

CTC Laboratories, Inc.

Room 101 Building B, No. 7, Langing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China

Tel: +86-755-27521059 Fax: +86-755-27521011 Http://www.sz-ctc.org.cn

TC	CT	D	D		D	Т
	J I	$\boldsymbol{\Gamma}$	_	U	П	

Report No. CTC20231666E14

FCC ID.....: 2AR24-XBOX

Applicant: Shenzhen Absen Optoelectronic Co.,Ltd

18-20/F, Tower A, Building 3, Phase I, Tian An Cloud Park, Address....:

N0.2018, Xuegang Rd, Bantian, Longgang District, Shenzhen,

Guangdong, P.R. China

Manufacturer....: Shenzhen Absen Optoelectronic Co., Ltd

18-20/F, Tower A, Building 3, Phase I, Tian An Cloud Park, Address....:

N0.2018, Xuegang Rd, Bantian, Longgang District, Shenzhen,

Guangdong, P.R. China

Product Name: **LED Multimedia Processor**

Ab\en Trade Mark:

Model/Type reference....: X-Box

Listed Model(s):

Standard: FCC CFR Title 47 Part 15 Subpart E Section 15.407

Date of receipt of test sample.....: Aug. 18, 2023

Date of testing..... Aug. 19, 2023 ~ Dec. 3, 2023

Date of issue....: Aug. 09, 2024

Result....: **PASS**

Compiled by:

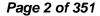
(Printed name+signature) Lucy Lan

Supervised by:

(Printed name+signature) Eric Zhang Lucy lan Zriz Zhang Jehras

Approved by:

(Printed name+signature) Totti Zhao


Testing Laboratory Name: CTC Laboratories, Inc.

Room 101 Building B, No. 7, Langing 1st Road, Luhu Address....:

Community, Guanhu Subdistrict, Longhua District, Shenzhen,

Guangdong, China

This test report may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product endorsement by CTC. The Test Result in the report only apply to the tested sample. The test report shall be invalid without all the signatures of testing engineers, reviewer and approver. Any objections must be raised to CTC within 15 days since the date when the report is received. It will not be taken into consideration beyond this limit. The test report merely corresponds to the test sample.

Table of Contents

Page

Report No.: CTC20231666E14

1.	TEST SUMMARY	3
1.1	1. Test Standards	3
1.2		
1.3		
1.4		
1.5	5. Measurement Uncertainty	6
1.6		
2. (GENERAL INFORMATION	7
2.1	1. CLIENT INFORMATION	7
2.2		
2.3		
2.4		
2.5		
3. ·	TEST ITEM AND RESULTS	15
3.1	1. CONDUCTED EMISSION	15
3.2		
3.3	3. BAND EDGE EMISSIONS	63
3.4	4. Bandwidth	225
3.5	5. PEAK OUTPUT POWER	303
3.6	5. Power Spectral Density	308
3.7	7. Frequency Stability	340
3.8	B. Antenna Requirement	345
3.9	9. DYNAMIC FREQUENCY SELECTION	346

Report No.: CTC20231666E14 Page 3 of 351

1. TEST SUMMARY

1.1. Test Standards

The tests were performed according to following standards:

FCC Rules Part 15.407: for 802.11a/n/ac/ax, the test procedure follows the FCC KDB 789033 D02 General UNII Test Procedures New Rules V02r01.

ANSI C63.10-2013: American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

1.2. Report Version

Revised No.	Report No.	Date of issue	Description
01	CTC20231666E14	Aug. 09, 2024	Original

1.3. Test Description

FCC Part 15 Subpart E (15.407)							
Test Item	Standard Section	Result	Test Engineer				
Antenna Requirement	15.203	Pass	Lucy Lan				
Conducted Emission	15.207	Pass	Lucy Lan				
Band Edge Emissions	15.407(b)	Pass	Lucy Lan				
26dB Bandwidth & 99% Bandwidth	15.407(a)	Pass	Lucy Lan				
6dB Bandwidth (only for UNII-3)	15.407(e)	Pass	Lucy Lan				
Peak Output Power	15.407(a)	Pass	Lucy Lan				
Power Spectral Density	15.407(a)	Pass	Lucy Lan				
Transmitter Radiated Spurious Emission	15.407(b) &15.209	Pass	Lucy Lan				
Frequency Stability	15.407(g)	Pass	Lucy Lan				
Dynamic Frequency Selection (DFS)	15.407(h)	N/A	N/A				
Automatically Discontinue Transmission	15.407(c)	Pass	Note 3				

Note:

1. The measurement uncertainty is not included in the test result.

中国国家认证认可监督管理委员会

- 2. N/A: means this test item is not applicable for this device according to the technology characteristic of device.
- 3. During no any information transmission, the EUT can automatically discontinue transmission and become standby mode for power saving. the EUT can detect the controlling signal of ACK message transmitting from remote device and verify whether it shall resend or discontinue transmission.

Page 5 of 351 Report No.: CTC20231666E14

1.4. Test Facility

Address of the report laboratory

CTC Laboratories, Inc.

Add: Room 101 of Building B, Room 107, 108, 207, 208 of Building A, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China

Laboratory accreditation

The test facility is recognized, certified, or accredited by the following organizations:

A2LA-Lab Cert. No.: 4340.01

CTC Laboratories, Inc. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025:2017 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

Industry Canada (Registration No.: 9783A, CAB Identifier: CN0029)

CTC Laboratories, Inc. EMC Laboratory has been registered by Certification and Engineer Bureau of Industry Canada for the performance of with Registration NO.: 9783A on Jan, 2016.

FCC (Registration No.: 951311, Designation Number CN1208)

CTC Laboratories, Inc. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 951311, Aug 26, 2017.

1.5. Measurement Uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01 "Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 2" and is documented in the CTC Laboratories, Inc. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Below is the best measurement capability for CTC Laboratories, Inc.

Test Items	Measurement Uncertainty	Notes
Emission Bandwidth	±0.0196%	(1)
Maximum Conduct Output Power	±0.766dB	(1)
Power Spectral Density	±1.22dB	(1)
Band Edge Measurements	±1.328dB	(1)
Unwanted Emissions Measurement	9kHz-1GHz: ±0.746dB 1GHz-26GHz: ±1.328dB	(1)
Frequency Stability	±2.76%	(1)
Conducted Emissions 9kHz~30MHz	±3.08 dB	(1)
Radiated Emissions 30~1000MHz	±4.51 dB	(1)
Radiated Emissions 1~18GHz	±5.84 dB	(1)
Radiated Emissions 18~40GHz	±6.12 dB	(1)

Note (1): This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

1.6. Environmental Conditions

中国国家认证认可监

	Temperature	15 °C to 35 °C				
Normal	Relative Humidity	20 % to 75 %				
Condition	Air Pressure	101 kPa				
	Voltage	The normal test voltage for the equipment shall be the nominal voltage for which the equipment was designed.				
Extreme Temperature Measurements shall be made over the extremes of the temperature range as declared by the manufacturer.						
Condition	Voltage	Measurements shall be made over the extremes of the operating temperature range as declared by the manufacturer.				

Normal Condition	T _N =Normal Temperature	25 °C
Evtromo Condition	T _L =Lower Temperature	-10 °C
Extreme Condition	T _H =Higher Temperature	40 °C

CTC Laboratories, Inc.

Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn

2. GENERAL INFORMATION

2.1. Client Information

Applicant:	Shenzhen Absen Optoelectronic Co.,Ltd
Address:	18-20/F, Tower A, Building 3, Phase I, Tian An Cloud Park, N0.2018, Xuegang Rd, Bantian, Longgang District, Shenzhen, Guangdong, P.R. China
Manufacturer:	Shenzhen Absen Optoelectronic Co.,Ltd
Address:	18-20/F, Tower A, Building 3, Phase I, Tian An Cloud Park, N0.2018, Xuegang Rd, Bantian, Longgang District, Shenzhen, Guangdong, P.R. China
Factory:	Huizhou Absen Optoelectronic Limited.
Address:	No. 03, Donghua South road, Dongjiang Hi-tech Industry Park, Huizhou. Guangdong, China

2.2. General Description of EUT

Product Name:	LED Multimed	LED Multimedia Processor						
Trade Mark:	Ab Sen							
Model/Type reference:	X-Box	X-Box						
Listed Model(s):	/							
Model Difference:	/							
Power Supply:	AC 100-240V	~2.6A 50/60Hz						
RF Module Model:	AP6275S							
Hardware Version:	/							
Software Version:	/							
5G Wi-Fi	<u>.</u>							
Operation Band:	⊠U-NII-1 ⊠U-NII-2A ⊠U-NII-2C ⊠U-NII-3							
Operation Frequency:	U-NII-1	5150MHz~525	50MHz	•				
Operation requestoy.	U-NII-3	5725MHz~585	0MHz					
	802.11a	⊠ 20MHz						
Support Bandwidth:	802.11n	□ 20MHz	⊠ 40MHz					
Support Bandwidth.	802.11ac	⊠ 20MHz	⊠ 40MHz	⊠ 80MHz	☐ 160MHz			
	802.11ax	⊠ 20MHz	⊠ 40MHz	⊠ 80MHz	☐ 160MHz			
Modulation:	802.11a: OFDM (BPSK, QPSK, 16QAM, 64QAM) 802.11n: OFDM (BPSK, QPSK, 16QAM, 64QAM) 802.11ac: OFDM (BPSK, QPSK, 16QAM, 64QAM, 256QAM) 802.11ax: OFDMA (BPSK, QPSK, 16QAM, 64QAM, 256QAM, 1024QAM)							
Antenna Type:	PCB Antenna							
Antenna Gain:	Ant0: 2.23dBi,	Ant1:1.43dBi						

2.3. Accessory Equipment Information

Equipment Information						
Name	Model	S/N	Manufacturer			
Notebook	ThinkPad T460s	/	Lenovo			
Cable Information						
Name	Shielded Type	Ferrite Core	Length			
USB Cable	Unshielded	NO	150cm			
Test Software Informat	Test Software Information					
Name	Version	/	1			
adb.exe	/	/	/			

2.4. Operation State

Operation Frequency List: The EUT has been tested under typical operating condition. The Applicant provides communication tools software to control the EUT for staying in continuous transmitting.

Operation Frequency List:

Operating	20MHz E	Bandwidth	40MHz E	Bandwidth	80MHz Bandwidth		160MHz Bandwidth		
Band	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	
	36	5180	38	5190					
U-NII-1	40	5200	30	5190	42	5210			
O-INII-1	44	5220	46	5230	42	3210			
	48	5240	40	5230			50	5250	
	52	5260	54	5270	- 58			30	3230
U-NII-2A	56	5280	54	5270		5290			
U-INII-ZA	60	5300	62	5310	56	5290			
	64	5320	02	5510					
	100	5500	102	5510					
	104	5520	102	5510		5530			
	108	5540	110	5550	106				
	112	5560							
	116	5580	118	5590					
U-NII-2C	120	5600	110	3390		5610	5610	5570	
	124	5620	126	5630					
	128	5640	120	3030	122				
	132	5660			122				
	136	5680	134	5670					
	140	5700							
	149	5745	151	5755					
	153	5765	131	5/55	5/35				
U-NII-3	157	5785			155	5775	5775		/
	161	5805	159	5795					
	165	5825							

Test channel is below:

Operating	Test	20MHz Bandwidth		40MHz Bandwidth		80MHz Bandwidth		160MHz Bandwidth	
Band Channel		Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
	CH∟	36	5180	38	5190	/	/		
U-NII-1	СНм	40	5200	/	/	42	5210	50	
	СНн	48	5240	46	5230	/	/		F3F0
	CH∟	52	5260	54	5270	/	/		5250
	СНм	56	5280	/	/	58	5290		
	СНн	64	5320	62	5310	/	/		
	CH∟	100	5500	102	5510	106	5530	/	/
U-NII-2C	CH _M	116	5580	110	5550	/	/	114	5570
	СНн	140	5700	134	5670	122	5610	/	/
	CH∟	149	5745	151	5755	/	/	/	/
U-NII-3	СНм	157	5785	/	/	155	5775	/	/
	СНн	165	5825	159	5795	/	/	/	/

Data Rated:

Preliminary tests were performed in different data rate, and found which the below bit rate is worst case mode, so only show data which it is the worst case mode.

Test Mode	Data Rate (worst mode)
802.11a	6Mbps
802.11n(HT20)/ 802.11n(HT40)	HT-MCS0
802.11ac(VHT20)/ 802.11ac(VHT40)/ 802.11ac(VHT80)	VHT-MCS0
802.11ax(HE20)/ 802.11ax(HE40)/ 802.11ax(HE80)	HE-MCS0

Test Mode:

For RF test items:

The engineering test program was provided and enabled to make EUT continuous transmit.

For AC power line conducted emissions:

The EUT was set to connect with the WLAN AP under large package sizes transmission.

For Radiated spurious emissions test item:

The engineering test program was provided and enabled to make EUT continuous transmit. The EUT in each of three orthogonal axis emissions had been tested, but only the worst case (X axis) data recorded in the report.

RU Configuration:

Operating Mode	Resource Unit	26 Tone (2M)		
		0		
		:		
	Specific Resource Unit	4		
		:		
		8		
	Resource Unit	52 Tone (4M)		
		37		
802.11ax(HE20)	Specific Resource Unit	38		
, ,	Opecine Resource Offic	39		
		40		
	Resource Unit	106 Tone (8M)		
	Charifia Dagguras Unit	53		
	Specific Resource Unit	54		
	Resource Unit	242 Tone (20M)		
	Specific Resource Unit	61		
Operating Mode	Resource Unit	26 Tone (2M)		
		0		
		i		
	Specific Resource Unit	8		
		:		
		17		
	Resource Unit	52 Tone (4M)		
		37		
802.11ax(HE40)		38		
		39		
	0 " 5 11 "	40		
	Specific Resource Unit	41		
		42		
		43		
		44		
	Resource Unit	106 Tone (8M)		

CTC Laboratories, Inc.

中国国家认证认可监督管理委员会

Page 12 of 351 Report No.: CTC20231666E14

		53
	Specific Resource Unit	54
	Specime reasones orm	55
		56
	Resource Unit	242 Tone (20M)
	Considia Resource Unit	61
	Specific Resource Unit	62
	Resource Unit	484 Tone (40M)
	Specific Resource Unit	65
Operating Mode	Resource Unit	26 Tone (2M)
operaning mean		0
		<u> </u>
	Specific Resource Unit	17
	'	<u> </u>
		36
	Resource Unit	52 Tone (4M)
		37
		<u> </u>
	Specific Resource Unit	44
		:
		52
	Resource Unit	106 Tone (8M)
		53
802.11ax(HE80)		:
002.11ax(11L00)	Specific Resource Unit	56
		:
		60
	Resource Unit	242 Tone (20M)
		61
	0 " 5	62
	Specific Resource Unit	63
		64
	Resource Unit	484 Tone (40M)
		65
	Specific Resource Unit	66
	Resource Unit	996 Tone (80M)
		67
Operating Made	Specific Resource Unit	
Operating Mode	Resource Unit	26 Tone (2M)
	_	0
	Specific Passures Unit	<u>:</u> 36
	Specific Resource Unit	: :
802.11ax(HE160)	<u> </u>	: S36
	Resource Unit	52 Tone (4M)
	Nesource Offic	
	Specific Resource Unit —	37 :
		<u> </u>

Page 13 of 351 Report No.: CTC20231666E14

52				
•				
: S52				
53				
:				
60				
:				
S60				
Tone (20M)				
61				
•				
64				
<u> </u>				
S64				
Tone (40M)				
65				
66				
S65				
S66				
Tone (80M)				
67				
S67				
one (80+80M)				
68				

2.5. Measurement Instruments List

RF Test System								
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Calibrated Until			
1	MXA Signal Analyzer	Keysight	N9020A	MY46471737	Dec. 16, 2023			
2	High and low temperature test chamber	ESPEC	MT3035	/	Mar. 24, 2024			
3	Test Software	WCS	WCS-WCN	2023.08.04	/			

Radiate	Radiated Emission (3m chamber 3)							
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Calibrated Until			
1	Trilog-Broadband Antenna	Schwarzbeck	VULB 9163	01026	Dec. 18, 2024			
2	Horn Antenna	Schwarzbeck	BBHA 9120D	9120D-647	Dec. 01, 2024			
3	Test Receiver	Keysight	N9038A	MY56400071	Dec. 16, 2023			
4	Broadband Amplifier	SCHWARZBECK	BBV9743B	259	Dec. 16, 2023			
5	Mirowave Broadband Amplifier	SCHWARZBECK	BBV9718C	111	Dec. 16, 2023			
6	3m chamber 3	YIHENG	EE106	/	Aug. 28, 2026			
7	Test Software	FARA	EZ-EMC	FA-03A2	/			

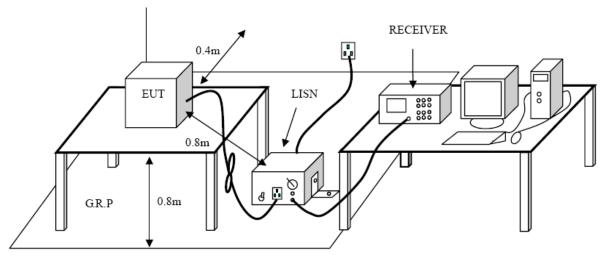
Conducted Emission							
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Calibrated Until		
1	LISN	R&S	ENV216	101112	Dec. 16, 2023		
2	LISN	R&S	ENV216	101113	Dec. 16, 2023		
3	EMI Test Receiver	R&S	ESCS30	100353	Dec. 16, 2023		
4	ISN CAT6	Schwarzbeck	NTFM 8158	CAT6-8158-0046	Dec. 16, 2023		
5	ISN CAT5	Schwarzbeck	NTFM 8158	CAT5-8158-0046	Dec. 16, 2023		
6	Test Software	R&S	EMC32	6.10.10	/		

Note: 1. The Cal. Interval was one year.

- 2. The Cal. Interval was three years of the antenna.
- 3. The cable loss has been calculated in test result which connection between each test instruments.

3. TEST ITEM AND RESULTS

3.1. Conducted Emission


<u>Limit</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.207

Fraguency (MHz)	Conducted Limit (dBµV)				
Frequency (MHz)	Quasi-peak	Average			
0.15 - 0.5	66 to 56 *	56 to 46 *			
0.5 - 5	56	46			
5 - 30	60	50			

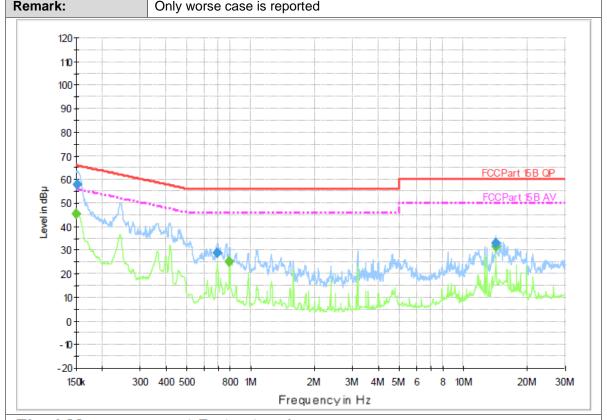
^{*} Decreases with the logarithm of the frequency.

Test Configuration

Test Procedure

- The EUT was setup according to ANSI C63.10:2013 requirements.
- The EUT was placed on a platform of nominal size, 1 m by 1.5 m, raised 80 cm above the conducting ground plane. The vertical conducting plane was located 40 cm to the rear of the EUT. All other surfaces of EUT were at least 80 cm from any other grounded conducting surface.
- The EUT and simulators are connected to the main power through a line impedance stabilization network (LISN). The LISN provides a 50 ohm / 50 µH coupling impedance for the measuring equipment.
- The peripheral devices are also connected to the main power through a LISN. (Please refer to the block diagram of the test setup and photographs)
- Each current-carrying conductor of the EUT power cord, except the ground (safety) conductor, was individually connected through a LISN to the input power source.
- The excess length of the power cord between the EUT and the LISN receptacle were folded back and forth at the center of the lead to form a bundle not exceeding 40 cm in length.
- Conducted emissions were investigated over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9 kHz.
- During the above scans, the emissions were maximized by cable manipulation.

Test Mode


Please refer to the clause 2.4.

中国国家认证认可监督管理委员会

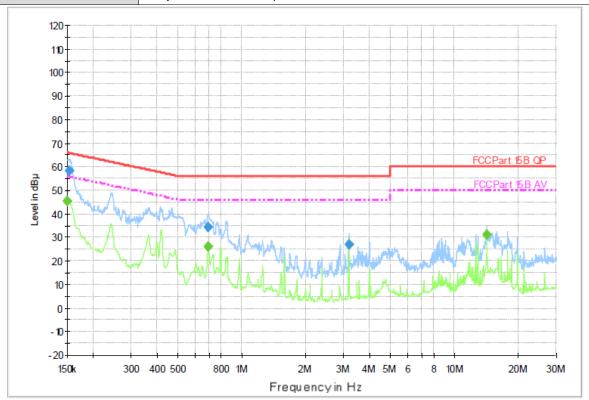
Test Result

Damani.	Only years and in some and a
Terminal:	Line
Test Voltage:	AC 120V/60Hz

Final Measurement Detector 1

Frequency (MHz)	QuasiPeak (dB µ V)	Meas. Time (ms)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dB µ V)	Comment
0.151810	58.1	1000.00	9.000	On	L1	9.4	7.9	65.9	
0.694760	29.0	1000.00	9.000	On	L1	9.5	27.0	56.0	
14.151110	33.0	1000.00	9.000	On	L1	9.8	27.0	60.0	

Final Measurement Detector 2


Frequency (MHz)	Average (dB μ V)	Meas. Time (ms)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dB µ V)	Comment
0.150600	45.3	1000.00	9.000	On	L1	9.4	10.7	56.0	
0.789430	25.1	1000.00	9.000	On	L1	9.5	20.9	46.0	
14.151110	31.5	1000.00	9.000	On	L1	9.8	18.5	50.0	

Emission Level = Read Level + Correct Factor

中国国家认证认可监

Final Measurement Detector 1

Frequency (MHz)	QuasiPeak (dB µ V)	Meas. Time (ms)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dB µ V)	Comment
0.153020	58.2	1000.00	9.000	On	N	9.3	7.6	65.8	
0.692000	34.5	1000.00	9.000	On	N	9.4	21.5	56.0	
3.167000	27.1	1000.00	9.000	On	N	9.4	28.9	56.0	·

Final Measurement Detector 2

Freque (MHz	,	Average (dB μ V)	Meas. Time (ms)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dB µ V)	Comment
0.150	600	45.5	1000.00	9.000	On	N	9.3	10.5	56.0	
0.692	000	25.8	1000.00	9.000	On	N	9.4	20.2	46.0	
14.151	110	30.9	1000.00	9.000	On	N	9.6	19.1	50.0	

Emission Level = Read Level + Correct Factor

中国国家认证认可监

3.2. Radiated Emission

Limit

FCC CFR Title 47 Part 15 Subpart C Section 15.209

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F (kHz)	300
0.490~1.705	24000/F (kHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
960~1000	500	3

Frequency Range (MHz)	dBµV/m	(at 3 meters)
r requerity rearrige (wiriz)	Peak	Average
Above 1000	74	54

Note:

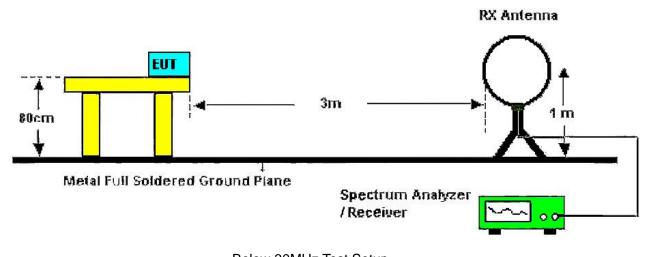
(1) The tighter limit applies at the band edges.

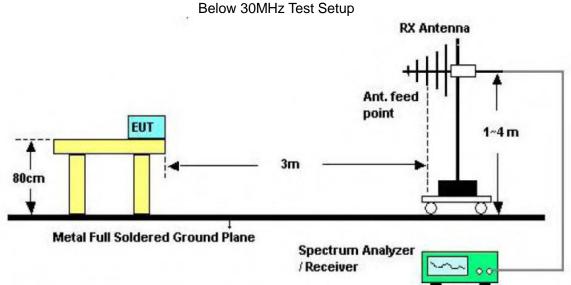
(2) Emission Level (dBμV/m)=20log Emission Level (μV/m).

Limits of unwanted emission out of the restricted bands

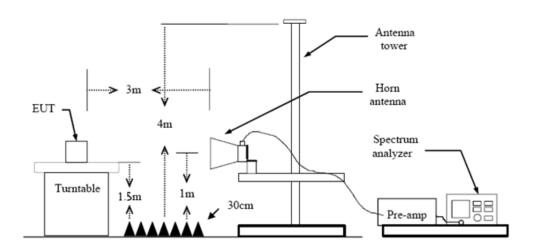
FCC CFR Title 47 Part 15 Subpart E Section 15. 407(b) / RSS-247 6.2

Frequency (MHz)	EIRP Limits (dBm)	Equivalent Field Strength at 3m (dBµV/m)
5150~5250	-27	68.2
5250~5350	-27	68.2
5470~5725	-27	68.2
	-27 (Note 2)	68.2
5705 500F	10 (Note 2)	105.2
5725~5825	15.6 (Note 2)	110.8
	27 (Note 2)	122.2


Note


1. The following formula is used to convert the equipment isotropic radiated power (eirp) to field $1000000\sqrt{30P}$

strength: $E = \frac{1000000\sqrt{30P}}{3} \mu V/m$, where P is the eirp (Watts).


2. According to FCC 16-24, all emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27dBm/MHz at the band edge.

30-1000MHz Test Setup

Above 1GHz Test Setup

CTC Laboratories, Inc.

中国国家认证认可监

Test Procedure

- 1. The EUT was setup and tested according to ANSI C63.10:2013.
- 2. The EUT is placed on a turn table which is 0.8 meter above ground for below 1 GHz, and 1.5 m for above 1 GHz. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
- 3. The EUT was set 3 meters from the receiving antenna, which was mounted on the top of a variable height antenna tower.
- 4. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A preamp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- Set to the maximum power setting and enable the EUT transmit continuously.
- 6. Use the following spectrum analyzer settings
- (1) Span shall wide enough to fully capture the emission being measured;
- (2) 9k 150kHz:

RBW=300 Hz, VBW=1 kHz, Sweep=auto, Detector function=peak, Trace=max hold

(3) 0.15M – 30MHz:

RBW=10 kHz, VBW=30 kHz, Sweep=auto, Detector function=peak, Trace=max hold

(4) 30M - 1 GHz:

RBW=120 kHz, VBW=300 kHz, Sweep=auto, Detector function=peak, Trace=max hold If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

(5) From 1 GHz to 10th harmonic:

RBW=1MHz, VBW=3MHz Peak detector for Peak value.

RBW=1MHz, VBW see note 1 with Peak Detector for Average Value.

Note 1: For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 3 MHz for peak measurements and 1 MHz resolution bandwidth with 1/T video bandwidth with peak detector for average measurements. For the Duty Cycle please refer to clause Duty Cycle.

Test Mode

Please refer to the clause 2.4.

Test Result

9 kHz~30 MHz

From 9 kHz to 30 MHz: The conclusion is PASS.

- Note: 1. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.
 - 2. Pre-scan all antenna, only show the test data for worse case antenna on the test report.

An	t. No.		Aı	Ant 0												
An	t. Pol.		Н	lorizontal												
Tes	t Mode:		T	X 80)2.11	a Mod	de 518	0MHz	(U-NII-1)							
Rei	mark:		0	nly	wors	e case	e is rep	orted.								
90.0	dBu∀/m	1									1					
80															\square	
70															+	
60										FCC Pa		-Clas	s B 30	-10001	M _	
50										Margin -	6 dB					
40								*	*	3 1	7 . /	le und	il A ia	<u>ه</u> ال		
30							<u> </u>		Malaka	May V		H. Jana	THE THEFT	" W _W	a made	
20	www	manylony	ng photology	νω	المليدان ا	Markethran		Ψ	ייקוי	"	, ' T Y					
10				D. March	Mary .		obsendad/one a									
0																
-10 3	0.000	6	0.00					(MHz)		800.00					1000.0	0
			0.00					·····								_

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	172.9133	54.60	-18.33	36.27	43.50	-7.23	QP
2 *	214.6233	53.06	-15.54	37.52	43.50	-5.98	QP
3	351.3933	50.35	-11.83	38.52	46.00	-7.48	QP
4	381.1400	49.26	-11.40	37.86	46.00	-8.14	QP
5	412.5033	49.47	-10.93	38.54	46.00	-7.46	QP
6	812.4667	43.35	-4.15	39.20	46.00	-6.80	QP

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

中国国家认证认可监督管理委员会

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1!	214.6233	53.18	-15.54	37.64	43.50	-5.86	QP
2	379.8467	48.87	-11.42	37.45	46.00	-8.55	QP
3	415.0900	49.17	-10.88	38.29	46.00	-7.71	QP
4	466.1767	49.63	-9.98	39.65	46.00	-6.35	QP
5!	500.1267	50.08	-9.29	40.79	46.00	-5.21	QP
6 *	624.9333	48.54	-6.80	41.74	46.00	-4.26	QP

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

中国国家认证认可监

Ant. No.	Ant 0
Ant. Pol.	Horizontal
Test Mode:	TX 802.11a Mode 5180MHz (U-NII-1)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	4824.002	39.94	2.11	42.05	74.00	-31.95	peak
2 *	4824.722	24.62	2.11	26.73	54.00	-27.27	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant. No.	Ant 0
Ant. Pol.	Vertical
Test Mode:	TX 802.11a Mode 5180MHz (U-NII-1)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	10359.741	23.72	13.93	37.65	54.00	-16.35	AVG
2	10360.046	38.52	13.93	52.45	74.00	-21.55	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

中国国家认证认可监督管理委员会

Ant. No.	Ant 0
Ant. Pol.	Horizontal
Test Mode:	TX 802.11a Mode 5200MHz (U-NII-1)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	10400.777	39.02	13.99	53.01	74.00	-20.99	peak
2 *	10400.852	23.75	13.99	37.74	54.00	-16.26	AVG

Remarks:

- 1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 2.Margin value = Level -Limit value

Ant. No.	Ant 0			
Ant. Pol.	Vertical			
Test Mode:	TX 802.11a Mode 5200MHz (U-NII-1)			
Remark:	No report for the emission which more than 20 dB below the prescribed limit.			

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	10400.600	23.80	13.99	37.79	54.00	-16.21	AVG
2	10400.945	38.58	13.99	52.57	74.00	-21.43	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant. No.	Ant 0
Ant. Pol.	Horizontal
Test Mode:	TX 802.11a Mode 5240MHz (U-NII-1)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	10480.315	39.67	14.03	53.70	74.00	-20.30	peak
2 *	10480.487	23.28	14.03	37.31	54.00	-16.69	AVG

Remarks:

- 1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 2.Margin value = Level -Limit value

Ant. No.	Ant 0
Ant. Pol.	Vertical
Test Mode:	TX 802.11a Mode 5240MHz (U-NII-1)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	10479.716	38.73	14.03	52.76	74.00	-21.24	peak
2 *	10480.075	23.39	14.03	37.42	54.00	-16.58	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

CTC Laboratories, Inc.

http://yz.cnca.cn

Ant. No.	Ant 0 + Ant 1
Ant. Pol.	Horizontal
Test Mode:	TX 802.11n(HT20) Mode 5180MHz (U-NII-1)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	10360.394	23.39	13.92	37.31	54.00	-16.69	AVG
2	10360.631	38.01	13.92	51.93	74.00	-22.07	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant. No.	Ant 0 + Ant 1			
Ant. Pol.	Vertical			
Test Mode:	TX 802.11n(HT20) Mode 5180MHz (U-NII-1)			
Remark:	No report for the emission which more than 20 dB below the prescribed limit.			

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	10360.089	38.34	13.93	52.27	74.00	-21.73	peak
2 *	10360.579	23.27	13.92	37.19	54.00	-16.81	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

中国国家认证认可监督管理委员会

Ant. No.	Ant 0 + Ant 1
Ant. Pol.	Horizontal
Test Mode:	TX 802.11n(HT20) Mode 5200MHz (U-NII-1)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	10399.704	38.96	13.99	52.95	74.00	-21.05	peak
2 *	10399.827	23.47	13.99	37.46	54.00	-16.54	AVG

Remarks:

- 1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 2.Margin value = Level -Limit value

Ant. No.	Ant 0 + Ant 1
Ant. Pol.	Vertical
Test Mode:	TX 802.11n(HT20) Mode 5200MHz (U-NII-1)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	10399.010	39.13	13.99	53.12	74.00	-20.88	peak
2 *	10399.692	23.88	13.99	37.87	54.00	-16.13	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant. No.	Ant 0 + Ant 1
Ant. Pol.	Horizontal
Test Mode:	TX 802.11n(HT20) Mode 5240MHz (U-NII-1)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	10479.779	38.62	14.03	52.65	74.00	-21.35	peak
2 *	10480.678	24.39	14.03	38.42	54.00	-15.58	AVG

Remarks:

- 1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 2.Margin value = Level -Limit value

Ant. No.	Ant 0 + Ant 1
Ant. Pol.	Vertical
Test Mode:	TX 802.11n(HT20) Mode 5240MHz (U-NII-1)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	10480.677	23.35	14.03	37.38	54.00	-16.62	AVG
2	10480.948	39.41	14.03	53.44	74.00	-20.56	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant. No.	Ant 0 + Ant 1
Ant. Pol.	Horizontal
Test Mode:	TX 802.11ac(VHT20) Mode 5180MHz (U-NII-1)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	10360.020	38.73	13.93	52.66	74.00	-21.34	peak
2 *	10360.387	23.36	13.92	37.28	54.00	-16.72	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant. No.	Ant 0 + Ant 1
Ant. Pol.	Vertical
Test Mode:	TX 802.11ac(VHT20) Mode 5180MHz (U-NII-1)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	10359.777	38.23	13.93	52.16	74.00	-21.84	peak
2 *	10359.859	23.45	13.93	37.38	54.00	-16.62	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant. No.	Ant 0 + Ant 1
Ant. Pol.	Horizontal
Test Mode:	TX 802.11ac(VHT20) Mode 5200MHz (U-NII-1)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	10399.448	23.95	13.99	37.94	54.00	-16.06	AVG
2	10400.030	39.16	13.99	53.15	74.00	-20.85	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant. No.	Ant 0 + Ant 1
Ant. Pol.	Vertical
Test Mode:	TX 802.11ac(VHT20) Mode 5200MHz (U-NII-1)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	10399.129	24.71	13.99	38.70	54.00	-15.30	AVG
2	10399.807	38.89	13.99	52.88	74.00	-21.12	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant. No.	Ant 0 + Ant 1
Ant. Pol.	Horizontal
Test Mode:	TX 802.11ac(VHT20) Mode 5240MHz (U-NII-1)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	10479.736	23.21	14.03	37.24	54.00	-16.76	AVG
2	10480.400	37.95	14.03	51.98	74.00	-22.02	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant. No.	Ant 0 + Ant 1			
Ant. Pol.	Vertical			
Test Mode:	TX 802.11ac(VHT20) Mode 5240MHz (U-NII-1)			
Remark:	No report for the emission which more than 20 dB below the prescribed limit.			

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	10479.357	24.13	14.03	38.16	54.00	-15.84	AVG
2	10480.143	38.44	14.03	52.47	74.00	-21.53	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant. No.	Ant 0 + Ant 1
Ant. Pol.	Horizontal
Test Mode:	TX 802.11ax(HE20) Mode 5180MHz (U-NII-1) 242/61
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	10359.115	38.26	13.93	52.19	74.00	-21.81	peak
2 *	10360.299	23.43	13.93	37.36	54.00	-16.64	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant. No.	Ant 0 + Ant 1		
Ant. Pol.	Vertical		
Test Mode:	TX 802.11ax(HE20) Mode 5180MHz (U-NII-1) 242/61		
Remark:	No report for the emission which more than 20 dB below the prescribed limit.		

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	10360.141	39.00	13.93	52.93	74.00	-21.07	peak
2 *	10360.232	23.04	13.93	36.97	54.00	-17.03	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant. No.	Ant 0 + Ant 1
Ant. Pol.	Horizontal
Test Mode:	TX 802.11ax(HE20) Mode 5200MHz (U-NII-1) 242/61
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)		Detector
1	10399.981	38.77	13.99	52.76	74.00	-21.24	peak
2 *	10400.203	24.83	13.99	38.82	54.00	-15.18	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant. No.	Ant 0 + Ant 1
Ant. Pol.	Vertical
Test Mode:	TX 802.11ax(HE20) Mode 5200MHz (U-NII-1) 242/61
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	10399.244	38.78	13.99	52.77	74.00	-21.23	peak
2 *	10399.387	24.50	13.99	38.49	54.00	-15.51	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant. No.	Ant 0 + Ant 1
Ant. Pol.	Horizontal
Test Mode:	TX 802.11ax(HE20) Mode 5240MHz (U-NII-1) 242/61
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1 *	10480.566	25.00	14.03	39.03	54.00	-14.97	AVG
2	10480.598	37.85	14.03	51.88	74.00	-22.12	peak

Remarks:

- 1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 2.Margin value = Level -Limit value

Ant. No.	Ant 0 + Ant 1
Ant. Pol.	Vertical
Test Mode:	TX 802.11ax(HE20) Mode 5240MHz (U-NII-1) 242/61
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	10480.265	37.76	14.03	51.79	74.00	-22.21	peak
2 *	10480.731	24.35	14.03	38.38	54.00	-15.62	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant. No.	Ant 0 + Ant 1
Ant. Pol.	Horizontal
Test Mode:	TX 802.11n(HT40) Mode 5190MHz (U-NII-1)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	10380.558	38.64	13.96	52.60	74.00	-21.40	peak
2 *	10380.757	25.10	13.96	39.06	54.00	-14.94	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant. No.	Ant 0 + Ant 1	
Ant. Pol.	Vertical	
Test Mode: TX 802.11n(HT40) Mode 5190MHz (U-NII-1)		
Remark:	No report for the emission which more than 20 dB below the prescribed limit.	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	10379.427	24.52	13.96	38.48	54.00	-15.52	AVG
2	10379.673	38.74	13.96	52.70	74.00	-21.30	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant. No.	Ant 0 + Ant 1
Ant. Pol.	Horizontal
Test Mode:	TX 802.11n(HT40) Mode 5230MHz (U-NII-1)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	10459.461	38.42	14.02	52.44	74.00	-21.56	peak
2 *	10460.284	24.71	14.02	38.73	54.00	-15.27	AVG

Remarks:

- 1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 2.Margin value = Level -Limit value

Ant. No.	Ant 0 + Ant 1			
Ant. Pol.	Vertical			
Test Mode:	TX 802.11n(HT40) Mode 5230MHz (U-NII-1)			
Remark:	No report for the emission which more than 20 dB below the prescribed limit.			

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	10459.099	38.26	14.02	52.28	74.00	-21.72	peak
2 *	10459.325	23.44	14.02	37.46	54.00	-16.54	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant. No.	Ant 0 + Ant 1
Ant. Pol.	Horizontal
Test Mode:	TX 802.11ac(VHT40) Mode 5190MHz (U-NII-1)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	10379.497	23.84	13.96	37.80	54.00	-16.20	AVG
2	10379.576	39.33	13.96	53.29	74.00	-20.71	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant. No.	Ant 0 + Ant 1
Ant. Pol.	Vertical
Test Mode:	TX 802.11ac(VHT40) Mode 5190MHz (U-NII-1)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	10380.113	39.23	13.96	53.19	74.00	-20.81	peak
2 *	10380.601	24.75	13.96	38.71	54.00	-15.29	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant. No.	Ant 0 + Ant 1
Ant. Pol.	Horizontal
Test Mode:	TX 802.11ac(VHT40) Mode 5230MHz (U-NII-1)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	10459.455	38.85	14.02	52.87	74.00	-21.13	peak
2 *	10459.697	23.62	14.02	37.64	54.00	-16.36	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant. No.	Ant 0 + Ant 1
Ant. Pol.	Vertical
Test Mode:	TX 802.11ac(VHT40) Mode 5230MHz (U-NII-1)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	10459.836	23.45	14.02	37.47	54.00	-16.53	AVG
2	10460.089	38.56	14.02	52.58	74.00	-21.42	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant. No.	Ant 0 + Ant 1
Ant. Pol.	Horizontal
Test Mode:	TX 802.11ax(HE40) Mode 5190MHz (U-NII-1) 484/65
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	10379.854	39.22	13.96	53.18	74.00	-20.82	peak
2 *	10380.637	23.99	13.96	37.95	54.00	-16.05	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant. No.	Ant 0 + Ant 1
Ant. Pol.	Vertical
Test Mode:	TX 802.11ax(HE40) Mode 5190MHz (U-NII-1) 484/65
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	10379.253	38.10	13.96	52.06	74.00	-21.94	peak
2 *	10380.719	25.57	13.96	39.53	54.00	-14.47	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant. No.	Ant 0 + Ant 1
Ant. Pol.	Horizontal
Test Mode:	TX 802.11ax(HE40) Mode 5230MHz (U-NII-1) 484/65
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	10459.591	23.40	14.02	37.42	54.00	-16.58	AVG
2	10459.859	38.67	14.02	52.69	74.00	-21.31	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant. No.	Ant 0 + Ant 1
Ant. Pol.	Vertical
Test Mode:	TX 802.11ax(HE40) Mode 5230MHz (U-NII-1) 484/65
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	10459.393	25.00	14.02	39.02	54.00	-14.98	AVG
2	10459.749	38.04	14.02	52.06	74.00	-21.94	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant. No.	Ant 0 + Ant 1
Ant. Pol.	Horizontal
Test Mode:	TX 802.11ac(VHT80) Mode 5210MHz (U-NII-1)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	10420.062	38.52	13.99	52.51	74.00	-21.49	peak
2 *	10420.195	24.77	13.99	38.76	54.00	-15.24	AVG

Remarks:

- 1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 2.Margin value = Level -Limit value

Ant. No.	Ant 0 + Ant 1
Ant. Pol.	Vertical
Test Mode:	TX 802.11ac(VHT80) Mode 5210MHz (U-NII-1)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)			Detector
1	10419.427	37.64	13.99	51.63	74.00	-22.37	peak
2 *	10419.667	25.26	13.99	39.25	54.00	-14.75	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant. No.	Ant 0 + Ant 1
Ant. Pol.	Horizontal
Test Mode:	TX 802.11ax(HE80) Mode 5210MHz (U-NII-1) 996/67
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	10419.831	38.27	13.99	52.26	74.00	-21.74	peak
2 *	10420.013	23.49	13.99	37.48	54.00	-16.52	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant. No.	Ant 0 + Ant 1
Ant. Pol.	Vertical
Test Mode:	TX 802.11ax(HE80) Mode 5210MHz (U-NII-1) 996/67
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)		Detector
1 *	10419.641	24.22	13.99	38.21	54.00	-15.79	AVG
2	10419.775	38.03	13.99	52.02	74.00	-21.98	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

CTC Laboratories, Inc.

http://yz.cnca.cn

Ant. No.	Ant 0
Ant. Pol.	Horizontal
Test Mode:	TX 802.11a Mode 5745MHz (U-NII-3)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)		Detector
1	11490.245	36.74	15.09	51.83	74.00	-22.17	peak
2 *	11490.439	22.24	15.09	37.33	54.00	-16.67	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant. No.	Ant 0
Ant. Pol.	Vertical
Test Mode:	TX 802.11a Mode 5745MHz (U-NII-3)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	11489.525	37.17	15.09	52.26	74.00	-21.74	peak
2 *	11490.493	22.18	15.09	37.27	54.00	-16.73	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant. No.	Ant 0
Ant. Pol.	Horizontal
Test Mode:	TX 802.11a Mode 5785MHz (U-NII-3)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	11570.142	22.54	15.23	37.77	54.00	-16.23	AVG
2	11570.885	37.96	15.23	53.19	74.00	-20.81	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant. No.	Ant 0
Ant. Pol.	Vertical
Test Mode:	TX 802.11a Mode 5785MHz (U-NII-3)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)			Detector
1	11569.137	38.92	15.23	54.15	74.00	-19.85	peak
2 *	11569.439	22.73	15.23	37.96	54.00	-16.04	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant. No.	Ant 0
Ant. Pol.	Horizontal
Test Mode:	TX 802.11a Mode 5825MHz (U-NII-3)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)		Detector
1	11649.689	38.39	15.28	53.67	74.00	-20.33	peak
2 *	11650.769	22.71	15.29	38.00	54.00	-16.00	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant. No.	Ant 0
Ant. Pol.	Vertical
Test Mode:	TX 802.11a Mode 5825MHz (U-NII-3)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)		Detector
1	11649.299	37.73	15.28	53.01	74.00	-20.99	peak
2 *	11649.555	22.68	15.28	37.96	54.00	-16.04	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant. No.	Ant 0 + Ant 1
Ant. Pol.	Horizontal
Test Mode:	TX 802.11n(HT20) Mode 5745MHz (U-NII-3)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	_	Detector
1 *	11489.719	22.14	15.09	37.23	54.00	-16.77	AVG
2	11490.049	36.55	15.09	51.64	74.00	-22.36	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant. No.	Ant 0 + Ant 1
Ant. Pol.	Vertical
Test Mode:	TX 802.11n(HT20) Mode 5745MHz (U-NII-3)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	11489.207	22.25	15.09	37.34	54.00	-16.66	AVG
2	11489.572	38.82	15.09	53.91	74.00	-20.09	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant. No.	Ant 0 + Ant 1
Ant. Pol.	Horizontal
Test Mode:	TX 802.11n(HT20) Mode 5785MHz (U-NII-3)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)		Detector
1	11569.117	38.42	15.23	53.65	74.00	-20.35	peak
2 *	11570.666	23.13	15.23	38.36	54.00	-15.64	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant. No.	Ant 0 + Ant 1
Ant. Pol.	Vertical
Test Mode:	TX 802.11n(HT20) Mode 5785MHz (U-NII-3)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	11569.408	37.57	15.23	52.80	74.00	-21.20	peak
2 *	11570.197	22.91	15.23	38.14	54.00	-15.86	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant. No.	Ant 0 + Ant 1
Ant. Pol.	Horizontal
Test Mode:	TX 802.11n(HT20) Mode 5825MHz (U-NII-3)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)		Detector
1	11649.754	37.91	15.28	53.19	74.00	-20.81	peak
2 *	11649.781	22.76	15.28	38.04	54.00	-15.96	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant. No.	Ant 0 + Ant 1
Ant. Pol.	Vertical
Test Mode:	TX 802.11n(HT20) Mode 5825MHz (U-NII-3)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)		Detector
1	11649.240	36.72	15.28	52.00	74.00	-22.00	peak
2 *	11649.521	22.58	15.28	37.86	54.00	-16.14	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant. No.	Ant 0 + Ant 1
Ant. Pol.	Horizontal
Test Mode:	TX 802.11ac(VHT20) Mode 5745MHz (U-NII-3)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)		Detector
1	11490.234	37.69	15.09	52.78	74.00	-21.22	peak
2 *	11490.573	22.12	15.09	37.21	54.00	-16.79	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant. No.	Ant 0 + Ant 1
Ant. Pol.	Vertical
Test Mode:	TX 802.11ac(VHT20) Mode 5745MHz (U-NII-3)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	11489.078	23.22	15.08	38.30	54.00	-15.70	AVG
2	11489.159	36.87	15.09	51.96	74.00	-22.04	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant. No.	Ant 0 + Ant 1
Ant. Pol.	Horizontal
Test Mode:	TX 802.11ac(VHT20) Mode 5785MHz (U-NII-3)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)		Margin (dB)	Detector
1 *	11569.986	22.74	15.23	37.97	54.00	-16.03	AVG
2	11570.731	38.36	15.23	53.59	74.00	-20.41	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant. No.	Ant 0 + Ant 1
Ant. Pol.	Vertical
Test Mode:	TX 802.11ac(VHT20) Mode 5785MHz (U-NII-3)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	11569.378	37.38	15.23	52.61	74.00	-21.39	peak
2 *	11569.807	23.55	15.23	38.78	54.00	-15.22	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant. No.	Ant 0 + Ant 1
Ant. Pol.	Horizontal
Test Mode:	TX 802.11ac(VHT20) Mode 5825MHz (U-NII-3)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	11650.780	38.48	15.29	53.77	74.00	-20.23	peak
2 *	11650.981	23.31	15.29	38.60	54.00	-15.40	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant. No.	Ant 0 + Ant 1
Ant. Pol.	Vertical
Test Mode:	TX 802.11ac(VHT20) Mode 5825MHz (U-NII-3)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1 *	11649.138	22.58	15.28	37.86	54.00	-16.14	AVG
2	11650.547	37.51	15.29	52.80	74.00	-21.20	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant. No.	Ant 0 + Ant 1
Ant. Pol.	Horizontal
Test Mode:	TX 802.11ax(HE20) Mode 5745MHz (U-NII-3) 242/61
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	11489.087	23.06	15.08	38.14	54.00	-15.86	AVG
2	11490.691	36.77	15.09	51.86	74.00	-22.14	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant. No.	Ant 0 + Ant 1
Ant. Pol.	Vertical
Test Mode:	TX 802.11ax(HE20) Mode 5745MHz (U-NII-3) 242/61
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	11489.064	37.72	15.08	52.80	74.00	-21.20	peak
2 *	11489.933	23.59	15.09	38.68	54.00	-15.32	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant. No.	Ant 0 + Ant 1
Ant. Pol.	Horizontal
Test Mode:	TX 802.11ax(HE20) Mode 5785MHz (U-NII-3) 242/61
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	11570.224	23.79	15.23	39.02	54.00	-14.98	AVG
2	11570.796	38.29	15.23	53.52	74.00	-20.48	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant. No.	Ant 0 + Ant 1
Ant. Pol.	Vertical
Test Mode:	TX 802.11ax(HE20) Mode 5785MHz (U-NII-3) 242/61
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No		Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	*	11569.349	24.48	15.23	39.71	54.00	-14.29	AVG
2		11570.423	38.50	15.23	53.73	74.00	-20.27	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant. No.	Ant 0 + Ant 1
Ant. Pol.	Horizontal
Test Mode:	TX 802.11ax(HE20) Mode 5825MHz (U-NII-3) 242/61
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	11649.061	38.06	15.28	53.34	74.00	-20.66	peak
2 *	11650.032	24.16	15.28	39.44	54.00	-14.56	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant. No.	Ant 0 + Ant 1
Ant. Pol.	Vertical
Test Mode:	TX 802.11ax(HE20) Mode 5825MHz (U-NII-3) 242/61
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)		Detector
1 *	11649.799	23.42	15.28	38.70	54.00	-15.30	AVG
2	11650.170	37.98	15.29	53.27	74.00	-20.73	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant. No.	Ant 0 + Ant 1
Ant. Pol.	Horizontal
Test Mode:	TX 802.11n(HT40) Mode 5755MHz (U-NII-3)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	11509.861	23.91	15.12	39.03	54.00	-14.97	AVG
2	11510.073	37.99	15.12	53.11	74.00	-20.89	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant. No.	Ant 0 + Ant 1
Ant. Pol.	Vertical
Test Mode:	TX 802.11n(HT40) Mode 5755MHz (U-NII-3)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	11509.389	37.05	15.12	52.17	74.00	-21.83	peak
2 *	11510.197	22.34	15.12	37.46	54.00	-16.54	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant. No.	Ant 0 + Ant 1
Ant. Pol.	Horizontal
Test Mode:	TX 802.11n(HT40) Mode 5795MHz (U-NII-3)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	11589.540	24.56	15.27	39.83	54.00	-14.17	AVG
2	11589.795	37.91	15.27	53.18	74.00	-20.82	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant. No.	Ant 0 + Ant 1		
Ant. Pol.	Vertical		
Test Mode: TX 802.11n(HT40) Mode 5795MHz (U-NII-3)			
Remark:	No report for the emission which more than 20 dB below the prescribed limit.		

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	11590.499	38.82	15.27	54.09	74.00	-19.91	peak
2 *	11590.939	22.70	15.27	37.97	54.00	-16.03	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant. No.	Ant 0 + Ant 1
Ant. Pol.	Horizontal
Test Mode:	TX 802.11ac(VHT40) Mode 5755MHz (U-NII-3)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	11510.387	38.05	15.12	53.17	74.00	-20.83	peak
2 *	11510.785	22.54	15.12	37.66	54.00	-16.34	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant. No.	Ant 0 + Ant 1	
Ant. Pol.	Vertical	
Test Mode: TX 802.11ac(VHT40) Mode 5755MHz (U-NII-3)		
Remark:	No report for the emission which more than 20 dB below the prescribed limit.	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1 *	11509.413	22.26	15.12	37.38	54.00	-16.62	AVG
2	11509.437	37.42	15.12	52.54	74.00	-21.46	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant. No.	Ant 0 + Ant 1
Ant. Pol.	Horizontal
Test Mode:	TX 802.11ac(VHT40) Mode 5795MHz (U-NII-3)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	11589.255	22.83	15.27	38.10	54.00	-15.90	AVG
2	11590.973	37.99	15.27	53.26	74.00	-20.74	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant. No.	Ant 0 + Ant 1
Ant. Pol.	Vertical
Test Mode:	TX 802.11ac(VHT40) Mode 5795MHz (U-NII-3)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)		Detector
1 *	11589.387	24.02	15.27	39.29	54.00	-14.71	AVG
2	11589.916	37.58	15.27	52.85	74.00	-21.15	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant. No.	Ant 0 + Ant 1
Ant. Pol.	Horizontal
Test Mode:	TX 802.11ax(HE40) Mode 5755MHz (U-NII-3) 484/65
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)		Detector
1 *	11509.258	23.74	15.12	38.86	54.00	-15.14	AVG
2	11510.550	37.45	15.12	52.57	74.00	-21.43	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant. No.	Ant 0 + Ant 1
Ant. Pol.	Vertical
Test Mode:	TX 802.11ax(HE40) Mode 5755MHz (U-NII-3) 484/65
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	11510.007	23.83	15.12	38.95	54.00	-15.05	AVG
2	11510.173	37.84	15.12	52.96	74.00	-21.04	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant. No.	Ant 0 + Ant 1
Ant. Pol.	Horizontal
Test Mode:	TX 802.11ax(HE40) Mode 5795MHz (U-NII-3) 484/65
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)		Detector
1 *	11589.329	22.79	15.27	38.06	54.00	-15.94	AVG
2	11590.033	37.97	15.27	53.24	74.00	-20.76	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant. No.	Ant 0 + Ant 1
Ant. Pol.	Vertical
Test Mode:	TX 802.11ax(HE40) Mode 5795MHz (U-NII-3) 484/65
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	11589.029	24.10	15.27	39.37	54.00	-14.63	AVG
2	11590.044	37.67	15.27	52.94	74.00	-21.06	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant. No.	Ant 0 + Ant 1
Ant. Pol.	Horizontal
Test Mode:	TX 802.11ac(VHT80) Mode 5775MHz (U-NII-3)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	11549.399	38.07	15.19	53.26	74.00	-20.74	peak
2 *	11550.394	23.66	15.20	38.86	54.00	-15.14	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant. No.	Ant 0 + Ant 1
Ant. Pol.	Vertical
Test Mode:	TX 802.11ac(VHT80) Mode 5775MHz (U-NII-3)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	11549.667	24.47	15.19	39.66	54.00	-14.34	AVG
2	11549.950	37.61	15.19	52.80	74.00	-21.20	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant. No.	Ant 0 + Ant 1
Ant. Pol.	Horizontal
Test Mode:	TX 802.11ax(HE80) Mode 5775MHz (U-NII-3) 996/67
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)		Detector
1 *	11550.703	22.30	15.20	37.50	54.00	-16.50	AVG
2	11550.832	37.40	15.20	52.60	74.00	-21.40	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant. No.	Ant 0 + Ant 1
Ant. Pol.	Vertical
Test Mode:	TX 802.11ax(HE80) Mode 5775MHz (U-NII-3) 996/67
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	11549.775	24.05	15.19	39.24	54.00	-14.76	AVG
2	11550.275	37.60	15.20	52.80	74.00	-21.20	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

3.3. Band Edge Emissions

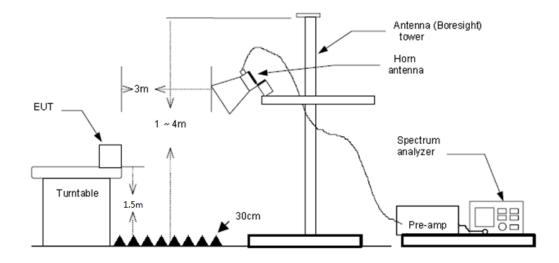
Limit

Limits of unwanted emission out of the restricted bands

FCC CFR Title 47 Part 15 Subpart E Section 15. 407(b)

Frequency (MHz)	EIRP Limits (dBm)	Equivalent Field Strength at 3m (dBµV/m)
5150~5250	-27	68.2
5250~5350	-27	68.2
5470~5725	-27	68.2
	-27 (Note 2)	68.2
F72F F92F	10 (Note 2)	105.2
5725~5825	15.6 (Note 2)	110.8
	27 (Note 2)	122.2

Note:


1. The following formula is used to convert the equipment isotropic radiated power (eirp) to field $1000000, \sqrt{30P}$

strength: $E = \frac{1000000\sqrt{30P}}{3} \mu V/m$, where P is the eirp (Watts).

2. According to FCC 16-24, all emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27dBm/MHz at the band edge.

Test Configuration

中国国家认证认可监

Test Procedure

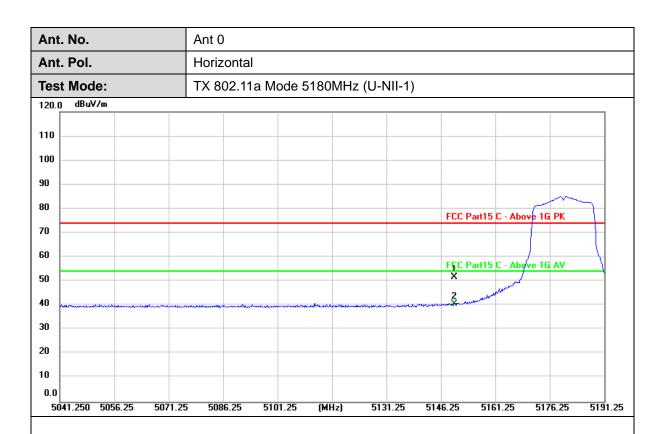
- 1. The EUT was setup and tested according to ANSI C63.10:2013 requirements.
- The EUT is placed on a turn table which is 1.5 meter above ground. The turn table is rotated 360 2. degrees to determine the position of the maximum emission level.
- The EUT was positioned such that the distance from antenna to the EUT was 3 meters.
- The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.10:2013 on radiated measurement.
- The receiver set as follow:

RBW=1MHz, VBW=3MHz Peak detector for Peak value.

RBW=1MHz, VBW see note 1 with Peak Detector for Average Value.

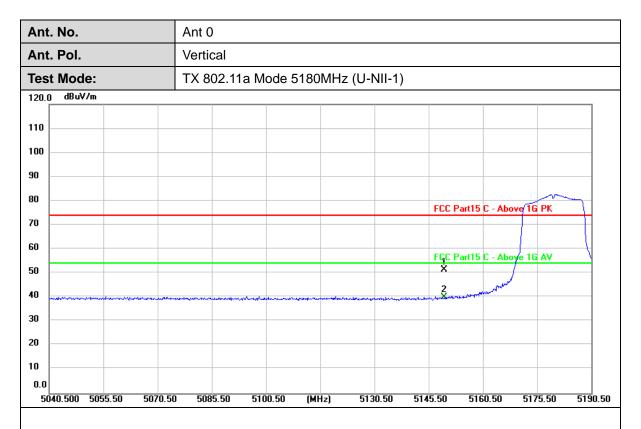
Note 1: For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 3 MHz for peak measurements and 1 MHz resolution bandwidth with 1/T video bandwidth with peak detector for average measurements. For the Duty Cycle please refer to clause Duty Cycle.

Test Mode


Please refer to the clause 2.4.

Test Result

Note: 1. Pre-scan both 4500-5150MHz, 5350-5460MHz were investigated, report only shows the test data for worst case.


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	5150.000	14.45	37.18	51.63	74.00	-22.37	peak
2 *	5150.000	3.40	37.18	40.58	54.00	-13.42	AVG

Remarks:

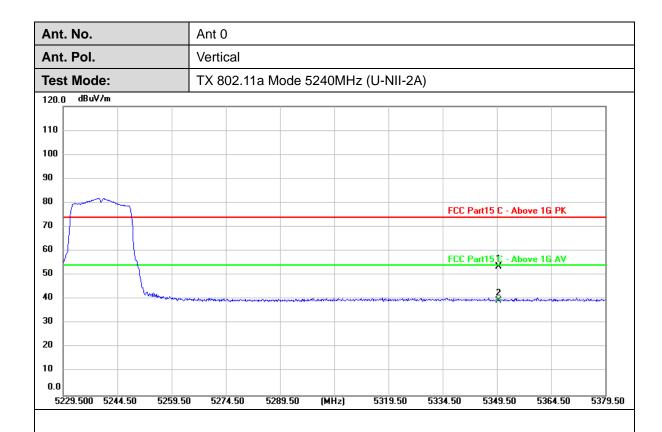
1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)		Detector
1	5150.000	14.41	37.18	51.59	74.00	-22.41	peak
2 *	5150.000	2.81	37.18	39.99	54.00	-14.01	AVG

Remarks:

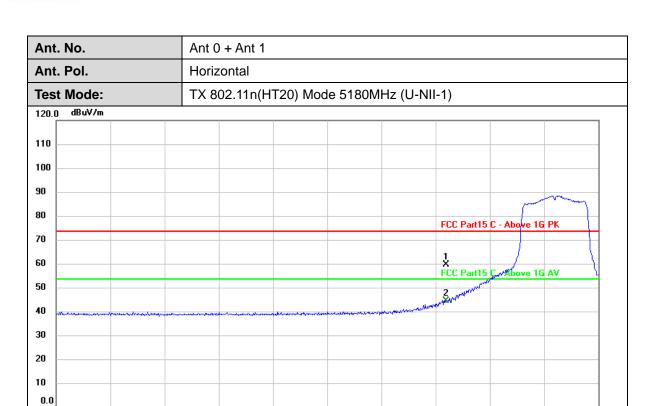
- 1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 2.Margin value = Level -Limit value


Ant	. No.		Ant 0	ant 0							
Ant	. Pol.		Horiz	Horizontal							
Tes	t Mode:		TX 80	TX 802.11a Mode 5240MHz (U-NII-2A)							
120.0) dBuV/m										
110											
100											
90											
80		1									
70								FCC I	Part15 C - Abo	ove 1G PK	
60											
50								FCC I	Part15 C - Abo	ove 1G AV	
40		Marketin							2		
30				20,000	4.7-44/10						
20											
10											
0.0											
52	230.250 5245	.25 5260.	25 527	5.25	5290.25	(MHz)	5320.25	5335.25	5350.25	5365.25	538

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	5350.000	15.33	37.40	52.73	74.00	-21.27	peak
2 *	5350.000	2.03	37.40	39.43	54.00	-14.57	AVG

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value



No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	5350.000	16.06	37.40	53.46	74.00	-20.54	peak
2 *	5350.000	1.99	37.40	39.39	54.00	-14.61	AVG

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)		Detector
1	5150.000	22.99	37.18	60.17	74.00	-13.83	peak
2 *	5150.000	7.89	37.18	45.07	54.00	-8.93	AVG

(MHz)

5132.00

5147.00

5162.00

5177.00

5192.00

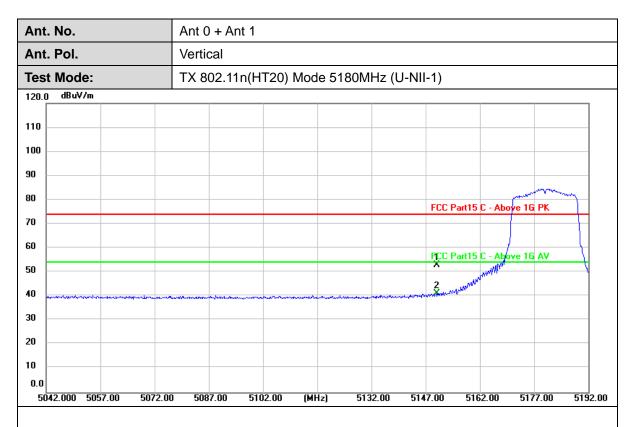
Remarks:

5042.000 5057.00

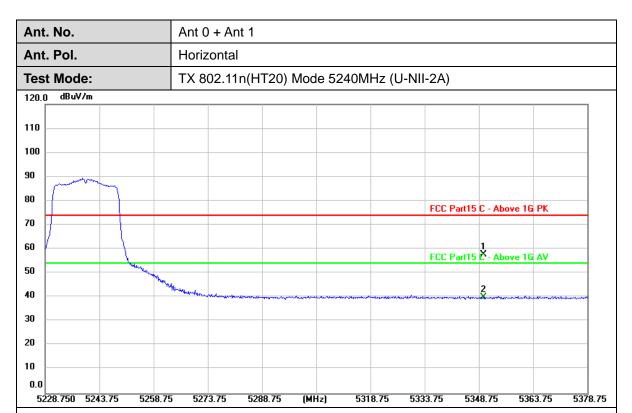
5072.00

5087.00

5102.00


1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

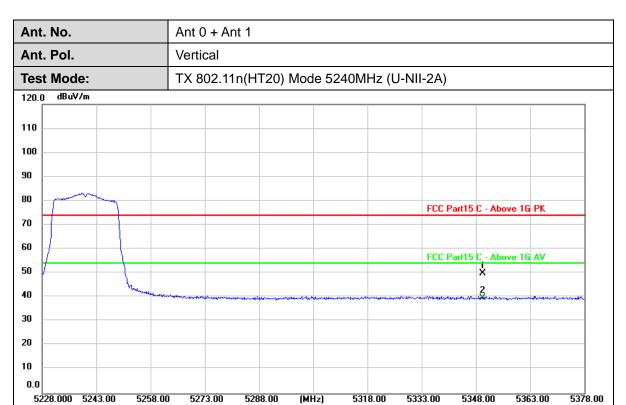
2.Margin value = Level -Limit value



No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	5150.000	15.69	37.18	52.87	74.00	-21.13	peak
2 *	5150.000	3.95	37.18	41.13	54.00	-12.87	AVG

Remarks:

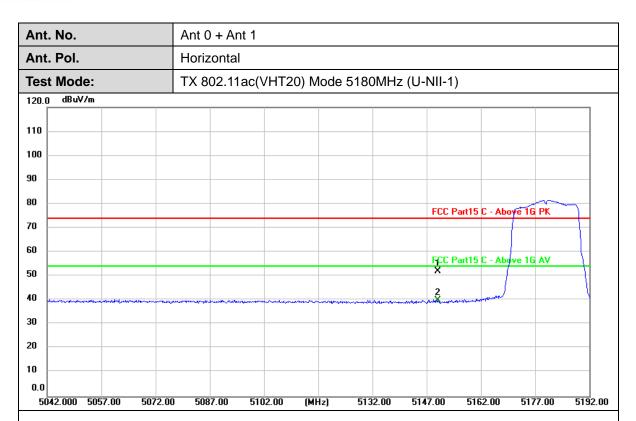
- 1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 2.Margin value = Level -Limit value


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	5350.000	20.32	37.40	57.72	74.00	-16.28	peak
2 *	5350.000	2.56	37.40	39.96	54.00	-14.04	AVG

Remarks

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	5350.000	12.44	37.40	49.84	74.00	-24.16	peak
2 *	5350.000	2.43	37.40	39.83	54.00	-14.17	AVG

Remarks

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	5150.000	14.94	37.18	52.12	74.00	-21.88	peak
2 *	5150.000	2.84	37.18	40.02	54.00	-13.98	AVG

Remarks

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	5150.000	12.86	37.18	50.04	74.00	-23.96	peak
2 *	5150.000	2.75	37.18	39.93	54.00	-14.07	AVG

(MHz)

5132.00

5147.00

5162.00

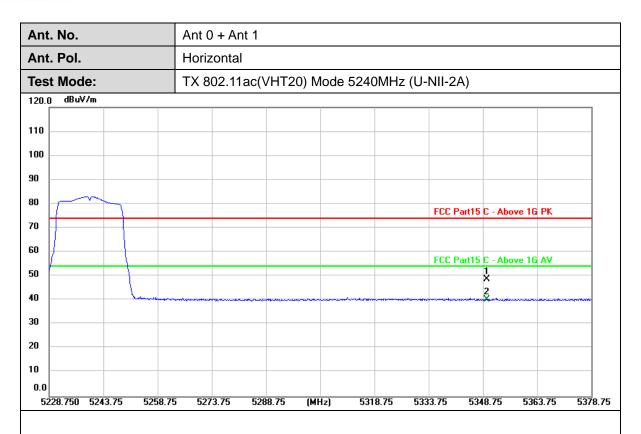
5177.00

Remarks:

0.0

5042.000 5057.00

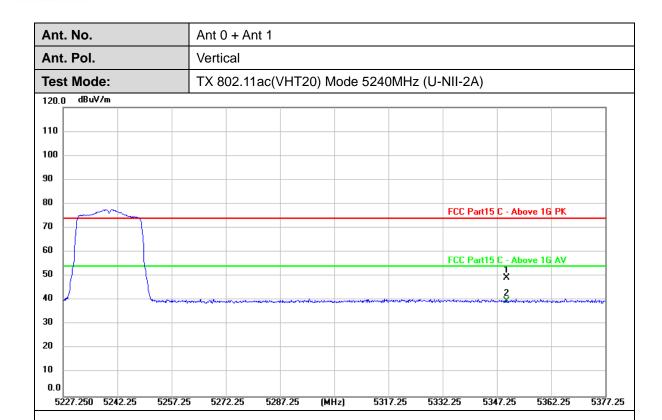
1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor


5102.00

5087.00

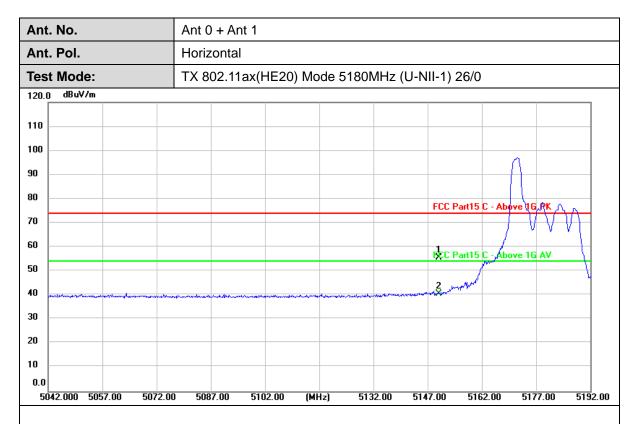
5072.00

2.Margin value = Level -Limit value


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	5350.000	11.31	37.40	48.71	74.00	-25.29	peak
2 *	5350.000	2.84	37.40	40.24	54.00	-13.76	AVG

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

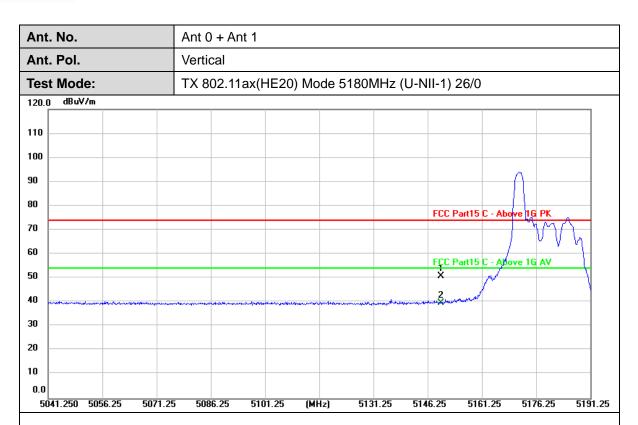
2.Margin value = Level -Limit value



No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	5350.000	11.83	37.40	49.23	74.00	-24.77	peak
2 *	5350.000	2.48	37.40	39.88	54.00	-14.12	AVG

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

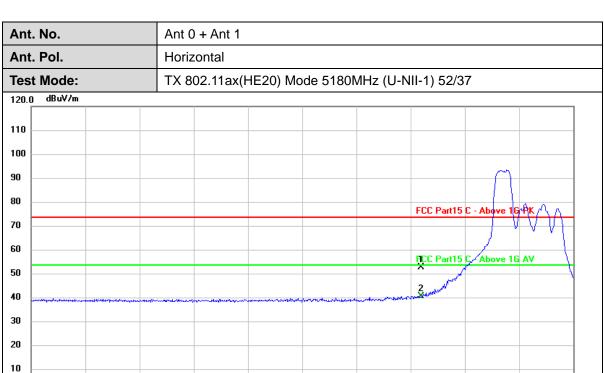


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	5150.000	18.37	37.18	55.55	74.00	-18.45	peak
2 *	5150.000	3.49	37.18	40.67	54.00	-13.33	AVG

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	5150.000	13.59	37.18	50.77	74.00	-23.23	peak
2 *	5150.000	2.64	37.18	39.82	54.00	-14.18	AVG


Remarks

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

5192.00

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	5150.000	16.07	37.18	53.25	74.00	-20.75	peak
2 *	5150.000	4.00	37.18	41.18	54.00	-12.82	AVG

(MHz)

5132.00

5147.00

5162.00

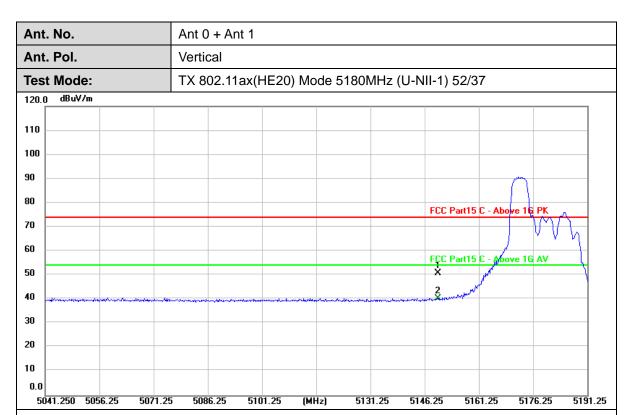
5177.00

Remarks

0.0

5042.000 5057.00

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

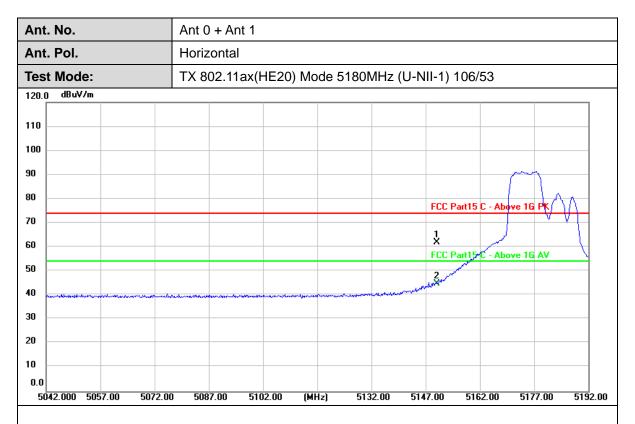

5102.00

5087.00

5072.00

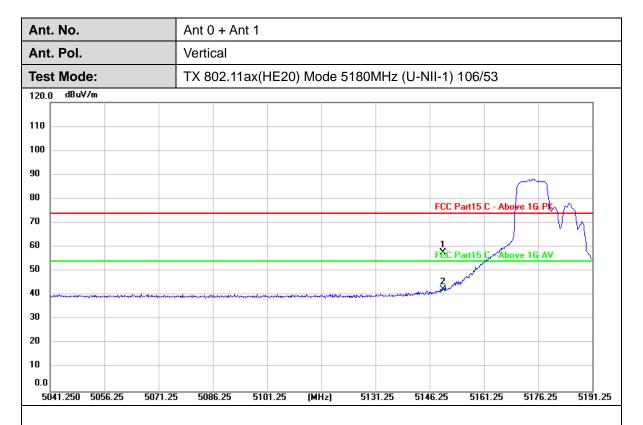
2.Margin value = Level -Limit value

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	5150.000	13.68	37.18	50.86	74.00	-23.14	peak
2 *	5150.000	3.03	37.18	40.21	54.00	-13.79	AVG


Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

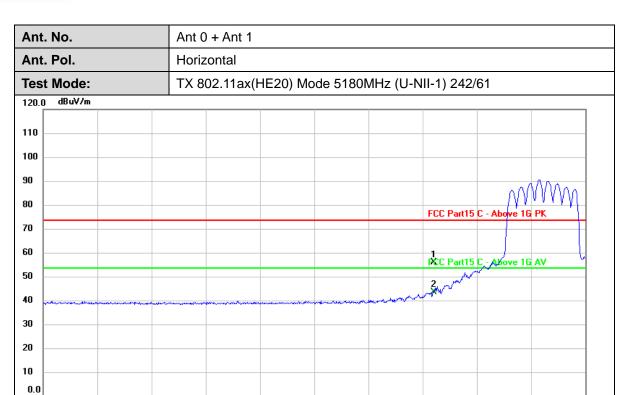
2.Margin value = Level -Limit value



No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	5150.000	24.66	37.18	61.84	74.00	-12.16	peak
2 *	5150.000	7.52	37.18	44.70	54.00	-9.30	AVG

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value



No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)			Detector
1	5150.000	20.59	37.18	57.77	74.00	-16.23	peak
2 *	5150.000	5.39	37.18	42.57	54.00	-11.43	AVG

- 1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 2.Margin value = Level -Limit value

5192.00

5177.00

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	5150.000	19.46	37.18	56.64	74.00	-17.36	peak
2 *	5150.000	7.16	37.18	44.34	54.00	-9.66	AVG

(MHz)

5132.00

5147.00

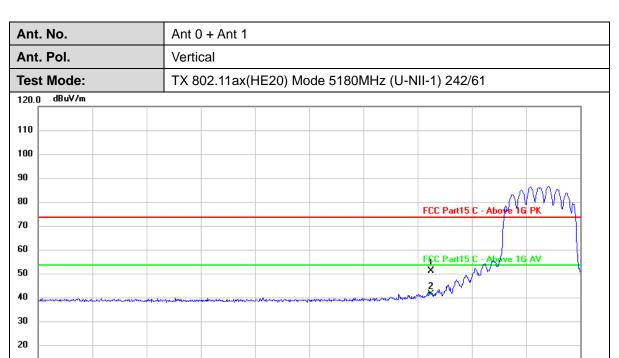
5162.00

Remarks

5042.000 5057.00

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

5102.00


5087.00

5072.00

2.Margin value = Level -Limit value

5191.25

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	5150.000	14.69	37.18	51.87	74.00	-22.13	peak
2 *	5150.000	4.87	37.18	42.05	54.00	-11.95	AVG

(MHz)

5131.25

5146.25

5161.25

5176.25

Remarks:

10 0.0

5041.250 5056.25

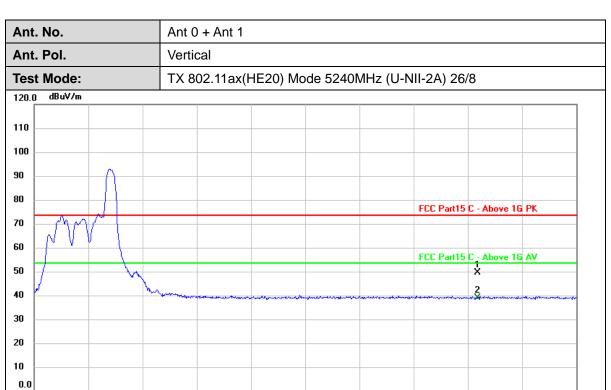
1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

5101.25

5086.25

5071.25

2.Margin value = Level -Limit value


Ant	. No.	Ant 0 + Ar	nt 1					
Ant	. Pol.	Horizonta	ı					
Tes	t Mode:	TX 802.11	1ax(HE20)	Mode 52	240MHz (L	J-NII-2A) 26	/8	
120.0) dBuV/m	•						
110								
100								
90								
80								
70	/\/\/\					FCC Part15	C - Above 1G	PK
60	/ \							
50	\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\					FCC Part15	G - Above 1G X	AV
40		when					ટ	
30				terminal experience of the second	- Andrew Control of the Street	Annah Charles and Charles and Charles	ada a da	and the second seco
20								
10 0.0								
- 1	228.750 5243.75 5258	75 5273.75	5288.75	(MHz)	5318.75	5333.75 53	48.75 536	3.75 537

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	5350.000	14.72	37.40	52.12	74.00	-21.88	peak
2 *	5350.000	2.12	37.40	39.52	54.00	-14.48	AVG

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	5350.000	12.78	37.40	50.18	74.00	-23.82	peak
2 *	5350.000	2.44	37.40	39.84	54.00	-14.16	AVG

(MHz)

5317.25

5332.25

5347.25

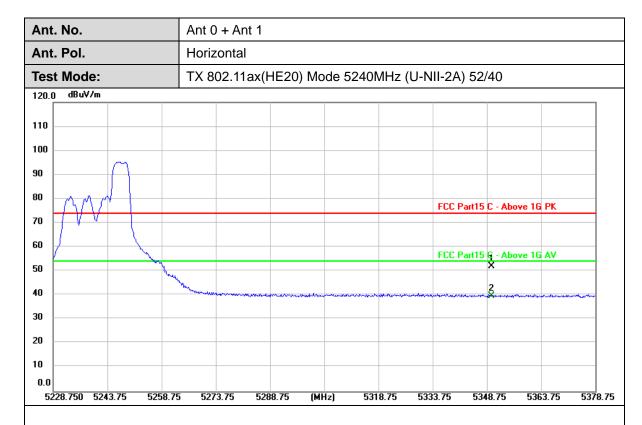
5362.25

5377.25

Remarks:

5227.250 5242.25

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor


5287.25

5272.25

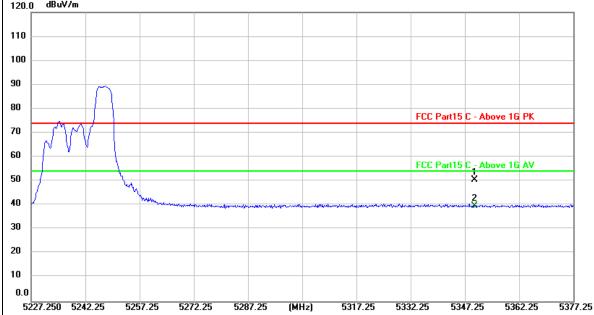
5257.25

2.Margin value = Level -Limit value

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	5350.000	14.70	37.40	52.10	74.00	-21.90	peak
2 *	5350.000	2.40	37.40	39.80	54.00	-14.20	AVG

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

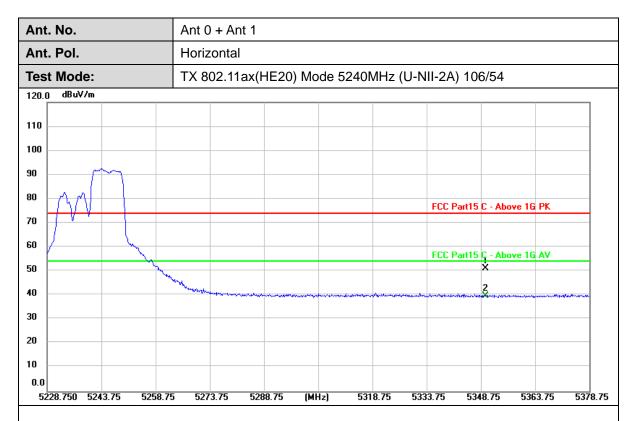


 Ant. No.
 Ant 0 + Ant 1

 Ant. Pol.
 Vertical

 Test Mode:
 TX 802.11ax(HE20) Mode 5240MHz (U-NII-2A) 52/40

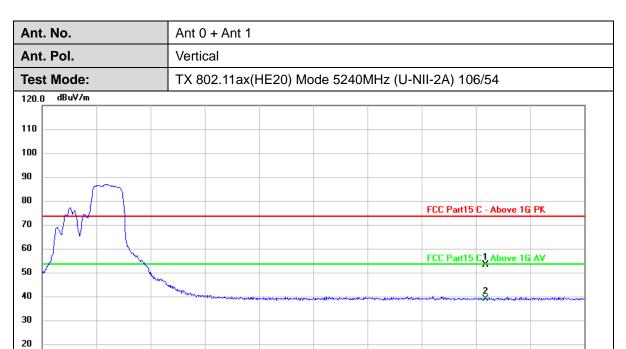
 120.0
 dBuV/m



No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	5350.000	13.21	37.40	50.61	74.00	-23.39	peak
2 *	5350.000	2.44	37.40	39.84	54.00	-14.16	AVG

Remarks:

- 1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 2.Margin value = Level -Limit value



No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)		Margin (dB)	Detector
1	5350.000	13.73	37.40	51.13	74.00	-22.87	peak
2 *	5350.000	2.27	37.40	39.67	54.00	-14.33	AVG

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	5350.000	16.51	37.40	53.91	74.00	-20.09	peak
2 *	5350.000	2.41	37.40	39.81	54.00	-14.19	AVG

(MHz)

5317.25

5332.25

5347.25

5362.25

5377.25

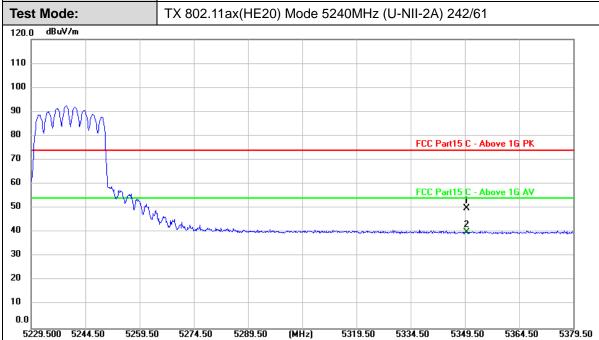
Remarks:

10 0.0

5227.250 5242.25

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

5287.25


5272.25

5257.25

2.Margin value = Level -Limit value

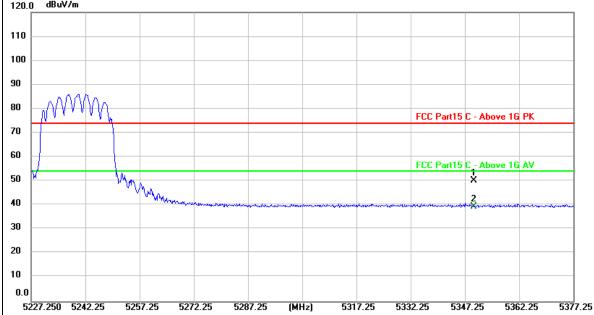
Ant. No. Ant 0 + Ant 1
Ant. Pol. Horizontal

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	5350.000	12.58	37.40	49.98	74.00	-24.02	peak
2 *	5350.000	2.58	37.40	39.98	54.00	-14.02	AVG

Remarks

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

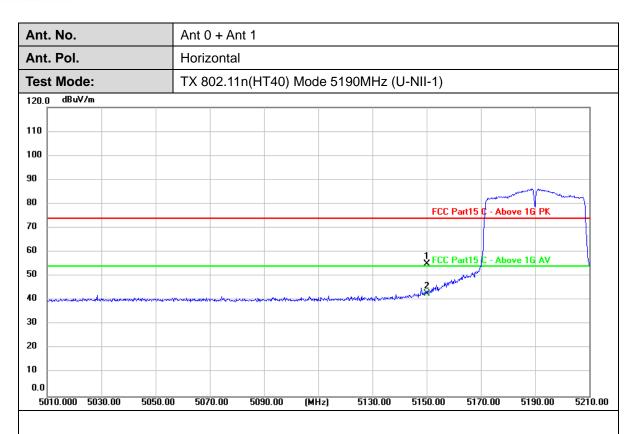


 Ant. No.
 Ant 0 + Ant 1

 Ant. Pol.
 Vertical

 Test Mode:
 TX 802.11ax(HE20) Mode 5240MHz (U-NII-2A) 242/61

 120.0
 dBuV/m

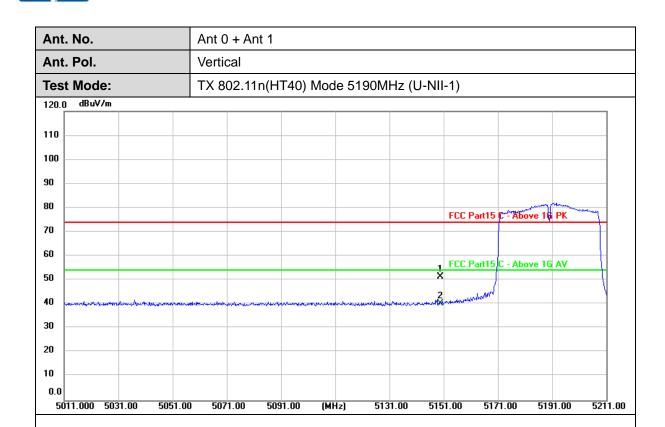


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	5350.000	12.80	37.40	50.20	74.00	-23.80	peak
2 *	5350.000	1.91	37.40	39.31	54.00	-14.69	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

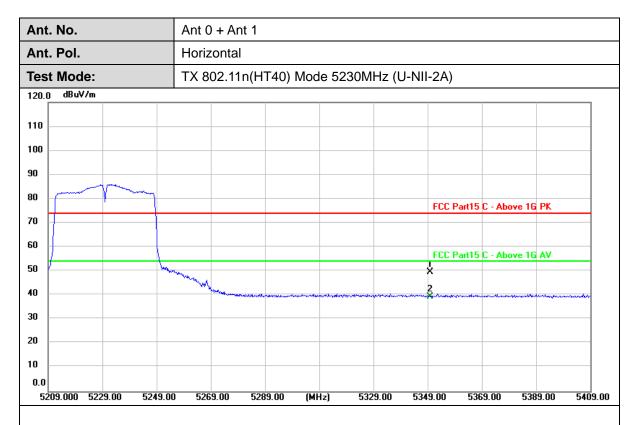
2.Margin value = Level -Limit value


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)			Detector
1	5150.000	17.94	37.18	55.12	74.00	-18.88	peak
2 *	5150.000	5.43	37.18	42.61	54.00	-11.39	AVG

Remarks

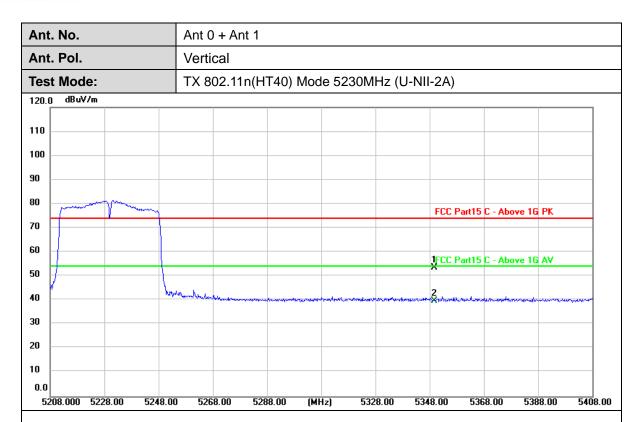
1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value



No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	5150.000	14.19	37.18	51.37	74.00	-22.63	peak
2 *	5150.000	3.02	37.18	40.20	54.00	-13.80	AVG

- 1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 2.Margin value = Level -Limit value



No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	5350.000	12.12	37.40	49.52	74.00	-24.48	peak
2 *	5350.000	2.02	37.40	39.42	54.00	-14.58	AVG

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

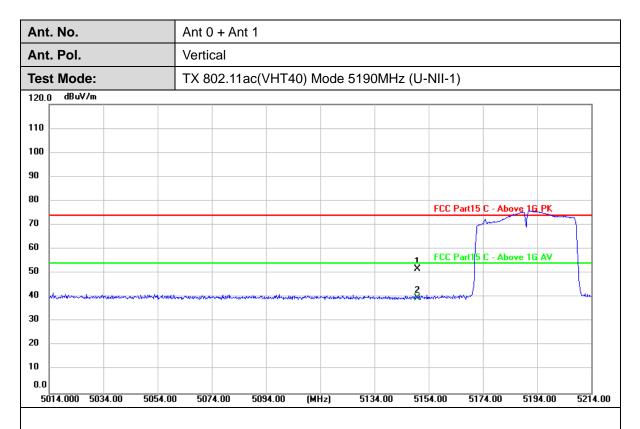
2.Margin value = Level -Limit value

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	5350.000	16.08	37.40	53.48	74.00	-20.52	peak
2 *	5350.000	2.45	37.40	39.85	54.00	-14.15	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value


Ant. N	No.		Ant 0 + Ant 1									
Ant. F	Pol.		Horiz	zontal								
Test I	Mode:		TX 8	02.11	ac(VHT4	10) Mode	5190MH	z (U-NI	l-1)			
120.0	dBuV/m		_									
110												
100												
90 _												
80											Y	
70								FL	C Part15	C - Above 1	y PK	\rightarrow
60												
50								X X	U Part15	C - Above 1	G AV	
40	and and an analysis of polysis	or an action and published to a second	-considerates and a	hanner of the same	and the second second	rdprosed from the constraint	-	2	Mary Mary Mary Mary Mary Mary Mary Mary			\
30												
20												
10												
0.0												

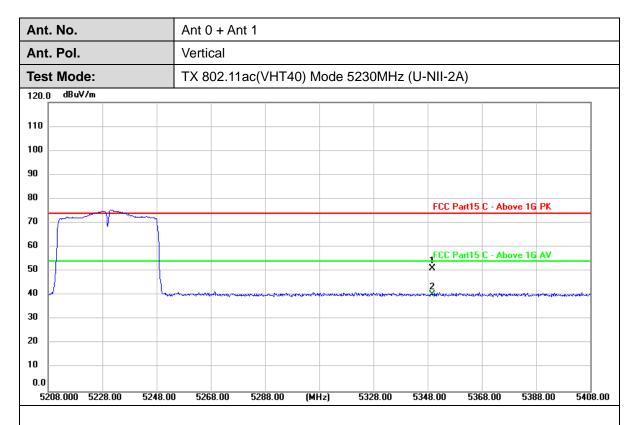
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	5150.000	13.73	37.18	50.91	74.00	-23.09	peak
2 *	5150.000	2.84	37.18	40.02	54.00	-13.98	AVG

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	5150.000	14.62	37.18	51.80	74.00	-22.20	peak
2 *	5150.000	2.65	37.18	39.83	54.00	-14.17	AVG

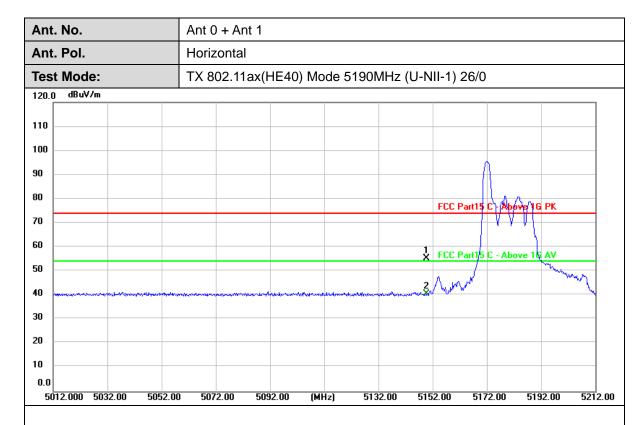
- 1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 2.Margin value = Level -Limit value


Ant.	. No.		Ant 0	+ Ant 1							
Ant	. Pol.		Horiz	ontal							
Tes	t Mode:		TX 8	TX 802.11ac(VHT40) Mode 5230MHz (U-NII-2A)							
120.0) dBuV/m										
110											
00											
90											
80								FCC D-44E	C - Above 1G	חע	
70		1						FCC Partio	C - ADOVE 1G	PK	
60								tee pts	C - Above 1G	•••	
50								&CC Pattro	C - ADOVE TO	AV	
40	J		Ummerana	Varmenten	المعارض والمستروض والمستروض		and the same of th	2	of water particular to the same of the sam	water and the second	
30											
20											
10											
0.0	207.000 5227	7.00 5247	.00 526			IHz) 53	27.00 5 3				

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	5350.000	16.80	37.40	54.20	74.00	-19.80	peak
2 *	5350.000	2.96	37.40	40.36	54.00	-13.64	AVG

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value



No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)		Margin (dB)	Detector
1	5350.000	13.64	37.40	51.04	74.00	-22.96	peak
2 *	5350.000	2.99	37.40	40.39	54.00	-13.61	AVG

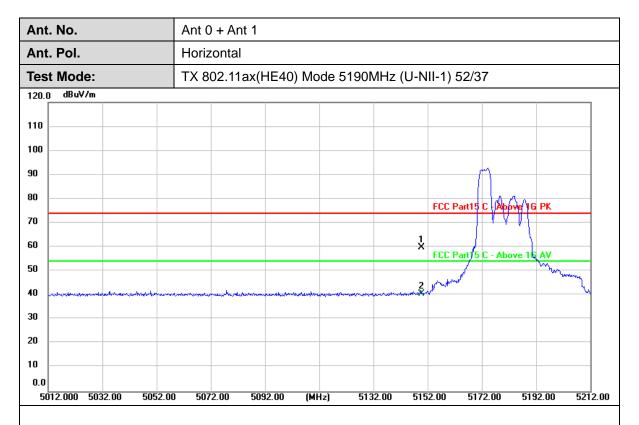
- 1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 2.Margin value = Level -Limit value



No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	5150.000	18.31	37.18	55.49	74.00	-18.51	peak
2 *	5150.000	3.34	37.18	40.52	54.00	-13.48	AVG

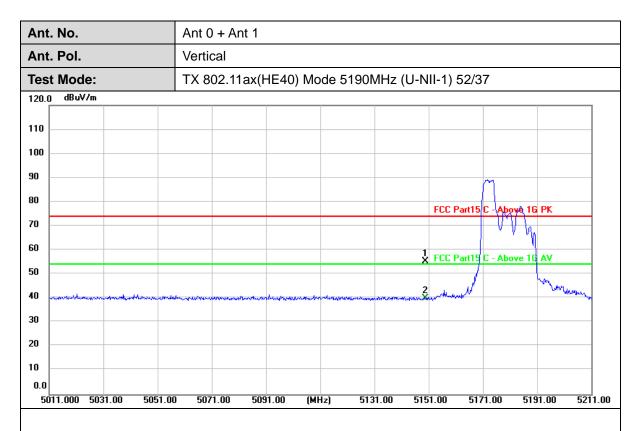
1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value



No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)			Detector
1	5150.000	12.15	37.18	49.33	74.00	-24.67	peak
2 *	5150.000	3.47	37.18	40.65	54.00	-13.35	AVG

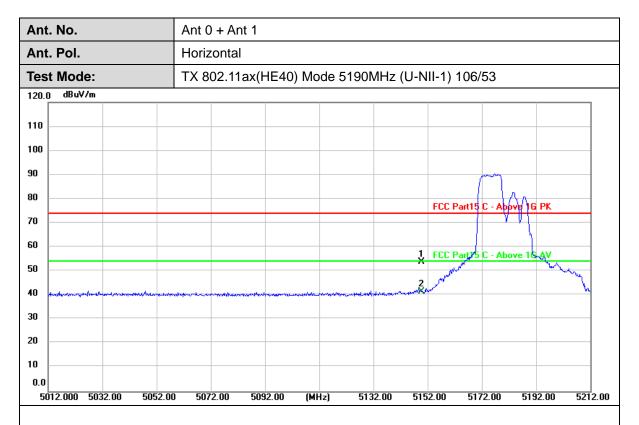
- 1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 2.Margin value = Level -Limit value



No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	5150.000	22.62	37.18	59.80	74.00	-14.20	peak
2 *	5150.000	3.49	37.18	40.67	54.00	-13.33	AVG

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

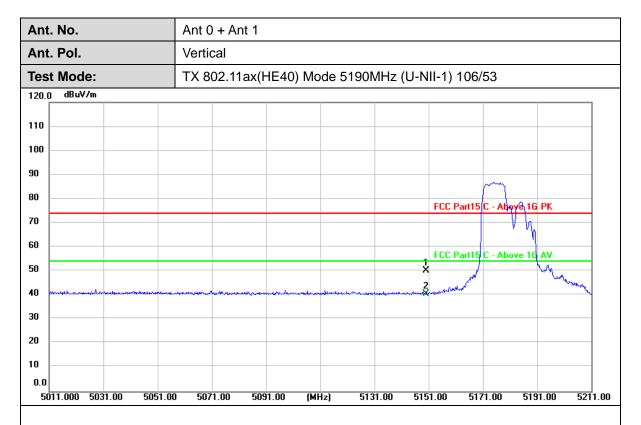
2.Margin value = Level -Limit value


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	5150.000	18.07	37.18	55.25	74.00	-18.75	peak
2 *	5150.000	3.01	37.18	40.19	54.00	-13.81	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

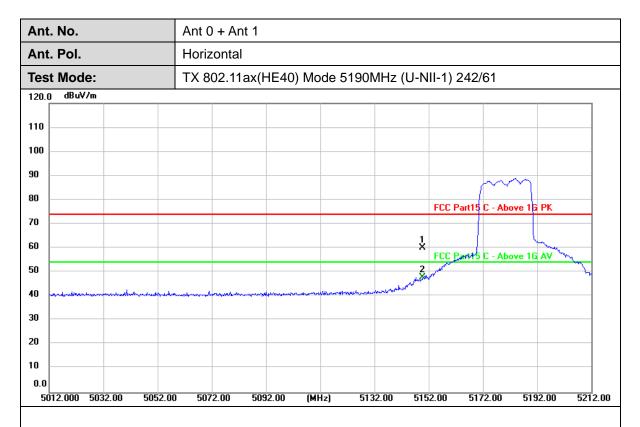
2.Margin value = Level -Limit value



No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	5150.000	16.80	37.18	53.98	74.00	-20.02	peak
2 *	5150.000	4.41	37.18	41.59	54.00	-12.41	AVG

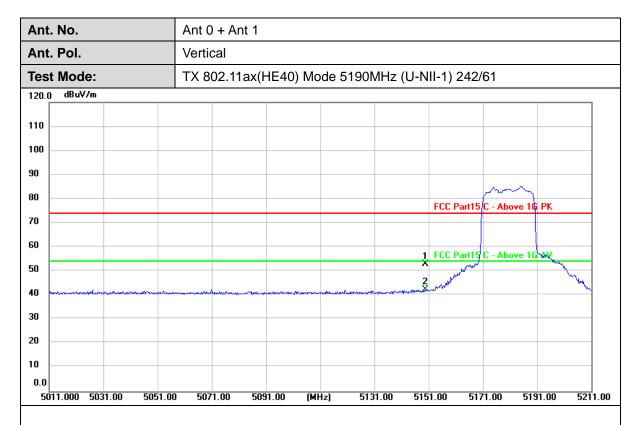
1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value



No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	5150.000	13.07	37.18	50.25	74.00	-23.75	peak
2 *	5150.000	3.48	37.18	40.66	54.00	-13.34	AVG

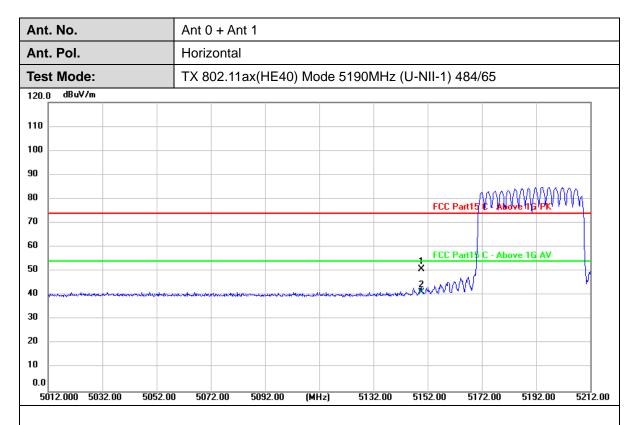
- 1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 2.Margin value = Level -Limit value



No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)		Margin (dB)	Detector
1	5150.000	23.06	37.18	60.24	74.00	-13.76	peak
2 *	5150.000	10.76	37.18	47.94	54.00	-6.06	AVG

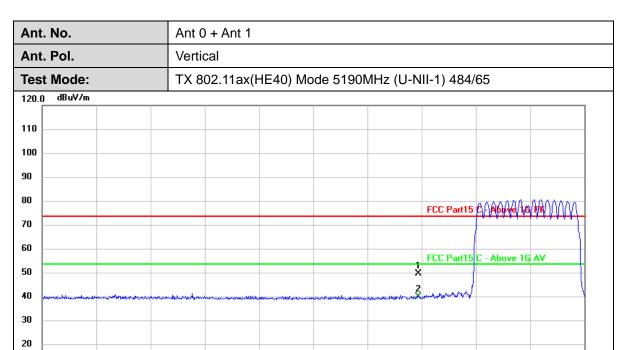
1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value



No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	5150.000	15.78	37.18	52.96	74.00	-21.04	peak
2 *	5150.000	5.15	37.18	42.33	54.00	-11.67	AVG

- 1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 2.Margin value = Level -Limit value



No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	5150.000	13.52	37.18	50.70	74.00	-23.30	peak
2 *	5150.000	3.93	37.18	41.11	54.00	-12.89	AVG

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)		Detector
1	5150.000	13.17	37.18	50.35	74.00	-23.65	peak
2 *	5150.000	3.56	37.18	40.74	54.00	-13.26	AVG

(MHz)

5131.00

5151.00

5171.00

5191.00

5211.00

Remarks:

10 0.0

5011.000 5031.00

5051.00

5071.00

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

5091.00

2.Margin value = Level -Limit value

Ant. N	lo.	Ant 0	+ Ant 1						
Ant. P	ol.	Horizo	Horizontal						
Test N	Mode:	TX 80	TX 802.11ax(HE40) Mode 5230MHz (U-NII-2A) 26/17						
120.0	dBuV/m					î			
110									
100 -									
90		\mathbb{A}							
80	AMA						FCC Part15	C - Above 1G	PK
70									
60	J.						1FCC Part15	C - Above 1G	AV
50 /	Muchanit	M ,					×		
40		home A	who were work of the	and make the	centelither at the free day!		2	of many laws and many laws the laws	an terior de la compansión de la compan
30									
20									

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	5350.000	14.95	37.40	52.35	74.00	-21.65	peak
2 *	5350.000	3.39	37.40	40.79	54.00	-13.21	AVG

(MHz)

5328.00

5348.00

5368.00

5388.00

5408.00

Remarks

10 0.0

5208.000 5228.00

5248.00

5268.00

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

5288.00

2.Margin value = Level -Limit value

5408.00

Ant. No. Ant 0 + Ant 1 Ant. Pol. Vertical **Test Mode:** TX 802.11ax(HE40) Mode 5230MHz (U-NII-2A) 26/17 dBuV/m 120.0 110 100 90 80 FCC Part15 C - Above 1G PK 70 60 FCC Part15 C - Above 1G AV 50 40 30 20

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	5350.000	13.89	37.40	51.29	74.00	-22.71	peak
2 *	5350.000	4.00	37.40	41.40	54.00	-12.60	AVG

(MHz)

5328.00

5348.00

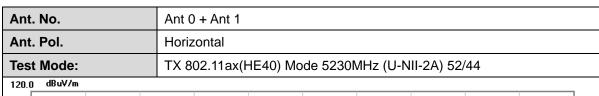
5368.00

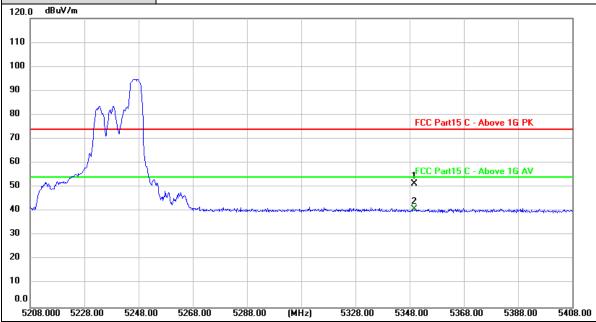
5388.00

Remarks:

10 0.0

5208.000 5228.00


1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor


5288.00

5268.00

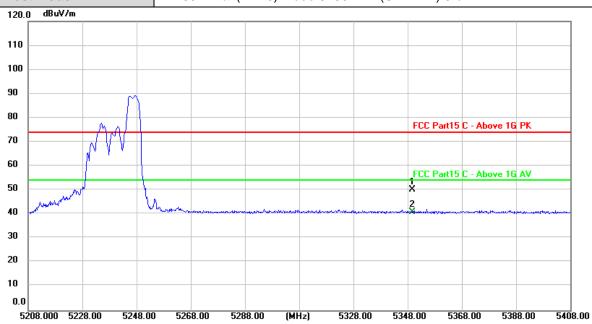
5248.00

2.Margin value = Level -Limit value

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	5350.000	14.08	37.40	51.48	74.00	-22.52	peak
2 *	5350.000	3.52	37.40	40.92	54.00	-13.08	AVG

Remarks

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor


2.Margin value = Level -Limit value

 Ant. No.
 Ant 0 + Ant 1

 Ant. Pol.
 Vertical

 Test Mode:
 TX 802.11ax(HE40) Mode 5230MHz (U-NII-2A) 52/44

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	5350.000	12.89	37.40	50.29	74.00	-23.71	peak
2 *	5350.000	3.48	37.40	40.88	54.00	-13.12	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

5208.000 5228.00

5248.00

5268.00

Ant. No.			Ant C) + Ant 1						
Ant.	Pol.		Horiz	Horizontal						
Test	t Mode:		TX 8	TX 802.11ax(HE40) Mode 5230MHz (U-NII-2A) 106/56						
120.0 dBuV/m										
110										
100										
30										
80		M						FCC Part15	C - Above 1G	PK
70		1								
60		/ '						-FCC Part15	C - Above 1G	AV
50	AND THE PARTY OF T		V					×		
40	J		MA	willian de company and a service and a servi	ara-aranacaktar-ata	magallagi membelaki kepil ganagan m	magasah mengapakan mengapakan sebagai	2	gardengerapan serbyas military ma	and the control of th

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	5350.000	14.75	37.40	52.15	74.00	-21.85	peak
2 *	5350.000	2.98	37.40	40.38	54.00	-13.62	AVG

(MHz)

5328.00

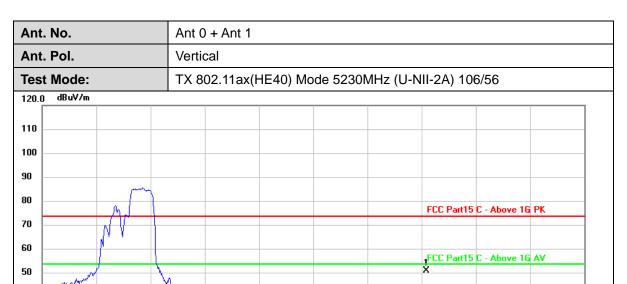
5348.00

5368.00

5388.00

5408.00

Remarks


1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

5288.00

2.Margin value = Level -Limit value

5208.000 5228.00

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	5350.000	14.13	37.40	51.53	74.00	-22.47	peak
2 *	5350.000	3.52	37.40	40.92	54.00	-13.08	AVG

(MHz)

5328.00

5348.00

5368.00

5388.00

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

5288.00

5268.00

5248.00

2.Margin value = Level -Limit value

中国国家认证认可监督管理委员会

5408.00

Ant. No.	Ant 0 + Ant 1					
Ant. Pol.	Horizontal					
Test Mode:	TX 802.11ax(HE40) Mode 5230MHz (U-NII-2A) 242/62					
120.0 dBuV/m						
110						
100						
90						
80						
70	FCC Part15 C - Above 1G PK					
60						
50	FCC Part15 C - Above 1G AV					
40	The state of the s					
30						
20						
10						
0.0						

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)			Detector
1	5350.000	13.35	37.40	50.75	74.00	-23.25	peak
2 *	5350.000	3.07	37.40	40.47	54.00	-13.53	AVG

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

5408.00

Ant. No. Ant 0 + Ant 1 Ant. Pol. Vertical **Test Mode:** TX 802.11ax(HE40) Mode 5230MHz (U-NII-2A) 242/62 dBuV/m 120.0 110 100 90 80 FCC Part15 C - Above 1G PK 70 60 ₁FCC Part15 C - Above 1G AV 50 40 30

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	5350.000	14.54	37.40	51.94	74.00	-22.06	peak
2 *	5350.000	3.60	37.40	41.00	54.00	-13.00	AVG

(MHz)

5328.00

5348.00

5368.00

5388.00

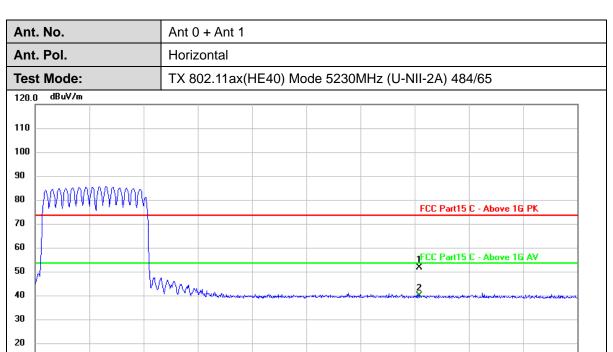
Remarks:

20 10 0.0

5208.000 5228.00

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

5288.00


5268.00

5248.00

2.Margin value = Level -Limit value

5408.00

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	5350.000	14.82	37.40	52.22	74.00	-21.78	peak
2 *	5350.000	3.34	37.40	40.74	54.00	-13.26	AVG

(MHz)

5328.00

5348.00

5368.00

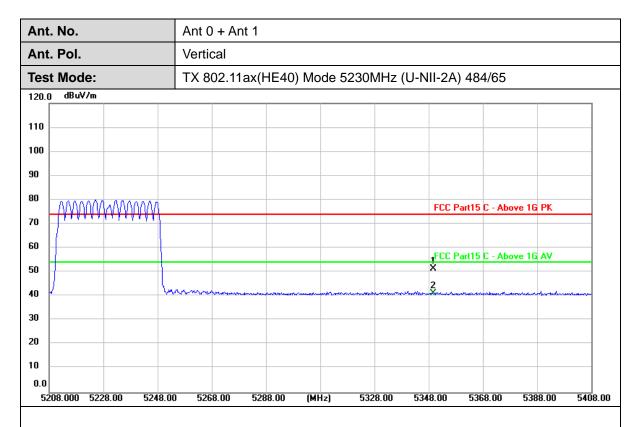
5388.00

Remarks

10 0.0

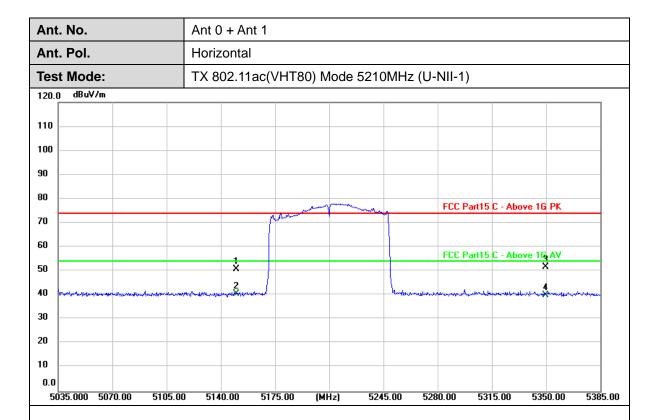
5208.000 5228.00

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor


5288.00

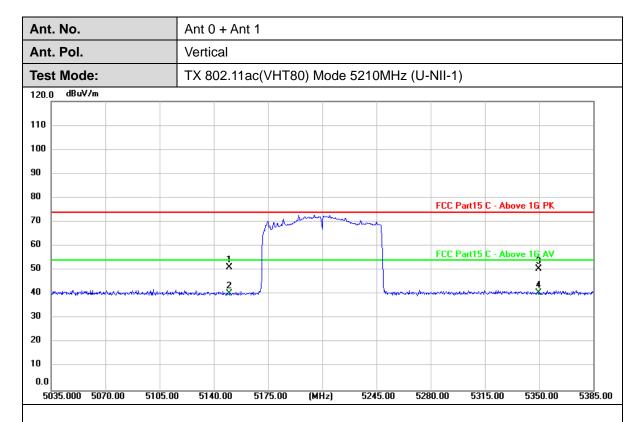
5268.00

5248.00


2.Margin value = Level -Limit value

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	5350.000	14.08	37.40	51.48	74.00	-22.52	peak
2 *	5350.000	3.91	37.40	41.31	54.00	-12.69	AVG

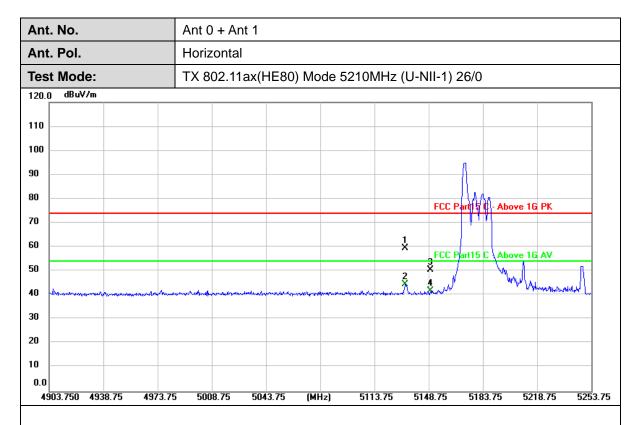
- 1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 2.Margin value = Level -Limit value



No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	5150.000	13.55	37.18	50.73	74.00	-23.27	peak
2 *	5150.000	3.33	37.18	40.51	54.00	-13.49	AVG
3	5350.000	14.50	37.40	51.90	74.00	-22.10	peak
4	5350.000	2.66	37.40	40.06	54.00	-13.94	AVG

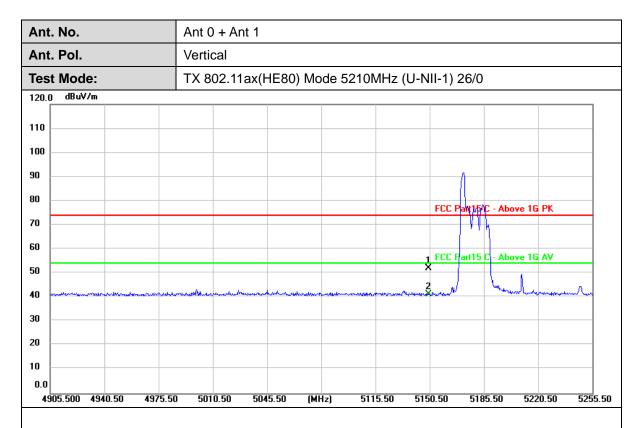
1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value



No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	5150.000	14.07	37.18	51.25	74.00	-22.75	peak
2	5150.000	3.03	37.18	40.21	54.00	-13.79	AVG
3	5350.000	13.29	37.40	50.69	74.00	-23.31	peak
4 *	5350.000	3.16	37.40	40.56	54.00	-13.44	AVG

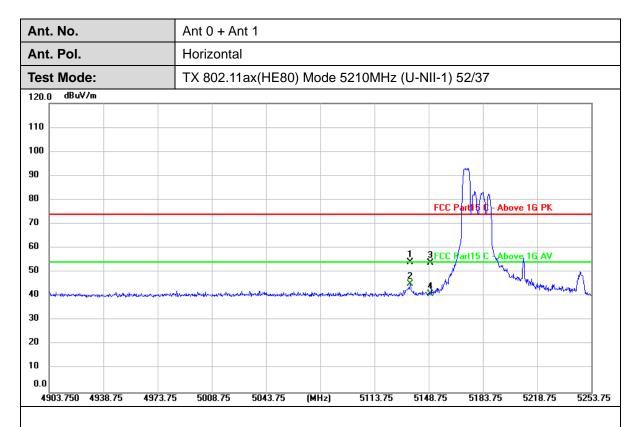
- 1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 2.Margin value = Level -Limit value



No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	5133.817	22.48	37.15	59.63	74.00	-14.37	peak
2 *	5133.817	7.36	37.15	44.51	54.00	-9.49	AVG
3	5150.000	13.32	37.18	50.50	74.00	-23.50	peak
4	5150.000	4.75	37.18	41.93	54.00	-12.07	AVG

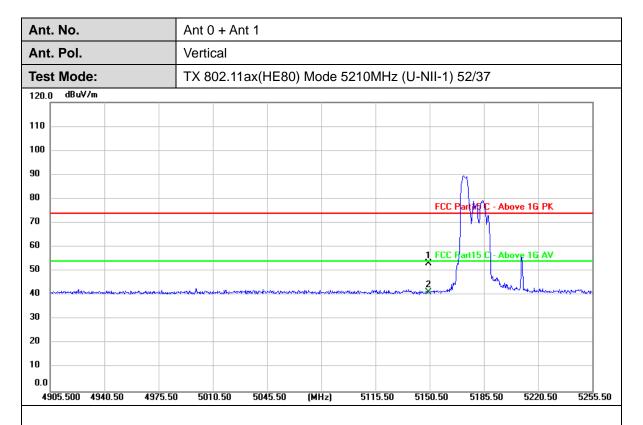
1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value



No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	5150.000	14.80	37.18	51.98	74.00	-22.02	peak
2 *	5150.000	4.09	37.18	41.27	54.00	-12.73	AVG

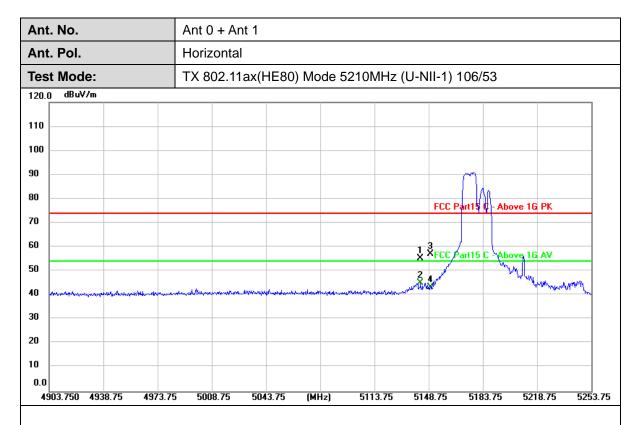
- 1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 2.Margin value = Level -Limit value



No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	5136.850	16.92	37.17	54.09	74.00	-19.91	peak
2 *	5136.850	8.10	37.17	45.27	54.00	-8.73	AVG
3	5150.000	16.68	37.18	53.86	74.00	-20.14	peak
4	5150.000	3.90	37.18	41.08	54.00	-12.92	AVG

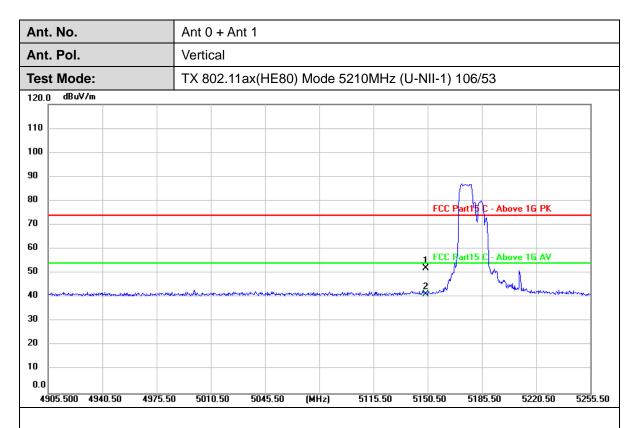
1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value



No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	5150.000	16.03	37.18	53.21	74.00	-20.79	peak
2 *	5150.000	4.00	37.18	41.18	54.00	-12.82	AVG

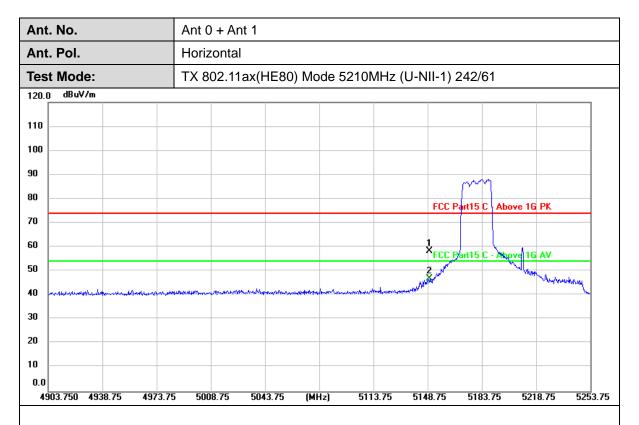
- 1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 2.Margin value = Level -Limit value



No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	5143.733	18.17	37.17	55.34	74.00	-18.66	peak
2 *	5143.733	8.00	37.17	45.17	54.00	-8.83	AVG
3	5150.000	20.04	37.18	57.22	74.00	-16.78	peak
4	5150.000	6.28	37.18	43.46	54.00	-10.54	AVG

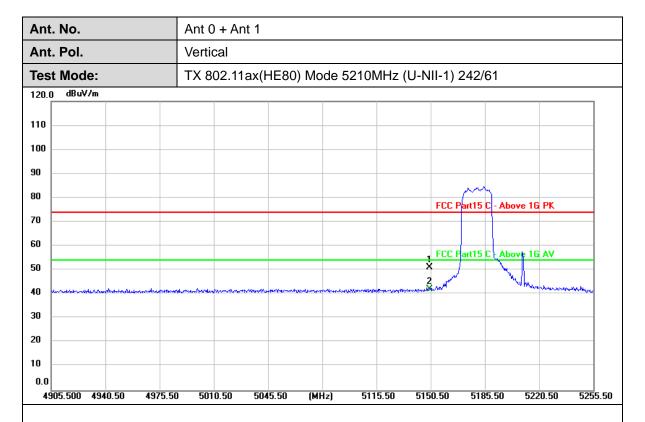
1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value



No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	5150.000	14.89	37.18	52.07	74.00	-21.93	peak
2 *	5150.000	4.15	37.18	41.33	54.00	-12.67	AVG

- 1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 2.Margin value = Level -Limit value



No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	5150.000	21.12	37.18	58.30	74.00	-15.70	peak
2 *	5150.000	9.83	37.18	47.01	54.00	-6.99	AVG

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	5150.000	13.86	37.18	51.04	74.00	-22.96	peak
2 *	5150.000	4.94	37.18	42.12	54.00	-11.88	AVG

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value