

Test Report Prepared By:

Electronics Test Centre 27 East Lake Hill Airdrie, Alberta Canada T4A 2K3

<u>sales@etc-mpbtech.com</u> <u>http://www.etc-mpb.com</u>

Telephone: 1-403-912-0037

ETC Report #: t29e24a309_DSS Release 1

Report date: February 19, 2025

EMC testing of the Tektelic Communication Inc. CHICKADEE in accordance with FCC Part 15.247 and ANSI C63.10: 2013 as referenced by FCC OET KDB 558074 D01 15.247 Meas Guidance v05r02.

FCC ID: 2ALEPT0008814

Test Dates: 2024-12-04 to 2024-12-06

Test Personnel: Brendan Van Hee, Imran Akram

Prepared for:

7657 10th Street NE Calgary, Alberta Canada T2E 8X2

Telephone: 1-403-338-6910

Tektelic Communication Inc.

Imran Akram iakram@etc-mpbtech.com EMC Technologist Electronics Test Centre (Airdrie)

Marc Rousseau marc.rousseau@mpbc.ca QA Manager Electronics Test Centre (Airdrie)

REVISION RECORD

ISSUE	DATE	AUTHOR	REVISIONS
DRAFT 1	2024-12-09	I. Akram	Initial draft submitted for review.
DRAFT 2	2025-02-18	I. Akram	Added EUT Serial# in Section 1.3
Release 1	2025-02-19	I. Akram	Sign Off

TABLE OF CONTENTS

1.0	INTR	ODUCTION	5
	1.1	Scope	5
	1.2	Applicant	5
	1.3	Test Sample Description	5
	1.4	General Test Conditions	5
	1.5	Reference Standards	6
	1.6	Test Methodology	
		 1.6.1 Variations in Test Methodology 1.6.2 Test Sample Verification, Configuration & Modifications 	6
		1.6.3 Uncertainty of Measurement:	
2.0	TEST	CONCLUSION	7
	2.1	AC Main Power Line Conducted Emissions: N/A	8
	2.2	Occupied Bandwidth	9
		2.2.1 Test Guidance: ANSI C63.10-2013, Clause 6.9.2 & 6.9.3/ FCC OET KDB 558074 2.2.2 Deviations From The Standard:	
		2.2.3 Test Equipment	9
		2.2.4 Test Sample Verification, Configuration & Modifications2.2.5 Channel Occupied Bandwidth Data:	
	2.3	Max Average Output Power	
		2.3.1 Test Guidance: ANSI C63.10-2013, Clause 11.9.2.2.2 Clause 7.8.5 / FCC OET k	
		558074 12 2.3.2 Deviations From The Standard:	.13
		2.3.3 Test Equipment	.13
		2.3.4 Test Sample Verification, Configuration & Modifications2.3.5 Max Output Power Data: DSS	
	2.4	Power Spectral Density	.16
		 2.4.1 Test Guidance: ANSI C63.10-2013, Clause 11.10.3 / FCC OET KDB 558074 2.4.2 Deviations From The Standard: 	
		2.4.3 Test Equipment	.16
		2.4.4 Test Sample Verification, Configuration & Modifications2.4.5 Average PSD Data	
	2.5	Band Edge Attenuation	
	2.0	2.5.1 Test Guidance: ANSI C63.10-2013 Clause 6.10.4 & 7.8.6, 6.10.6 / FCC OET KD 558074 19	В
		2.5.2 Deviations From The Standard: 2.5.3 Test Equipment	
		2.5.4 Test Sample Verification, Configuration & Modifications	.20
		2.5.5 Band Edge Data	
	2.6	Conducted Spurious Emissions (Non- Restricted Band) 2.6.1 Test Guidance: ANSI C63.10-2013, Clause 6.7, 7.8.8 / 558074 D01 15.247	.23
		Measurement Guidance v05r02	
		2.6.2 Deviations From The Standard:2.6.3 Test Equipment	
		2.6.4 Test Sample Verification, Configuration & Modifications	.24
		2.6.5 Conducted Emissions Data:	
	2.7	Channel Separation (Hybrid Mode) 2.7.1 Test Guidance: ANSI 63.10 Clause 7.8.2 / 558074 D01 15.247 Measurement Guidance v05r02	
		2.7.2 Deviations From The Standard:	
		 2.7.3 Test Equipment 2.7.4 Test Sample Verification, Configuration & Modifications 	
		2.7.4 Test Sample Vehication, Comgunation & Modifications 2.7.5 Channel Separation Data:	
	2.8	Time of Occupancy (Hybrid Mode)	.30

		2.8.1 Guidanc 2.8.2 2.8.3 2.8.4 2.8.5	Test Guidance: ANSI 63.10 Clause 7.8.4 / 558074 D01 15.247 Measurement e v05r02 Deviations From The Standard: Test Equipment Test Sample Verification, Configuration & Modifications Dwell Time Data:	30 30 31
	2.9	EUT Pos	sitioning Assessment	33
	2.10	Radiated 2.10.1 2.10.2 2.10.3 2.10.4 2.10.5	d Spurious Emissions within restricted band Test Guidance: ANSI C63.10-2013, Clause 13.4.2 Deviations From The Standard: Test Equipment Test Sample Verification, Configuration & Modifications Radiated Emissions Data: Hybrid (125 KHz)	35 35 35 36
	2.11	2.11.1 2.11.2 2.11.3 2.11.4 2.11.5	d Emissions (RX Mode) Test Guidance: Deviations From The Standard: Test Equipment Test Sample Verification, Configuration & Modifications Radiated Emissions Data maximization:	41 41 42 42 43
	2.12	RF Expo	sure	46
3.0	TEST	FACILIT	Y	47
	3.1	Location		47
	3.2	Groundi	ng Plan	47
	3.3	Power S	upply	47
Appendi	x A – T	est Setu	o Block Diagram	48

1.0 INTRODUCTION

1.1 Scope

The purpose of this report is to present the results of compliance testing performed in accordance with FCC Part 15.247 and ANSI C63.10-2013 to gain FCC Authorization for Low-Power License-Exempt transmitters. All test procedures, limits, criteria, and results described in this report apply only to the Tektelic Communication Inc. CHICKADEE test sample, referred to herein as the EUT (Equipment Under Test).

This report does not imply product endorsement by the Electronics Test Centre, A2LA, nor any Canadian Government agency.

1.2 Applicant

This test report has been prepared for Tektelic Communication Inc., located in Calgary, Alberta, Canada.

1.3 Test Sample Description

As provided to ETC (Airdrie) by Tektelic Communication Inc.:

Product N	lame:	CHICKADEE			
	Frequency Band	902 – 928 MHz			
LoRa Radio	Frequency Range	902.3 – 914.9 MHz			
	Mode of Operation	Hybrid 125KHz			
	Max Transmit Power (Conducted)	12.55 dBm (0.0180 W)			
Associated LoRa Antennas		RUN mXTENDTM (Model#NN02-224), Radiation Pattern: Omnidirectional, Polarization: Linear, Max Gain: 2.2 dBi			
Model# (T-Code)		T0008534			
Serial#		2432T0003			
Power su	oply:	Internal Battery			

Note: All three channels (LOW, MID, High) on each axis (X, Y & Z) are analyzed to determine the worse channel. Full emission scan is performed on worse channel at worse axis for each radio. As per manufacture BLE and LoRa radios are not transmitting simultaneously, so colocation testing not required. Both variant T0008534 and T0009142 use same circuit board and enclosure except T0009142 has custom cradle external to enclosure to connect DC power supply for battery charging. Detail given in Family exhibit.

1.4 General Test Conditions

The EUT was set up and exercised using the configurations, modes of operation and arrangements defined in this report only. All inputs and outputs to and from other equipment associated with the EUT were adequately simulated. In order to meet the operational requirements during testing as per KDB 558074 D01 15.247 Meas Guidance v05r02 and ANSI C63.10-2013 clause 5.11 the device was programmed with a special firmware to transmit at a continuous transmit mode (100% duty cycle). Special firmware is strictly for testing purpose only and not available to end user. This special test case represents the worst-case duty cycle. For antenna port conducted emission SMA connector is soldered to the circuit board at the output of the radio to provide direct access to the radio output to connect the spectrum analyzer.

The environmental conditions are recorded during each test, and are reported in the relevant sections of this document.

1.5 Reference Standards

Standards	Description
FCC, title 47 CFR § 15.247	Operation within the bands 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz.
FCC, title 47 CFR § 15.207	Conducted limits for an intentional radiator that is designed to be connected to the public utility (AC) power line.
FCC, title 47 CFR § 15.107	Conducted limits for equipment that is designed to be connected to the public utility (AC) power line.
FCC, title 47 CFR § 15.209	Radiated emission limits; general requirements
FCC, title 47 CFR § 15.109	Radiated emission limits; from unintentional radiators digital devices.
ANSI C63.10-2013	American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices
ANSI C63.4-2014	American National Standard for Methods of Measurement of Radio – Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the range of 9 KHz to 40 GHz
558074 D01 15.247 Meas Guidance v05r02	Guidance For Compliance Measurements On Digital Transmission System, Frequency Hopping Spread Spectrum System, And Hybrid System Devices Operating Under Section 15.247 Of The FCC Rules

1.6 Test Methodology

Test methods are specified in the Basic Standard as referenced and/or modified by the Product Standard in the part of Section 2 of this report associated with each particular test case. EUT tested for RX mode to cover FCC Part 15 subpart B (digital Circuitry).

1.6.1 Variations in Test Methodology

Any variance in methodology or deviation from the reference Standard is documented in the part of Section 2 of this report associated with each particular Test Case.

1.6.2 Test Sample Verification, Configuration & Modifications

EUT setup, configuration, protocols for operation and monitoring of EUT functions, and any modifications performed in order to meet the requirements, are detailed in each Test Case of Section 2 of this report.

1.6.3 Uncertainty of Measurement:

The factors contributing to measurement uncertainty are identified and calculated in accordance with CISPR 16-4-2: 2011.

This uncertainty estimate represents an expended uncertainty expressed at approximately 95% confidence using a coverage factor of k = 2.

Test Method	Uncertainty
Radiated Emissions Level (9 KHz – 1 GHz)	±5.8 dB
Radiated Emissions Level (1 GHz – 18 GHz)	±4.9 dB
Radiated Emissions Level (18 GHz – 26.5 GHz)	±5.0 dB
Conducted Emissions Level (150 KHz – 30 MHz)	±3.0 dB
Uncertainty Conducted Power level	±0.5 dB
Uncertainty Conducted Spurious emission level	±0.6 dB
Uncertainty for Bandwidth test	±1.5 %

2.0 TEST CONCLUSION

STATEMENT OF COMPLIANCE

The customer equipment referred to in this report was found to comply with the requirements, as summarized below.

The EUT was subjected to the following tests. Compliance status is reported as **Compliant** or **Non-compliant**. **N/A** indicates the test was Not Applicable to the EUT.

The measurement uncertainty is not accounted for determination of the statement of compliance. The statement of compliance is based only on the measurement value recorded.

Note: Maintenance of compliance is the responsibility of the Manufacturer. Any modifications to the product should be assessed to determine their potential impact on the compliance status of the EUT with respect to the standards detailed in this test report.

The following table summarizes the tests performed in terms of the specification, class or performance criterion applied, and the EUT modification state.

Test Case	Test Type	Specification	Test Sample	Modifications	Config.	Result
2.1	AC Main Conducted Emissions	15.207 / 15.109	CHICKADEE	none	see § 2.1	N/A
2.2	Occupied Bandwidth	15.247(a)(1) 15.247(a)(2)	CHICKADEE	none	see § 2.2	Compliant
2.3	Max Output Average Power	15.247(b,2,3)	CHICKADEE	none	see § 2.3	Compliant
2.4	Power Spectral Density	15.247(e) 15.247(f)	CHICKADEE	none	see § 2.4	Compliant
2.5	Band Edge	15.247(d)	CHICKADEE	none	see § 2.5	Compliant
2.6	Conducted Spurious Emission (Non-Restricted Band Operation)	15.247(d)	CHICKADEE	none	see § 2.6	Compliant
2.7	Minimum channel separation	15.247(a)(1)	CHICKADEE	none	see § 2.7	Compliant
2.8	Average time of Occupancy for hybrid System	15.247(f)	CHICKADEE	none	see § 2.8	Compliant
2.9	EUT Position	ANSI C63.4	CHICKADEE	none	see § 2.9	X-Axis
2.10	Radiated Spurious Emission (Restricted Band)	15.205, 15.209 15.247(d)	CHICKADEE	none	see § 2.10	Compliant
2.11	Radiated Emission	15.109	CHICKADEE	none	see § 2.11	Compliant
2.12	RF Exposure	15.247(i)	CHICKADEE	none	see § 2.12	Exempt

Refer to the test data for applicable test conditions.

connection to AC main.

2.1 AC Main Power Line Conducted Emissions: N/A

Test Lab: Electronics Test Centre, Airdrie	EUT: CHICKADEE				
	Standard: FCC Part 15.207, FCC Part 15.107				
	Basic Standard: ANSI C63.10: 2013 Basic Standard: ANSI C63.4: 2014				
EUT sta	tus: N/A				
Comments: EUT is internal rechargeable Battery powered. No Direct/indirect					

2.2 Occupied Bandwidth

Test Lab: Electronics Test Centre, Airdrie

Test Personnel: Imran Akram

EUT: CHICKADEE

Standard: FCC PART 15.247

Date: 2024-12-06 (20.0°C, 16.8% RH)

Basic Standard: ANSI C63.10-2013 FCC OET KDB 558074

EUT status: Compliant

Specification: FCC Part 15.247 (a, 1, i)

Criteria: The maximum allowed 20 dB bandwidth of the hopping channel is 250 kHz.

2.2.1 Test Guidance: ANSI C63.10-2013, Clause 6.9.2 & 6.9.3/ FCC OET KDB 558074

This measurement is performed at low, mid and high frequencies, with modulation.

The RF output of EUT with an antenna connector is fed to the input of the spectrum analyzer through appropriate attenuation. The loss from the cable and the attenuator were added on the analyzer as gain offset setting there by allowing direct measurements, without the need for any further corrections.

Use the following spectrum analyzer setting:							
Span	Between two time and five times the channel center frequency OBW						
RBW	RBW 1% to 5% of the OBW						
VBW Approximately three times of RBW							
Sweep Auto Couple							
Detector Function Peak							
Trace	Trace Max Hold						
	abilize. The automated 99% BW function of the spectrum analyzer is dwidth is measured with the X dB function.						

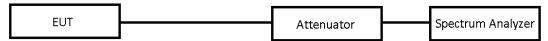
2.2.2 Deviations From The Standard:

There were no deviations from the EUT setup or methodology specified in the standard.

2.2.3 Test Equipment

Testing was performed with the following equipment:

Equipment	Manufacturer	Model #	Asset #	Cal. Date	Cal. Due
EMI receiver	Agilent	N9038A (FW A.25.05)	6130	2023-08-11	2024-08-11
Temp/Humidity	Extech	42270	5871	2024-04-08	2025-04-08
Attenuator (DC to 26 GHz)	Mini-Circuits	BW-S10-2W263+	6932	2022-12-10	2025-12-10
Coaxial Cables (RF)	W.L. GORE	PGR01R01036	7024	2024-01-09	2025-01-09
DC Blocker (9 KHz - 27 GHz)	Centric RF	C0927 SMA	6987	2024-01-19	2025-01-19


2.2.4 Test Sample Verification, Configuration & Modifications

The EUT was set to transmit continuously on a selected channel with test-specific software. The output was modulated as in normal operation.

The EUT met the requirements without modification.

Test setup diagrams for Occupied Bandwidth testing:

Conducted:

2.2.5 Channel Occupied Bandwidth Data:

Mode of operation	Channel	Freq. [MHz]	Occupied BW [kHz]	20 dB BW [kHz]	Limit 20dB BW [KHz]
	Low	902.3	127.93	138.5	
125KHz Hybrid	Mid	908.7	127.53	138.4	≤ 250
	High	914.9	127.90	138.4	

Hybrid (125 KHz) Mode

Screen Captures from the spectrum analyzer: Low Channel

Agilent Spectrum Analyzer - Occupied BW XI RF 50 Ω DC		SENSE:INT SOURCE	OFF ALIGN A	UTO 12:16:19 PM	MDec 06, 2024		
Center Freq 902.300000 M		ter Freq: 902.30000 : Free Run	00 MHz Avg Hold:>10/10	Radio Std:	None	Trace/Detect	tor
		en: 30 dB		Radio Dev	ice: BTS		
10 dB/div Ref 33.80 dBm							
23.8						ClearW	Vrite
3.80		· · · · ·				Clearw	WIILG
5.20							
16.2						Aver	rag
36.2							
46.2						MaxH	Hol
56.2						Muxi	
enter 902.3 MHz Res BW 3 kHz		#VBW 10 kHz	I	Spar Sweep	1 250 kHz 26.4 ms	Min L	
Occupied Bandwidth		Total Power		28.9 dBm		Min Hol	
	7.93 kHz					Dete	
Transmit Freq Error	368 Hz	OBW Po	wer	99.00 %			eak <u>Ma</u>
x dB Bandwidth	138.5 kHz	x dB		-20.00 dB			
SG			4	STATUS		I	

Screen Captures from the spectrum analyzer: MID Channel

Agilent Spe	ctrum Analyzer - Occ											
(X) Contor	RF 50 Ω		-		NSE:INT SOUR		ALIGN AU	ЛО	12:36:26 P Radio Std	MDec 06, 2024	Trac	e/Detector
Center	Fieq 908.700		<u> </u>	📕 Trig: Fre	e Run	Avg Hold	>10/10					
		#IF	Gain:Low	#Atten: 3	0 dB				Radio Dev	rice: BTS		
10 dB/div	Ref 33.80	0 dBm										
23.8												
13.8												Clear Write
3.80												
-6.20											<u> </u>	
								\sim	<u>_</u>			Average
-16.2												Average
-26.2										and the second second	<u> </u>	
-36.2												
-46.2												Max Hold
-56.2												
Center	908.7 MHz								Spar	ר 250 kHz		
	N 3 kHz			#VE	3W 10 kH	z				26.4 ms		Min Hold
												WIIII HOIU
Occ	upied Band [,]	width			Total P	ower	2	28.7	dBm			
		127	′.53 kł	Ηz								Detector
L _								~ ~	~~ ~			Peak▶
Tran	smit Freq Err	or	277	Hz	OBW P	ower		99	.00 %		Auto	<u>Man</u>
x dB	Bandwidth		138.4	Hz	x dB		-	20.0	00 dB			
MSG							S	TATUS			<u> </u>	

Screen Captures from the spectrum analyzer: High Channel

Center Freq 914.900000 M	Irig: I	sense:INT source off r Freq: 914.900000 MHz Free Run Avg Ho h: 30 dB	ALIGN AUTO Id:>10/10	12:45:53 PM Radio Std: Radio Devi		Trace/Detector	
10 dB/div Ref 33.80 dBm							
13.8							Clear Writ
3.80							Avera
26.2					hard		Max Ho
56.2				Span	250 kHz		
Res BW 3 kHz	#	VBW 10 kHz			26.4 ms		Min Ho
Occupied Bandwidth		Total Power	28.6	i dBm			
۲۲ Transmit Freq Error	7.90 kHz 369 Hz	OBW Power	99	.00 %		Auto	Detect Peal <u>M</u>
x dB Bandwidth	138.4 kHz	x dB	-20.	00 dB			
G			STATUS	5			

2.3 Max Average Output Power

Test Lab: Electronics Test Centre, Airdrie

Test Personnel: Imran Akram

EUT: CHICKADEE

Standard: FCC PART 15.247

Date: 2024-12-06 (20.0°C, 16.8% RH)

Basic Standard: ANSI C63.10: 2013 FCC OET KDB 558074

EUT status: Compliant

Specification: FCC Part 15.247(b, 2)

Criteria For frequency hopping systems operating in the 902-928 MHz band: 1 watt for systems employing at least 50 hopping channels

2.3.1 Test Guidance: ANSI C63.10-2013, Clause 11.9.2.2.2 Clause 7.8.5 / FCC OET KDB 558074

This measurement is performed at low, mid and high frequencies, with modulation.

The RF output of EUT with an antenna connector is fed to the input of the spectrum analyzer through appropriate attenuation. The loss from the cable and the attenuator were added on the analyzer as gain offset setting there by allowing direct measurements, without the need for any further corrections.

Output Po	ower Method AVGSA-1 For DTS
Span	≥ 1.5 times the OBW
RBW	$1 - 5$ % of the OBW, ≤ 1 MHz
VBW	≥ 3 x RBW
Number of Points in sweep	≥ 2 x Span / RBW
Sweep time	Auto Couple
Detector	RMS (Power Averaging)
Sweep trigger	Free Run (Duty Cycle ≥98%)
Trace Average	Minimum 100 traces in power Averaging (RMS)
Power measured	Integrated the spectrum across the OBW of the signal using the S/A band power measurement function, with band limit set equal to the OBW band edge.

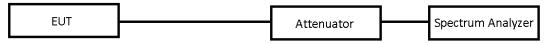
2.3.2 Deviations From The Standard:

There were no deviations from the EUT setup or methodology specified in the standard.

2.3.3 Test Equipment

Testing was performed with the following equipment:

Equipment	Manufacturer	Model #	Asset #	Cal. Date	Cal. Due
EMI receiver	Agilent	N9038A (FW A.25.05)	6130	2023-08-11	2024-08-11
Temp/Humidity	Extech	42270	5871	2024-04-08	2025-04-08
Attenuator (DC to 26 GHz)	Mini-Circuits	BW-S10-2W263+	6932	2022-12-10	2025-12-10
Coaxial Cables (RF)	W.L. GORE	PGR01R01036	7024	2024-01-09	2025-01-09
DC Blocker (9 KHz - 27 GHz)	Centric RF	C0927 SMA	6987	2024-01-19	2025-01-19

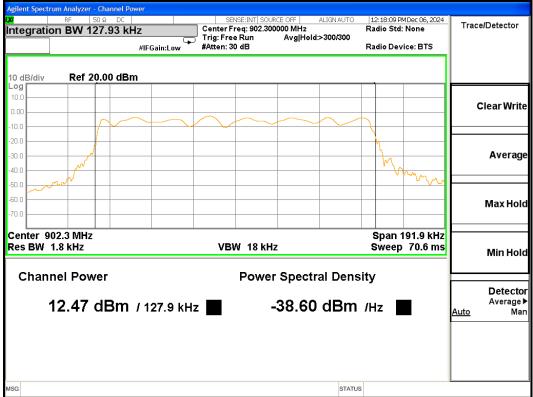

2.3.4 Test Sample Verification, Configuration & Modifications

The EUT was set to a selected channel with test-specific software. The output was modulated as in normal operation.

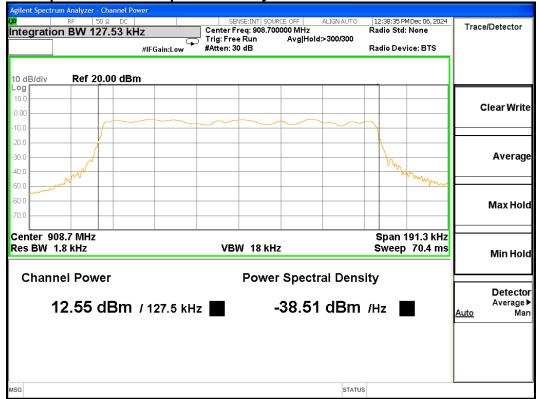
The EUT met the requirements without modification.

Test setup diagrams for Power testing:

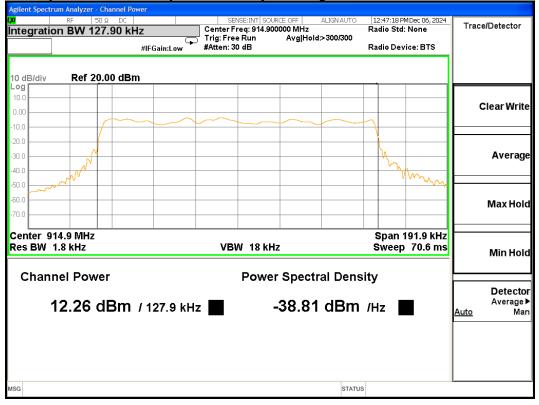
Conducted:



2.3.5 Max Output Power Data: DSS


Mode of operation	Channel	Freq. [MHz]	Max Average Power [dBm]	Limit Power [dBm]
	Low	902.3	12.47	
125KHz Hybrid	Mid	908.7	12.55	≤ 30 (1Watt)
	High	914.9	12.26	

Hybrid (125 KHz) Mode


Screen Captures from the spectrum analyzer Low Channel

Screen Captures from the spectrum analyzer: MID Channel

Screen Captures from the spectrum analyzer: High Channel

2.4 Power Spectral Density

Test Lab: Electronics Test Centre, Airdrie

Test Personnel: Imran Akram

EUT: CHICKADEE Standard: FCC PART 15.247

Date: 2024-12-06 (20.0°C, 16.8% RH)

Basic Standard: ANSI C63.10: 2013

EUT status: Compliant

Specification: FCC Part 15.247(f)

Criteria The power spectral density conducted from the intentional radiator to the antenna due to the digital modulation operation of the hybrid system, with the frequency hopping operation turned off, shall not be greater than 8 dBm in any 3kHz band during any time interval of continuous transmission.

2.4.1 Test Guidance: ANSI C63.10-2013, Clause 11.10.3 / FCC OET KDB 558074

This measurement is performed at low, mid and high frequencies, in continuous transmission, with modulation.

The RF output of EUT with an antenna connector is fed to the input of the spectrum analyzer through appropriate attenuation. The loss from the cable and the attenuator were added on the analyzer as gain offset setting there by allowing direct measurements, without the need for any further corrections.

Use the following Spe	ectrum Analyzer settings
Span	At least 1.5 times the OBW of channel center Frequency
RBW	3 KHz
VBW	≥ 3 x VBW
Sweep	Auto Couple
Detector Function	Power averaging (RMS) or Sample detector (when RMS not available.
Trace	Employ trace average (rms) mode over a minimum of 100 traces.
Ensure that the num	ber of measurement points in the sweep \geq [2 x span / RBW]. Allow the
trace to stabilize. Use	the peak marker function to determine the maximum amplitude level.

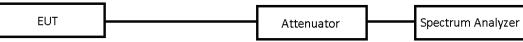
2.4.2 Deviations From The Standard:

There were no deviations from the EUT setup or methodology specified in the standard.

2.4.3 Test Equipment

Testing was performed with this equipment:

Equipment	Manufacturer	Model #	Asset #	Cal. Date	Cal. Due
EMI receiver	Agilent	N9038A (FW A.25.05)	6130	2023-08-11	2024-08-11
Temp/Humidity	Extech	42270	5871	2024-04-08	2025-04-08
Attenuator (DC to 26 GHz)	Mini-Circuits	BW-S10-2W263+	6932	2022-12-10	2025-12-10
Coaxial Cables (RF)	W.L. GORE	PGR01R01036	7024	2024-01-09	2025-01-09
DC Blocker (9 KHz - 27 GHz)	Centric RF	C0927 SMA	6987	2024-01-19	2025-01-19


2.4.4 Test Sample Verification, Configuration & Modifications

The EUT was set to transmit continuously on a selected channel with test-specific software. The output was modulated as in normal operation.

The EUT met the requirements without modification.

Test setup diagrams for Power Spectral Density testing:

Conducted:

2.4.5 Average PSD Data

Mode of operation	Channel	Freq. [MHz]	PSD (dBm)	PSD Limit (dBm
	Low	902.3	-1.692	
LoRa 125 KHz	Mid	908.7	-2.258	≤ 8 3KHz
	High	914.9	-2.430	


Screen Capture from Spectrum Analyzer: Low Channel

Screen Capture from Spectrum Analyzer: MID Channel

2.5 Band Edge Attenuation

Test Lab: Electronics Test Centre, Airdrie

Test Personnel: Imran Akram

Date: 2024-12-06 (20.0°C, 16.8% RH)

EUT: CHICKADEE Standard: FCC PART 15.247 Basic Standard: ANSI C63.10: 2013

EUT status: Compliant

Specification: FCC Part 15.247(d)

Criteria: In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.209(a) (see §15.205(c)).

2.5.1 Test Guidance: ANSI C63.10-2013 Clause 6.10.4 & 7.8.6, 6.10.6 / FCC OET KDB 558074

This measurement is performed at the low and high frequencies, with modulation.

The RF output of EUT with an antenna connector is fed to the input of the spectrum analyzer through appropriate attenuation. The loss from the cable and the attenuator were added on the analyzer as gain offset setting there by allowing direct measurements, without the need for any further corrections.

Use the following s	spectrum analyzer settings:
Span	Wide enough to capture the peak level of the emission operating on
	the channel closest to the band edge, as well as any modulation
	products that fall outside of the authorized band of operation.
Attenuation	Auto (at least 10 dB preferred).
RBW	100 kHz
VBW	300 kHz
Sweep	Coupled
Detector function	peak
Trace	max hold
Allow the trace to	stabilize. Set the marker on the emission at the band edge, or on the
highest modulation	n product outside of the band, if this level is greater than that at the
band edge. Enable	e the marker-delta function, and then use the marker-to-peak function
to move the marke	er to the peak of the in-band emission.

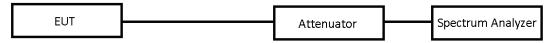
2.5.2 Deviations From The Standard:

There were no deviations from the EUT setup or methodology specified in the standard.

2.5.3 Test Equipment

Testing was performed with the following equipment:

Equipment	Manufacturer	Model #	Asset #	Cal. Date	Cal. Due
EMI receiver	Agilent	N9038A (FW A.25.05)	6130	2023-08-11	2024-08-11
Temp/Humidity	Extech	42270	5871	2024-04-08	2025-04-08
Attenuator (DC to 26 GHz)	Mini-Circuits	BW-S10-2W263+	6932	2022-12-10	2025-12-10
Coaxial Cables (RF)	W.L. GORE	PGR01R01036	7024	2024-01-09	2025-01-09
DC Blocker (9 KHz - 27 GHz)	Centric RF	C0927 SMA	6987	2024-01-19	2025-01-19


2.5.4 Test Sample Verification, Configuration & Modifications

The EUT was set to transmit continuously on a selected channel with test-specific software. The output was modulated as in normal operation.

The EUT met the requirements without modification.

Test setup diagrams for Band Edge Attenuation testing:

Conducted:

2.5.5 Band Edge Data

Worse Case Data

Mode of operation	Channel	Attenuation at Band Edge	Attenuation Limit at Band Edge	
Lora 125KHz	902.3	49.519 dBc		
(Non-Hopping)	914.9	65.716 dBc		
Lora 125KHz	KHz 902.3 oping) 914.9 KHz 902.3	56.135 dBc	≥30 dBc	
(Hopping)	914.9	65.716 dBc		

Screen Capture from the spectrum analyzer: Lower Band Edge (Non-Hopping)

								- Swept SA			Spect	gilent
Trace/Detector	ADec 06, 2024 E 1 2 3 4 5 6		ALIGNAUTO e: Log-Pwr		NSE:INT SO			50 Ω DC 898 kHz		RF	(er 2	l arl
Select Trace	1.0 kHz 519 dB	DE Mkr2 29	>300/300 <u>\</u>	AvgHo		┘ Trig: Fre #Atten: 3	PNO: Wide 🕞 IFGain:Low	t 10.4 dB	f Offse	Ref		0 dE
Clear Wri	<u>2∆3</u>											.og 20.4 10.4
Trace Averag	-17.53 dBm											9.60 19.6 29.6
Max Ho		× 3		~~~^^^		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		Annalisen	- Ann	<u>~~~</u> ~	, a <u>^-</u>	39.6 49.6 59.6
Min Ho		Stop 902. .000 ms (:				300 kHz	#VBV	X		.000 100	s BW	Res
View Blank Trace Or					dB	12.628 d 49.519 -36.888 d	00 0 MHz 91.0 kHz (∆) 95 0 MHz	2	(Δ)	f f	N ∆3 F	2 3 4 5 6
Mo 1 of												7 8 9 10 11

Screen Capture from the spectrum analyzer: Upper Band Edge (Non-Hopping)

lî.	MDec 06, 2024	10-54-41 0	ALIGNAUTO					rept SA	nalyzer - Sw		gilent !
Trace/Detector	TDEC 06, 2024 E 1 2 3 4 5 6 PE MW///////	TRAC	: Log-Pwr		NSE:INT SOU			0640 MH			/ lark
Select Trace		(r2 -13.1		Avginoid		#Atten: 3	PNO: Fast C Gain:Low				
1	.716 dB								of Offset 1 of 30.40		10 dB/
Clear Writ										2∆3	20.4 -
											.400 -
Trace Averag	-17.74 dBm										9.60 - 19.6 -
										+	29.6
Max Hol	goog and a little	monerally	and the second of the second o	www.southyseles	manna	-	nappenappenappena	a a contraction of the second	mon	June	-39.6 <mark>7</mark> -49.6 –
		//\\3									-59.6
Min Ho		Stop 930. 1.600 ms (/ 300 kHz	#VB			914.30: BW 10	
	DN VALUE	FUNCTIO	NCTION WIDTH	TION FU		Y 12.295 dl	00 MHz	× 914.90		ide tro s N 1 1	MKR MO
View Blank Trace On						65.716 -53.416 di	59 MHz (Δ 05 MHz				2 ∆ 3 F 4
Trace On											5 6 7
Mor											8 9
1 of	~										10 11
<u></u>		IS	STATUS								SG

Screen Capture from the spectrum analyzer: Lower Band Edge (Hopping)

		40.00.00.0				05		rept SA	alyzer - Sw	um An RF	Spectru	tent :
Peak Search	MDec 06, 2024 CE 1 2 3 4 5 6 PE M M M M	TRAC	ALIGNAUTO		NSE:INT S	_			.65216		er 2 2	ark
NextPe		DE		Avginor		#Atten: 3	PNO: Wide Ģ IFGain:Low					
	9.7 kHz .135 dB	0 Wkr2 28 56.	Δι						f Offset 10 f 30.40		div	dB/
			2Δ3									9 0.4
Next Pk Rig	~~~~			<mark>`</mark>						_).4 -
												00 -
Next Pk Lo	-17.53 dBm											60 - 3.6 -
												9.6 -
	[man						9.6 -
Marker De				// \\3	www.		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	warn-	m. M. Mary	Mr	~~~~~~~	9.6
Mkr→0		Stop 903. .000 ms (:	Sweep 1		z	/ 300 kHz	#VBW				900.0 BW 1	
	IN VALUE	FUNCTIO	NCTION WIDTH	JNCTION FI		Y		×	-		IDE TRO	
					dB	12.422 d 56.135 -43.713 d	44 7 MHz 289.7 kHz (Δ) 55 0 MHz		(Δ)	f f	3 1	1 N 2 A 3 F
Mkr→RefL					Bm	-43.713 0	55 U WHZ	901.9		Т	-	р г 4 5
												5
												7
												3
Мо 1 о	×											3

Screen Capture from the spectrum analyzer: Upper Band Edge (Hopping)

								er - Swept SA	um Analyzer RE	ent Spectr	Agiler
Trace/Detector	4Dec 06, 2024 E 1 2 3 4 5 6 E M WARMAN	TRAC	ALIGNAUTO		NSE:INT SOU			50 Ω DC 8964947 M		rker 2	M ar
Select Trace		D	>10/10	Avginoid		Atten: 3	PNO: Fast (IFGain:Low				
1	69 MHz 99 dBm		Mkr					set 10.4 dB).40 dBm		dB/div	
								2		·	20.4
Clear Writ									******	4	10.4
											0.400 -9.60
Trace Averag	-17.74 dBm										-9.60
										6	-29.6
										6	-39.6
Max Hol	ennorm	ant grand and	mandret	ann ann	manuel	ula marine marine	Monner	Marchage			-49.6
L											-59.6
Min Hol	.000 MHz 3001 pts)					W 300 kHz	#VB		126 MH: 100 kHz		
	N VALUE	FUNCTIO	ICTION WIDTH	ICTION FU		Y 12.096 di	1.900 MHz	X	rc scl	MODE TI	MKE 1
View Blank						12.096 di 12.099 di	1.900 MHz 1.869 MHz		f		23
Trace On											4 5 6
Mo											7 8
1 of											9 10
	>										11 <
			STATUS								ISG

2.6 Conducted Spurious Emissions (Non- Restricted Band)

Test Lab: Electronics Test Centre, Airdrie

Test Personnel: Brendan Van Hee, Imran Akram EUT: CHICKADEE

Standard: FCC PART 15.247

Basic Standard: ANSI C63.4-2014 FCC OET KDB 558470 v04 DTS

Date: 2024-12-06 (20.0°C, 16.8% RH)

EUT status: Compliant

Specification: FCC Part 15.247(d)

In any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

2.6.1 Test Guidance: ANSI C63.10-2013, Clause 6.7, 7.8.8 / 558074 D01 15.247 Measurement Guidance v05r02

This measurement is performed at the low, mid and high frequencies, with modulation. The RF output of EUT with an antenna connector is fed to the input of the spectrum analyzer through appropriate attenuation. The loss from the cable and the attenuator were added on the analyzer as gain offset setting there by allowing direct measurements, without the need for any further corrections.

Use the following s	Use the following spectrum analyzer settings:									
Span	Set the center frequency and span to encompass frequency range to be measured.									
RBW	100 kHz									
VBW	300 kHz									
Sweep	Auto Coupled									
Detector function	peak									
Trace	max hold									
Allow the trace to stabilize. Use the peak marker function to determine the maximum										

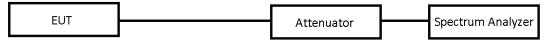
Allow the trace to stabilize. Use the peak marker function to determine the maximum amplitude level. Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) is attenuated by at least the minimum requirements specified in

2.6.2 Deviations From The Standard:

There were no deviations from the EUT setup or methodology specified in the standard.

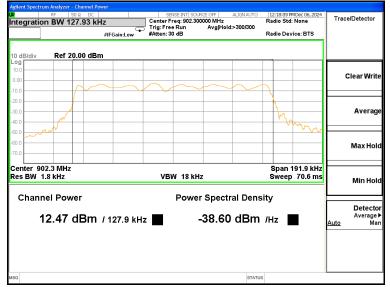
2.6.3 Test Equipment

Testing was performed with the following equipment:

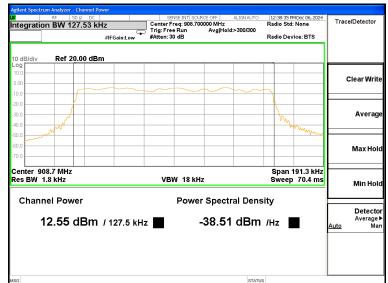

Equipment	Manufacturer	Model #	Asset #	Cal. Date	Cal. Due
EMI receiver	Agilent	N9038A (FW A.25.05)	6130	2023-08-11	2024-08-11
Temp/Humidity	Extech	42270	5871	2024-04-08	2025-04-08
Attenuator (DC to 26 GHz)	Mini-Circuits	BW-S10-2W263+	6932	2022-12-10	2025-12-10
Coaxial Cables (RF)	W.L. GORE	PGR01R01036	7024	2024-01-09	2025-01-09
DC Blocker (9 KHz - 27 GHz)	Centric RF	C0927 SMA	6987	2024-01-19	2025-01-19

2.6.4 Test Sample Verification, Configuration & Modifications

The EUT was set to a selected channel with test-specific software. The output was modulated as in normal operation.

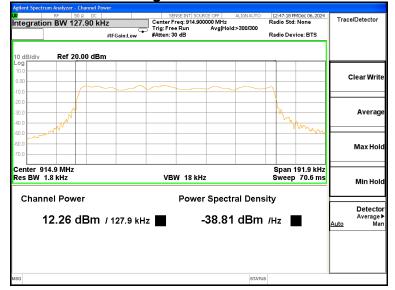

The EUT met the requirements without modification.

Test setup diagram for Conducted Spurious Emissions testing:


2.6.5 Conducted Emissions Data:

Low Channel

Agilent Spectru	um Analyzer - Swept SA						Agiler		Analyzer - Sw									
<mark>⋈</mark> Average/	RF 50 Ω DC Hold Number 10			SOURCE OFF ALIGNAUTO Avg Type: Log-Pwr Avg Hold>10/10	12:26:01 PM Dec 06, 2024 TRACE 1 2 3 4 5 6	Trace/Detector	Mar		r⊧ 50 Ω 5113500	00000 GH			ISE:INT SOUP	Avg Typ Avg Typ	e: Log-Pwr	TR/	PMDec 06, 2024 ACE 1 2 3 4 5 6	Trace/Detector
		PNO: Fast 🗣 IFGain:Low	#Atten: 30 dB		DET P N N N N	Select Trace				PN0 IFGa	0:Fast 🖵 ain:Low	#Atten: 30		Avginoid			YPE MUNUMUM DET P N N N N N	Select Trace
10 dB/div	Ref Offset 10.4 dB Ref 30.40 dBm			Mkr	1 902.303 MHz 12.618 dBm	1		R B/div R	ef Offset 1 [°] ef 31.00	1 dB dBm					Mkr1	4.511 -39.7	350 GHz ′64 dBm	1
20.4 10.4					1	Clear Write	Log 21.0 11.0											Clear Write
-9.60 -19.6 -29.6					-17.53 dBm	Trace Average	-9.00 -19.0 -29.0					1					-17.53 dBm	Trace Average
-39.6 -49.6 -59.6		terre di la la antarativa	to have the track of the second			Max Hold	-39.0 -49.0 -59.0											Max Hold
Start 30 kl #Res BW	100 kHz	#VBW	/ 300 kHz	Sweep 96.	Stop 1.0000 GHz .00 ms (40001 pts) FUNCTION VALUE	Min Hold	#Re	rt 1.000 C Is BW 10	0 kHz	×	#VBW	/ 300 kHz Y			weep 80	61.3 ms (0.000 GHz 40001 pts)	Min Hold
1 N 1 2 3 4 5 6	f 902	2.303 MHz	12.618 dBm			View Blank Trace On	1 2 3 4 5 6	N 1	ſ	4.511 350	GHz	-39.764 dE	3m					View Blank Trace On
7 8 9 10 11						More 1 of 3	7 8 9 10 11										×	More 1 of 3
MSG				STATUS			MSG								STATU	s		t


MID Channel

	rum Analyzer - Swept SA			·				1.11		Analyzer - Sw									
Agilent Spectr	RF 50.0 DC		CENCE IN C			10-40-14 PMD 05-0024		Agilen					073				10:41:00	DAID - OC DOD4	
Display L	Line -17.45 dBm			SOURCE OFF A Avg Type: Avg Hold:>	Log-Pwr	12:40:14 PMDec 06, 2024 TRACE 1 2 3 4 5 6 TYPE MUMUMUM	Trace/Detector	Mar			00000 GH			SE:INT SOUR		ALIGNAUTO : Log-Pwr	TF	PMDec 06, 2024 ACE 1 2 3 4 5 6 TYPE M 4444444	Trace/Detector
		PNO: Fast G	#Atten: 30 dB	Arginolas		DET P N N N N N	Select Trace				PN IFG	0: Fast 🖵 ain:Low	#Atten: 30	dB	Avginoid			DET P NNNNN	Select Trace
10 dB/div	Ref Offset 10.4 dB Ref 30.40 dBm				Mkr	1 908.703 MHz 12.479 dBm	1			ef Offset 11 ef 31.00						Mkr1		750 GHz 862 dBm	1
20.4						1	Clear Write	21.0 21.0											Clear Write
0.400								1.00											
-9.60						-17.45 dBm		-9.00										-17.45 dBm	
-19.6							Trace Average	-19.0											Trace Average
-29.6								-29.0 -39.0					1						
-49.6		and the second second second					Max Hold	-49.0	and the set of the										Max Hold
-59.6								-59.0											
Start 30 k #Res BW		#VBV	V 300 kHz	Sw		Stop 1.0000 GHz 00 ms (40001 pts)	Min Hold		rt 1.000 (s BW 10			#VBW	300 kHz		s	weep 86		0.000 GHz 40001 pts)	Min Hold
MKE MODE T		8.703 MHz	Y 12.479 dBm	FUNCTION FUNC	TION WIDTH	FUNCTION VALUE			MODE TRC S		× 4.543 750	GHz	-39.862 dE		CTION FU	NCTION WIDTH	FUNC	TION VALUE	
2 3 4 5 6							View Blank Trace On ►	2 3 4 5 6											View Blank Trace On
7 8 9 10 11						<u> </u>	More 1 of 3	7 8 9 10 11										~	More 1 of 3
MSG					STATUS	>	[]	MSG								STATU	s		

FCC Part 15.247

High Channel

Agilent Spec	trum Analyzer -									Agiler	nt Spectru	ım Analyzer - Sv									
Marker '	RF 50	54500 MH	z		SE:INT SOURCE	E OFF ALIG Avg Type: Lo Avg Hold:>10	a-Pwr	12:50:39 PM Dec 06, 2024 TRACE 1 2 3 4 5 6 TYPE M WWWWW DET P N N N N N	Trace/Detector	<mark>⊯</mark> Mar	ker 1	RF 50 S	00000 (GHz		VSE:INT SOU	Avg Typ Avg Typ AvalHold	ALIGNAUTO e: Log-Pwr	TRA	MDec 06, 2024	Trace/Detector
		IF	NO: Fast ⊂ Gain:Low	#Atten: 30	dB	Avginoid> io			Select Trace					PNO: Fast 🕞 FGain:Low	#Atten: 3		Arghiona			PE M WWWWWW DET P N N N N N	Select Trace
10 dB/div	Ref Offset Ref 30.4						Mkr1	1 914.853 MHz 12.295 dBm	1 *		IB/div	Ref Offset 1 Ref 31.00	1 dB dBm					Mkr1		575 GHz 24 dBm	1*
20.4 10.4 0.400								¹	Clear Write	Log 21.0 11.0 1.00))										Clear Write
-9.60 -19.6								-17.74 dBm	Trace Average	-9.00 -19.0 -29.0										-17.74 dBm	Trace Average
-39.6 -49.6 -59.6	elennistet en beskriftetet feis			be so do distancione a					Max Hold	-39.0 -49.0 -59.0				<u>/~~~</u>							Max Hold
Start 30 #Res BV	V 100 kHz	×	#VBI	N 300 kHz	EUNCT		ep 96.0	Stop 1.0000 GHz 00 ms (40001 pts)	Min Hold	#Re	rt 1.00 s BW	100 kHz	×	#VBV	/ 300 kHz			weep 86	1.3 ms (4	0.000 GHz 10001 pts)	Min Hold
	1 f	914.85	3 MHz	12.295 dB	m			F	View Blank Trace On			f	4.574 5	75 GHz	-39.224 di	Зm				=	View Blank Trace On
7 8 9 10 11 <								~	More 1 of 3	7 8 9 10 11										¥	More 1 of 3
MSG							STATUS			MSG								STATUS	6		

2.7 Channel Separation (Hybrid Mode)

Test Lab: Electronics Test Centre, Airdrie	EUT: CHICKADEE
Test Personnel: Imran Akram	Standard: FCC Part 15.247

Basic Standard: ANSI C63.10: 2013

Date: 2024-12-06 (20.0°C, 16.8% RH)

EUT status: Compliant

Specification: FCC Part 15.247(a, 1)

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20dB bandwidth of the hopping channel, whichever is greater.

2.7.1 Test Guidance: ANSI 63.10 Clause 7.8.2 / 558074 D01 15.247 Measurement Guidance v05r02

This measurement is performed with the EUT transmitter frequency hopping function active.

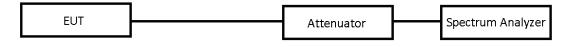
The RF output of EUT with an antenna connector is fed to the input of the spectrum analyzer through appropriate attenuation. The loss from the cable and the attenuator were added on the analyzer as gain offset setting there by allowing direct measurements, without the need for any further corrections.

The spectrum analyzer is set for a frequency span wide enough to capture at least two adjacent channels. The RBW is set to at least 1% of the span. The Peak detector is used, with the trace set to Max Hold. Channel Separation is displayed with the Marker Delta function.

2.7.2 Deviations From The Standard:

There were no deviations from the EUT setup or methodology specified in the standard.

2.7.3 Test Equipment


Testing was performed with the following equipment:

Equipment	Manufacturer	Model #	Asset #	Cal. Date	Cal. Due
EMI receiver	Agilent	N9038A (FW A.25.05)	6130	2023-08-11	2024-08-11
Temp/Humidity	Extech	42270	5871	2024-04-08	2025-04-08
Attenuator (DC to 26 GHz)	Mini-Circuits	BW-S10-2W263+	6932	2022-12-10	2025-12-10
Coaxial Cables (RF)	W.L. GORE	PGR01R01036	7024	2024-01-09	2025-01-09
DC Blocker (9 KHz - 27 GHz)	Centric RF	C0927 SMA	6987	2024-01-19	2025-01-19

2.7.4 Test Sample Verification, Configuration & Modifications

SMA connector is soldered to the circuit board at the output of the radio to provide direct access to the radio output

EUT configuration for Channel Separation testing:

2.7.5 Channel Separation Data:

The channel separation is **Compliant** for this device.

Channel separation measured = 200 KHz

Screen Captures from the spectrum analyzer:

							alyzer - Sv		ectrui	nt Spe	Agile
Trace/Detector	10:50:45 AM Dec 06, 2024 TRACE 1 2 3 4 5 6	ALIGN AUTO Type: Log-Pwr	IT SOURCE OFF	SENSE:			50 0 00000	RF 200	. 3 2	kor	<mark>X</mark> Mar
Select Trace	TYPE MWWWWW DET P N N N N N	lold:>100/100		Trig: Free Ru #Atten: 30 dE	NO: Wide 😱 Gain:Low		.00000	200	52	KCI	Mai
1	/lkr3 200.0 kHz 0.005 dB	ΔΝ					Offset 1 f 20.00			B/div	
Clear Write		3∆4								r	Log 10.0
										I	-10.0
Trace Average										\vdash	-20.0 -30.0 -40.0
Max Hold										\vdash	-40.0 -50.0 -60.0
											-70.0
Min Hold	Span 1.000 MHz 000 ms (3001 pts)	•		100 kHz	#VBW			51 k	W 5	s B	#Re
View Blank Trace On	FUNCTION VALUE 🛆	FUNCTION WIDTH	FUNCTION	12.224 dBm 12.229 dBm 0.005 dB 12.224 dBm	0 MHz 0 MHz 0.0 kHz (Δ) 0 MHz	908.90 20	(Δ)	f f f	1 1 1 1	N N A4 F	1 2 3 4 5 6
More 1 of 3											7 8 9 10 11
		STATUS									< NSG

2.8 Time of Occupancy (Hybrid Mode)

Test Lab: Electronics Test Centre, Airdrie Test Personnel: Brendan Van Hee, Imran Akram EUT: CHICKADEE Standard: FCC PART 15.247 Basic Standard: ANSI C63.10: 20013

Date: 2024-12-06 (20.0°C, 16.8% RH)

EUT status: Compliant

Specification: FCC Part 15.247 (f)

The frequency hopping operation of the hybrid system, with the direct sequence or digital modulation operation turned-off, shall have an average time of occupancy on any frequency not to exceed 0.4 seconds within a time period in seconds equal to the number of hopping frequencies employed multiplied by 0.4

2.8.1 Test Guidance: ANSI 63.10 Clause 7.8.4 / 558074 D01 15.247 Measurement Guidance v05r02

This measurement is performed with the EUT frequency hopping function active.

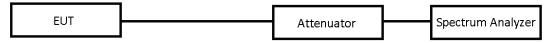
The RF output of EUT with an antenna connector is fed to the input of the spectrum analyzer through appropriate attenuation. The loss from the cable and the attenuator were added on the analyzer as gain offset setting there by allowing direct measurements, without the need for any further corrections.

The spectrum analyzer is set for Peak detection over a 0 Hz frequency span (time domain) centered on a hopping channel. The RBW shall be \leq Channel spacing and where possible RBW should be set >> 1/T, where T is the expected dwell time per channel. VBW \geq RBW. The sweep time is adjusted to clearly capture one transmission. The Dwell time is measured with the Marker Delta function.

Another sweep is set to capture enough transmission events to calculate the number of events within the specified period of time. The Peak detector is used, with the trace set to Max Hold.

2.8.2 Deviations From The Standard:

There were no deviations from the EUT setup or methodology specified in the standard.


2.8.3 Test Equipment

Equipment Manufacturer Model # Asset # Cal. Date Cal. Due N9038A EMI receiver Agilent 6130 2023-08-11 2024-08-11 (FW A.25.05) Temp/Humidity Extech 42270 5871 2024-04-08 2025-04-08 Attenuator Mini-Circuits BW-S10-2W263+ 6932 2022-12-10 2025-12-10 (DC to 26 GHz) Coaxial Cables (RF) W.L. GORE PGR01R01036 7024 2024-01-09 2025-01-09 DC Blocker Centric RF C0927 SMA 6987 2024-01-19 2025-01-19 (9 KHz - 27 GHz)

Testing was performed with the following equipment:

2.8.4 Test Sample Verification, Configuration & Modifications

The EUT was operating in normal mode. The EUT met the requirements without modification. **EUT configuration for Dwell Time testing:**

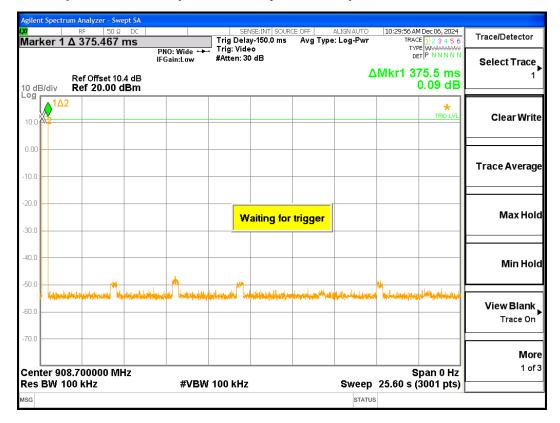
2.8.5 Dwell Time Data:

Measured Dwell time	Limit
375.5 ms	≤ 400ms

Window of measurement is equal to number of hopping channels multiple by 400ms =

0.4 x 64 = 25.6 Sec

Number of events in 25.6 Sec = 1 = 375.5ms

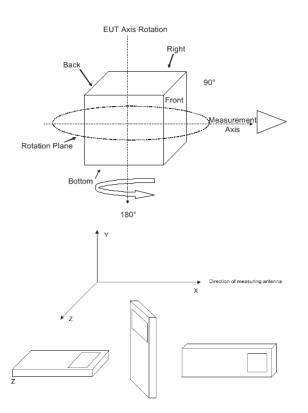

Measure numbers OF Channels= 64

	:06,2024	:31 AM De	10:06	AUTO	AL IO	E OFF	NT SOUR	ENSE:1	SE					<mark>/zer - Swe</mark> 50 Ω	RF		XI
Trace/Detector	TRACE 1 2 3 4 5 6 TYPE M		g-Pwr	Avg Type: Log-Pwr Avg Hold:>100/100			Trig: Free Run			12.795000000 MHz			ker 1	Mar			
Select Trace	NNNNN	DET			Id:>10	AvgiHo			rig: Fre Atten: 3		0: Fast ain:Low						
1	MHz 53 dB		kr1 1											ffset 10. 2 0.00 d		/div	10 dE
Clear Wri	1∆2 -	<u>trati</u>	YTT Y	ηm	pqq	ad that	htu	ryy	111	qq	τr	nnpr	<u>a tta</u>	<u>ulti</u>	X <mark>e</mark> n		10.0
Trace Averag																	0.00
Max Ho																	20.0 30.0
Min Ho	1																40.0 50.0
View Blank Trace Or	- ohulu															by when	60.0
Mo 1 of	0 MHz	916.00	Stop							<u> </u>						901.	
	01 pts)	ns (10		status	5%) kHz	v 91	VB			۷		BW	Res

RF 50 Ω DC RF	· · · · · ·	FF ALIGNAUTO	10:20:51 AM Dec 06, 2024 TRACE 1 2 3 4 5 6 TYPE WWWWWWW	Trace/Detector
PNO: Fast ← IFGain:Low B/div Ref 20.00 dBm	Trig: Video #Atten: 30 dB	ΔN	1kr1 370.8 ms 0.13 dB	Select Trace
	-	والمعاصر المستعار والمساحر المراحد المعام والعرام	1Δ2 * TRIG LVL	Clear Wri
				Trace Avera
				Max Ho
Lander wilfelden versteren er ander son er Beste son er ander son er a			ulajaka je stranovno stanjem	Min Ho
				View Blani Trace Or
nter 908.700000 MHz s BW 1.0 MHz #VB	₩ 4.0 MHz	Sweep 600	Span 0 Hz).0 ms (3001 pts)	M a 1 o

Screen Capture from the spectrum analyzer: sweep Time in 600 msec

Screen Capture from the spectrum analyzer: sweep Time in 25.6 Sec


2.9 EUT Positioning Assessment

Test Lab: Electronics Test Centre, Airdrie	EUT: CHICKADEE
Test Personnel: Brendan Van Hee, Imran	Standard: FCC PART 15.247
	Basic Standard: ANSI C63.4-2014
Date: 2024-12-04 (20.1°C, 15.7% RH)	

Comments: LoRa (125 KHz Mode): Y-Axis is worse axis.

Specification: ANSI C63.4-2014, Clause 6.3.2.1

Portable, small, lightweight, or modular devices that may be handheld, worn on the body, or placed on a table during operation shall be positioned on a non-conducting platform, the top of which is 80 cm above the reference ground plane. The preferred area occupied by the EUT arrangement is 1 m by 1.5 m, but it may be larger or smaller to accommodate various sized EUTs (see Figure 6, Figure 7, and Figure 9). For testing purposes, ceiling- and wall-mounted devices also shall be positioned on a tabletop (see also 6.3.4 and 6.3.5). In making any tests involving handheld, body-worn, or ceiling-mounted equipment, it is essential to recognize that the measured levels may be dependent on the orientation (attitude) of the three orthogonal axes of the EUT. Thus, exploratory tests as specified in 8.3.1 shall be carried out for various axes orientations to determine the attitude having maximum or near-maximum emission level.

2.10 Radiated Spurious Emissions within restricted band

Test Lab: Electronics Test Centre, Airdrie

Test Personnel: Brendan Van Hee

Date: 2024-12-(4-6) (20.0°C, 16.7% RH)

Standard: FCC PART 15.247/15.209

EUT: CHICKADEE

Basic Standard: ANSI C63.10-2013

EUT status: Compliant

Specification: FCC PART 15.247(d)

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

MHz	MHz	MHz	MHz	GHz	GHz
8.2910000 -	16.804250 -	162.01250 -	1660.0000 -	3.6000000 -	14.470000 -
8.2940000	16.804750	167.17000	1710.0000	4.4000000	14.500000
8.3620000 -	25.500000 -	167.72000 -	1718.8000 –	4.5000000 –	15.350000 –
8.3660000	25.670000	173.20000	1722.2000	5.1500000	16.200000
8.3762500 -	37.500000 -	240.00000 –	2200.0000 -	5.3500000 –	17.700000 -
8.3867500	38.250000	285.00000	2300.0000	5.4600000	21.400000
8.4142500 -	73.000000 -	322.00000 -	2310.0000 –	7.2500000 –	22.010000 -
8.4147500	74.600000	335.40000	2390.0000	7.7500000	23.120000
12.290000 -	74.800000 -	399.90000 -	2483.5000 -	8.0250000 -	23.600000 -
12.293000	75.200000	410.00000	2500.0000	8.5000000	24.000000
12.519750 -	108.00000 -	608.00000 –	2655.0000 -	9.0000000 -	31.200000 -
12.520250	121.94000 **	614.00000	2900.0000	9.2000000	31.800000
12.576750 -	123.00000 -	960.00000 –	32600000 -	9.3000000 -	36.430000 -
12.577250	138.00000 <mark>**</mark>	1240.0000 ***	3267.0000	9.5000000	36.500000
13.360000 -	149.90000 -	1300.0000 –	3332.0000 –	10.600000 –	Above
13.410000	150.05000	1427.0000 <mark>***</mark>	3339.0000	12.700000	38.600000
16.420000 -	156.52475-	1435.0000 –	3345.8000 –	13.250000 –	
16.423000	156.52525	1626.5000	3358.0000	13.400000	
16.694750 - 16.695250	156.70000 - 156.90000	1645.5000 – 1646.5000	3500.0000 – 3600.0000		
	8.2910000 - 8.2940000 8.3660000 8.3660000 8.3762500 - 8.3867500 8.4142500 - 8.4147500 12.290000 - 12.293000 12.519750 - 12.520250 12.577250 13.360000 - 13.410000 16.420000 - 16.423000 16.694750 -	8.2910000 - 8.2940000 16.804250 - 16.804750 8.3620000 - 8.3660000 25.500000 - 25.670000 8.3762500 - 8.3867500 37.500000 - 38.250000 8.4142500 - 8.4147500 73.000000 - 74.600000 12.290000 - 12.293000 74.800000 - 75.200000 12.519750 - 12.570750 - 12.577250 108.00000 - 123.00000 - 12.577250 13.360000 - 13.410000 149.90000 - 150.05000 16.420000 - 156.52475- 16.423000 156.52475- 156.52525 16.694750 - 156.70000 -	8.2910000 - 16.804250 - 162.01250 - 8.2940000 16.804750 167.17000 8.3620000 - 25.500000 - 167.72000 - 8.3660000 25.670000 167.72000 - 8.3660000 25.670000 - 173.20000 8.3762500 - 37.500000 - 240.00000 - 8.3867500 38.250000 322.00000 - 8.4142500 - 73.000000 - 322.00000 - 8.4147500 74.600000 - 399.90000 - 12.290000 - 74.800000 - 399.90000 - 12.519750 - 108.00000 - 608.00000 - 12.570750 - 123.00000 - 1240.0000 *** 13.360000 - 149.90000 - 1300.0000 - 13.360000 - 149.90000 - 1427.0000 *** 16.420000 - 156.52475 - 1435.0000 - 16.423000 156.52475 - 1426.5000 16.694750 - 156.70000 - 1645.5000 -	8.2910000 16.804250 162.01250 1660.0000 8.2940000 16.804750 167.17000 17110.0000 8.3620000 25.500000 167.72000 1718.8000 8.3660000 25.670000 167.72000 1722.2000 8.3762500 37.500000 240.00000 2200.0000 8.3762500 37.500000 22200.000 2300.0000 8.4142500 73.000000 322.00000 2310.0000 8.4147500 74.600000 399.90000 2483.5000 12.290000 74.800000 399.90000 2483.5000 12.519750 108.00000 608.00000 2900.0000 12.519750 123.00000 3260.0000 2900.0000 12.576750 123.00000 332.0000 33267.0000 13.360000 149.90000 1300.0000 3332.0000 13.360000 156.52475 1435.0000 3345.8000 16.422000 156.52475 1435.0000 3358.0000 16.694750 156.70000 1645.5000 3500.0000	8.291000 - $16.804250 162.01250 1660.0000 3.600000 8.3620000 25.500000 167.72000 1718.8000 4.4000000$ 8.3660000 $25.670000 167.72000 1718.8000 4.5000000 8.3660000$ $25.670000 12722.2000 5.1500000 5.1500000 8.3762500 37.500000 240.00000 2200.0000 5.3500000 8.3867500$ $37.500000 240.0000 2200.0000 5.4600000 8.3867500$ $37.500000 240.0000 2200.0000 5.3500000 8.4142500 73.000000 322.00000 2310.0000 7.2500000 8.4147500$ $74.800000 399.9000 2483.5000 8.0250000 12.290000 74.800000 399.9000 2483.5000 8.0250000 12.59757 108.00000 608.00000 2655.0000 9.000000 12.576750 123.00000 1300.0000 33260.0000 3$

Restricted Bands of Operation:

2.10.1 Test Guidance: ANSI C63.10-2013, Clause 13.4.2

From 9 kHz to 150 kHz (resolution bandwidth of 200 Hz) and from 150 kHz to 30 MHz (resolution bandwidth 9 kHz) measurements are performed with a loop antenna (as per KDB 460108).

From 30 MHz to 1000 MHz, measurements are performed with a broadband biconilog antenna and a resolution bandwidth of 120 kHz.

Above 1000 MHz, measurements are performed with a DRG Horn antenna or a Standard Gain horn, and a resolution bandwidth of 1 MHz The EUT is raised to 150 cm above the ground plane, and the area between the EUT and the antenna mast is covered with RF absorbent material.

The scan is performed at discreet increments of turntable azimuth and antenna height, which are selected in accordance with the applicable standard in order to assure capture of frequencies of interest. Optimization is performed based on the scan data.

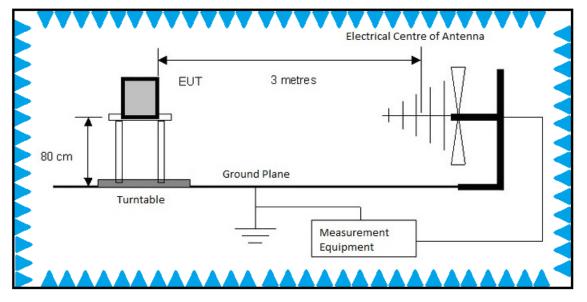
Frequencies having peak emissions within 10dB of the limits are optimized. The EUT is rotated in azimuth over 360 degrees and the direction of maximum emission is noted.

Antenna height is varied from 1 - 4 meters at this azimuth to obtain the maximum emission. Then the maximum level is measured with the appropriate detector and recorded. Up to 1 GHz, measurements are performed with a Quasi-Peak detector. Above 1 GHz, measurements are recorded with Peak and/or Average detectors, as applicable.

2.10.2 Deviations From The Standard:

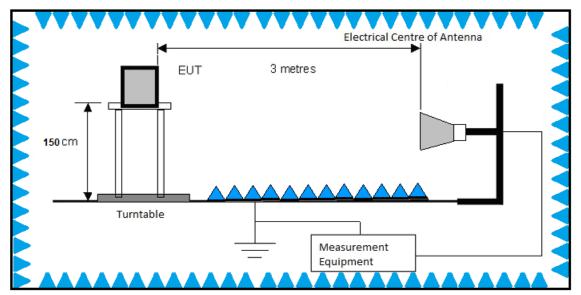
There were no deviations from the EUT setup or methodology specified in the standard.

2.10.3 Test Equipment


Testing was performed with the following equipment:

Equipment	Manufacturer	Model #	Asset #	Cal. Date (yyyy-mm-dd)	Cal. Due (yyyy-mm-dd)
EMC Software	UL	Ver. 9.5	ETC-SW-EMC 2.1	N	/A
EMI receiver	Agilent	N9038A (FW A.25.05)	6130	2023-08-11	2024-08-11
Loop Antenna (9KHz – 30MHz)	EMCO	6502	10868	2023-06-21	2025-06-21
Biconilog Antenna (30 – 1000 MHz)	AR	JB1	6905	2023-11-29	2025-11-29
DRG Horn (1000 – 18000 MHz)	EMCO	3115	19357	2022-10-05	2024-10-05
Humidity/Temp Logger	Extech Ins. Corp.	42270	5892	2023-04-14	2024-04-14
Pre-Amplifier (30 – 1400 MHz)	HP	8447D	9291	2024-01-21	2025-01-23
Low Noise Amplifier (1 – 18 GHz)	MITEQ	JS43-01001800-21- 5P	4354	2024-01-21	2025-01-23
RE Cable below 1GHz	Insulated Wire Inc.	KPS-1501A-3600- KPA-01102006	4419	2024-01-21	2025-01-23
Re Cable Above 1 GHz	A.H. System Inc.	SAC-26G-8.23	6187	2024-01-21	2025-01-23
0.9GHz Notch Filter	Microtronics	BRM20784	6947	2024-01-21	2025-01-23

2.10.4 Test Sample Verification, Configuration & Modifications


The EUT was set to a selected channel with test-specific software. The output was modulated as in normal operation. LoRa radio is transmitting at mid channel in ingle carrier configuration and high channel in dual carrier configurations.

The EUT met the requirements without modification. Power cable is soldered to the battery terminal to connect the DC power supply during radiated emission.

Test setup diagram for Radiated Spurious Emissions testing (below 1GHz):

Test setup diagram for Radiated Spurious Emissions testing (above 1GHz):

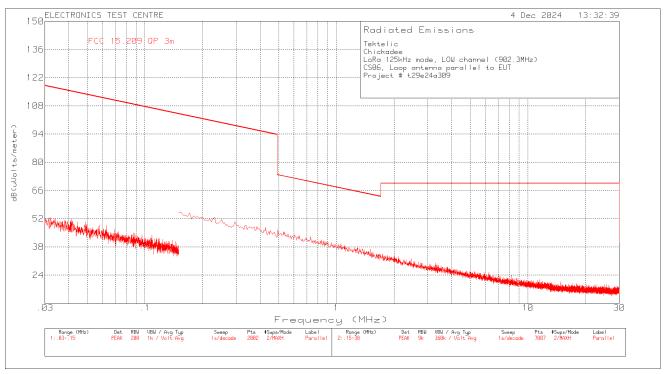
2.10.5 Radiated Emissions Data: Hybrid (125 KHz)

The emissions data are presented in tabular form, showing turntable azimuth, antenna height and polarization, the uncorrected spectrum analyzer reading, the correction factors applied, the net result, the value of the limit at the frequency investigated, and the Delta between the result and the limit.

Meter Reading in $dB_{\mu}V$ + Antenna Factor in dB/m + Gain/Loss Factor in dB = Corrected Field Strength in $db_{\mu}V/m$. Delta = Field Strength – Limit

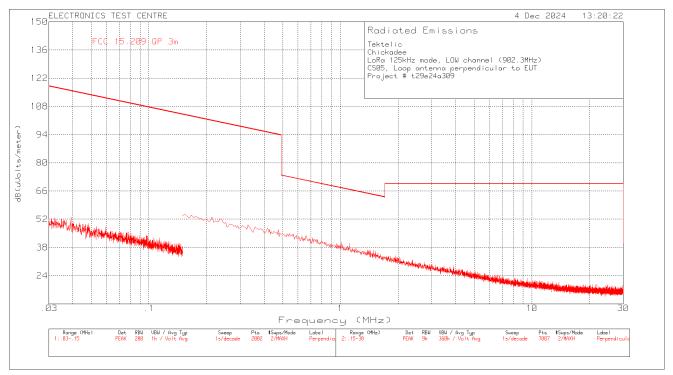
Notes:

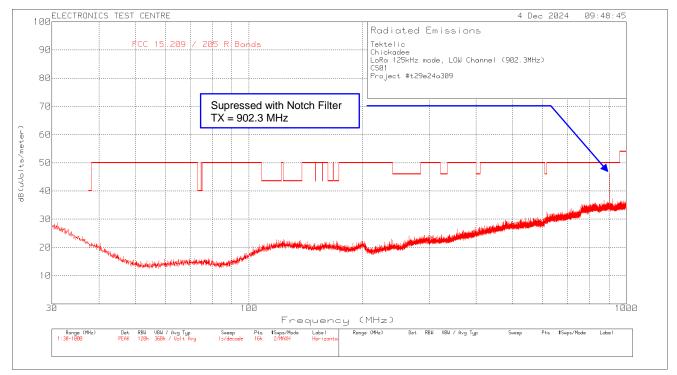
- When a preamp is used, the resulting gain is compensated, producing a negative value for the Cable Loss. Measurements reported are the result of adjusting the turntable azimuth and antenna height to obtain the maximum EUT emission. This may produce a different reading than the plot trace. The plot is a Peak Hold function obtained at discreet increments of height and azimuth, while the reported measurement is obtained with the appropriate Quasi Peak or Average detector after the height and azimuth have been adjusted for maximum emission. Preliminary scans were performed for all channels in Transmit modes. The Low band channel 902.3 MHz was selected as the worst-case condition for detailed examination. In Transmit mode, the EUT was assessed up to 10.0 GHz.

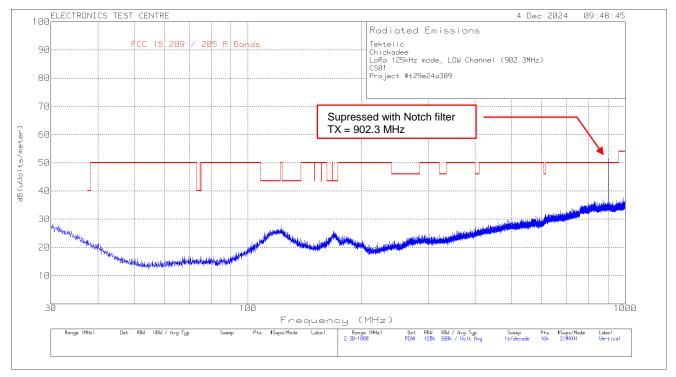

Freq. Marker	Freq. [GHz]	Raw reading [dBµv]	Det	Antenna Factor [dB/m]	Pre amp Gain [dB]	Corrected Reading [dBµv/m]	FCC 15.209 Limit [dBµv/m]	Delta [dB]	Azimuth [Deg]	Height [cm]	Polarization
1	6.32	38.37	PK	34.4	-28.5	44.27	74	-29.73	322	396	Horizontal
		28.86	AV			34.76	54	-19.24			Horizontal
2	6.32	42.19	PK	34.4	-28.5	48.09	74	-25.91	104	395	Vertical
2		34.42	AV			40.32	54	-13.68			Vertical

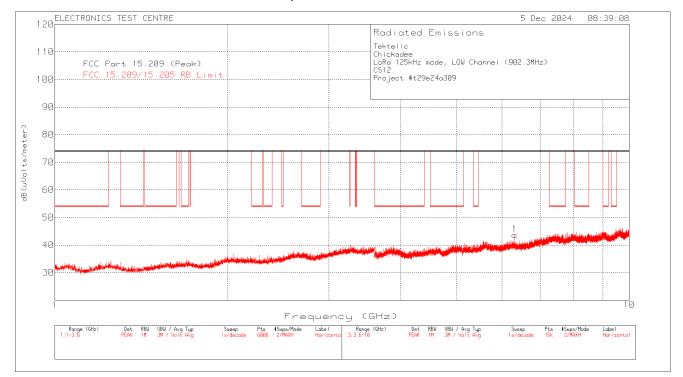
Negative values for Delta indicate compliance.

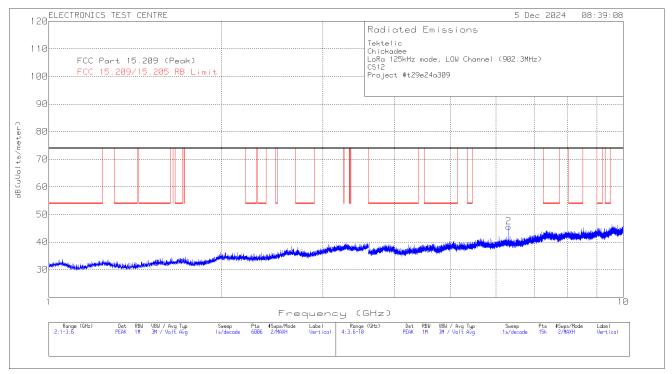
PK: Peak Detector


AV: Average Detector.


* Spurious Emission in Restricted Band




Plot of Radiated Emissions: Parallel


Plot of Radiated Emissions: Perpendicular

2.11 Radiated Emissions (RX Mode)

Test Lab: Electronics Test Centre, Airdrie

Test Personnel: Brendan Van Hee

Date: 2024-12-04 (20.1°C, 15.7% RH)

EUT: CHICKADEE Standard: FCC Part 15.109 Basic Standard: ANSI C63.4: 2014 Class: B

EUT status: Compliant

Class B Limit (3m)
40 (dBµV/m)
43.52 (dBµV/m)
46.02 (dBµV/m)
53.98 (dBµV/m)

Criteria: The radiated emissions produced by a device, measured at a distance of 3 meters, shall not exceed the limits as specified.

2.11.1 Test Guidance:

From 30 MHz to 1000 MHz, measurements are performed with a broadband biconilog antenna and a resolution bandwidth of 120 kHz.

Above 1000 MHz, measurements are performed with a DRG Horn antenna or a Standard Gain horn, and a resolution bandwidth of 1 MHz.

The scan is performed at discreet increments of turntable azimuth and stepped antenna height, with peak detector and Max Hold function which are selected in accordance with the applicable standard in order to assure capture of frequencies of interest. Optimization is performed based on the scan data.

After the pre-scan is completed, the frequencies of interest are optimized. The EUT is rotated in azimuth over 360 degrees and the direction of maximum emission is noted.

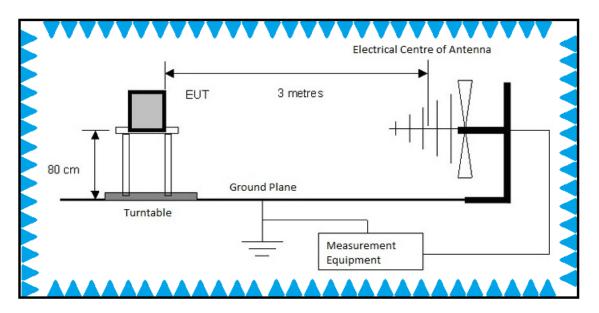
Antenna height is varied from 1 - 4 meters at this azimuth to obtain the maximum emission. Then the maximum level is measured with the appropriate detector and recorded. This may produce a different reading than the pre scan trace. Up to 1 GHz, measurements are performed with a Quasi-Peak detector. Above 1 GHz, measurements are recorded with Peak and/or Average detectors, as applicable.

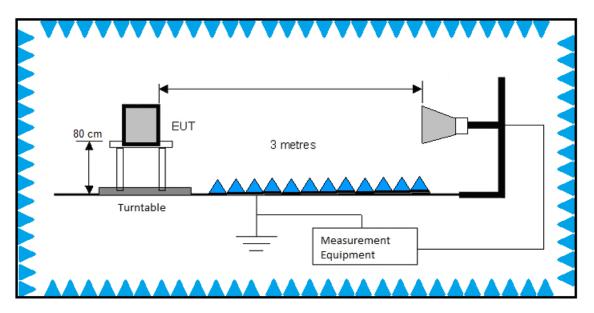
2.11.2 Deviations From The Standard:

There were no deviations from the EUT setup or methodology specified in the standard.

2.11.3 Test Equipment

Testing was performed with the following equipment:

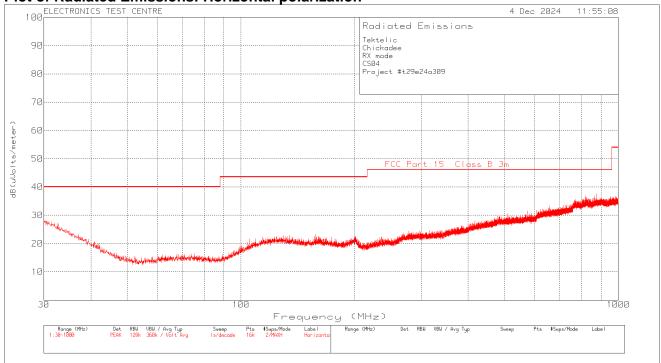

Equipment	Manufacturer	Model #	Asset #	Cal. Date (yyyy-mm-dd)	Cal. Due (yyyy-mm-dd)
EMC Software	UL	Ver. 9.5	ETC-SW-EMC 2.1	N	/A
EMI receiver	Agilent	N9038A (FW A.25.05)	6130	2023-08-11	2024-08-11
Biconilog Antenna (30 – 1000 MHz)	AR	JB1	6905	2023-11-29	2025-11-29
DRG Horn (1000 – 18000 MHz)	EMCO	3115	19357	2022-10-05	2024-10-05
Humidity/Temp Logger	Extech Ins. Corp.	42270	5892	2023-04-14	2024-04-14
Pre-Amplifier (30 – 1400 MHz)	HP	8447D	9291	2024-01-23	2025-01-23
Low Noise Amplifier (1 – 18 GHz)	MITEQ	JS43-01001800-21- 5P	4354	2024-01-23	2025-01-23
RE Cable below 1GHz	Insulated Wire Inc.	KPS-1501A-3600- KPA-01102006	4419	2024-01-23	2025-01-23
Re Cable Above 1 GHz	A.H. System Inc.	SAC-26G-8.23	6187	2024-01-23	2025-01-23

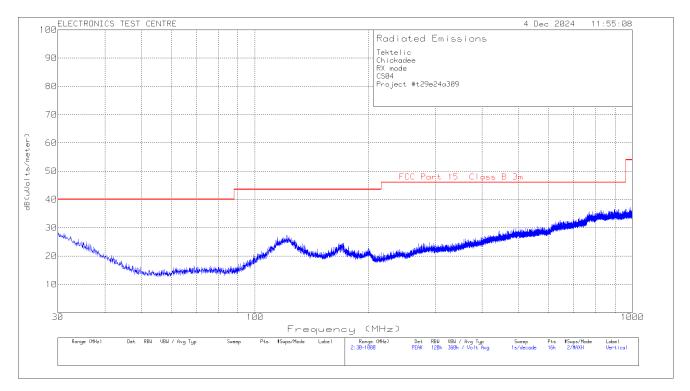

2.11.4 Test Sample Verification, Configuration & Modifications

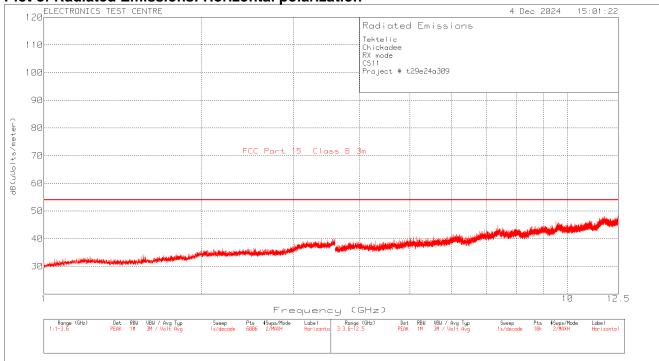
To cover the unintentional radiated emission. The EUT was configured in receive mode. Unit was placed at the center of turntable in semi-anechoic chamber 80cm above the ground plane and at a distance of 3m from the test receive antenna.

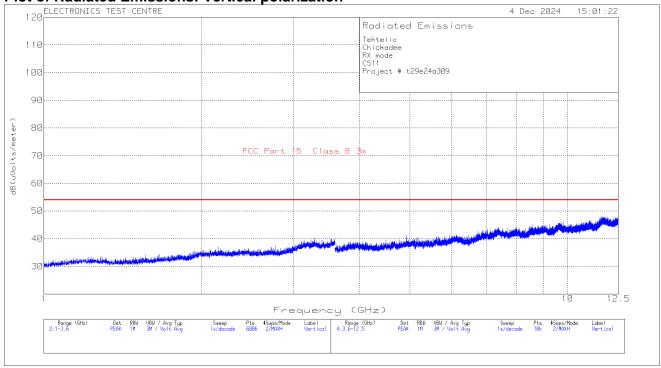
The EUT met the requirements without modification.

EUT RX configuration Block Diagram for Radiated Emissions testing:




2.11.5 Radiated Emissions Data maximization:


No Emission observed within 10 dB from the specified limit


Meter Reading in dB_µV + Antenna Factor in dB/m + Gain/Loss Factor in dB = Corrected Field Strength in db_µV/m.

- In receive mode, the EUT was assessed up to 12.5 GHz.

2.12 RF Exposure

Test Lab: Electronics Test Centre, Airdrie

Test Personnel:

EUT: CHICKADEE Standard: FCC PART 15.247

Date:

EUT status: Exempt from SAR evaluation

Compliant: RF exposure assessment to be provided in a separate Exhibit.

3.0 TEST FACILITY

3.1 Location

The CHICKADEE was tested at the Electronics Test Centre laboratory located in Airdrie, Alberta, Canada. The Radio Frequency Anechoic Chamber (RFAC), identified as Chamber 1, has a usable working space measuring 10.6 m long x 7.3 m wide x 6.5 m high.

Measurements taken at this site are accepted by Industry Canada as evidence of conformity per registration file # 2046A. This site is also listed with the FCC under Registration Number CA2046.

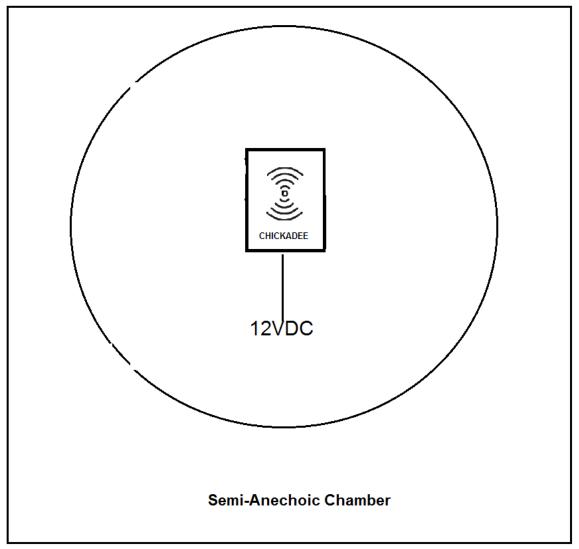
The floor, walls and ceiling consist of annealed steel panels. The walls and ceiling are covered with ferrite tile, augmented by RF absorbant foam material on the end wall nearest the turntable, and on the adjacent walls and the ceiling. The chamber floor supports a 15 cm high internal floor, constructed of annealed steel panels, that forms the ground plane, and is bonded to the chamber walls.

The 3-m diameter turntable is flush-mounted with the floor. A sub-floor cable-way is provided to route cables between the turntable pit and EUT support equipment located in the Control Room. Cables reach the EUT through an opening in the centre of the turntable.

Test instrumentation and EUT support equipment is located in the Control Room, consisting of two shielded vestibules joined together at the side of the main room. Cables are routed through bulkhead panels between the rooms and the test chamber as required. Power feeds are routed into the main room and vestibules through line filters providing at least 100 dB of attenuation between 10 kHz and 10 GHz.

Either floor mounted or table-top equipment can be tested at this facility.

3.2 Grounding Plan


The CHICKADEE was placed at the center of the test chamber turntable on top of an 80-cm high polystyrene foam table below 1GHz and at 1.5m high polystyrene foam table above 1 GHz for transmits mode and 80cm high for RX mode. Ground connection is provided as per customer specification. There is no external grounding.

3.3 Power Supply

For radiated emission and antenna power was supplied via AC/DC adaptor.

Appendix A – Test Setup Block Diagram

End of Document