FCC TEST REPORT REPORT NO.: RF920106H01D MODEL NO.: CP-7920 **RECEIVED:** May 24, 2006 **TESTED:** June 05 to 07, 2006 **ISSUED:** June 09, 2006 APPLICANT: HON HAI PRECISION IND. CO., LTD. HSINCHU SCIENCE PARK BRANCH OFFICE ADDRESS: 5F-1,5 Hsin-An Road Hsinchu, Science-Based Industrial Park Taiwan, R.O.C. **ISSUED BY:** Advance Data Technology Corporation **LAB LOCATION:** No. 81-1, Lu Liao Keng, 9 Ling, Wu Lung Tsuen, Chiung Lin Hsiang, Hsin Chu Hsien, Taiwan, R.O.C. This test report consists of 39 pages in total. It may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product endorsement by CNLA, A2LA or any government agencies. The test results in the report only apply to the tested sample. The test results in this report are traceable to the national or international standards. # **Table of Contents** | 1 | CERTIFICATION | | |-------|---|----| | 2 | SUMMARY OF TEST RESULTSGENERAL INFORMATION | | | 3.1 | GENERAL DESCRIPTION OF EUT | | | 3.2 | DESCRIPTION OF TEST MODES | | | 3.3 | TEST MODE APPLICABLITY AND TESTED CHANNEL DETAIL: | | | 3.4 | GENERAL DESCRIPTION OF APPLIED STANDARDS | | | 3.5 | DESCRIPTION OF SUPPORT UNITS | | | 3.6 | CONFIGURATION OF SYSTEM UNDER TEST | | | 4 | TEST TYPES AND RESULTS | | | 4.1 | CONDUCTED EMISSION MEASUREMENT | | | 4.1.1 | LIMITS OF CONDUCTED EMISSION MEASUREMENT | 14 | | 4.1.2 | TEST INSTRUMENTS | 14 | | 4.1.3 | TEST PROCEDURES | 15 | | 4.1.4 | TEST SETUP | 15 | | 4.1.5 | EUT OPERATING CONDITIONS | 16 | | 4.1.6 | TEST RESULTS | 17 | | 4.2 | RADIATED EMISSION MEASUREMENT | 19 | | 4.2.1 | LIMITS OF RADIATED EMISSION MEASUREMENT | 19 | | 4.2.2 | TEST INSTRUMENTS | 20 | | 4.2.3 | TEST PROCEDURES | 21 | | 4.2.4 | TEST SETUP | 22 | | 4.2.5 | EUT OPERATING CONDITIONS | 22 | | 4.2.6 | TEST RESULTS | 23 | | 4.3 | MAXIMUM PEAK OUTPUT POWER | 27 | | 4.3.1 | LIMITS OF MAXIMUM PEAK OUTPUT POWER MEASUREMENT | 27 | | 4.3.2 | TEST INSTRUMENTS | 27 | | 4.3.3 | TEST PROCEDURES | 28 | | 4.3.4 | TEST SETUP | 28 | | 4.3.5 | EUT OPERATING CONDITIONS | 28 | | 4.3.6 | TEST RESULTS | 29 | | 4.4 | BAND EDGES MEASUREMENT | 30 | | | | | | 4.4.1 | LIMITS OF BAND EDGES MEASUREMENT | 30 | |-------|---|-----| | 4.4.2 | TEST INSTRUMENTS | 30 | | 4.4.3 | TEST PROCEDURE | 30 | | 4.4.4 | EUT OPERATING CONDITION | 30 | | 4.4.5 | TEST RESULTS | 31 | | 4.5 | ANTENNA REQUIREMENT | 35 | | 4.5.1 | STANDARD APPLICABLE | 35 | | 4.5.2 | ANTENNA CONNECTED CONSTRUCTION | 35 | | 5 | PHOTOGRAPHS OF THE TEST CONFIGURATION | 36 | | 6 | INFORMATION ON THE TESTING LABORATORIES | 38 | | APPEN | NDIX-A | A-1 | #### **CERTIFICATION** 1 PRODUCT: Cisco Wireless IP Phone 7920 **BRAND NAME:** Cisco **MODEL NO.:** CP-7920 **TESTED:** June 05 to 07, 2006 APPLICANT: HON HAI PRECISION IND. CO., LTD. HSINCHU SCIENCE PARK BRANCH OFFICE **TEST ITEM:** R&D SAMPLE **STANDARDS**: 47 CFR Part 15, Subpart C (Section 15.247), ANSI C63.4-2003 The above equipment (Model: CP-7920) has been tested by Advance Data **Technology Corporation**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report. PREPARED BY: Carol Liao, DATE: June 09, 2006 (Carol Liao) Hank Ching ACCEPTANCE: DATE: June 09, 2006 Responsible for RF **DATE:** June 09, 2006 **APPROVED BY:** (May Chen, Deputy Manager) # **2 SUMMARY OF TEST RESULTS** The EUT has been tested according to the following specifications: | APPLIED STANDARD: 47 CFR Part 15, Subpart C | | | | | | | | |---|---|--------|--|--|--|--|--| | Standard
Section | Test Type and Limit | Result | REMARK | | | | | | 15.207 | AC Power Conducted Emission | PASS | Meet the requirement of limit Minimum passing margin is –18.42 dB at 0.166 MHz | | | | | | 15.247(b) | Maximum Peak Output Power Limit: max. 30dBm | PASS | Meet the requirement of limit | | | | | | 15.247(c) | Radiated Emissions
Limit: Table 15.209 | PASS | Meet the requirement
of limit
Minimum passing
margin is –6.2dB
at 2038.00MHz | | | | | | 15.247(c) | Band Edge Measurement
Limit: 20dB less than the peak
value of fundamental frequency | PASS | Meet the requirement of limit | | | | | NOTE: This report is prepared for FCC class II permissive change. Only conducted emission, radiated emission, Maximum Peak Output Power and Band Edge Measurement were presented in this test report. # **3 GENERAL INFORMATION** # 3.1 GENERAL DESCRIPTION OF EUT | PRODUCT | Cisco Wireless IP Phone 7920 | | | | | |--------------------|--|--|--|--|--| | MODEL NO. | CP-7920 | | | | | | FCC ID | MCLU58H002 | | | | | | POWER SUPPLY | DC 5V from power adapter | | | | | | MODULATION TYPE | BPSK, QPSK, CCK, 16QAM | | | | | | RADIO TECHNOLOGY | DSSS | | | | | | TRANSFER RATE | 11/5.5/2/1Mbps | | | | | | FREQUENCY RANGE | 2412 ~ 2462MHz | | | | | | NUMBER OF CHANNEL | 11 | | | | | | CHANNEL SPACING | 5MHz | | | | | | OUTPUT POWER | 74.989mW | | | | | | ANTENNA TYPE | Dipole Antenna with 2.63dBi antenna gain | | | | | | | USB cable Phone to A: | | | | | | DATA CABLE | (Model No : CP-USBCABLE-7920SE-PHN) | | | | | | DATA CABLE | USB Cable B to A: | | | | | | | (Model No : CP-USBCABLE-7920SE-STD) | | | | | | I/O PORTS | USB port x1 | | | | | | | Basic device: | | | | | | | Charger x1 | | | | | | | Power adapter x1 | | | | | | | USB Cable x1 | | | | | | ASSOCIATED DEVICES | Battery Pack 1720mAh x1 | | | | | | ACCOUNTED DEVICES | Option device: | | | | | | | Cradle x1 | | | | | | | Battery Pack 2400mAh x1 | | | | | | | Headset x1 | | | | | | | Leather cover x1 | | | | | # NOTE: - 1. This report is prepared for FCC class II permissive change. The difference compared with the Report No.:RF920106H01 design is as the following: - ◆ Add one new adapter | Adapter of Report | Adapter of Report No.: RF920106H01 | | | | | | |-------------------|--|------------------------------------|--|--|--|--| | Brand: | PHIHONG | | | | | | | Model No.: | PSC10A-050(PA | PSC10A-050(PA) | | | | | | Input power: | AC100-240V, 0.3 | 3A, 50/60Hz | | | | | | Output power : | DC5V,2A Cable:1.8m/unshielded/without core | | | | | | | Add one new Adap | ter | | | | | | | Brand: | : PHIHONG | | | | | | | Model No.: | : PSM11R-050 | | | | | | | Input power : | AC100-240V, 0.3A, 50/60Hz | | | | | | | Output power : | DC5V, 2A | Cable:1.8m/unshielded/without core | | | | | - Convert from Non-GP to GP(Green Product). - ◆ Parts of the components (resistance, capacitance, inductance, filter) have been changed. - 2. The above EUT information was declared by the manufacturer and for more detailed features description, please refer to the manufacturer's specifications or User's Manual. # 3.2 DESCRIPTION OF TEST MODES Operated in 2400 ~ 2483.5MHz band: For 802.11b/g normal mode: Eleven channels are provided to this EUT. | Channel | Channel Frequency | | Frequency | |---------|-------------------|----|-----------| | 1 | 2412 MHz | 7 | 2442 MHz | | 2 | 2417 MHz | 8 | 2447 MHz | | 3 | 2422 MHz | 9 | 2452 MHz | | 4 | 2427 MHz | 10 | 2457 MHz | | 5 | 2432 MHz | 11 | 2462 MHz | | 6 | 2437 MHz | | | #### 3.3 TEST MODE APPLICABLITY AND TESTED CHANNEL DETAIL: | EUT configure | | Applic | able to | | Description | |---------------|----------|----------|----------|----------|-------------| | mode | PLC | RE<1G | RE≥1G | APCM | Bosonpasii | | - | V | √ | √ | √ | NA | Where PLC: Power Line Conducted Emission RE<1G RE: Radiated Emission below 1GHz RE≥1G: Radiated Emission above 1GHz APCM: Antenna Port Conducted Measurement #### **Power Line Conducted Emission Test:** Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture). Following channel(s) was (were) selected for the final test as listed below. | Mode | Available | Tested | Modulation | Modulation | Data Rate | |---------|-----------|---------|------------|------------|-----------| | | Channel | Channel | Technology | Type | (Mbps) | | 802.11b | 1 to 11 | 11 | DSSS | CCK | 11 | #### Radiated Emission Test (Below 1 GHz): Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture). Following channel(s) was (were) selected for the final test as listed below. | Mode | Available
Channel | Tested
Channel | Modulation
Technology | Modulation
Type | Data Rate
(Mbps) | |---------|----------------------|-------------------|--------------------------|--------------------|---------------------| | 802.11b | 1 to 11 | 11 | DSSS | CCK | 11 | ## Radiated Emission Test (Above 1 GHz): Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture). Following channel(s) was (were) selected for the final test as listed below. | Mode | Available
Channel | Tested
Channel | Modulation
Technology | Modulation
Type | Data
Rate
(Mbps) | |---------|----------------------|-------------------|--------------------------|--------------------|------------------------| | 802.11b | 1 to 11 | 1, 6, 11 | DSSS | CCK | 11 | Report Format Version 2.0.4 ## **Bandedge Measurement:** Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture). Following channel(s) was (were) selected for the final test as listed below. | Mode | Available | Tested | Modulation | Modulation | Data Rate | |---------|-----------|---------|------------|------------|-----------| | | Channel | Channel | Technology | Type | (Mbps) | | 802.11b | 1 to 11 | 1, 11 | DSSS | CCK | 11 | #### **Antenna Port Conducted Measurement:** Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture). Following channel(s) was (were) selected for the final test as listed below. | Mode | Available | Tested | Modulation | Modulation | Data Rate | |---------|-----------|----------|------------|------------|-----------| | | Channel | Channel | Technology | Type | (Mbps) | | 802.11b | 1 to 11 | 1, 6, 11 | DSSS | CCK | 11 | ## 3.4 GENERAL DESCRIPTION OF APPLIED STANDARDS The EUT is a Cisco Wireless IP Phone 7920. According to the specifications of the manufacturer, it must comply with the requirements of the following standards: 47 CFR Part 15, Subpart C. (15.247) ANSI C63.4: 2003 All tests have been performed and recorded as per the above standards. # 3.5 DESCRIPTION OF SUPPORT UNITS The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests. | No. | Product | Brand | Model No. | Serial No. | FCC ID | |-----|----------------------|--------|----------------------|------------|---------| | 1 | NOTEBOOK
COMPUTER | Compaq | N800C | 470048-515 | FCC DoC | | 2 | PRINTER | EPSON | LQ-300+ | DCGY047261 | FCC DoC | | 3 | Cradle | Cisco | CP-DSKCHR-7920-ST | NA | NA | | 4 | Headset | Cisco | CP-EARBUD-7920SE-STD | NA | NA | | 5 | Wireless AP | Cisco | AIR-AP1121G-A-K9 | NA | NA | | No. | Signal cable description | |-----|---| | 1 | NA | | 2 | 1.1 m braid shielded wire, terminated with DB25 connector via metallic frame, w/o core. | | 3 | NA | | 4 | NA | | 5 | NA | 12 Note: 1. All power cords of the above support units are unshielded (1.8m). # 3.6 CONFIGURATION OF SYSTEM UNDER TEST **NOTE:** 1. Support unit 5-6 were kept in the control room during the test. 2. Please refer to the photos of test configuration in Item 5 also. # **4 TEST TYPES AND RESULTS** ## 4.1 CONDUCTED EMISSION MEASUREMENT ## 4.1.1 LIMITS OF CONDUCTED EMISSION MEASUREMENT | FREQUENCY OF EMISSION (MHz) | CONDUCTE | ED LIMIT (dBµV) | |-----------------------------|----------------------|----------------------| | 0.15.0.5 | Quasi-peak | Average | | 0.15-0.5
0.5-5
5-30 | 66 to 56
56
60 | 56 to 46
46
50 | #### NOTE: - 1. The lower limit shall apply at the transition frequencies. - 2. All emanations from a class B digital device or system, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strengths specified above. ## 4.1.2 TEST INSTRUMENTS | DESCRIPTION & MANUFACTURER | MODEL NO. | SERIAL NO. | CALIBRATED
UNTIL | |---|-----------------|-------------|---------------------| | Test Receiver | ESCS 30 | 100375 | Sep. 19, 2006 | | Line-Impedance Stabilization Network(for EUT) | ENV-216 | 100071 | Nov. 10, 2006 | | ROHDE & SCHWARZ LISN | KNW-407 | 8/1395/12 | Jul. 19, 2006 | | RF Signal Cable | RG233/U | Cable_CA_02 | Dec. 10, 2006 | | Terminator(for KYORITSU) | 50 | 2 | Oct. 08, 2006 | | Software | ADT_Cond_V7.3.2 | NA | NA | NOTE: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA. - 2. The test was performed in ADT Shielded Room No. B. - 3. The VCCI Con B Registration No. is C-2193. #### 4.1.3 TEST PROCEDURES - a. The EUT/HOST was placed 0.4 meters from the conducting wall of the shielded room with EUT/HOST being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50uH of coupling impedance for the measuring instrument. - b. Both lines of the power mains connected to the EUT/HOST were checked for maximum conducted interference. - c. The frequency range from 150 kHz to 30 MHz was searched. Emission levels over 10dB under the prescribed limits could not be reported #### 4.1.4 TEST SETUP Note: 1. Support units were connected to second LISN. 2. Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units. For the actual test configuration, please refer to the related item – Photographs of the Test Configuration. #### 4.1.5 EUT OPERATING CONDITIONS - a. Connect the EUT with the support unit 1 (Notebook computer) via one USB cable and placed it on the testing table. - b. Prepared other computer system (support unit 5 and 6) to act as communication partners and placed them outside of testing area. - c. The communication partners run test program "Hyper Terminal" to enable EUT under transmission/receiving condition continuously at specific channel frequency via USB cable and wireless. - d. Notebook computer sends "H" messages to printer, and the printer prints them on paper. ## 4.1.6 TEST RESULTS | INPUT POWER (SYSTEM) | 120Vac, 60 Hz | CHANNEL | Channel 11 | |--------------------------|----------------------------|---------------|------------| | ENVIRONMENTAL CONDITIONS | 25deg. C, 65%RH,
955hPa | 6dB BANDWIDTH | 9 kHz | | TESTED BY | Eric Lee | PHASE | Line (L) | | | Freq. | Corr. | Readin | g Value | Emis
Le | | Lir | nit | Mar | gin | |----|-------|--------|--------|---------|------------|-------|-------|-------|--------|-----| | No | | Factor | [dB | (uV)] | [dB (| (uV)] | [dB | (uV)] | (dl | 3) | | | [MHz] | (dB) | Q.P. | AV. | Q.P. | AV. | Q.P. | AV. | Q.P. | AV. | | 1 | 0.166 | 9.60 | 37.16 | - | 46.76 | - | 65.18 | 55.18 | -18.42 | - | | 2 | 0.209 | 9.60 | 29.52 | - | 39.12 | - | 63.26 | 53.26 | -24.14 | - | | 3 | 0.255 | 9.60 | 32.71 | - | 42.31 | - | 61.58 | 51.58 | -19.27 | - | | 4 | 0.384 | 9.60 | 29.04 | - | 38.64 | - | 58.18 | 48.18 | -19.54 | - | | 5 | 5.008 | 9.73 | 29.16 | - | 38.89 | - | 60.00 | 50.00 | -21.11 | - | | 6 | 6.602 | 9.79 | 28.58 | - | 38.37 | - | 60.00 | 50.00 | -21.63 | _ | **REMARKS:** 1. Q.P. and AV. are abbreviations of quasi-peak and average individually. - 2. "-": The Quasi-peak reading value also meets average limit and measurement with the average detector is unnecessary. - 3. The emission levels of other frequencies were very low against the limit. - 4. Margin value = Emission level Limit value - 5. Correction factor = Insertion loss + Cable loss - 6. Emission Level = Correction Factor + Reading Value. | INPUT POWER (SYSTEM) | 120Vac, 60 Hz | CHANNEL | Channel 11 | |--------------------------|----------------------------|---------------|-------------| | ENVIRONMENTAL CONDITIONS | 25deg. C, 65%RH,
955hPa | 6dB BANDWIDTH | 9 kHz | | TESTED BY | Eric Lee | PHASE | Neutral (N) | | | Freq. | Corr. | Readin | g Value | Emis
Le | | Lir | nit | Mar | gin | |----|--------|--------|--------|---------|------------|-------|-------|-------|--------|-----| | No | | Factor | [dB | (uV)] | [dB (| (uV)] | [dB | (uV)] | (dl | В) | | | [MHz] | (dB) | Q.P. | AV. | Q.P. | AV. | Q.P. | AV. | Q.P. | AV. | | 1 | 0.166 | 9.60 | 32.42 | - | 42.02 | - | 65.18 | 55.18 | -23.16 | - | | 2 | 0.255 | 9.60 | 31.76 | - | 41.36 | - | 61.58 | 51.58 | -20.22 | - | | 3 | 0.431 | 9.60 | 26.87 | - | 36.47 | - | 57.23 | 47.23 | -20.76 | - | | 4 | 2.771 | 9.70 | 18.86 | - | 28.56 | - | 56.00 | 46.00 | -27.44 | - | | 5 | 5.469 | 9.75 | 28.32 | - | 38.07 | - | 60.00 | 50.00 | -21.93 | - | | 6 | 12.750 | 9.95 | 18.34 | - | 28.29 | - | 60.00 | 50.00 | -31.71 | - | **REMARKS:** 1. Q.P. and AV. are abbreviations of quasi-peak and average individually. - 2. "-": The Quasi-peak reading value also meets average limit and measurement with the average detector is unnecessary. - 3. The emission levels of other frequencies were very low against the limit. - 4. Margin value = Emission level Limit value - 5. Correction factor = Insertion loss + Cable loss - 6. Emission Level = Correction Factor + Reading Value. #### 4.2 Radiated Emission Measurement #### 4.2.1 LIMITS OF RADIATED EMISSION MEASUREMENT Field strength limits are at the distance of 3 meters, emissions radiated outside of the specified bands, shall be according to the general radiated limits in 15.209 as following: | Frequencies
(MHz) | Field strength
(microvolts/meter) | Measurement distance (meters) | |----------------------|--------------------------------------|-------------------------------| | 0.009-0.490 | 2400/F(kHz) | 300 | | 0.490-1.705 | 24000/F(kHz) | 30 | | 1.705-30.0 | 30 | 30 | | 30-88 | 100 | 3 | | 88-216 | 150 | 3 | | 216-960 | 200 | 3 | | Above 960 | 500 | 3 | #### NOTE: - 1. The lower limit shall apply at the transition frequencies. - 2. Emission level (dBuV/m) = 20 log Emission level (uV/m). - 3. As shown in 15.35(b), for frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation. ## 4.2.2 TEST INSTRUMENTS | DESCRIPTION & MANUFACTURER | MODEL NO. | SERIAL NO. | CALIBRATED UNTIL | |----------------------------------|------------------------|---------------------|------------------| | ADVANTEST Spectrum Analyzer | R3271A | 85060311 | July 07, 2006 | | HP Pre_Amplifier | 8449B | 3008A01922 | Oct. 02, 2006 | | ROHDE & SCHWARZ Test Receiver | ESCS30 | 100375 | Sep. 19, 2006 | | CHASE Broadband Antenna | VULB9168 | 138 | Dec. 11, 2006 | | Schwarzbeck Horn_Antenna | BBHA9120 | D124 | Dec. 27, 2006 | | Schwarzbeck Horn_Antenna | BBHA 9170 | BBHA9170153 | Jan. 05, 2007 | | SCHWARZBECK
Biconical Antenna | VHBA9123 | 459 | Jun. 26, 2006 | | SCHWARZBECK
Periodic Antenna | UPA6108 | 1148 | Jun. 26, 2006 | | RF Switches (ARNITSU) | CS-201 | 1565157 | NA | | RF CABLE (Chaintek) | SF102 | 22054-2 | Nov. 16. 2006 | | RF Cable(RICHTEC) | 9913-30M N-N
Cable | STCCAB-30M-
1GHz | Jul. 16, 2006 | | Software | ADT_Radiated_V
5.14 | NA | NA | | CHANCE MOST
Antenna Tower | AT-100 | 0203 | NA | | CHANCE MOST Turn Table | TT-100 | 0203 | NA | Note: 1. The calibration interval of the above test instruments is 12 months (36 months for Periodic Antenna)and the calibrations are traceable to NML/ROC and NIST/USA. - 2. The horn antenna, HP preamplifier (model: 8449B) and Spectrum Analyzer (model: R3271A) are used only for the measurement of emission frequency above 1GHz if - 3. The test was performed in ADT Open Site No. C. - The test was performed iff ADT Open Site No. C. The FCC Site Registration No. is 656396. The VCCI Site Registration No. is R-1626. The CANADA Site Registration No. is IC 4824A-3. The following table is for the measurement uncertainty, which is calculated as per the document CISPR 16-4. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2. | Measurement | Value | |-----------------------------------|---------| | Radiated emissions (30MHz-1GHz) | 2.98 dB | | Radiated emissions (1GHz ~18GHz) | 2.21 dB | | Radiated emissions (18GHz ~40GHz) | 1.88 dB | #### 4.2.3 TEST PROCEDURES - a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 10 meter open area test site. The table was rotated 360 degrees to determine the position of the highest radiation. - b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. - c. The antenna is a broadband antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. - d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. - e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. - f. If the emission level of the EUT in peak mode was 10 dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10 dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. #### NOTE: - 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Peak detection (PK) and Quasi-peak detection (QP) at frequency below 1GHz. - 2. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 1 MHz for Peak detection at frequency above 1GHz. - 3. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 10 Hz for Average detection (AV) at frequency above 1GHz. Report No.: RF920106H01D 21 Report Format Version 2.0.4 Reference No.: 950524H01 # 4.2.4 TEST SETUP For the actual test configuration, please refer to the related item – Photographs of the Test Configuration. # 4.2.5 EUT OPERATING CONDITIONS Same as 4.1.5. # 4.2.6 TEST RESULTS # **Below 1GHz Worst-Case Data** | INPUT POWER (SYSTEM) | 120Vac, 60 Hz | FREQUENCY
RANGE | 30-1000 MHz | |--------------------------|-----------------------------|-------------------------------|--------------------| | ENVIRONMENTAL CONDITIONS | 18 deg. C, 65%RH,
955hPa | MODE | Channel 11 | | TESTED BY | Sky Liao | DETECTOR FUNCTION & BANDWIDTH | Quasi-Peak, 120kHz | | | ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M | | | | | | | | | | |-----|---|-------------------------------|-------------------|----------------|--------------------------|----------------------------|------------------------|--------------------------------|--|--| | No. | Freq.
(MHz) | Emission
Level
(dBuV/m) | Limit
(dBuV/m) | Margin
(dB) | Antenna
Height
(m) | Table
Angle
(Degree) | Raw
Value
(dBuV) | Correction
Factor
(dB/m) | | | | 1 | 250.02 | 21.10 QP | 46.00 | -24.90 | 1.00 H | 84 | 7.40 | 13.80 | | | | 2 | 352.01 | 26.10 QP | 46.00 | -19.90 | 1.02 H | 252 | 8.70 | 17.40 | | | | 3 | 396.00 | 25.60 QP | 46.00 | -20.40 | 1.00 H | 105 | 6.70 | 18.90 | | | | 4 | 440.00 | 24.80 QP | 46.00 | -21.20 | 1.05 H | 26 | 4.60 | 20.20 | | | | 5 | 528.00 | 28.60 QP | 46.00 | -17.40 | 1.00 H | 165 | 6.00 | 22.60 | | | | 6 | 572.00 | 26.60 QP | 46.00 | -19.40 | 1.82 H | 96 | 2.90 | 23.80 | | | | 7 | 746.99 | 29.60 QP | 46.00 | -16.40 | 1.26 H | 45 | 2.40 | 27.30 | | | | 8 | 936.01 | 30.10 QP | 46.00 | -15.90 | 1.06 H | 148 | 0.50 | 29.60 | | | | | ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M | | | | | | | | | | |-----|---|----------|------------|--------|---------|----------|--------|------------|--|--| | | Freg. | Emission | Limit | Margin | Antenna | Table | Raw | Correction | | | | No. | · • | Level | (dBuV/m) | _ | Height | Angle | Value | Factor | | | | | (MHz) | (dBuV/m) | (ubuv/III) | (dB) | (m) | (Degree) | (dBuV) | (dB/m) | | | | 1 | 220.00 | 23.60 QP | 46.00 | -22.40 | 1.00 V | 296 | 11.10 | 12.50 | | | | 2 | 250.00 | 26.50 QP | 46.00 | -19.50 | 1.00 V | 2 | 12.70 | 13.80 | | | | 3 | 396.25 | 23.50 QP | 46.00 | -22.50 | 1.00 V | 25 | 4.60 | 18.90 | | | | 4 | 440.00 | 24.20 QP | 46.00 | -21.80 | 1.05 V | 40 | 4.00 | 20.20 | | | | 5 | 483.99 | 24.80 QP | 46.00 | -21.20 | 1.08 V | 242 | 3.40 | 21.40 | | | | 6 | 572.01 | 27.60 QP | 46.00 | -18.40 | 1.16 V | 36 | 3.80 | 23.80 | | | | 7 | 748.00 | 28.50 QP | 46.00 | -17.50 | 1.26 V | 205 | 1.20 | 27.30 | | | | 8 | 835.99 | 26.60 QP | 46.00 | -19.40 | 1.35 V | 72 | -1.60 | 28.20 | | | - 1. Emission level(dBuV/m)=Raw Value(dBuV) + Correction Factor(dB/m) - 2. Correction Factor(dB/m) = Antenna Factor (dB/m) + Cable Factor (dB) - 3. The other emission levels were very low against the limit. - 4. Margin value = Emission level Limit value. # 802.11b DSSS modulation | MODE | Channel 1 | FREQUENCY
RANGE | 1000~25000MHz | |--------------------------|-----------------------------|-------------------------------|------------------------------------| | INPUT POWER (SYSTEM) | 120Vac, 60 Hz | DETECTOR FUNCTION & BANDWIDTH | Peak (PK)
Average (AV)
1 MHz | | ENVIRONMENTAL CONDITIONS | 18 deg. C, 65%RH,
955hPa | TESTED BY | Sky Liao | | | ANTENN | A POLARIT | Y & TES | T DIST | ANCE: H | ORIZON | ITAL AT 3 | ВМ | |-----|-----------|-----------|------------|--------|---------|----------|-----------|------------| | | Freg. | Emission | Limit | Margin | Antenna | Table | Raw | Correction | | No. | (MHz) | Level | (dBuV/m) | (dB) | Height | Angle | Value | Factor | | | (1711 12) | (dBuV/m) | (dbdv/iii) | (db) | (m) | (Degree) | (dBuV) | (dB/m) | | 1 | 2038.00 | 45.80 PK | 74.00 | -28.20 | 1.00 H | 4 | 17.40 | 28.40 | | 1 | 2038.00 | 43.40 AV | 54.00 | -10.60 | 1.00 H | 4 | 15.00 | 28.40 | | 2 | 2390.00 | 47.00 PK | 74.00 | -27.00 | 1.33 H | 10 | 17.20 | 29.80 | | 2 | 2390.00 | 41.60 AV | 54.00 | -12.40 | 1.33 H | 10 | 11.80 | 29.80 | | 3 | *2412.00 | 102.80 PK | | | 1.33 H | 10 | 72.90 | 29.90 | | 3 | *2412.00 | 99.70 AV | | | 1.33 H | 10 | 69.80 | 29.90 | | 4 | 4076.00 | 42.90 PK | 74.00 | -31.10 | 1.24 H | 266 | 10.00 | 33.00 | | 4 | 4076.00 | 31.20 AV | 54.00 | -22.80 | 1.24 H | 266 | -1.70 | 33.00 | | 5 | 4824.00 | 50.40 PK | 74.00 | -23.60 | 1.02 H | 109 | 15.40 | 35.00 | | 5 | 4824.00 | 46.10 AV | 54.00 | -7.90 | 1.02 H | 109 | 11.10 | 35.00 | | 6 | 7236.00 | 51.00 PK | 74.00 | -23.00 | 1.00 H | 351 | 9.80 | 41.10 | | 6 | 7236.00 | 37.60 AV | 54.00 | -16.40 | 1.00 H | 351 | -3.60 | 41.10 | | | ANTEN | NA DOLAD | ITV 0 T | CT DIC | TANCE. | VEDTIC | AL AT 2 F | | |-----|----------|-----------|------------|---------|---------|----------|-----------|------------| | | ANIEN | NA POLAR | IIY&II | -21 DI2 | I ANCE: | VERTIC | AL AI 31 | VI | | | Freq. | Emission | Limit | Margin | Antenna | Table | Raw | Correction | | No. | (MHz) | Level | (dBuV/m) | (dB) | Height | Angle | Value | Factor | | | (IVITZ) | (dBuV/m) | (ubuv/III) | (ub) | (m) | (Degree) | (dBuV) | (dB/m) | | 1 | 2038.00 | 49.80 PK | 74.00 | -24.20 | 1.10 V | 338 | 21.40 | 28.40 | | 1 | 2038.00 | 47.80 AV | 54.00 | -6.20 | 1.10 V | 338 | 19.40 | 28.40 | | 2 | 2390.00 | 52.20 PK | 74.00 | -21.80 | 1.20 V | 28 | 22.40 | 29.80 | | 2 | 2390.00 | 46.20 AV | 54.00 | -7.80 | 1.20 V | 28 | 16.40 | 29.80 | | 3 | *2412.00 | 108.00 PK | | | 1.20 V | 28 | 78.10 | 29.90 | | 3 | *2412.00 | 104.30 AV | | | 1.20 V | 28 | 74.40 | 29.90 | | 4 | 4076.00 | 43.90 PK | 74.00 | -30.10 | 1.19 V | 222 | 11.00 | 33.00 | | 4 | 4076.00 | 32.20 AV | 54.00 | -21.80 | 1.19 V | 222 | -0.70 | 33.00 | | 5 | 4824.00 | 50.40 PK | 74.00 | -23.60 | 1.21 V | 354 | 15.40 | 35.00 | | 5 | 4824.00 | 45.80 AV | 54.00 | -8.20 | 1.21 V | 354 | 10.80 | 35.00 | | 6 | 7236.00 | 51.40 PK | 74.00 | -22.60 | 1.20 V | 15 | 10.20 | 41.10 | | 6 | 7236.00 | 37.90 AV | 54.00 | -16.10 | 1.20 V | 15 | -3.30 | 41.10 | - Emission level(dBuV/m)=Raw Value(dBuV) + Correction Factor(dB/m) Correction Factor(dB/m) = Antenna Factor (dB/m) + Cable Factor (dB) The other emission levels were very low against the limit. Margin value = Emission level Limit value. The limit value is defined as per 15.247 " * " : Fundamental frequency | MODE | Channel 6 | FREQUENCY
RANGE | 1000~25000MHz | |--------------------------|-----------------------------|-------------------------------|------------------------------------| | INPUT POWER (SYSTEM) | 120Vac, 60 Hz | DETECTOR FUNCTION & BANDWIDTH | Peak (PK)
Average (AV)
1 MHz | | ENVIRONMENTAL CONDITIONS | 18 deg. C, 65%RH,
955hPa | TESTED BY | Sky Liao | | | ANTENN | A POLARIT | Y & TES | T DIST | ANCE: H | ORIZON | ITAL AT 3 | ВМ | |-----|----------------|-------------------------------|-------------------|----------------|--------------------------|----------------------------|------------------------|--------------------------------| | No. | Freq.
(MHz) | Emission
Level
(dBuV/m) | Limit
(dBuV/m) | Margin
(dB) | Antenna
Height
(m) | Table
Angle
(Degree) | Raw
Value
(dBuV) | Correction
Factor
(dB/m) | | 1 | *2437.00 | 102.60 PK | | | 1.30 H | 12 | 72.60 | 30.00 | | 1 | *2437.00 | 99.50 AV | | | 1.30 H | 12 | 69.50 | 30.00 | | 2 | 4126.00 | 43.20 PK | 74.00 | -30.80 | 1.20 H | 252 | 10.10 | 33.10 | | 2 | 4126.00 | 31.50 AV | 54.00 | -22.50 | 1.20 H | 252 | -1.60 | 33.10 | | 3 | 4876.00 | 44.30 PK | 74.00 | -29.70 | 1.05 H | 115 | 9.10 | 35.20 | | 3 | 4876.00 | 39.30 AV | 54.00 | -14.70 | 1.05 H | 115 | 4.10 | 35.20 | | 4 | 7311.00 | 50.90 PK | 74.00 | -23.10 | 1.02 H | 332 | 9.50 | 41.40 | | 4 | 7311.00 | 38.20 AV | 54.00 | -15.80 | 1.02 H | 332 | -3.20 | 41.40 | | | ANTEN | NA POLAR | ITY & TE | ST DIS | TANCE: | VERTIC | AL AT 3 N | Л | |-----|----------------|-------------------------------|-------------------|----------------|--------------------------|----------------------------|------------------------|--------------------------------| | No. | Freq.
(MHz) | Emission
Level
(dBuV/m) | Limit
(dBuV/m) | Margin
(dB) | Antenna
Height
(m) | Table
Angle
(Degree) | Raw
Value
(dBuV) | Correction
Factor
(dB/m) | | 1 | *2437.00 | 108.00 PK | | | 1.26 V | 42 | 78.00 | 30.00 | | 1 | *2437.00 | 104.20 AV | | | 1.26 V | 42 | 74.20 | 30.00 | | 2 | 4126.00 | 43.70 PK | 74.00 | -30.30 | 1.32 V | 220 | 10.60 | 33.10 | | 2 | 4126.00 | 32.20 AV | 54.00 | -21.80 | 1.32 V | 220 | -0.90 | 33.10 | | 3 | 4876.00 | 43.90 PK | 74.00 | -30.10 | 1.15 V | 282 | 8.70 | 35.20 | | 3 | 4876.00 | 39.00 AV | 54.00 | -15.00 | 1.15 V | 282 | 3.80 | 35.20 | | 4 | 7311.00 | 51.20 PK | 74.00 | -22.80 | 1.12 V | 62 | 9.80 | 41.40 | | 4 | 7311.00 | 38.10 AV | 54.00 | -15.90 | 1.12 V | 62 | -3.30 | 41.40 | - 1. Emission level(dBuV/m)=Raw Value(dBuV) + Correction Factor(dB/m) - 2. Correction Factor(dB/m) = Antenna Factor (dB/m) + Cable Factor (dB) - 3. The other emission levels were very low against the limit. - 4. Margin value = Emission level Limit value. - 5. The limit value is defined as per 15.247 - 6. " * ": Fundamental frequency | MODE | Channel 11 | FREQUENCY
RANGE | 1000~25000MHz | |--------------------------|-----------------------------|-------------------------------|------------------------------------| | INPUT POWER
(SYSTEM) | 120Vac, 60 Hz | DETECTOR FUNCTION & BANDWIDTH | Peak (PK)
Average (AV)
1 MHz | | ENVIRONMENTAL CONDITIONS | 18 deg. C, 65%RH,
955hPa | TESTED BY | Sky Liao | | | ANTENN | A POLARIT | Y & TES | T DIST | ANCE: H | ORIZON | ITAL AT 3 | ВМ | |-----|----------------|-------------------------------|-------------------|----------------|--------------------------|----------------------------|------------------------|--------------------------------| | No. | Freq.
(MHz) | Emission
Level
(dBuV/m) | Limit
(dBuV/m) | Margin
(dB) | Antenna
Height
(m) | Table
Angle
(Degree) | Raw
Value
(dBuV) | Correction
Factor
(dB/m) | | 1 | 2088.00 | 45.60 PK | 74.00 | -28.40 | 1.00 H | 4 | 17.00 | 28.60 | | 1 | 2088.00 | 43.10 AV | 54.00 | -10.90 | 1.00 H | 4 | 14.50 | 28.60 | | 2 | *2462.00 | 102.60 PK | | | 1.28 H | 10 | 72.50 | 30.10 | | 2 | *2462.00 | 98.90 AV | | | 1.28 H | 10 | 68.80 | 30.10 | | 3 | 2483.50 | 46.10 PK | 74.00 | -27.90 | 1.28 H | 10 | 15.90 | 30.20 | | 3 | 2483.50 | 38.60 AV | 54.00 | -15.40 | 1.28 H | 10 | 8.40 | 30.20 | | 4 | 4176.00 | 43.40 PK | 74.00 | -30.60 | 1.22 H | 260 | 10.20 | 33.20 | | 4 | 4176.00 | 30.00 AV | 54.00 | -24.00 | 1.22 H | 260 | -3.20 | 33.20 | | 5 | 4924.00 | 44.20 PK | 74.00 | -29.80 | 1.38 H | 133 | 8.80 | 35.40 | | 5 | 4924.00 | 33.20 AV | 54.00 | -20.80 | 1.38 H | 133 | -2.20 | 35.40 | | 6 | 7386.00 | 51.60 PK | 74.00 | -22.40 | 1.00 H | 355 | 10.00 | 41.60 | | 6 | 7386.00 | 38.20 AV | 54.00 | -15.80 | 1.00 H | 355 | -3.40 | 41.60 | | | ANTEN | NA POLAR | ITY & TE | ST DIS | TANCE: | VERTIC | AL AT 3 N | И | |-----|----------|-----------|-------------|--------|---------|----------|-----------|------------| | | Freq. | Emission | Limit | Margin | Antenna | Table | Raw | Correction | | No. | (MHz) | Level | (dBuV/m) | (dB) | Height | Angle | Value | Factor | | | (IVIDZ) | (dBuV/m) | (dDd V/III) | (dD) | (m) | (Degree) | (dBuV) | (dB/m) | | 1 | 2088.00 | 49.40 PK | 74.00 | -24.60 | 1.14 V | 320 | 20.80 | 28.60 | | 1 | 2088.00 | 47.20 AV | 54.00 | -6.80 | 1.14 V | 320 | 18.60 | 28.60 | | 2 | *2462.00 | 107.80 PK | | | 1.24 V | 314 | 77.70 | 30.10 | | 2 | *2462.00 | 104.10 AV | | | 1.24 V | 314 | 74.00 | 30.10 | | 3 | 2483.50 | 51.30 PK | 74.00 | -22.70 | 1.24 V | 314 | 21.10 | 30.20 | | 3 | 2483.50 | 43.80 AV | 54.00 | -10.20 | 1.24 V | 314 | 13.60 | 30.20 | | 4 | 4176.00 | 46.40 PK | 74.00 | -27.60 | 1.04 V | 192 | 13.20 | 33.20 | | 4 | 4176.00 | 33.90 AV | 54.00 | -20.10 | 1.04 V | 192 | 0.70 | 33.20 | | 5 | 4924.00 | 44.20 PK | 74.00 | -29.80 | 1.27 V | 153 | 8.80 | 35.40 | | 5 | 4924.00 | 32.30 AV | 54.00 | -21.70 | 1.27 V | 153 | -3.10 | 35.40 | | 6 | 7386.00 | 51.70 PK | 74.00 | -22.30 | 1.21 V | 16 | 10.10 | 41.60 | | 6 | 7386.00 | 38.30 AV | 54.00 | -15.70 | 1.21 V | 16 | -3.30 | 41.60 | - 1. Emission level(dBuV/m)=Raw Value(dBuV) + Correction Factor(dB/m) 2. Correction Factor(dB/m) = Antenna Factor (dB/m) + Cable Factor (dB) 3. The other emission levels were very low against the limit. 4. Margin value = Emission level Limit value. 5. The limit value is defined as per 15.247 6. " * " : Fundamental frequency # 4.3 MAXIMUM PEAK OUTPUT POWER # 4.3.1 LIMITS OF MAXIMUM PEAK OUTPUT POWER MEASUREMENT The Maximum Peak Output Power Measurement is 30dBm. # 4.3.2 TEST INSTRUMENTS | Description & Manufacturer | Model No. | Serial No. | Calibrated Until | |----------------------------|-----------|------------|------------------| | R&S SPECTRUM ANALYZER | FSP40 | 100036 | Nov. 23, 2006 | | Agilent SIGNAL GENERATOR | E8257C | MY43320668 | Jun. 15, 2006 | | TEKTRONIX OSCILLOSCOPE | TDS380 | B016335 | Jun. 22, 2006 | | NARDA DETECTOR | 4503A | FSCM99899 | NA | #### NOTE: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA. # 4.3.3 TEST PROCEDURES - 1. A detector was used on the output port of the EUT. An oscilloscope was used to read the peak response of the detector. - 2. Replaced the EUT by the signal generator. The center frequency of the S.G was adjusted to the center frequency of the measured channel. - 3. Adjusted the power to have the same peak reading on oscilloscope. Record the power level. #### 4.3.4 TEST SETUP ## 4.3.5 EUT OPERATING CONDITIONS Same as Item 4.3.5 Report No.: RF920106H01D Reference No.: 950524H01 # 4.3.6 TEST RESULTS # 802.11b DSSS modulation | INPUT POWER (SYSTEM) | 120Vac, 60 Hz | ENVIRONMENTAL | 22 deg. C, 68%RH, | | |----------------------|---------------|---------------|-------------------|--| | | | CONDITIONS | 955hPa | | | TESTED BY | Sky Liao | | | | | CHANNEL | CHANNEL
FREQUENCY
(MHz) | PEAK POWER
OUTPUT
(mW) | PEAK POWER
OUTPUT
(dBm) | PEAK POWER
LIMIT (dBm) | PASS/FAIL | |---------|-------------------------------|------------------------------|-------------------------------|---------------------------|-----------| | 1 | 2412 | 71.121 | 18.52 | 30 | PASS | | 6 | 2437 | 74.989 | 18.75 | 30 | PASS | | 11 | 2462 | 69.984 | 18.45 | 30 | PASS | #### 4.4 BAND EDGES MEASUREMENT ## 4.4.1 LIMITS OF BAND EDGES MEASUREMENT Below –20dB of the highest emission level of operating band (in 1MHz Resolution Bandwidth). #### 4.4.2 TEST INSTRUMENTS | Description & Manufacturer | Model No. | Serial No. | Calibrated Until | |----------------------------|-----------|------------|------------------| | R&S SPECTRUM ANALYZER | FSP40 | 100036 | Nov. 23, 2006 | #### NOTE: - 1.The measurement uncertainty is less than +/- 2.6dB, which is calculated as per the NAMAS document NIS81. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2. - 2. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA. ## 4.4.3 TEST PROCEDURE The transmitter output was connected to the spectrum analyzer via a low lose cable. Set RBW spectrum analyzer to 1 MHz and set VBW spectrum analyzer to 10 Hz with suitable frequency span including 100 MHz bandwidth from band edge. The band edges was measured and recorded. The spectrum plots (Peak RBW=VBW=100kHz; Average RBW=1MHz, VBW=10Hz) are attached on the following pages. # 4.4.4 EUT OPERATING CONDITION Same as Item 4.3.5 ## 4.4.5 TEST RESULTS The spectrum plots are attached on the following page. D1 line indicates the highest level, D2 line indicates the 20dB offset below D1. It shows compliance with the requirement in part 15.247(C). Note - The delta method is only used up to 2 MHz away from the restricted bandage, The radiated emissions which located in other restricted frequency band, the result, please refer to 4.2. ## NOTE (Peak): The band edge emission plot of DSSS technique on the following first page show 55.78dB delta between carrier maximum power and local maximum emission in restrict band (2.3900GHz). The emission of carrier strength list in the test result of channel 1 at the item 4.2 is 108.0dBuV/m, so the maximum field strength in restrict band is 108.0-55.78=52.22dBuV/m which is under 74 dBuV/m limit. The band edge emission plot of DSSS technique on the following first page shows 56.5dB delta between carrier maximum power and local maximum emission in restrict band (2.4835GHz). The emission of carrier strength list in the test result of channel 11 at the item 4.2 is 107.8dBuV/m, so the maximum field strength in restrict band is 107.8-56.5=51.3dBuV/m which is under 74 dBuV/m limit. #### **NOTE** (Average): The band edge emission plot of DSSS technique on the following second page shows 58.13dB delta between carrier maximum power and local maximum emission in restrict band (2.3900GHz). The emission of carrier strength list in the test result of channel 1 at the item 4.2 is 104.3dBuV/m, so the maximum field strength in restrict band is 104.3-58.13=46.17dBuV/m which is under 54 dBuV/m limit. The band edge emission plot of DSSS technique on the following second page shows 60.32dB delta between carrier maximum power and local maximum emission in restrict band (2.4835GHz). The emission of carrier strength list in the test result of channel 11 at the item 4.2 is 104.1dBuV/m, so the maximum field strength in restrict band is 104.1-60.32=43.78dBuV/m which is under 54 dBuV/m limit. #### CH1 ## **CH11** #### CH1 #### **CH11** #### CH1 #### CH11 #### 4.5 ANTENNA REQUIREMENT ## 4.5.1 STANDARD APPLICABLE For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. And according to FCC 47 CFR Section 15.247 (b), if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi. ## 4.5.2 ANTENNA CONNECTED CONSTRUCTION The antenna used in this product is Dipole Antenna with Hirose connector. The maximum Gain of the antenna is 2.63dBi. # 5 PHOTOGRAPHS OF THE TEST CONFIGURATION CONDUCTED EMISSION TEST Report No.: RF920106H01D Reference No.: 950524H01 # **RADIATED EMISSION TEST** # 6 INFORMATION ON THE TESTING LABORATORIES We, ADT Corp., were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are accredited and approved by the following approval agencies according to ISO/IEC 17025: USA FCC, UL, A2LA Germany TUV Rheinland Japan VCCI Norway NEMKO Canada INDUSTRY CANADA, CSA R.O.C. CNLA, BSMI, DGT **Netherlands** Telefication **Singapore** PSB, GOST-ASIA (MOU) Russia CERTIS (MOU) Copies of accreditation certificates of our laboratories obtained from approval agencies can be downloaded from our web site: www.adt.com.tw/index.5/phtml. If you have any comments, please feel free to contact us at the following: Linko EMC/RF Lab: Hsin Chu EMC/RF Lab: Tel: 886-2-26052180 Tel: 886-3-5935343 Fax: 886-2-26052943 Fax: 886-3-5935342 ## Hwa Ya EMC/RF/Safety/Telecom Lab: Tel: 886-3-3183232 Fax: 886-3-3185050 Email: service@adt.com.tw Web Site: www.adt.com.tw The address and road map of all our labs can be found in our web site also. # **APPENDIX-A** # MODIFICATIONS RECORDERS FOR ENGINEERING CHANGES TO THE EUT BY THE LAB No any modifications are made to the EUT by the lab during the test.