

FCC SAR EVALUATION REPORT

In accordance with the requirements of FCC 47 CFR Part 2(2.1093) and IEEE Std 1528-2013

Product Name: Laptop

Model No.: QL15N1GW8256

Serial Model: N/A

Brand Name: COMPAQ

Report No.: AiTSZ-250225017FW1-R1

FCC ID: 2BLU9-QL15N1GW

Prepared for

M&M Electronics, S.A.

Cocosolito, Colon Free Zone, Main Entrance Warehouse 10D and 11D, Panama

Prepared by

Guangdong Asia Hongke Test Technology Limited

B1/F, Building 11, Junfeng Industrial Park, Chongqing Road, Heping Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

Tel.: +86 0755-230967639 Fax.: +86 0755-230967639

TEST RESULT CERTIFICATION

Applicant's name: M&M Electronics, S.A.

Address Cocosolito, Colon Free Zone, Main Entrance Warehouse 10D and 11D, Panama

Manufacturer's Name: M&M Electronics, S.A.

Address 11D, Panama Cocosolito, Colon Free Zone, Main Entrance Warehouse 10D and

Product description

Product name: Laptop Trademark: COMPAQ

Model and/or type reference : QL15N1GW8256

Serial Model..... N/A

FCC 47 CFR Part 2(2.1093)

Standards: IEEE Std 1528-2013

Published RF exposure KDB procedures

This device described above has been tested by Guangdong Asia Hongke Test Technology Limited. In accordance with the measurement methods and procedures specified in IEEE Std 1528-2013 and KDB 865664 D01. Testing has shown that this device is capable of compliance with localized specific absorption rate (SAR) specified in FCC 47 CFR Part 2(2.1093). The test results in this report apply only to the tested sample of the stated device/equipment. Other similar device/equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

This report shall not be reproduced except in full, without the written approval of Guangdong Asia Hongke Test Technology Limited, this document may be altered or revised by Guangdong Asia Hongke Test Technology Limited, personal only, and shall be noted in the revision of the document.

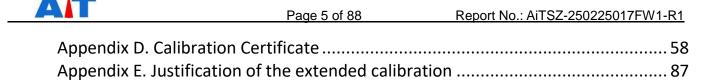
Date of Test

Date (s) of performance of tests...... Feb.15, 2025 ~ Feb.19, 2025

Date of Issue...... Mar.05, 2025

Test Result..... Pass

Reviewed by: Approved by: .


*** * * Revision History * ***

REV.	DESCRIPTION	ISSUED DATE	REMARK
Rev.1.0	Initial Test Report Release	Mar.05, 2025	Sean She

TABLE OF CONTENTS

1.	Genera	al Information	6
	1.1.	RF exposure limits	6
	1.2.	Statement of Compliance	7
	1.3.	EUT Description	
	1.4.	Test specification(s)	9
	1.5.	Ambient Condition	9
	1.6.	Test Facility	9
2.	SAR M	easurement System	. 10
	2.1.	SATIMO SAR Measurement Set-up Diagram	
	2.2.	Robot	. 11
	2.3.	Probe	. 12
	2.3	3.1. E-Field Probe Calibration	. 12
	2.4.	Phantoms	. 13
	2.5.	Technical Data	. 14
	2.6.	Device Holder	
		Test Equipment List	
3.	SAR M	easurement Procedures	. 18
	3.1.	Power Reference	. 18
	3.2.	Area scan & Zoom scan	
	3.3.	Description of interpolation/extrapolation scheme	. 20
	3.4.	Volumetric Scan	. 20
	3.5.	Power Drift	. 20
4.	•	n Verification Procedure	
	4.1.	Tissue Verification	. 21
	4.1	1.1. Tissue Dielectric Parameter Check Results	. 22
	4.2.	System Verification Procedure	. 23
	4.2	2.1. System Verification Results	. 24
5.	SAR m	easurement variabilit	. 25
6.	SAR M	easurement Uncertainty	. 26
7.	RF Exp	osure Positions	. 27
	7.1.	Generic device	. 27
8.	RF Out	put Power	. 28
	8.1.	Wi-Fi & BT Output Power	. 28
9.	Stand-	alone SAR test exclusion	. 29
10.	SAR	Measurement Results	. 31
11.		ıltaneous Transmission Analysis	
Apı	pendix <i>i</i>	A. Photo documentation	. 33
Apı	pendix	B. System Check Plots	. 34
Apı	pendix (C. SAR Test Plots	. 45

1. General Information

1.1. RF exposure limits

(A).Limits for Occupational/Controlled Exposure (W/kg)

Whole-Body	Partial-Body	Hands, Wrists, Feet and Ankles
0.4	8.0	20.0

(B).Limits for General Population/Uncontrolled Exposure (W/kg)

Whole-Body	Partial-Body	Hands, Wrists, Feet and Ankles
0.08	1.6	4.0

NOTE: Whole-Body SAR is averaged over the entire body, partial-body SAR is averaged over any 1 gram of tissue defined as a tissue volume in the shape of a cube. SAR for hands, wrists, feet and ankles is averaged over any 10 grams of tissue defined as a tissue volume in the shape of a cube.

Occupational/Controlled Environments:

Are defined as locations where there is exposure that may be incurred by people who are aware of the potential for exposure, (i.e. as a result of employment or occupation).

General Population/Uncontrolled Environments:

Are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure.

NOTE
TRUNK LIMIT
1.6 W/kg
APPLIED TO THIS EUT

1.2. Statement of Compliance

The maximum results of Specific Absorption Rate (SAR) found during testing as follows.

	Max SAR Value Reported(W/kg)						
Band	1-g back of Keyboard (Separation distance of 0mm)	Max SAR Summation					
2.4GHz WLAN	0.290						
5.2GHz WLAN	0.538						
5.3GHz WLAN	0.534	5					
5.6GHz WLAN	0.608	Body: 0.898					
5.8GHz WLAN	0.530						
Bluetooth	0.132						

NOTE: The Max SAR Summation is calculated based on the same configuration and test position.

This device is in compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6 W/kg) specified in FCC 47 CFR Part 2(2.1093), and had been tested in accordance with the measurement methods and procedures specified in IEEE Std 1528-2013 & KDB 865664 D01.

Max SAR Summation: WLAN2.4G+ WLAN5G

1.3. EUT Description

Davisa Information						
Device Information	Lanton					
Product Name	Laptop					
Model Name	QL15N1GW8256					
Family Model	N/A					
Device Phase	Identical Prototype					
Exposure Category	General population / Unco	ntrolled environmer	nt			
Antenna Type	Internal Antenna					
Battery Information	DC 7.6V 6000mAh 45.6WI	n Rechargeable Li-i	on battery			
Hardware version N/A						
Software version N/A						
Device Operating Configurations	_					
Supporting Mode(s)	WLAN 2.4G/5.2G/5.3G/5.6	G/5.8G, Bluetooth				
Test Modulation	WLAN(DSSS/OFDM), Blue	etooth(GFSK, π/4D	QPSK, 8DPSK)			
Device Class	В					
	Band	Tx (MHz)	Rx (MHz)			
	WLAN 2.4G	2412-2462				
	WLAN 5.2G	5180-5240				
Operating Frequency Range(s)	WLAN 5.3G	5260-5320				
	WLAN 5.6G 5500-5700					
	WLAN 5.8G 5745-5825					
	Bluetooth	2402-2480				

1.4. Test specification(s)

FCC 47 CFR Part 2(2.1093)
IEEE Std 1528-2013
KDB 865664 D01 SAR measurement 100 MHz to 6 GHz
KDB 865664 D02 RF Exposure Reporting
KDB 447498 D01 General RF Exposure Guidance
KDB 616217 D04 SAR for laptop and tablets v01r02
KDB 248227 D01 802.11 Wi-Fi SAR

1.5. Ambient Condition

Ambient temperature	20°C – 24°C			
Relative Humidity	30% – 70%			

1.6. Test Facility

Test Laboratory:

Guangdong Asia Hongke Test Technology Limited

B1/F, Building 11, Junfeng Industrial Park, Chongqing Road, Heping Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

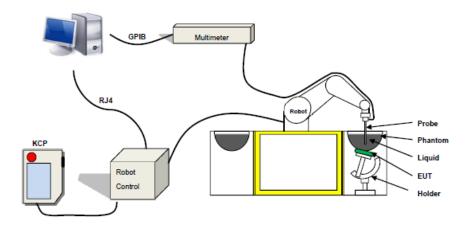
The test facility is recognized, certified or accredited by the following organizations:

FCC-Registration No.: 251906 Designation Number: CN1376

Guangdong Asia Hongke Test Technology Limited has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

IC —Registration No.: 31737 CAB identifier: CN0165

The 3m Semi-anechoic chamber of Guangdong Asia Hongke Test Technology Limited has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 31737


A2LA-Lab Cert. No.: 7133.01

Guangdong Asia Hongke Test Technology Limited has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

2. SAR Measurement System

2.1. SATIMO SAR Measurement Set-up Diagram

These measurements were performed with the automated near-field scanning system OPENSAR from SATIMO. The system is based on a high precision robot (working range: 901 mm), which positions the probes with a positional repeatability of better than ±0.03 mm. The SAR measurements were conducted with dosimetric probe (manufactured by SATIMO), designed in the classical triangular configuration and optimized for dosimetric evaluation.

The first step of the field measurement is the evaluation of the voltages induced on the probe by the device under test. Probe diode detectors are nonlinear. Below the diode compression point, the output voltage is proportional to the square of the applied E-field; above the diode compression point, it is linear to the applied E-field. The compression point depends on the diode, and a calibration procedure is necessary for each sensor of the probe.

The Keithley multimeter reads the voltage of each sensor and send these three values to the PC. The corresponding E field value is calculated using the probe calibration factors, which are stored in the working directory. This evaluation includes linearization of the diode characteristics. The field calculation is done separately for each sensor. Each component of the E field is displayed on the "Dipole Area Scan Interface" and the total E field is displayed on the "3D Interface"

2.2. Robot

The SATIMO SAR system uses the high precision robots from KUKA. For the 6-axis controller system, the robot controller version (KUKA) from KUKA is used. The KUKA robot series have many features that are important for our application:

- High precision (repeatability ±0.03 mm)
- High reliability (industrial design)
- Jerk-free straight movements
- Low ELF interference (the closed metallic construction shields against motor control fields)

2.3. Probe

This E-field detection probe is composed of three orthogonal dipoles linked to special Schottky diodes with low detection thresholds. The probe allows the measurement of electric fields in liquids such as the one defined in the IEEE and CENELEC standards.

For the measurements the Specific Dosimetric E-Field Probe EPGO 0523-403 with following specifications is used.

- Probe Length: 330 mm

- Length of Individual Dipoles: 2 mm

- Maximum external diameter: 8 mm

- Probe Tip External Diameter: 2.5 mm

- Distance between dipole/probe extremity: 1 mm

- Dynamic range: 0.01-100 W/kg

- Probe linearity: 3%

- Axial Isotropy: < 0.10 dB

- Spherical Isotropy: < 0.10 dB

- Calibration range: 150 MHz to 6 GHz for head & body simulating liquid.

- Angle between probe axis (evaluation axis) and surface normal line: less than 30°

2.3.1. E-Field Probe Calibration

Each probe needs to be calibrated according to a dosimetric assessment procedure with accuracy better than ±10%. The spherical isotropy shall be evaluated and within ±0.25dB. The sensitivity parameters (Norm X, Norm Y, and Norm Z), the diode compression parameter (DCP) and the conversion factor (Conv F) of the probe are tested. The calibration data can be referred to appendix D of this report.

2.4. Phantoms

For the measurements the Elliptical defined by the IEEE SCC-34/SC2 group is used. The phantom is a polyurethane shell integrated in a wooden table. The thickness of the phantom amounts to 2mm +/- 0.2mm. The Elliptical phantom has elliptic shape. The Elliptical phantom provide one reference point on its top part to position the probe tip correctly. The phantom set-up includes a cover, which prevents the evaporation of the liquid.

Elliptical

2.5. Technical Data

Overall thickness	2±0.2mm
Internal Dimensions (Bottom part)	600 mm (L) x 400 mm (W) 170 mm (H)
External Dimensions	1000 mm (L) x 500 mm (W) x 280 mm (H)
Maximum volume	35 L
Material	Fiberglass based
Relative permittivity	3.4
Loss tangent	0.02

The test, based on ultrasonic system, allows measuring the thickness with an accuracy of 10 μm .

2.6. Device Holder

The SAR in the phantom is approximately inversely proportional to the square of the distance between the source and the liquid surface.

Material properties: the positioning system is made of PETP. This material offers a low permittivity of 3.2 and low loss, with a loss tangent of 0.005 to minimize the influence of the DUT on measurement results.

Mechanical properties: 2 rows of rail to cover easily the surface of the phantom. The fixing plate is perfectly adapted to larger devices, such as a PC which can be positioned in all configurations.

Accuracy and precision: graduated scale available on each axis. The DUT is fixed with a specific adaptable grip.

2.7. Test Equipment List

This table gives a complete overview of the SAR measurement equipment.

Devices used during the test described are marked $\ igtimes$

	Manufacturer	Name of	Type/Model	Serial Number	Calibration			
	Mariulacturei	Equipment	Type/Model	Serial Number	Last Cal.	Due Date		
\boxtimes	MVG	E FIELD PROBE	SSE2	EPGO 0523-403	Sep. 11,	Sep. 10,		
	WVG	L FILLD FROBL	JJLZ	LFGO 0323-403	2024	2025		
$ \Box $	MVG	750 MHz Dipole	SID750	SN 03/15 DIP	Feb. 21,	Feb. 20,		
	WVO	730 WII 12 Dipole	010730	0G750-355	2024	2027		
	MVG	835 MHz Dipole	SID835	SN 03/15 DIP	Feb. 21,	Feb. 20,		
		COO WII 12 Dipole	012000	0G835-347	2024	2027		
	MVG	900 MHz Dipole	SID900	SN 03/15 DI P	Feb. 21,	Feb. 20,		
		000 WH 12 Bipolo	0.5000	0G900-348	2024	2027		
	MVG	1800 MHz Dipole	SID1800	SN 03/15 DIP	Feb. 21,	Feb. 20,		
		1000 1111 12 210010	015 1000	1G800-349	2024	2027		
	MVG	1900 MHz Dipole	SID1900	SN 03/15 DIP	Feb. 21,	Feb. 20,		
		1000 Wii 12 Dipole	0101000	1G900-350	2024	2027		
	MVG] MVG	MVG	2000 MHz Dipole	SID2000	SN 03/15 DIP	Feb. 21,	Feb. 20,
		2000 1111 12 210010	0.02000	2G000-351	2024	2027		
	MVG	2300 MHz Dipole	SID2300	SN 03/16 DIP	Feb. 21,	Feb. 20,		
		2000 1111 12 210010	0.02000	2G300-358	2024	2027		
	MVG	2450 MHz Dipole	SID2450	SN 03/15 DIP	Feb. 21,	Feb. 20,		
		2 100 WH 12 Bipolo	0.02.100	2G450-352	2024	2027		
	MVG	2600 MHz Dipole	SID2600	SN 03/15 DIP	Feb. 21,	Feb. 20,		
		2000 1111 12 210010	0.02000	2G600-356	2024	2027		
	MVG	5000 MHz Dipole	SWG5500	SN 13/14 WGA 33	Feb. 21,	Feb. 20,		
	10100	OCCO WII 12 DIPOIC	0110000	014 10/14 440/100	2024	2027		
\boxtimes	MVG	Liquid	SCLMP	CN 04/45 OCDC 70	Jul. 01,	Jun. 30,		
		measurement Kit	COLIVII	SN 21/15 OCPG 72	2024	2025		
	MVG	Power Amplifier	N.A	AMPLISAR_28/14_003	NCR	NCR		
\boxtimes	KEITHLEY	Millivoltmeter	2000	4072700	Jul. 01,	Jun. 30,		
		Willivolatiotol	2000	4072790	2024	2025		
		Universal radio			lul 04	lun 20		
	R&S	R&S communication		117858	Jul. 01,	Jun. 30,		
		tester			2024	2025		
		Wideband radio			lul 04	lun 20		
	R&S	R&S communication		116581	Jul. 01,	Jun. 30,		
		tester			2024	2025		
	HP	Network Analyzer	8753D	3410J01136	Jul. 01,	Jun. 30,		

Report No.: AiTSZ-250225017FW1-R1

2024 2025 **PSG** Analog Jul. 01, Jun. 30, \boxtimes Agilent E8257D MY51110112 2025 Signal Generator 2024 Jul. 01, Jun. 30, \boxtimes Agilent Power meter E4419B MY45102538 2024 2025 Jul. 01, Jun. 30, \boxtimes Agilent Power sensor E9301A MY41495644 2024 2025 Jul. 01, Jun. 30, \boxtimes Agilent Power sensor E9301A US39212148 2024 2025 Directional Jul. 17, Jul. 16, \boxtimes MCLI/USA CB11-20 0D2L51502 Coupler 2024 2027 MVG \boxtimes NCR NCR Elliptical Phantom SSM2 SN 20/11 ELLI20 \boxtimes MVG NCR NCR Device Holder SMPPD SN 24/11 LSH15

3. SAR Measurement Procedures

The measurement procedures are as follows:

<Conducted power measurement>

- (a) For WWAN power measurement, use base station simulator to configure EUT WWAN transmission in conducted connection with RF cable, at maximum power in each supported wireless interface and frequency band.
- (b) Read the WWAN RF power level from the base station simulator.
- (c) For Wi-Fi/BT power measurement, use engineering software to configure EUT Wi-Fi/BT continuously transmission, at maximum RF power in each supported wireless interface and frequency band.
- (d) Connect EUT RF port through RF cable to the power meter, and measure Wi-Fi/BT output power.

<SAR measurement>

- (a) Use base station simulator to configure EUT WWAN transmission in radiated connection, and engineering software to configure EUT Wi-Fi/BT continuously transmission, at maximum RF power, in the highest power channel.
- (b) Place the EUT in the positions as Appendix A demonstrates.
- (c) Set scan area, grid size and other setting on the OPENSAR software.
- (d) Measure SAR results for the highest power channel on each testing position.
- (e) Find out the largest SAR result on these testing positions of each band.
- (f) Measure SAR results for other channels in worst SAR testing position if the reported SAR of highest power channel is larger than 0.8 W/kg.

According to the test standard, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps:

- (a) Power reference measurement
- (b) Area scan
- (c) Zoom scan
- (d) Power drift measurement

3.1. Power Reference

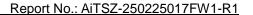
The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties.

3.2. Area scan & Zoom scan

The area scan is a 2D scan to find the hot spot location on the DUT. The zoom scan is a 3D scan

above the hot spot to calculate the 1g and 10g SAR value.

Measurement of the SAR distribution with a grid of 8 to 16 mm * 8 to 16 mm and a constant distance to the inner surface of the phantom. Since the sensors cannot directly measure at the inner phantom surface, the values between the sensors and the inner phantom surface are extrapolated. With these values the area of the maximum SAR is calculated by an interpolation scheme. Around this point, a cube of 30 * 30 *30 mm or 32 * 32 * 32 mm is assessed by measuring 5 or 8 * 5 or 8 * 4 or 5 mm. With these data, the peak spatial-average SAR value can be calculated.


From the scanned SAR distribution, identify the position of the maximum SAR value, in addition identify the positions of any local maxima with SAR values within 2 dB of the maximum value that will not be within the zoom scan of other peaks; additional peaks shall be measured only when the primary peak is within 2 dB of the SAR compliance limit (e.g., 1 W/kg for 1,6 W/kg 1 g limit, or 1,26 W/kg for 2 W/kg, 10 g limit).

Area scan & Zoom scan scan parameters extracted from FCC KDB 865664 D01 SAR measurement 100 MHz to 6 GHz.

			≤ 3 GHz	> 3 GHz	
Maximum distance fro (geometric center of pr			5 ± 1 mm	$\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5 \text{ mm}$	
Maximum probe angle surface normal at the n			30° ± 1° 20° ± 1°		
			≤ 2 GHz: ≤ 15 mm 2 – 3 GHz: ≤ 12 mm	3 – 4 GHz: ≤ 12 mm 4 – 6 GHz: ≤ 10 mm	
Maximum area scan sp	atial resolu	ntion: Δx_{Area} , Δy_{Area}	When the x or y dimension of measurement plane orientation the measurement resolution is x or y dimension of the test of measurement point on the test.	on, is smaller than the above must be ≤ the corresponding levice with at least one	
Maximum zoom scan s	spatial reso	elution: Δx_{Zoom} , Δy_{Zoom}	≤ 2 GHz: ≤ 8 mm 2 – 3 GHz: ≤ 5 mm*	3 – 4 GHz: ≤ 5 mm* 4 – 6 GHz: ≤ 4 mm*	
	uniform grid: $\Delta z_{Zoom}(n)$		≤ 5 mm	3 – 4 GHz: ≤ 4 mm 4 – 5 GHz: ≤ 3 mm 5 – 6 GHz: ≤ 2 mm	
Maximum zoom scan spatial resolution, normal to phantom surface	graded	Δz _{Zoom} (1): between 1 st two points closest to phantom surface	≤ 4 mm	3 – 4 GHz: ≤ 3 mm 4 – 5 GHz: ≤ 2.5 mm 5 – 6 GHz: ≤ 2 mm	
	grid	Δz _{Zoom} (n>1): between subsequent points	$\leq 1.5 \cdot \Delta z_{Zoom}(n-1)$		
Minimum zoom scan volume x, y, z			3 - 4 GHz: ≥ 25 ≥ 30 mm 4 - 5 GHz: ≥ 25 5 - 6 GHz: ≥ 25		

Note: ô is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.

When zoom scan is required and the <u>reported</u> SAR from the <u>area scan based 1-g SAR estimation</u> procedures of KDB 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

3.3. Description of interpolation/extrapolation scheme

The local SAR inside the phantom is measured using small dipole sensing elements inside a probe body. The probe tip must not be in contact with the phantom surface in order to minimise measurements errors, but the highest local SAR will occur at the surface of the phantom.

An extrapolation is using to determinate this highest local SAR values. The extrapolation is based on a fourth-order least-square polynomial fit of measured data. The local SAR value is then extrapolated from the liquid surface with a 1 mm step.

The measurements have to be performed over a limited time (due to the duration of the battery) so the step of measurement is high. It could vary between 5 and 8 mm. To obtain an accurate assessment of the maximum SAR averaged over 10 grams and 1 gram requires a very fine resolution in the three dimensional scanned data array.

3.4. Volumetric Scan

The volumetric scan consists to a full 3D scan over a specific area. This 3D scan is useful form multi Tx SAR measurement. Indeed, it is possible with OpenSAR to add, point by point, several volumetric scan to calculate the SAR value of the combined measurement as it is define in the standard IEEE1528 and IEC62209.

3.5. Power Drift

All SAR testing is under the EUT install full charged battery and transmit maximum output power. In OpenSAR measurement software, the power reference measurement and power drift measurement procedures are used for monitoring the power drift of EUT during SAR test. Both these procedures measure the field at a specified reference position before and after the SAR testing. The software will calculate the field difference in V/m. If the power drifts more than ±5%, the SAR will be retested.

4. System Verification Procedure

4.1. Tissue Verification

The following tissue formulations are provided for reference only as some of the parameters have not been thoroughly verified. The composition of ingredients may be modified accordingly to achieve the desired target tissue parameters required for routine SAR evaluation.

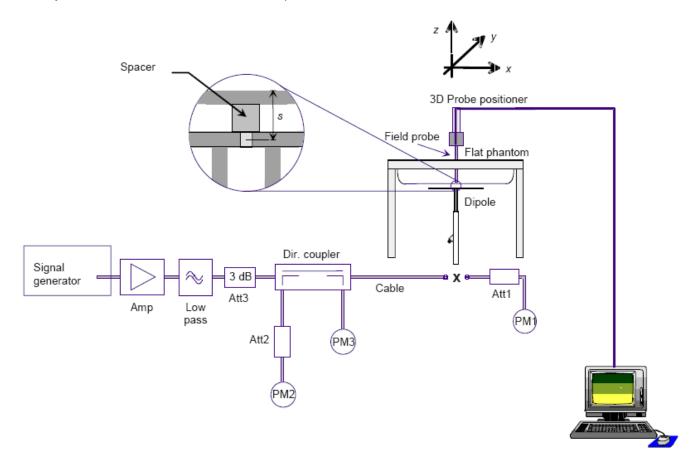
Ingredients (% of weight)	Head Tissue									
Frequency Band (MHz)	750	835	900	1800	1900	2000	2450	2600	5200	5800
Water	34.40	34.40	34.40	55.36	55.36	57.87	57.87	57.87	65.53	65.53
NaCl	0.79	0.79	0.79	0.35	0.35	0.16	0.16	0.16	0.00	0.00
1,2-Propanediol	64.81	64.81	64.81	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Triton X-100	0.00	0.00	0.00	30.45	30.45	19.97	19.97	19.97	24.24	24.24
DGBE	0.00	0.00	0.00	13.84	13.84	22.00	22.00	22.00	10.23	10.23

For SAR measurement of the field distribution inside the phantom, the phantom must be filled with homogeneous tissue simulating liquid to a depth of at least 15 cm. For head SAR testing, the liquid depth from the ear reference point (ERP) of the phantom to the liquid top surface is larger than 15 cm.

4.1.1. Tissue Dielectric Parameter Check Results

The simulating liquids should be checked at the beginning of a series of SAR measurements to determine of the dielectric parameter are within the tolerances of the specified target values. The measured conductivity and relative permittivity should be within ±5% of the target values.

	Measured	Target T	Measured Tissue					
Tissue Type	Frequency (MHz)	εr (±5%)	σ (S/m) (±5%)	εr	σ (S/m)	Liquid Temp.	Test Date	
Head 2450	2450	39.20 (37.24~41.16)	1.80 (1.71~1.89)	40.41	1.82	21.3 °C	Feb. 15, 2025	
Head		36.00	4.66					
5200	5200	(34.20~37.80)	(4.43~4.89)	37.40	4.66	21.2 °C	Feb. 16, 2025	
Head	5400	35.80	4.86	35.10	4.70	21.4 °C	Feb. 17, 2025	
5400	0400	(34.01~37.59)	(4.62~5.10)	00.10	4.70	21.4 0	1 00. 17, 2020	
Head	5600	35.50	5.07	34.20	4.90	21.1 °C	Feb. 18, 2025	
5600	3000	(33.73~37.28)	(4.82~5.32)	34.20	4.30	21.1 0	1 60. 10, 2023	
Head	5800	35.30	5.27	35.30	5.27	21.0 °C	Feb. 19, 2025	
5800	3000	(33.54~37.07)	(5.01~5.53)	33.30	5.21	21.0 0	1 60. 19, 2023	


NOTE: The dielectric parameters of the tissue-equivalent liquid should be measured under similar ambient conditions and within 2 °C of the conditions expected during the SAR evaluation to satisfy protocol requirements.

4.2. System Verification Procedure

The system verification is performed for verifying the accuracy of the complete measurement system and performance of the software. The dipole is connected to the signal source consisting of signal generator and amplifier via a directional coupler, N-connector cable and adaption to SMA. It is fed with a power of 100mW (below 5GHz) or 100mW (above 5GHz). To adjust this power a power meter is used. The power sensor is connected to the cable before the system verification to measure the power at this point and do adjustments at the signal generator. At the outputs of the directional coupler both return loss as well as forward power are controlled during the system verification to make sure that emitted power at the dipole is kept constant. This can also be checked by the power drift measurement after the test (result on plot).

The system verification is shown as below picture:

4.2.1. System Verification Results

Comparing to the original SAR value provided by SATIMO, the verification data should be within its specification of ±10%. Below table shows the target SAR and measured SAR after normalized to 1W input power. The table below indicates the system performance verification can meet the variation criterion and the plots can be referred to Appendix B of this report.

	Target SA	Measure	ed SAR			
System	(±10	%)	(Normalize	ed to 1W)	Liquid	To ad Dada
Verification	1-g (W/Kg) 10-g (W/Kg)		1-g (W/Kg)	10-g (W/Kg)	Temp.	Test Date
2450MHz	50.05 (45.05~55.06)	23.80 (21.42~26.18)	51.84	23.59	21.3 °C	Feb. 15, 2025
5200MHz	162.59 (146.33~178.85)	56.21 (50.59~61.83)	147.12	52.12	21.2 °C	Feb. 16, 2025
5400MHz	159.81 (143.83~175.79)	55.00 (49.50~60.50)	148.20	55.32	21.4 °C	Feb. 17, 2025
5600MHz	179.15 (161.24~197.07)	61.01 (54.91~67.11)	164.21	56.02	21.1 °C	Feb. 18, 2025
5800MHz	182.20 (163.98~200.42)	61.32 (55.19~67.45)	164.21	56.23	21.0 °C	Feb. 19, 2025

5. SAR measurement variabilit

Per KDB865664 D01 SAR measurement 100 MHz to 6 GHz, SAR measurement variability must be assessed for each frequency band, which is determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. The additional measurements are repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device should be returned to ambient conditions (normal room temperature) with the battery fully charged before it is re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

- 1) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps 2) through 4) do not apply.
- 2) When the original highest measured SAR is ≥ 0.80 W/kg, repeat that measurement once.
- 3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg (~ 10% from the 1-g SAR limit).
- 4) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

6. SAR Measurement Uncertainty

Per KDB865664 D01 SAR Measurement 100 MHz to 6 GHz, when the highest measured 1-g SAR within a frequency band is < 1.5 W/kg, the extensive SAR measurement uncertainty analysis described in IEEE Std 1528-2013 is not required in SAR reports submitted for equipment approval. The equivalent ratio (1.5/1.6) is applied to extremity and occupational exposure conditions.

7. RF Exposure Positions

7.1. Generic device

A typical example of a body supported device is a wireless enabled laptop device that among other orientations may be supported on the thighs of a sitting user. To represent this orientation, the device shall be positioned with its base against the flat phantom. Other orientations may be specified by the manufacturer in the user instructions. If the intended use is not specified, the device shall be tested directly against the flat phantom in all usable orientations.

The screen portion of the device shall be in an open position at a 90° angle as seen in Figure 7.1 (left side), or at an operating angle specified for intended use by the manufacturer in the operating instructions. Where a body supported device has an integral screen required for normal operation, then the screen-side will not need to be tested if the antenna(s) integrated in it ordinarily remain(s) 200 mm from the body. Where a screen mounted antenna is present, the measurement shall be performed with the screen against the flat phantom as shown in Figure 7.1) (right side), if operating the screen against the body is consistent with the intended use.

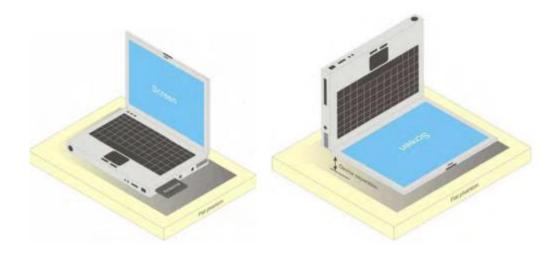


Figure 7.1 – Test positions for generic device

8. RF Output Power

8.1. Wi-Fi & BT Output Power

Mode	Channel	Frequency (MHz)	Output Power (dBm)	Tune-Up
	1	2412	13.99	13±1
802.11b	6	2437	13.29	13±1
	11	2462	13.82	13±1
	1	2412	16.69	16±1
802.11g	6	2437	16.25	16±1
	11	2462	16.85	16±1
802.11n	1	2412	15.41	15±1
(HT20)	6	2437	15.53	15±1
(11120)	11	2462	15.96	15±1
802.11n	3	2422	14.02	14±1
(H40)	6	2437	14.58	14±1
(1140)	9	2452	14.11	14±1

Mode	Frequency (MHz)	Output Power (dBm)	Tune-Up
	5180	13.03	13±1
802.11A	5200	13.10	13±1
	5240	13.42	13±1
	5180	12.41	12±1
802.11N20SISO	5200	13.30	13±1
	5240	13.44	13±1
802.11N40SISO	5190	12.91	12±1
002.1111403130	5230	12.19	12±1
	5180	11.95	11±1
802.11AC20SISO	5200	12.43	12±1
	5240	11.99	11±1
802.11AC40SISO	5190	13.05	13±1
002.11AC40313C	5230	11.93	11±1
802.11AC80SISO	5210	10.82	10±1

Mode	Frequency (MHz)	Output Power (dBm)	Tune-Up
	5260	11.19	11±1
802.11A	5280	10.96	10±1
	5320	10.27	10±1
	5260	13.00	13±1
802.11N20SISO	5280	12.71	12±1
	5320	12.21	12±1
802.11N40SISO	5270	9.97	9±1
002.1111403130	5310	9.02	9±1
	5260	11.24	11±1
802.11AC20SISO	5280	10.71	10±1
	5320	10.29	10±1
802.11AC40SISO	5270	9.64	9±1
002.11AC40313O	5310	8.87	8±1
802.11AC80SISO	5290	9.17	9±1

Mode	Frequency (MHz)	Output Power (dBm)	Tune-Up
------	--------------------	--------------------------	---------

	5500	9.50	9±1
802.11A	5600	9.51	9±1
	5700	11.26	11±1
	5500	11.18	11±1
802.11N20SISO	5600	11.02	11±1
	5700	12.75	12±1
802.11N40SISO	5510	8.16	8±1
	5590	7.81	7±1
	5670	9.59	9±1
	5500	8.96	8±1
802.11AC20SISO	5600	9.23	9±1
	5700	11.10	11±1
	5510	7.97	7±1
802.11AC40SISO	5590	7.74	7±1
	5670	9.40	9±1
802.11AC80SISO	5530	8.01	8±1
002.11AC00313C	5610	7.96	7±1

Mode	Frequency (MHz)	Output Power (dBm)	Tune-Up
	5745	10.37	10±1
802.11A	5785	10.80	10±1
	5825	11.43	11±1
	5745	12.30	12±1
802.11N20SISO	5785	12.98	12±1
	5825	13.29	13±1
802.11N40SISO	5755	9.11	9±1
002.1111403130	5795	9.87	9±1
	5745	10.14	10±1
802.11AC20SISO	5785	10.56	10±1
	5825	10.92	10±1
000 11 1 0 100 100	5755	8.81	8±1
802.11AC40SISO	5795	9.62	9±1
802.11AC80SISO	5775	9.10	9±1

Mode	Channel	Output Power (dBm)	Tune-up
DH5	Нор	3.67	3±1
2DH5	Нор	4.67	4±1
3DH5	Нор	4.93	4±1
	CH00	-3.14	-3±1
BLE1M	CH19	-1.88	-1±1
	CH39	-0.71	0±1

9. Stand-alone SAR test exclusion

Refer to FCC KDB 447498D01, the 1-g SAR and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances ≤ 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)]·[$\sqrt{f(GHZ)}$] ≤ 3.0 for 1-g SAR and ≤ 7.5 for 10-g extremity SAR, where:

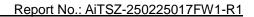
- f(GHZ) is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation
- The result is rounded to one decimal place for comparison

Report No.: AiTSZ-250225017FW1-R1

When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion.

Mode	Pmax (dBm)	Pmax (mW)	Distance (mm)	f (GHz)	Calculation Result	SAR Exclusion threshold	SAR test exclusion
Bluetooth	5.00	3.16	5	2.480	1.0	3	Yes

NOTE: Standalone SAR test exclusion for Bluetooth.


When standalone SAR test exclusion applies to an antenna that transmits simultaneously with other antennas, the standalone SAR must be estimated according to following to determine simultaneous transmission SAR test exclusion:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] * [$\sqrt{f(GHZ)/x}$] W/kg for test separation distances \leq 50mm, where x = 7.5 for 1-g SAR and x = 18.75 for 10-g SAR.

When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion.

Mode	Position	Pmax (dBm)	Pmax (mW)	Distance (mm)	f (GHz)	х	Estimated SAR (W/kg)
Bluetooth	Body	5.00	3.16	5	2.48	7.5	0.132

NOTE: Estimated SAR calculation for Bluetooth

10. SAR Measurement Results

< WIFI 2.4G >

Test	Test	Test	Separation		Value	Power	Conducted	Tune-up	Scaled	Doto	
Position	/Freq.	Mode	distance (mm)	1g	/kg) 10g	Drift (±5%)	power (dBm)	power (dBm)	SAR 1g (W/Kg)	Date	Plot
	1				back of	Keyboard				1	
Body	1/2412	802.11b	0	0.186	0.129	-1.80	13.99	14.00	0.186	2025/2/15	5#
Body	11/2462	802.11g	0	0.280	0.176	2.01	16.85	17.00	0.290	2025/2/15	6#

< WIFI 5.2G >

Toot	Test		Separation	SAR	Value	Power	Conducted	Tune-up	Scaled		
Test	channel	Test Mode	distance	(W)	/kg)	Drift	power	power	SAR 1g	Date	Plot
Position	/Freq.		(mm)	1g	10g	(±5%)	(dBm)	(dBm)	(W/Kg)		
back of Keyboard											
Body	48/5240	802.11N20	0	0.473	0.403	-4.36	13.44	14.00	0.538	2025/2/16	1#

< WIFI 5.3G >

Toot	Test		Separation	SAR	Value	Power	Conducted	Tune-up	Scaled		
Test	channel	Test Mode	distance	(W)	/kg)	Drift	power	power	SAR 1g	Date	Plot
Position	/Freq.		(mm)	1g	10g	(±5%)	(dBm)	(dBm)	(W/Kg)		
back of Keyboard											
Body	52/5260	802.11N20	0	0.534	0.397	3.08	13.00	13.00	0.534	2025/2/17	2#

< WIFI 5.6G >

							,				
Toot	Test		Separation	SAR	Value	Power	Conducted	Tune-up	Scaled		
Test Position	channel	Test Mode	distance	(W)	/kg)	Drift	power	power	SAR 1g	Date	Plot
Position	/Freq.		(mm)	1g	10g	(±5%)	(dBm)	(dBm)	(W/Kg)		
back of Keyboard											
Body	140/5700	802.11N20	0	0.574	0.438	3.36	12.75	13.00	0.608	2025/2/18	3#

< WIFI 5.8G >

Toot	Test		Separation	SAR	Value	Power	Conducted	Tune-up	Scaled		
Test	channel	Test Mode	distance	(W)	/kg)	Drift	power	power	SAR 1g	Date	Plot
Position	/Freq.		(mm)	1g	10g	(±5%)	(dBm)	(dBm)	(W/Kg)		
back of Keyboard											
Body	165/5825	802.11N20	0	0.450	0.377	3.45	13.29	14.00	0.530	2025/2/19	4#

11. Simultaneous Transmission Analysis

No.	Simultaneous Tx	Body-worn
1	WLAN2.4G+Bluetooth	Yes
2	WLAN2.4G+WLAN5G	Yes

Evpocuro Posi	tion	WLAN2.4G	DSS Band	Simultaneous Tx	
Exposure Position		SAR(W/Kg)	SAR(W/Kg)	SAR(W/Kg)	
Body	back of Keyboard	0.290	0.132	0.422	

Exposuro Posi	tion	WLAN2.4G	WLAN5G	Simultaneous Tx	
Exposure Position		SAR(W/Kg)	SAR(W/Kg)	SAR(W/Kg)	
Body	back of Keyboard	0.290	0.608	0.898	

Note: The Simultaneous Tx is calculated based on the same configuration and test position.

Page 33 of 88

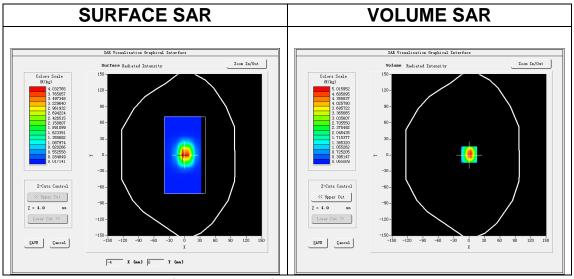
Appendix A. Photo documentation

Refer to appendix Test Setup photo---SAR

Appendix B. System Check Plots

Table of contents
MEASUREMENT 1 System Performance Check - 2450MHz
MEASUREMENT 2 System Performance Check - 5200MHz
MEASUREMENT 3 System Performance Check - 5400MHz
MEASUREMENT 4 System Performance Check - 5600MHz
MEASUREMENT 5 System Performance Check - 5800MHz

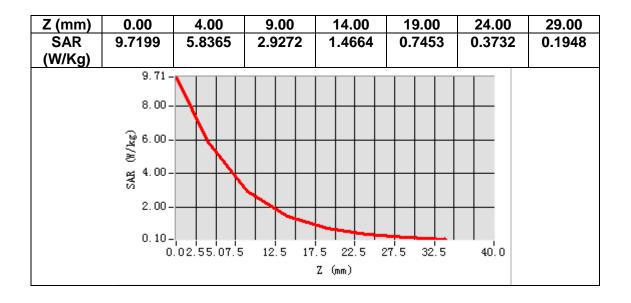
MEASUREMENT 1

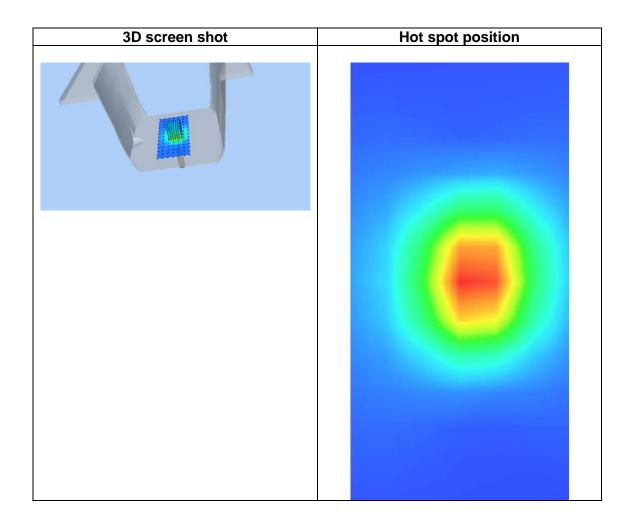

Date of measurement: 15/2/2025

A. Experimental conditions.

Area Scan	dx=12mm dy=12mm, h= 5.00 mm
ZoomScan	7x7x7,dx=5mm dy=5mm dz=5mm
<u>Phantom</u>	<u>Validation plane</u>
Device Position	<u>Dipole</u>
Band	<u>CW2450</u>
<u>Channels</u>	<u>Middle</u>
<u>Signal</u>	CW (Crest factor: 1.0)
ConvF	<u>2.38</u>

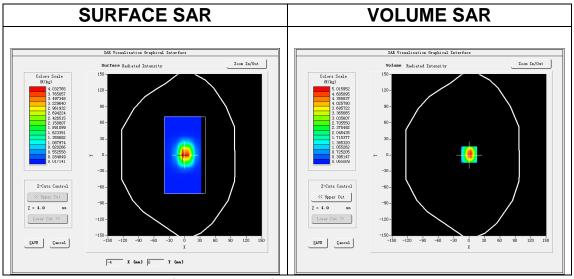
B. SAR Measurement Results


Frequency (MHz)	2450.000000
Relative permittivity (real part)	40.408511
Relative permittivity (imaginary part)	13.399264
Conductivity (S/m)	1.823789
Variation (%)	-1.250000



Maximum location: X=0.00, Y=1.00 SAR Peak: 8.14 W/kg

SAR 10g (W/Kg)	2.359425
SAR 1g (W/Kg)	5.183642

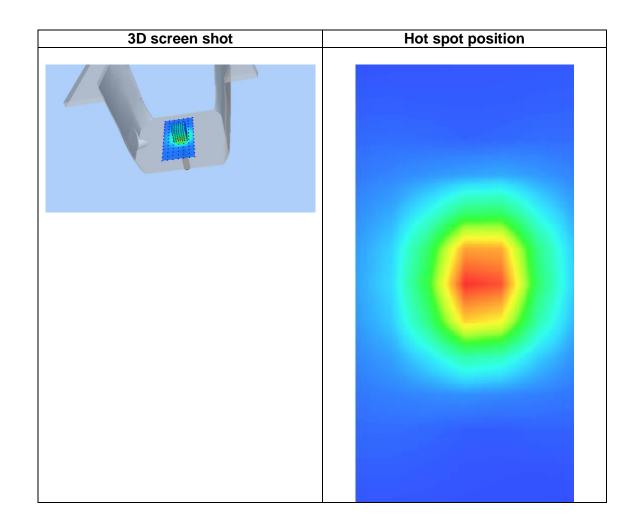

Date of measurement: 16/2/2025

A. Experimental conditions.

Area Scan	dx=10mm dy=10mm, h= 2.00 mm				
ZoomScan	7x7x12,dx=4mm dy=4mm dz=2mm				
<u>Phantom</u>	<u>Validation plane</u>				
<u>Device Position</u>	<u>Dipole</u>				
Band	<u>CW5200</u>				
<u>Channels</u>	<u>Middle</u>				
<u>Signal</u>	CW (Crest factor: 1.0)				
ConvF	2.30				

B. SAR Measurement Results

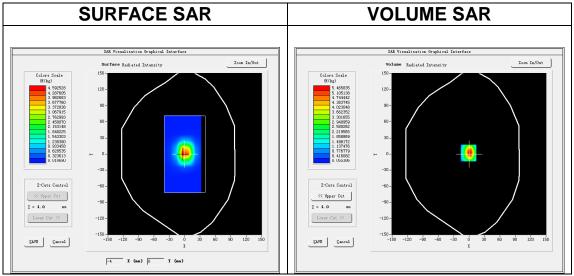
Frequency (MHz)	5200.000000
Relative permittivity (real part)	37.400000
Relative permittivity (imaginary part)	16.129999
Conductivity (S/m)	4.659777
Variation (%)	-4.570000



Maximum location: X=0.00, Y=1.00 SAR Peak: 15.14 W/kg

SAR 10g (W/Kg)	5.212361
SAR 1g (W/Kg)	14.712032

Z (m m)	0.00	2.00	4.00	6.00	8.00	10.0 0	12.0 0	14.0 0	16.0 0	18.0 0	20.0	22.0
	37.8	22.3	11.3	5.66	2.82	1.40	0.71	0.36	0.18	0.10	0.05	0.03
R (W/ Kg)	54	66	28	35	01	84	74	02	02	35	80	66
			00-	2 4	6 8	10 12 Z (14 16 (mm)	18 20	0 22 2	4 26		

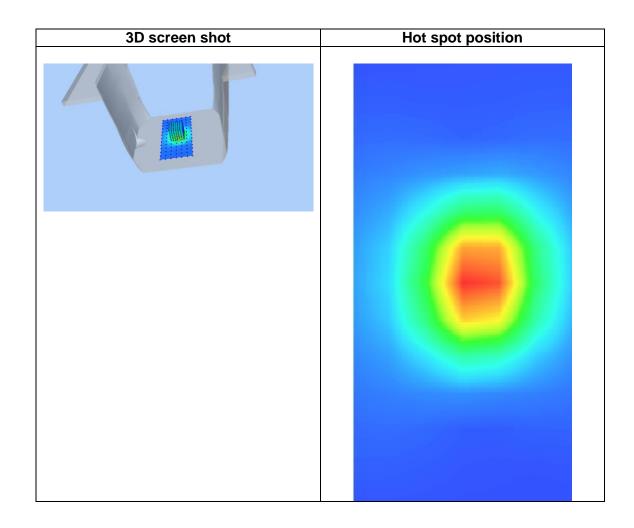

Date of measurement: 17/2/2025

A. Experimental conditions.

2 to2tp-0:::::0:::da: 0:0:::di:0::0::0::						
Area Scan	<u>dx=10mm dy=10mm, h= 2.00 mm</u>					
<u>ZoomScan</u>	7x7x12,dx=4mm dy=4mm dz=2mm					
<u>Phantom</u>	Validation plane					
Device Position	<u>Dipole</u>					
<u>Band</u>	<u>CW5400</u>					
<u>Channels</u>	<u>Middle</u>					
<u>Signal</u>	CW (Crest factor: 1.0)					
ConvF	2.30					

B. SAR Measurement Results

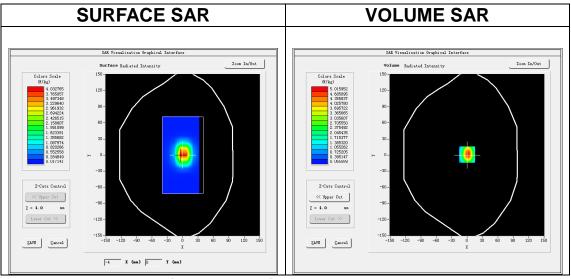
Frequency (MHz)	5400.000000
Relative permittivity (real part)	35.102351
Relative permittivity (imaginary part)	16.341203
Conductivity (S/m)	4.701556
Variation (%)	-2.480000



Maximum location: X=-1.00, Y=2.00 SAR Peak: 17.05 W/kg

SAR 10g (W/Kg)	5.532101
SAR 1g (W/Kg)	14.820035

Z (m m)	0.00	2.00	4.00	6.00	8.00	10.0	12.0 0	14.0 0	16.0 0	18.0 0	20.0	22.0
SA R	44.0 37	26.8 81	14.6 43	7.81 16	4.22 07	2.32 58	1.32 96	0.78 91	0.50 28	0.37 97	0.28 03	0.26 20
(W/ Kg)	31	01	43	10	U1	30	90	31	20	31	03	20
		44.1 40.1										
		20.1	$ \setminus $									
		20.1 (∰/kg) 20.1										
		SAR										
		10. (/							
		0.3	0 2	4 6	8	10 12	14 16	18 20) 22 2	4 26		
						Z ()	nm)					

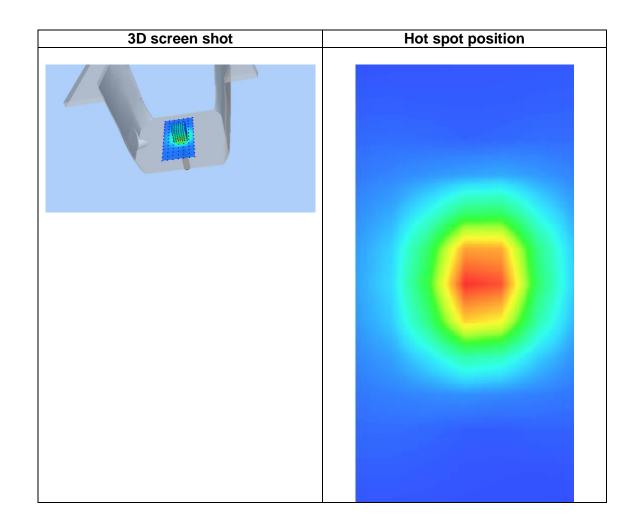

Date of measurement: 18/2/2025

A. Experimental conditions.

Area Scan	<u>dx=10mm dy=10mm, h= 2.00 mm</u>					
ZoomScan	7x7x12,dx=4mm dy=4mm dz=2mm					
<u>Phantom</u>	<u>Validation plane</u>					
Device Position	<u>Dipole</u>					
Band	<u>CW5600</u>					
<u>Channels</u>	<u>Middle</u>					
Signal	CW (Crest factor: 1.0)					
ConvF	2.29					

B. SAR Measurement Results

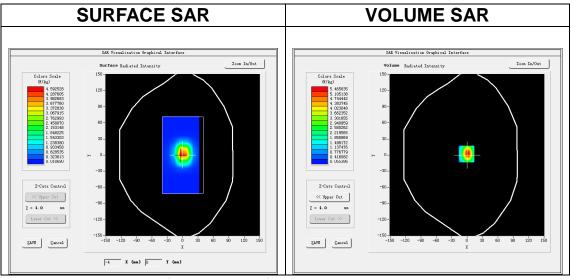
Frequency (MHz)	5600.000000
Relative permittivity (real part)	34.200000
Relative permittivity (imaginary part)	16.120115
Conductivity (S/m)	4.900712
Variation (%)	-4.570000



Maximum location: X=0.00, Y=1.00 SAR Peak: 15.13 W/kg

SAR 10g (W/Kg)	5.602361
SAR 1g (W/Kg)	16.421103

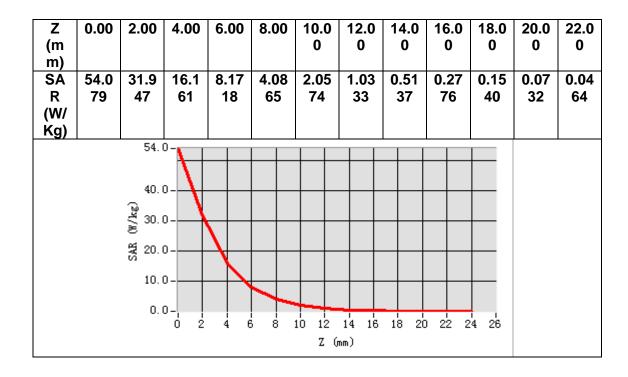
Z (m m) SA R (W/ Kg)	0.00 54.1 72	2.00 31.9 65	4.00 16.3 04	8.17 75	4.08 88	10.0 0 3.81 65	12.0 0 1.03 01	14.0 0 0.46 65	16.0 0 0.27 27	18.0 0 0.13 69	20.0 0 0.07 30	22.0 0 0.05 87
3 ,		54 40 30 20 10		4 6	3 8	10 12 Z 6	14 16 nm)	18 20) 22 2	4 26		

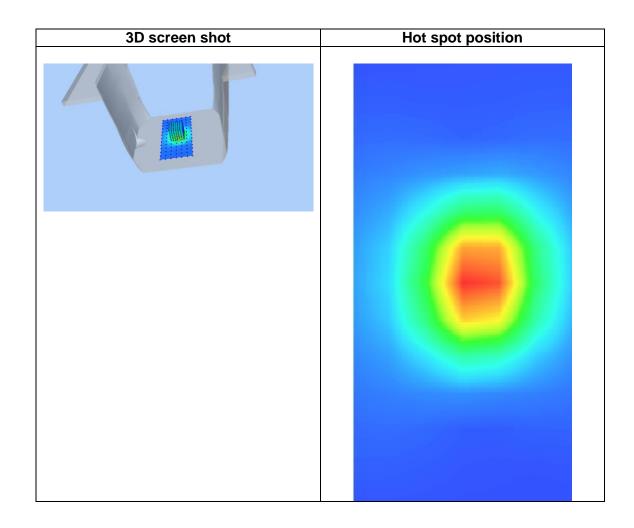

Date of measurement: 19/2/2025

A. Experimental conditions.

dx=10mm dy=10mm, h= 2.00 mm
7x7x12,dx=4mm dy=4mm dz=2mm
Validation plane
<u>Dipole</u>
<u>CW5800</u>
<u>Middle</u>
CW (Crest factor: 1.0)
<u>2.27</u>

B. SAR Measurement Results


Frequency (MHz)	5800.000000
Relative permittivity (real part)	35.299999
Relative permittivity (imaginary part)	16.360001
Conductivity (S/m)	5.271556
Variation (%)	-2.480000

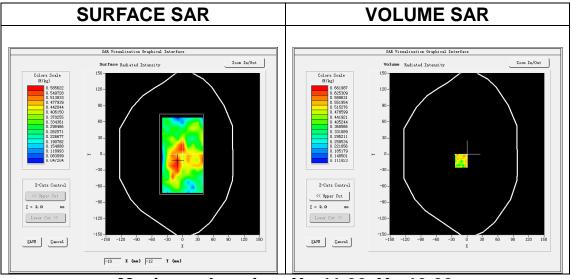


Maximum location: X=-1.00, Y=2.00 SAR Peak: 17.07 W/kg

SAR 10g (W/Kg)	5.623106
SAR 1g (W/Kg)	16.421035

Appendix C. SAR Test Plots

	Table of contents
MEASUREMENT 1 WLAN 5.2G Body	
MEASUREMENT 2 WLAN 5.3G Body	
MEASUREMENT 3 WLAN 5.6G Body	
MEASUREMENT 4 WLAN 5.8G Body	
MEASUREMENT 5 WLAN 2.4G Body	
MEASUREMENT 6 WLAN 2.4G Body	

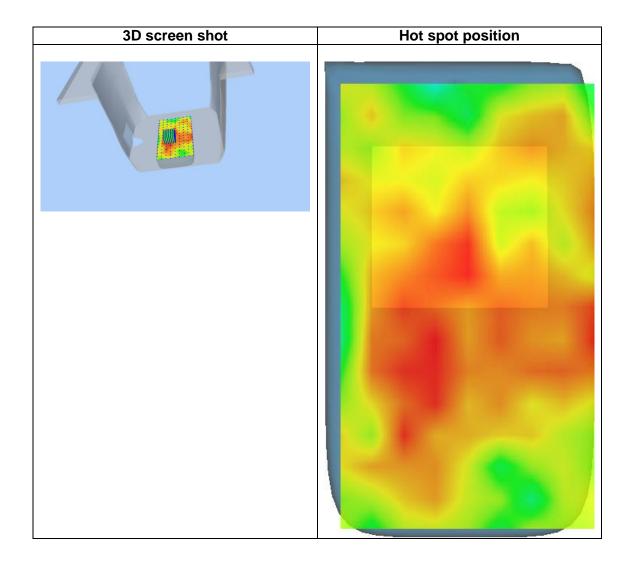

Date of measurement: 16/2/2025

A. Experimental conditions.

<u> </u>	
Area Scan	dx=10mm dy=10mm, h= 2.00 mm
<u>ZoomScan</u>	7x7x12,dx=4mm dy=4mm dz=2mm
<u>Phantom</u>	<u>Validation plane</u>
Device Position	Body
Band	<u>IEEE 802.11n U-NII</u>
<u>Channels</u>	<u>High</u>
<u>Signal</u>	IEEE802.n (Crest factor: 1.0)
ConvF	2.30

B. SAR Measurement Results

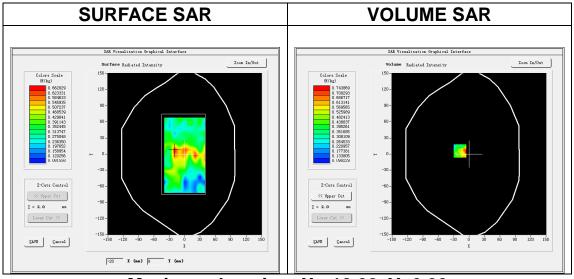
Frequency (MHz)	5240.000000
Relative permittivity (real part)	36.200000
Relative permittivity (imaginary part)	16.139987
Conductivity (S/m)	4.698530
Variation (%)	-4.360000



Maximum location: X=-11.00, Y=-13.00 SAR Peak: 0.85 W/kg

SAR 10g (W/Kg)	0.403171
SAR 1g (W/Kg)	0.472628

Z (m m)	0.00	2.00	4.00	6.00	8.00	10.0 0	12.0 0	14.0 0	16.0 0	18.0 0	20.0	22.0
SA	0.81	0.66	0.43	0.41	0.49	0.42	0.29	0.36	0.40	0.32	0.34	0.35
R	14	20	53	81	93	06	06	67	65	56	19	65
(W/ Kg)												
<u> </u>	l .	0.8	-		· -							
		0.7										
			1									
		€	'									
		왕 0.5		T	木							
		0.4				\vdash	$\downarrow \downarrow$	+	\pm			
		0.3	-			 		1				
			Ó Ź	4 6	8 1	O 12 Z (m	14 16 m)	18 20	22 2	4 26		
							,					

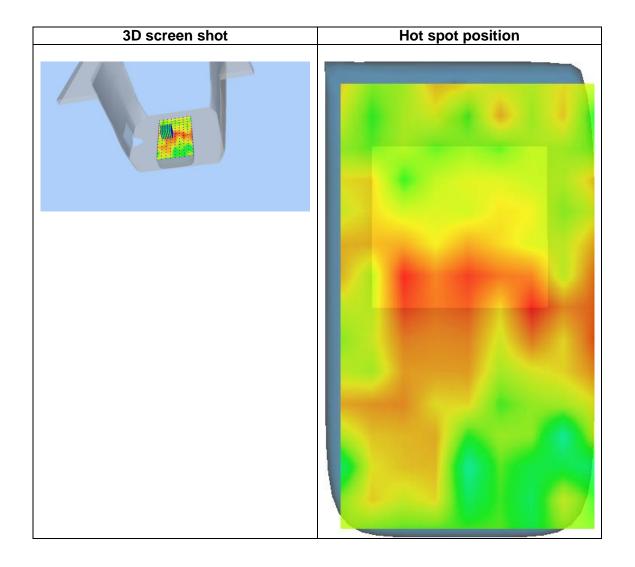

Date of measurement: 17/2/2025

A. Experimental conditions.

<u>Area Scan</u>	dx=10mm dy=10mm, h= 2.00 mm
<u>ZoomScan</u>	7x7x12,dx=4mm dy=4mm dz=2mm
<u>Phantom</u>	Validation plane
Device Position	Body
Band	<u>IEEE 802.11n U-NII</u>
<u>Channels</u>	<u>Low</u>
<u>Signal</u>	IEEE802.n (Crest factor: 1.0)
ConvF	2.30

B. SAR Measurement Results

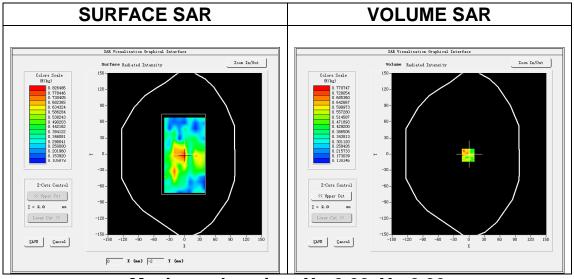
Frequency (MHz)	5260.000000
Relative permittivity (real part)	35.919845
Relative permittivity (imaginary part)	16.157001
Conductivity (S/m)	4.721435
Variation (%)	3.080000



Maximum location: X=-18.00, Y=6.00 SAR Peak: 1.02 W/kg

SAR 10g (W/Kg)	0.397160
SAR 1g (W/Kg)	0.533528

Z (m m)	0.00	2.00	4.00	6.00	8.00	10.0 0	12.0 0	14.0 0	16.0 0	18.0 0	20.0	22.0
SA	0.99	0.74	0.32	0.45	0.44	0.45	0.31	0.28	0.38	0.36	0.23	0.30
R	46	39	29	79	06	80	51	19	37	75	38	97
(W/ Kg)												
		1.0	\									
		0.9	\					\top				
		0.8	1					\top				
		(200.7 (200.7 (200.6)	1									
		₩ 0.5		∖	-							
		0.4		\mathbf{V}			╁	+				
		0.3 0.2					+/-	+	\wedge			
		0.2	0 2	4 6	8 1	0 12	14 16	18 20	22 2	4 26		
						Z (m	ım)					

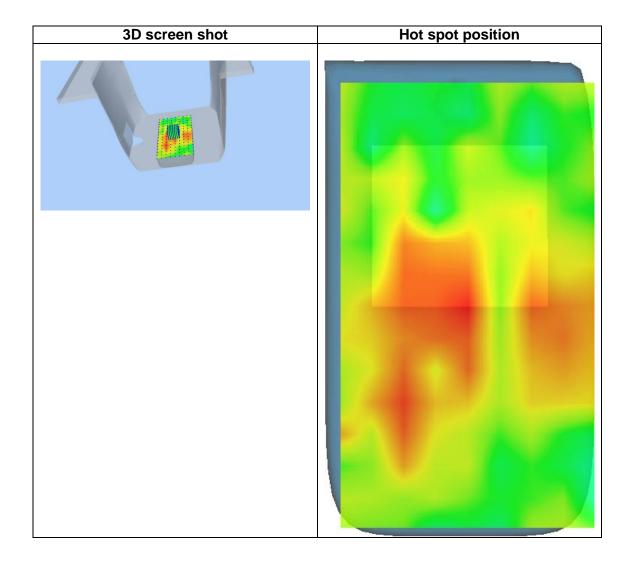

Date of measurement: 18/2/2025

A. Experimental conditions.

Area Scan	dx=10mm dy=10mm, h= 2.00 mm
ZoomScan	7x7x12,dx=4mm dy=4mm dz=2mm
<u>Phantom</u>	Validation plane
Device Position	Body
Band	<u>IEEE 802.11n U-NII</u>
<u>Channels</u>	<u>High</u>
Signal	IEEE802.n (Crest factor: 1.0)
ConvF	2.29

B. SAR Measurement Results

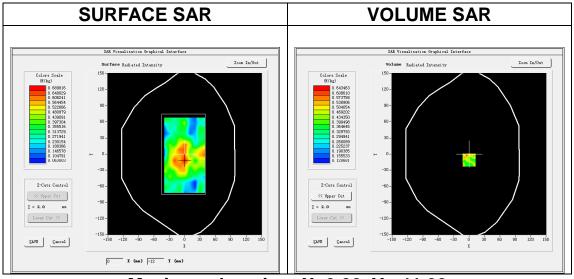
Frequency (MHz)	5700.000000
Relative permittivity (real part)	35.600000
Relative permittivity (imaginary part)	16.329998
Conductivity (S/m)	5.171166
Variation (%)	3.360000



Maximum location: X=-2.00, Y=-2.00 SAR Peak: 1.21 W/kg

SAR 10g (W/Kg)	0.437661
SAR 1g (W/Kg)	0.573843

Z (m m)	0.00	2.00	4.00	6.00	8.00	10.0	12.0 0	14.0 0	16.0 0	18.0 0	20.0	22.0
SA	1.07	0.77	0.48	0.44	0.43	0.52	0.37	0.41	0.49	0.34	0.42	0.35
R	10	07	14	73	05	73	47	84	20	13	10	58
(W/ Kg)												
<u> </u>	•	1.1 1.0	•									
		0.9	\									
		⊙ 0.8	+									
		0.8 7.0 %	1				+					
		æ ^{0.6}		\forall								
		0.5				ackslash	\bot					
		0.4			_	 \	1	\checkmark	$\overline{}$			
		0.3		4 6	١.	10	14 10	10 00	22 2	4 06		
	0 2 4 6 8 10 12 14 16 18 20 22 24 26 Z (mm)											

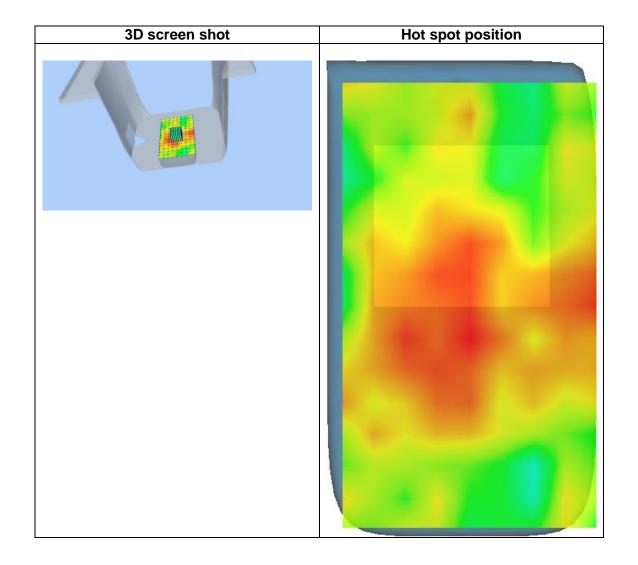

Date of measurement: 19/2/2025

A. Experimental conditions.

- 11 = 21 p 0 1 1 1 1 0	
Area Scan	<u>dx=10mm dy=10mm, h= 2.00 mm</u>
<u>ZoomScan</u>	7x7x12,dx=4mm dy=4mm dz=2mm
<u>Phantom</u>	Validation plane
Device Position	<u>Body</u>
Band	<u>IEEE 802.11n U-NII</u>
<u>Channels</u>	<u>High</u>
<u>Signal</u>	IEEE802.n (Crest factor: 1.0)
ConvF	2.27

B. SAR Measurement Results

Frequency (MHz)	5825.000000
Relative permittivity (real part)	35.324998
Relative permittivity (imaginary part)	16.356496
Conductivity (S/m)	5.293144
Variation (%)	3.450000



Maximum location: X=0.00, Y=-11.00 SAR Peak: 1.15 W/kg

SAR 10g (W/Kg)	0.377213
SAR 1g (W/Kg)	0.450313

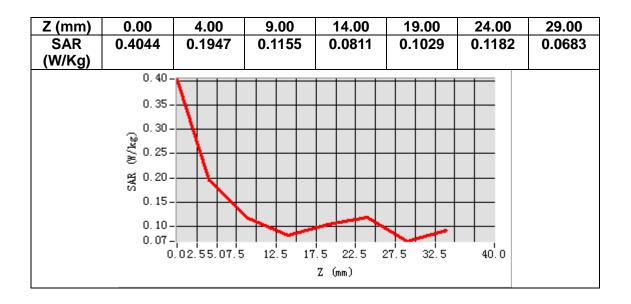
Z (m m)	0.00	2.00	4.00	6.00	8.00	10.0 0	12.0 0	14.0 0	16.0 0	18.0 0	20.0	22.0
SA R	1.14 08	0.64 35	0.38 65	0.39 23	0.23 89	0.29 03	0.30 36	0.39 81	0.42 02	0.37 38	0.25 28	0.31 15
(W/ Kg)	00	3	3	23	03	03	30	01	UZ.	30	20	13
		1.1	T									
		1.0										
		8.0 (#/kg)	+				++					
		æ 0.6 ¥80.6	\perp	\perp								
				$\setminus \mid \mid$								
		0. 4 0. 2		4 6		0 12	14 16	18 20	22 2	4 26		
						Z (n		10 20		20		

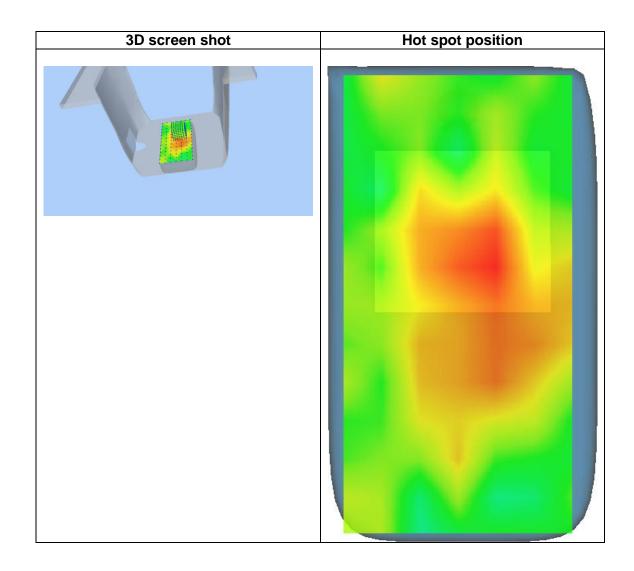
Date of measurement: 15/2/2025

A. Experimental conditions.

Area Scan	<u>dx=12mm dy=12mm, h= 5.00 mm</u>
<u>ZoomScan</u>	7x7x7,dx=5mm dy=5mm dz=5mm
<u>Phantom</u>	Validation plane
Device Position	<u>Body</u>
Band	<u>IEEE 802.11b ISM</u>
<u>Channels</u>	<u>Low</u>
<u>Signal</u>	IEEE802.b (Crest factor: 1.0)
ConvF	2.38

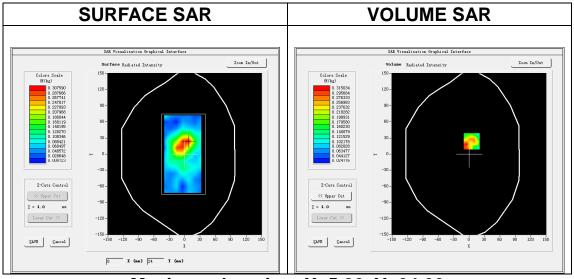
B. SAR Measurement Results


Frequency (MHz)	2412.000000
Relative permittivity (real part)	39.224000
Relative permittivity (imaginary part)	13.205000
Conductivity (S/m)	1.769470
Variation (%)	-1.800000



Maximum location: X=5.00, Y=14.00 SAR Peak: 0.36 W/kg

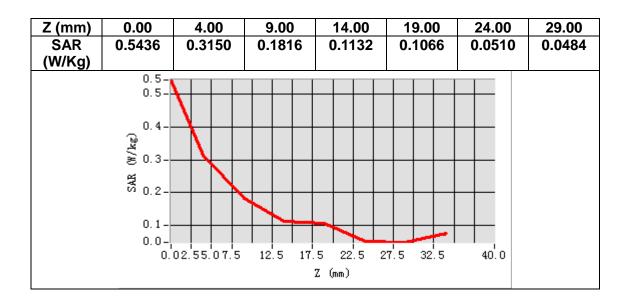
SAR 10g (W/Kg)	0.128554
SAR 1g (W/Kg)	0.185997

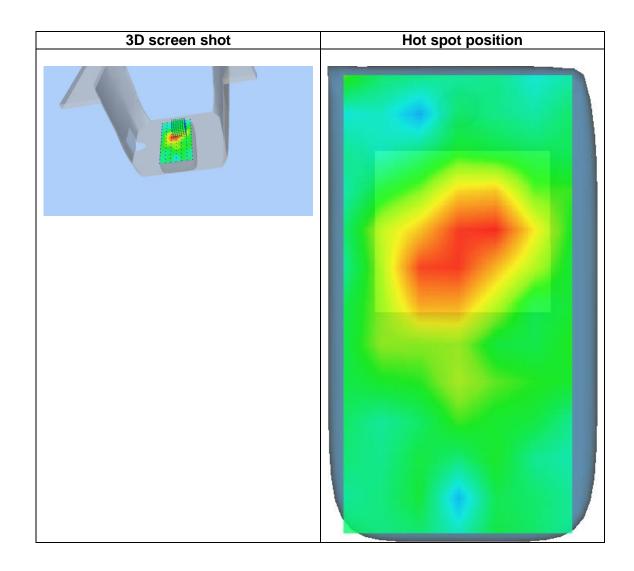

Date of measurement: 15/2/2025

A. Experimental conditions.

<u>Area Scan</u>	dx=12mm dy=12mm, h= 5.00 mm
<u>ZoomScan</u>	7x7x7,dx=5mm dy=5mm dz=5mm
<u>Phantom</u>	Validation plane
Device Position	<u>Body</u>
Band	<u>IEEE 802.11g ISM</u>
<u>Channels</u>	<u>High</u>
<u>Signal</u>	IEEE802.g (Crest factor: 1.0)
ConvF	2.38

B. SAR Measurement Results


 	
Frequency (MHz)	2462.000000
Relative permittivity (real part)	39.250000
Relative permittivity (imaginary part)	13.207000
Conductivity (S/m)	1.806424
Variation (%)	2.010000



Maximum location: X=5.00, Y=24.00 SAR Peak: 0.53 W/kg

SAR 10g (W/Kg)	0.176320
SAR 1g (W/Kg)	0.280125

Appendix D. Calibration Certificate

Table of contents	
E Field Probe - EPGO0523-403	
2450 MHz Dipole - SN 03/15 DIP 2G450-352	
5000-6000 MHz Dipole - SN 03/14 WGA33	

COMOSAR E-Field Probe Calibration Report

Ref: ACR.307.3.24.BES.A

GUANGDONG ASIA HONGKE TEST TECHNOLOGY CO., LTD

NO.1/F,BUILDING B1, JUNFENG INDUSTRIAL PARK, CHONGQING ROAD, HEPING COMMUNITY, FUHAIHAI STREET, BAO'AN DISTRICT,SHENZHEN, GUANGDONG 518055, P.R.CHINA

MVG COMOSAR DOSIMETRIC E-FIELD PROBE

SERIAL NO.: SN 39/21 EPGO0523-403

Calibrated at MVG

Z.I. de la pointe du diable Technopôle Brest Iroise – 295 avenue Alexis de Rochon 29280 PLOUZANE - FRANCE

Calibration date: 09/11/2024

Accreditations #2-6789 Scope available on www.cofrac.fr

The use of the Cofrac brand and the accreditation references is prohibited from any reproduction

Summary:

This document presents the method and results from an accredited COMOSAR E-Field Probe calibration performed at MVG, using the CALIPROBE test bench, for use with a MVG COMOSAR system only. The test results covered by accreditation are traceable to the International System of Units (SI).

Ref: ACR.307.3.24.BES.A

	Name	Function	Date	Signature
Prepared by :	Jérôme Le Gall	Measurement Responsible	09/10/2024	
Checked by:	Jérôme Luc	Technical Manager	09/10/2024	Jes
Approved by :	Yann Toutain	Laboratory Director	09/11/2024	Gann TOUTAAN

2	Customer Name	
Distribution :	Shenzhen	
	Asia Hongke	

Issue	Name	Date	Modifications
A	Jérôme Luc	9/11/2024	Initial release

Ref: ACR. 307.3.24.BES.A

TABLE OF CONTENTS

2	Prod	uct Description	
	2.1	General Information	4
3	Mea	surement Method	
	3.1	Linearity	4
	3.2	Sensitivity	4
	3.3	Lower Detection Limit	5
	3.4	Isotropy	5
	3.1	Boundary Effect	5
4	Mea	surement Uncertainty6	
5	Calil	oration Measurement Results6	
	5.1	Sensitivity in air	6
	5.2	Linearity	7
	5.3	Sensitivity in liquid	8
	5.4	Isotropy	9
6	List	of Equipment10	

Page 62 of 88

Ref. ACR.307.3.24.BES.A

1 DEVICE UNDER TEST

Device Under Test		
Device Type	COMOSAR DOSIMETRIC E FIELD PROBE	
Manufacturer	MVG	
Model	SSE2	
Serial Number	SN 39/21 EPGO0523-403	
Product Condition (new / used)	New	
Frequency Range of Probe	0.15 GHz-6GHz	
Resistance of Three Dipoles at Connector	Dipole 1: R1=0.199 M Ω	
	Dipole 2: R2=0.218 M Ω	
	Dipole 3: R3=0.210 M Ω	

2 PRODUCT DESCRIPTION

2.1 GENERAL INFORMATION

MVG's COMOSAR E field Probes are built in accordance to the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards.

Figure 1- MVG COMOSAR Dosimetric E field Probe

Probe Length	330 mm
Length of Individual Dipoles	2 mm
Maximum external diameter	8 mm
Probe Tip External Diameter	2.5 mm
Distance between dipoles / probe extremity	1 mm

3 MEASUREMENT METHOD

The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards provide recommended practices for the probe calibrations, including the performance characteristics of interest and methods by which to assess their affect. All calibrations / measurements performed meet the fore mentioned standards.

3.1 LINEARITY

The evaluation of the linearity was done in free space using the waveguide, performing a power sweep to cover the SAR range 0.01W/kg to 100W/kg.

3.2 <u>SENSITIVITY</u>

The sensitivity factors of the three dipoles were determined using a two step calibration method (air and tissue simulating liquid) using waveguides as outlined in the standards.

Page: 4/11

Ref: ACR 307 3 24 BES A

3.3 LOWER DETECTION LIMIT

The lower detection limit was assessed using the same measurement set up as used for the linearity measurement. The required lower detection limit is 10 mW/kg.

3.4 ISOTROPY

The axial isotropy was evaluated by exposing the probe to a reference wave from a standard dipole with the dipole mounted under the flat phantom in the test configuration suggested for system validations and checks. The probe was rotated along its main axis from 0 to 360 degrees in 15-degree steps. The hemispherical isotropy is determined by inserting the probe in a thin plastic box filled with tissue-equivalent liquid, with the plastic box illuminated with the fields from a half wave dipole. The dipole is rotated about its axis $(0^{\circ}-180^{\circ})$ in 15° increments. At each step the probe is rotated about its axis $(0^{\circ}-360^{\circ})$.

3.1 BOUNDARY EFFECT

The boundary effect is defined as the deviation between the SAR measured data and the expected exponential decay in the liquid when the probe is oriented normal to the interface. To evaluate this effect, the liquid filled flat phantom is exposed to fields from either a reference dipole or waveguide. With the probe normal to the phantom surface, the peak spatial average SAR is measured and compared to the analytical value at the surface.

The boundary effect uncertainty can be estimated according to the following uncertainty approximation formula based on linear and exponential extrapolations between the surface and $d_{\rm be}$ + $d_{\rm steo}$ along lines that are approximately normal to the surface:

SAR uncertainty [%] =
$$\delta$$
SAR be $\frac{\left(d_{be} + d_{step}\right)^2}{2d_{step}} \frac{\left(e^{-d_{be}f(\delta\rho)}\right)}{\delta/2}$ for $\left(d_{be} + d_{step}\right) < 10 \text{ mm}$

where

SAR_{uncertainty} is the uncertainty in percent of the probe boundary effect

 d_{be} is the distance between the surface and the closest zoom-scan measurement

point, in millimetre

 $\Delta_{ ext{step}}$ is the separation distance between the first and second measurement points that

are closest to the phantom surface, in millimetre, assuming the boundary effect

at the second location is negligible

 δ is the minimum penetration depth in millimetres of the head tissue-equivalent

liquids defined in this standard, i.e., *δ*≈ 14 mm at 3 GHz;

△SAR_{be} in percent of SAR is the deviation between the measured SAR value, at the

distance d_{be} from the boundary, and the analytical SAR value.

The measured worst case boundary effect SARuncertainty[%] for scanning distances larger than 4mm is 1.0% Limit ,2%).

Ref: ACR. 307.3.24.BES.A

4 MEASUREMENT UNCERTAINTY

The guidelines outlined in the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards were followed to generate the measurement uncertainty associated with an E-field probe calibration using the waveguide technique. All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

Uncertainty analysis of the probe calibration in waveguide					
ERROR SOURCES	Uncertainty value (%)	Probability Distribution	Divisor	ci	Standard Uncertainty (%)
Expanded uncertainty 95 % confidence level k = 2				-	14 %

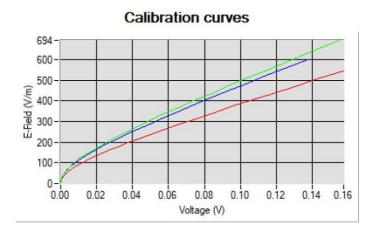
5 CALIBRATION MEASUREMENT RESULTS

Calibration Parameters		
Liquid Temperature 20 +/- 1 °C		
Lab Temperature	20 +/- 1 °C	
Lab Humidity	30-70 %	

5.1 <u>SENSITIVITY IN AIR</u>

Normx dipole	Normy dipole	Normz dipole
$1 (\mu V/(V/m)^2)$	$2 (\mu V/(V/m)^2)$	$3 (\mu V/(V/m)^2)$
1.26	0.87	0.77

DCP dipole 1	DCP dipole 2	DCP dipole 3
(mV)	(mV)	(mV)
113	108	113


Calibration curves ei=f(V) (i=1,2,3) allow to obtain E-field value using the formula:

$$E = \sqrt{E_1^2 + E_2^2 + E_3^2}$$

Ref: ACR. 307.3.24.BES.A

Dipole 1
Dipole 2
Dipole 3

5.2 <u>LINEARITY</u>

1.00-0.75-0.50-0.25-0.00-0.25-0.05-0.50-0.75--1.00-0 50 100 150 200 250 300 350 400 450 500 550 620 E-Field (V/m)

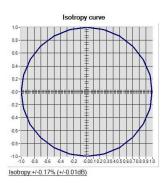
Linearity:+/-1.42% (+/-0.06dB)

Ref: ACR. 307.3.24.BES.A

5.3 <u>SENSITIVITY IN LIQUID</u>

<u>Liquid</u>	<u>Frequency</u> (MHz +/- 100MHz)	<u>ConvF</u>
HL600	600	1.62
HL750	750	1.65
HL850	835	1.66
HL900	900	1.77
HL1500	1500	2.09
HL1750	1750	2.09
HL1800	1800	2.05
HL1900	1900	2.05
HL2000	2000	2.41
HL2100	2100	2.36
HL2300	2300	2.55
HL2450	2450	2.38
HL2600	2600	2.35
HL3300	3300	2.04
HL3500	3500	1.98
HL3700	3700	2.11
HL3900	3900	2.54
HL4200	4200	2.22
HL4600	4600	2.40
HL4900	4900	2.33
HL5200	5200	2.30
HL5400	5400	2.30
HL5600	5600	2.29
HL5800	5800	2.27

LOWER DETECTION LIMIT: 8mW/kg



Ref: ACR.307.3.24.BES.A

5.4 <u>ISOTROPY</u>

HL1800 MHz

Page: 9/11

Ref: ACR. 307.3.24.BES.A

6 LIST OF EQUIPMENT

Equipment Summary Sheet						
Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date		
CALIPROBE Test Bench	Version 2	NA	Validated. No cal required.	Validated. No cal required.		
Network Analyzer	Rohde & Schwarz ZVM	100203	08/2024	08/2027		
Network Analyzer	Agilent 8753ES	MY40003210	10/2021	10/2024		
Network Analyzer – Calibration kit	Rohde & Schwarz ZV-Z235	101223	05/2024	05/2027		
Network Analyzer – Calibration kit	HP 85033D	3423A08186	06/2021	06/2027		
Multimeter	Keithley 2000	1160271	02/2024	02/2027		
Signal Generator	Rohde & Schwarz SMB	106589	04/2024	04/2027		
Amplifier	MVG	MODU-023-C-0002	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.		
Power Meter	NI-USB 5680	170100013	06/2024	06/2027		
Power Meter	Rohde & Schwarz NRVD	832839-056	11/2021	11/2024		
Directional Coupler	Krytar 158020	131467	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.		
Wa∨eguide	MVG	SN 32/16 WG4_1	Validated. No cal required.	Validated. No cal required.		
Liquid transition	MVG	SN 32/16 WGLIQ_0G900_1	Validated. No cal required.	Validated. No cal required.		
Wa∨eguide	MVG	SN 32/16 WG6_1	Validated. No cal required.	Validated. No cal required.		
Liquid transition	MVG	SN 32/16 WGLIQ_1G500_1	Validated. No cal required.	Validated. No cal required.		
Wa∨eguide	MVG	SN 32/16 WG8_1	Validated. No cal required.	Validated. No cal required.		
Liquid transition	MVG	SN 32/16 WGLIQ_1G800B_1	Validated. No cal required.	Validated. No cal required.		
Liquid transition	MVG	SN 32/16 WGLIQ_1G800H_1	Validated. No cal required.	Validated. No cal required.		
Waveguide	MVG	SN 32/16 WG10_1	Validated. No cal required.	Validated. No cal required.		
Liquid transition	MVG	SN 32/16 WGLIQ_3G500_1	Validated. No cal required.	Validated. No cal required.		

Page: 10/11

Ref: ACR. 307.3.24.BES.A

Wa∨eguide	MVG	SN 32/16 WG12_1	Validated. No cal required.	Validated. No cal required.
Liquid transition	MVG	SN 32/16 WGLIQ_5G000_1	Validated. No cal required.	Validated. No cal required.
Temperature / Humidity Sensor	Testo 184 H1	44225320	06/2024	06/2027

SAR Reference Dipole Calibration Report

Ref: ACR.53.29.24.BES.A

GUANGDONG ASIA HONGKE TEST TECHNOLOGY CO., LTD

NO.1/F,BUILDING B1, JUNFENG INDUSTRIAL PARK, CHONGQING ROAD, HEPING COMMUNITY, FUHAIHAI STREET, BAO'AN DISTRICT,SHENZHEN, GUANGDONG 518055, P.R.CHINA

MVG COMOSAR REFERENCE DIPOLE

FREQUENCY: 2450MHZ SERIAL NO.: SN 03/15 DIP2G450-352

Calibrated at MVG Z.I. de la pointe du diable Technopôle Brest Iroise – 295 avenue Alexis de Rochon 29280 PLOUZANE - FRANCE

Calibration date: 02/21/2024

Accreditations #2-6789 and #2-6814 Scope available on www.cofrac.fr

The use of the Cofrac brand and the accreditation references is prohibited from any reproduction

Summary:

This document presents the method and results from an accredited SAR reference dipole calibration performed in MVG using the COMOSAR test bench. All calibration results are traceable to national metrology institutions.