.60	4.780	5.00	PASS
0.70	4.727	5.00	PASS	0.70	4.706	5.00	PASS
0.80	4.644	5.00	PASS	0.80	4.623	5.00	PASS
0.90	4.593	5.00	PASS	0.90	4.545	5.00	PASS
1.00	4.496	5.00	PASS	1.00	4.472	5.00	PASS
1.20	4.393	5.00	PASS	1.20	4.372	5.00	PASS
1.40	4.386	5.00	PASS	1.40	4.363	5.00	PASS
1.60	4.429	5.00	PASS	1.60	4.411	5.00	PASS
1.80	4.475	5.00	PASS	1.80	4.482	5.00	PASS
2.00	4.482	5.00	PASS	2.00	4.475	5.00	PASS
2.20	4.387	5.00	PASS	2.20	4.345	5.00	PASS
2.40	4.106	5.00	PASS	2.40	4.051	5.00	PASS
2.55	3.790	5.00	PASS	2.55	3.724	5.00	PASS
2.60	3.681	5.00	PASS	2.60	3.604	5.00	PASS
2.80	3.206	5.00	PASS	2.80	3.136	5.00	PASS
3.00	2.767	5.00	PASS	3.00	2.684	5.00	PASS
3.00	2.767	4.10	PASS	3.00	2.684	2.68	PASS
3.50	1.732	4.10	PASS	3.50	1.711	2.68	PASS
4.00	1.156	4.10	PASS	4.00	1.122	2.68	PASS
4.50	0.802	4.10	PASS	4.50	0.776	2.68	PASS
5.00	0.572	4.10	PASS	5.00	0.552	2.68	PASS
6.00	0.339	4.10	PASS	6.00	0.323	2.68	PASS
6.00	0.339	1.50	PASS	6.00	0.323	1.50	PASS
7.00	0.215	1.05	PASS	7.00	0.205	1.05	PASS
8.00	0.144	0.77	PASS	8.00	0.130	0.77	PASS
9.00	0.110	0.58	PASS	9.00	0.095	0.58	PASS
10.00	0.094	0.46	PASS	10.00	0.075	0.46	PASS
11.00	0.085	0.37	PASS	11.00	0.071	0.37	PASS
12.00	0.088	0.30	PASS	12.00	0.070	0.30	PASS
14.00	0.090	0.21	PASS	14.00	0.070	0.21	PASS
16.00	0.074	0.15	PASS	16.00	0.069	0.15	PASS
18.00	0.077	0.12	PASS	18.00	0.080	0.12	PASS
20.00	0.088	0.09	PASS	20.00	0.076	0.09	PASS
22.00	0.061	0.07	PASS	22.00	0.069	0.07	PASS
24.00	0.053	0.06	PASS	24.00	0.047	0.06	PASS
25.00	0.042	0.05	PASS	25.00	0.037	0.05	PASS

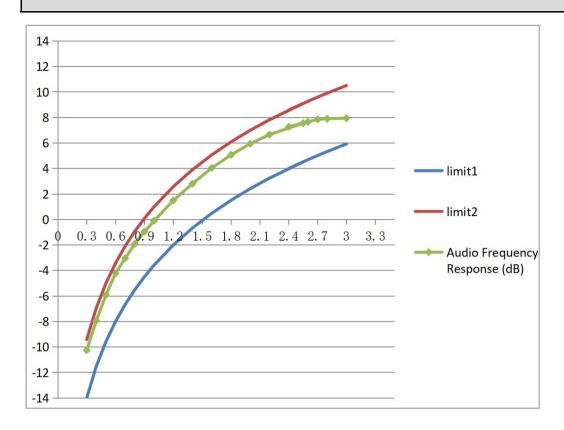


Appendix C: Frequency Deviation

TEST PLOT RESULT

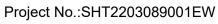
Appendix D: Sensitivity of the modulaotr, including microphone

Operation Mode	Test Channel	Modulated Frequency (kHz)	Measured (kHz)	Limit(kHz)	Result
TX-AWH	CH _M	1.0	3.6	±2.5~ ±4.5	PASS
TX-AWH	CH _M	0.3	3.2	±2.5~ ±4.5	PASS
TX-AWH	CH _M	0.5	3.5	±2.5∼ ±4.5	PASS


Appendix E: Audio frequency response

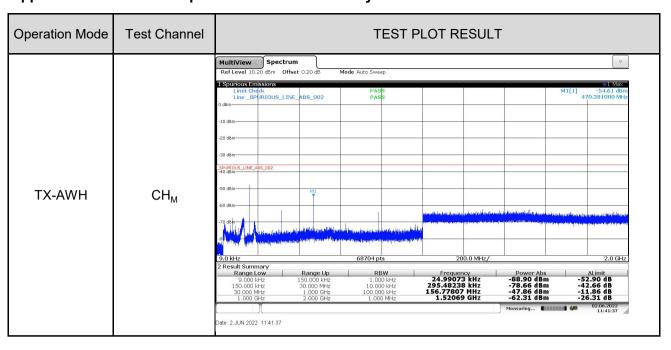
Frequency (KHz)	Frequency Deviation (KHz) TX-AWH CH _M	1KHz Reference Deviation (KHz)	Audio Frequency Response (dB)
0.3	0.30	1.00	-10.58
0.4	0.39	1.00	-8.27
0.5	0.49	1.00	-6.25
0.6	0.59	1.00	-4.55
0.7	0.68	1.00	-3.37
0.8	0.77	1.00	-2.24
0.9	0.86	1.00	-1.28
1	0.95	1.00	-0.43
1.2	1.14	1.00	1.17
1.4	1.33	1.00	2.48
1.6	1.53	1.00	3.72
1.8	1.73	1.00	4.74
2	1.91	1.00	5.62
2.2	2.07	1.00	6.33
2.55	2.30	1.00	7.23
2.4	2.22	1.00	6.94
2.6	2.33	1.00	7.33
2.7	2.38	1.00	7.52
2.8	2.39	1.00	7.58
3	2.40	1.00	7.62

Appendix E: Audio frequency response


TEST PLOT RESULT

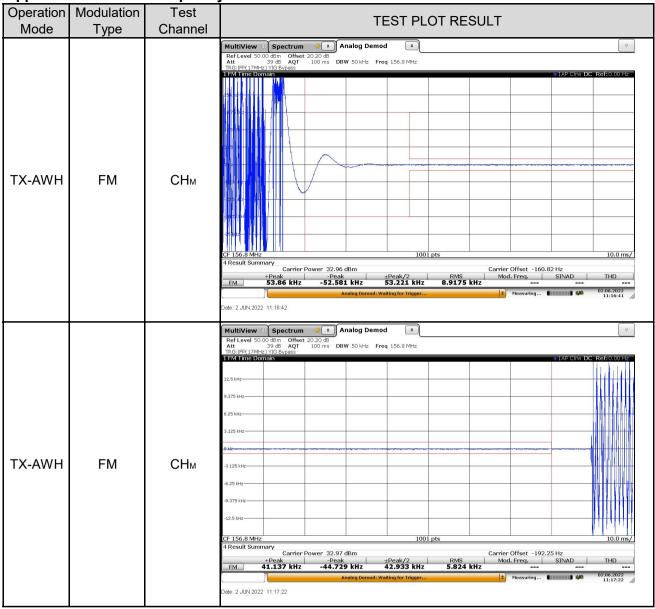
Appendix F: Audio frequency harmonic distortion of the emission

Operation Mode	Temperature (°C)	Voltage (V)	Modulated Frequency (kHz)	Test Channel	Measured (%)	Limit (%)	Result
			0.3	CH _M	6.3	≤10	PASS
TX-AWH	T_N	V_N	0.5	CH _M	4.2	≤10	PASS
			1.0	CH _M	2.9	≤10	PASS
			0.3	CH _M	6.2	≤10	PASS
TX-AWL	T_N	V_N	0.5	CH _M	4.3	≤10	PASS
			1.0	CH _M	3.0	≤10	PASS



Appendix G: Adjacent Channel Power

Operation Mode	Test Channel	Test Channel	Measurement Power (dBc)	Limit (dB)	Result
TX-AWH	CH _M	Lower adjacent	-70.64	≤-70	PASS
TX-AWH	CH _M	Upper adjacent	-70.39	≤-70	PASS



Appendix H: Conducted spurious emissions conveyed to the antenna

HTW

Appendix I:Transient frequency behaviour of the transmitter

Project No.:SHT2203089001EW

Appendix J: Residual modulation of the transmitter

Operation Mode	Test Channel	Measured (dB)	Limit(dB)	Result
TX-AWH	CH _M	-40.38	≤-40	PASS

Appendix K: Frequency error (demodulated DSC signal)

Operation Mode	Test conditions		Frequency Error	Limit (Lla)	Result	
Operation wode	Temperature	Voltage	(Hz)	Limit (Hz)	Result	
TX-B	T_N	V_N	2099.74	2100± 10	PASS	
TX-B	T_L	V_L	2099.66	2100± 10	PASS	
TX-B	T _H	V_{H}	2099.50	2100± 10	PASS	
TX-Y	T_N	V_N	1299.84	1300± 10	PASS	
TX-Y	T_L	V_{L}	1299.72	1300± 10	PASS	
TX-Y	T _H	V_{H}	1299.77	1300± 10	PASS	

Project No.:SHT2203089001EW

Appendix L: Modulation index for DSC

Operation Mode	Test Channel	Modulation index	Limit	Result
TX-B	CH _{M1}	1.94	2.0± 10%	PASS
TX-Y	CH _{M1}	1.96	2.0± 10%	PASS

Project No.:SHT2203089001EW

Appendix M: Modulation rate for DSC

Operation Mode	Test Channel	Modulation rate (Hz)	Limit	Result
TX-(B+Y)	CH _{M1}	599.995	600Hz ± 30 ppm	PASS

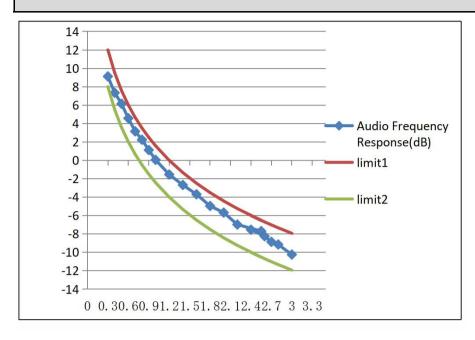
Appendix N: Testing of generated call sequences

Call Sent	Received without error	Telecommand 1	Telecommand 2
Distress	Yes	100	126
All Ships Urgency	Yes	100	126
All Ships Safety	Yes	110	126
Individual Routine	Yes	110	126
Group Routine	Yes	100	126

Appendix O: Harmonic distortion and rated audio frequency output power

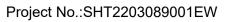
Harmonic distortion								
Operation Mode	Temperat ure (℃)	Voltage (V)	Signals Llevel (dBµV)	Modulated Frequenc y (kHz)	Frequenc	Measured (%)	Limit (%)	Result
				0.3	СН _м	3.1	≤10	PASS
RX-AW T _N	V _N	60	0.5	CH _M	2.2	≤10	PASS	
			1.0	СНм	8.4	≤10	PASS	
		100	0.3	CH _M	3.0	≤10	PASS	
			0.5	CH _M	2.3	≤10	PASS	
				1.0	CH _M	8.2	≤10	PASS

rated audio frequency output power					
TestChannel	Measured (W)	Limit (W)	Result		
CH _M	2.210	≥2	PASS		


Appendix P:Audio frequency response

RX-AW:CH _M				
Frequency (kHz)	Output Level(V)	Reference Level at 1kHz (V)	Audio Frequency Response(dB)	
0.3	1.1976	0.3824	9.92	
0.4	0.9757	0.3824	8.14	
0.5	0.8508	0.3824	6.95	
0.6	0.7093	0.3824	5.37	
0.7	0.6023	0.3824	3.95	
0.8	0.5424	0.3824	3.04	
0.9	0.4768	0.3824	1.92	
1	0.4215	0.3824	0.85	
1.2	0.3510	0.3824	-0.74	
1.4	0.3078	0.3824	-1.88	
1.6	0.2740	0.3824	-2.89	
1.8	0.2368	0.3824	-4.16	
2	0.2179	0.3824	-4.88	
2.2	0.1876	0.3824	-6.18	
2.55	0.1729	0.3824	-6.89	
2.4	0.1759	0.3824	-6.74	
2.6	0.1621	0.3824	-7.45	
2.7	0.1511	0.3824	-8.06	
2.8	0.1462	0.3824	-8.35	
3	0.1289	0.3824	-9.44	

Appendix P:Audio frequency response

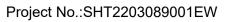

TEST PLOT RESULT

Appendix Q: Maximum Usable Sensitivity(Conducted)

Operation Mode	Temperature	Voltage	Test Channel	Measured (dBµV)	Limit (dBµV)	Result
RX-AW	T _N	V_N	CH _M	-8.2	≤+6.0	PASS
RX-AW	T_L	V_L	CH _M	-7.9	≤+12.0	PASS
RX-AW	T _H	V_{H}	CH _M	-8.3	≤+12.0	PASS

Appendix R: Co-Channel Rejection

Operation Mode	Test Channel	Measurement Offset (kHz)	SG B – SG A	Limit (dB)	Result
RX-AW	CH _M	-3	-0.2	-10 ~ 0	PASS
RX-AW	CH _M	0	-2.3	-10 ~ 0	PASS
RX-AW	CH _M	3	-5.0	-10 ~ 0	PASS


Appendix S: Adjacent Channel Selectivity

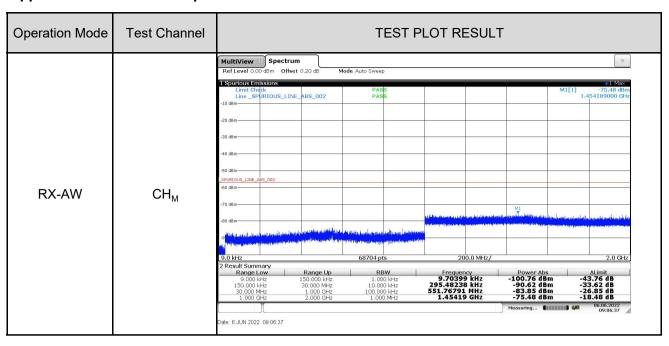
Operation	Test Co	ondition	Test	Measurement	SGB-SGA	Limit (dB)	Result
Mode	Temperat	Voltage	Channel	Position	(dB)	Lillie (GB)	rtodat
RX-AW	T _N	V_N	СН _м	Lower adjacent	74.8	≥70	PASS
RX-AW	T _N	V_N	СН _м	Upper adjacent	73.9	≥70	PASS
RX-AW	T_L	V_L	СН _м	Lower adjacent	74.5	≥60	PASS
RX-AW	T _L	V_L	CH _M	Upper adjacent	73.2	≥60	PASS
RX-AW	T _H	V_{H}	СНм	Lower adjacent	74.9	≥60	PASS
RX-AW	T _H	V_{H}	СНм	Upper adjacent	74.1	≥60	PASS

Appendix T: Suprious Response Rejection

Operation Mode	Test Channel	Detect Frequency (MHz)	SG B – SG A (dB)	Limit (dB)	Result
RX-AW	CH _M	166.790	102.0	≥70	PASS
RX-AW	CH _M	206.750	106.6	≥70	PASS
RX-AW	CH _M	256.700	107.7	≥70	PASS
RX-AW	CH _M	266.690	107.8	≥70	PASS

Appendix U: Intermodulation Response

Operation Test Channel		Measurement Offset (kHz)		SG B/C – SG	Limit(dB)	Result
Mode	Mode SG B SG C	A (dB)				
RX-AW	CH _M	-50	-100	68.6	≥68	PASS
RX-AW	CH _M	-25	-50	68.4	≥68	PASS
RX-AW	CH _M	25	50	68.1	≥68	PASS
RX-AW	CH _M	50	100	68.2	≥68	PASS



Appendix V: Blocking or Desensitization

Operation Mode	Test Channel	Measurement Offset (MHz)	SG B – SG A (dB)	Limit (dB)	Result
RX-AW	CH _M	-10	105.0	≥90	PASS
RX-AW	CH _M	-5	102.3	≥90	PASS
RX-AW	CH _M	-2	97.8	≥90	PASS
RX-AW	CH _M	-1	98.2	≥90	PASS
RX-AW	CH _M	1	100.5	≥90	PASS
RX-AW	CH _M	2	102.9	≥90	PASS
RX-AW	CH _M	5	102.7	≥90	PASS
RX-AW	CH _M	10	102.0	≥90	PASS

Appendix W: Conducted Spurious radiations

Project No.:SHT2203089001EW

Appendix X: Receiver noise and hum level

Operation Mode	Test Channel	Measured (dB)	Limit (dB)	Result
RX-AW	CH _M	-40.83	≪-40	PASS

Appendix Y:Squelch operation

Under the conditions specified in a)

RX-AW					
Test Channel	Measured (dB)	Limit (dB)	Result		
CH _M	-41.20	≤-40	PASS		

Under the conditions specified in b)

RX-AW					
Test Channel	Measured (dBμV)	Limit (dBµV)	Result		
CH _M	4.70	≤+6.0	PASS		

RX-AW					
Test Channel	Measured SINAD (dB)	Limit (dBµV)	Result		
CH _M	21.37	≥20	PASS		

Under the conditions specified in c)

RX-AW					
Test Channel	Measured (dBμV)	Limit (dBµV)	Result		
CH _M	4.6	≤+6.0	PASS		

Appendix Z:Squelch hysteresis

RX-AW					
Test Channel	Measured (dB)	Limit (dB)	Result		
CH _M	4.60	3~6	PASS		

Appendix AA: Multiple watch characteristic

Scanning Period:

Operation	Test Condition		Test			
Mode	Temperature(℃)	Voltage (V)	Channel	Measured(s)	Limit (s)	Result
	T _N	V_N	CH _M	1.57	≤2	PASS
RX-AW	TL	V_L	CH _M	1.49	≤2	PASS
	T _H	V_{H}	CH _M	1.46	≤ 2	PASS

Dwell Time:

Operation	Test Condition		Test			
Mode	Temperature (℃)	Voltage (V)	Channel	Measured(ms)	Limit (ms)	Result
	T _N	V_N	CH _M	110	150	PASS
RX-AW	T_L	V_L	CH _M	100	150	PASS
	T _H	V_{H}	CH _M	120	150	PASS

Dwell time on the additional channel:

Operation	Test Condition		Test				
Mode	Temperature (°C)	Voltage (V)	Channel	Measured(s)	Limit (s)	Result	
	T_N	V_N	CH _M	1.34	0.85~2	PASS	
RX-AW	T_L	V_{L}	CH _M	1.25	0.85~2	PASS	
	T _H	V_{H}	СН _М	1.38	0.85~2	PASS	

Appendix AB: Maximum Usable Sensitivity

Operation Mode	Temperature	Voltage	Test Channel	Measured (error ratio)	Limit (error ratio)	Result
RX-DSC	T _N	V_N	CH _{M1}	0.003	≤10 ⁻²	PASS
RX-DSC	T_L	V_L	CH _{M1}	0.005	≤10 ⁻²	PASS
RX-DSC	T _H	V_{H}	CH _{M1}	0.002	≤10 ⁻²	PASS

Appendix AC: Co-Channel Rejection

Operation Mode	Test Channel	Measurement Offset (kHz)	Measured (error ratio)	Limit (error ratio)	Result
RX-DSC	CH _{M1}	-3	0.003	≤10 ⁻²	PASS
RX-DSC	CH _{M1}	0	0.005	≤10 ⁻²	PASS
RX-DSC	CH _{M1}	3	0.006	≤10 ⁻²	PASS

Appendix AD: Adjacent channel selectivity

Operation	Test Cond	dition	Test	Measurement	Measured	Limit	Result
Mode	Temperature	Voltage	Channel	Position	(error ratio)	(error ratio)	rtocait
RX-DSC	T_N	V_N	CH _{M1}	Lower adjacent	0.007	≤10 ⁻²	PASS
RX-DSC	T _N	V_N	CH _{M1}	Upper adjacent	0.003	≤10 ⁻²	PASS
RX-DSC	T_L	V_L	CH _{M1}	Lower adjacent	0.004	≤10 ⁻²	PASS
RX-DSC	T_L	V_L	CH _{M1}	Upper adjacent	0.007	≤10 ⁻²	PASS
RX-DSC	T _H	V_{H}	CH _{M1}	Lower adjacent	0.005	≤10 ⁻²	PASS
RX-DSC	T _H	V _H	CH _{M1}	Upper adjacent	0.006	≤10 ⁻²	PASS

Appendix AE: Spurious response and blocking immunity

Spurious response:

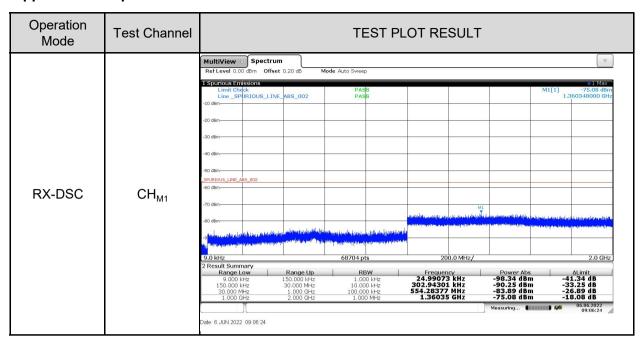
Operation Mode	Test Channel	Spurious Frequency (MHz)	Measured (error ratio)	Limit (error ratio)	Result	
		166.515	0.007			
RX-DSC	CH	206.475	0.005	<	PASS	
RA-DSC	CH _{M1}	256.425	0.004	$\leq 10^{-2}$		
		266.415	0.002			

Blocking immunity:

Operation Mode	Test Channel	Measurement Offset (MHz)	Measured (error ratio)	Limit (error ratio)	Result
		-10	0.002		
		-5	0.003	-0	
		-2	0.005		PASS
DV DCC	O.I.	-1	0.008		
RX-DSC	RX-DSC CH _{M1}	1	0.007	≤10 ⁻²	
		2	0.005		
		5	0.004		
		10	0.002		

Appendix AF: Intermodulation response

Operation Test		Measurement Offset (kHz)		Measured	Limit	Result
Mode	Channel	SG B	SG C	(error ratio)	(error ratio)	Result
RX-DSC	CH	-50	-100	0.005	≤10 ⁻²	PASS
RA-DSC	CH _{M1}	50	100	0.007	≤10 ⁻²	PASS


Project No.:SHT2203089001EW

Appendix AG: Dynamic range

Operation	Test	Measured	Limit	Result
Mode	Channel	(error ratio)	(error ratio)	
RX-DSC	CH _{M1}	0.003	≤10 ⁻²	PASS

Appendix AH: spurious emissions

Appendix Al: Verification of correct decoding of various types of DSC calls

Call Sent	Received (Y or N)	Telecommand 1	Telecommand 2
Distress	Y	100	126
All Ships Distress Ack	Υ	110	126
All Ships Distress Relay	Y	110	126
All Ships Urgency	Y	100	126
All Ships Safety	Y	110	126
Individual Urgency	Y	100	126
Individual Safety	Y	110	126
Individual Routine	Υ	100	126
Group Routine	Y	100	126

Function Check	Result
Confirm that the decoded call sequences at the output of the receiver have been examined for correct technical format, including error check characteristics.	Yes
Errors found:	No
Confirm that the checks have been made to ensure accordance between printer output and display	Yes
Errors found:	No
It has been verified that the equipment is capable of switching to a channel identified in the DSC call:	Yes

Appendix AJ: Reaction to VTS and AIS channel management DSC transmissions

Function Check	Received (Y or N)	
Not sound an alarm	Υ	
Not display a message(An accurate informative display is permissible but not required)	Y	
Not transmit a response	Υ	
Not suggest a transmitted response	Υ	
Not lock up	Y	
Not require operator intervention	Υ	

Project No.:SHT2203089001EW

Appendix AK: Simultaneous reception

Operation Mode	Test Channel	Measured SINAD(dB)	Limit (dB)	Result
RX-AW	CH _M	21.34	≥20	PASS

Operation	Test	Measured	Limit	Result
Mode	Channel	(error ratio)	((error ratio))	
RX-DSC	CH _{M1}	0.004	≤10 ⁻²	PASS

----End of Report----