

Page 1 of 24 FCC ID: 2BNVU-Z7171 Report No.: LCSA02135153EA

FCC TEST REPORT

For HUIYUE INNOVATIONS LIMITED

Portable Wireless Charger

Test Model: Z7171

Additional Model No.: Please Refer to Page 6

Prepared for : HUIYUE INNOVATIONS LIMITED

Address : ROOMS 1318-19, 13/F, HOLLYWOOD PLAZA, 610 NATHAN

ROAD, MONGKOK, KOWLOON, HONG KONG, 999077

Prepared by : Shenzhen LCS Compliance Testing Laboratory Ltd.

Address : 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Shajing Street,

Baoan District, Shenzhen, China

Tel : (+86)755-82591330 Fax : (+86)755-82591332 Web : www.LCS-cert.com

Mail : webmaster@LCS-cert.com

Date of receipt of test sample : February 14, 2025

Number of tested samples : 2

Sample No. : A250213074-1, A250213074-2

Serial number : Prototype

Date of Test : February 14, 2025 ~ February 21, 2025

Date of Report : February 24, 2025

Page 2 of 24

FCC ID: 2BNVU-Z7171

FCC TEST REPORT FCC CFR 47 PART 15C

Report Reference No.: LCSA02135153EA

Date Of Issue.....: February 24, 2025

Testing Laboratory Name.....: Shenzhen LCS Compliance Testing Laboratory Ltd.

101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Shajing Street,

Baoan District, Shenzhen, China

Full application of Harmonised standards

Testing Location/ Procedure...... Partial application of Harmonised standards

Other standard testing method

Applicant's Name.....: HUIYUE INNOVATIONS LIMITED

Address . ROOMS 1318-19, 13/F, HOLLYWOOD PLAZA, 610 NATHAN

ROAD, MONGKOK, KOWLOON, HONG KONG, 999077

Test Specification

Standard.....: FCC CFR 47 PART 15C

Test Report Form No.....: TRF-4-E-168 A/0

TRF Originator.....: Shenzhen LCS Compliance Testing Laboratory Ltd.

Master TRF.....: Dated 2011-03

Shenzhen LCS Compliance Testing Laboratory Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen LCS Compliance Testing Laboratory Ltd. is acknowledged as copyright owner and source of the material. Shenzhen LCS Compliance Testing Laboratory Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test Item Description.....: Portable Wireless Charger

Trade Mark....: N/A
Test Model...:: Z7171

Ratings Battery Capacity, 2000mAh(3.7V/7.4Wh)

USB-C Input: DC 5V=1A
Wireless Output: 3W

Result: Positive

Compiled by:

Supervised by:

Approved by:

Report No.: LCSA02135153EA

Ling Zhu/ Administrator

Jack Liu / Technique principal

Gavin Liang/ Manager

FCC TEST REPORT

Test Report No. : LCSA02135153EA February 24, 2025

Date of issue

Test Model..... : Z7171 EUT..... : Portable Wireless Charger : HUIYUE INNOVATIONS LIMITED Applicant..... Address..... : ROOMS 1318-19, 13/F, HOLLYWOOD PLAZA, 610 NATHAN ROAD, MONGKOK, KOWLOON, HONG KONG, 999077 Telephone..... : / Fax..... Manufacturer..... : HUIYUE INNOVATIONS LIMITED Address..... : ROOMS 1318-19, 13/F, HOLLYWOOD PLAZA, 610 NATHAN ROAD, MONGKOK, KOWLOON, HONG KONG, 999077 Telephone..... Fax.....:: : / Factory.....: : HUIYUE INNOVATIONS LIMITED Address..... : ROOMS 1318-19, 13/F, HOLLYWOOD PLAZA, 610 NATHAN ROAD, MONGKOK, KOWLOON, HONG KONG, 999077 Telephone.....: : / Fax.....: : /

Test Result	Al tra	Positive
	10 The State of th	

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

医工工讯检测度份 LOS Testing Lab

Revision History

Report Version	Issue Date	Revision Content	Revised By
000	February 24, 2025	Initial Issue	

Report No.: LCSA02135153EA

TABLE OF CONTENTS

1. GENERAL INFORMATION	6
	6
1.2 Support equipment List	6
	6
1.4 Description of Test Facility	6
1.5 Statement of the Measurement Uncertainty.	7
	7
•	7
2. TEST METHODOLOGY	8
	8
	8
	8
	8
	8
•	8
3. SYSTEM TEST CONFIGURATION	
	9
	9
	9
•	9
	9 9
4. SUMMARY OF TEST EQUIPMENT	
5. SUMMARY OF TEST RESULT	
6. POWER LINE CONDUCTED MEASUREME	ENT12
7. RADIATED EMISSION MEASUREMENT	
7.1. Block Diagram of Test Setup	
7.2. Radiated Emission Limit	
<u> </u>	
	17
8. 20 DB BANDWIDTH MEASUREMENT	
8.1. Block Diagram of Test Setup	22
9. PHOTOGRAPHS OF TEST SETUP	
10. EXTERNAL PHOTOGRAPHS OF THE EU	
11. INTERNAL PHOTOGRAPHS OF THE EU	Γ24

Shenzhen LCS Compliance Testing Laboratory Ltd.
Add: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen,

Page 6 of 24 FCC ID: 2BNVU-Z7171 Report No.: LCSA02135153EA

1. GENERAL INFORMATION

1.1 Description of Device (EUT)

EUT : Portable Wireless Charger

Test Model : Z7171

Additional Model No. : Z7180, Z7181, Z7371, Z7380, Z7381

Model Declaration : PCB board, structure and internal of these model(s) are the same, So

no additional models were tested

Ratings : Battery Capacity, 2000mAh(3.7V/7.4Wh)

USB-C Input: 5V=1A
Wireless Output: 3W

Hardware Version : /

Software Version : /

Wireless Charging

Operating Frequency : 320.0~330.0KHz

Modulation Type : ASK

Antenna Type : Coil Antenna

1.2 Support equipment List

i i	Manufacturer	Description	Model	Serial Number	Certificate
	Apple	Apple Watch	S9		FCC
	SHENZHEN TIANYIN ELECTRONICS CO., LTD	Power Adapter	TPA-46050200UU		FCC

Note: Auxiliary equipment is provided by the laboratory.

1.3 External I/O Cable

I/O Port Description	Quantity	Cable
Type-C Port	1	N/A

1.4 Description of Test Facility

NVLAP Accreditation Code is 600167-0.

FCC Designation Number is CN5024

CAB identifier is CN0071.

CNAS Registration Number is L4595.

Test Firm Registration Number: 254912.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.4:2014 and CISPR 16-1-4:2010 SVSWR requirement for radiated emission above 1GHz.

1.5 Statement of the Measurement Uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. To CISPR 16 – 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the LCS quality system acc. To DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

1.6 Measurement Uncertainty

Test Item Frequency Range		Frequency Range	Uncertainty	Note
		9KHz~30MHz	3.10dB	(1)
		30MHz~200MHz	2.96dB	(1)
Radiation Uncertainty	:	200MHz~1000MHz	3.10dB	(1)
,		1GHz~26.5GHz	3.80dB	(1)
		26.5GHz~40GHz	3.90dB	(1)
Conduction Uncertainty	:	150kHz~30MHz	1.63dB	(1)
Power disturbance	:	30MHz~300MHz	1.60dB	(1)

(1). This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

1.7 Description of Test Modes

Equipment under test was operated during the measurement under the following conditions:

□ Charging and communication mode

Modulation Type: CW (ASK)

Test Modes					
Mode 1	AC/DC Adapter(5V/1A)+EUT+Watch (Battery Status: <1%)	Record			
Mode 2	AC/DC Adapter(5V/1A)+EUT+Watch (Battery Status: <50%)	Pre-tested			
Mode 3	AC/DC Adapter(5V/1A)+EUT+Watch (Battery Status: 100%)	Pre-tested			

Note: All test modes were pre-tested for ac and dc mode, but we only recorded the worst case in this report for ac mode.

For AC conducted emission, pre-test at both AC 120V/60Hz and AC 240V/50Hz, recorded worst case;

For AC conducted emission, pre-test at both AC charge from power adapter modes, recorded worst case.

Shenzhen LCS Compliance Testing Laboratory Ltd.

Add: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000. China

Page 8 of 24 FCC ID: 2BNVU-Z7171 Report No.: LCSA02135153EA

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.10-2013, FCC CFR PART 15C 15.207.

2.1 EUT Configuration

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

2.2 EUT Exercise

The EUT was operated in the normal operating mode and a continuous transmits mode for other tests.

According to its specifications, the EUT must comply with the requirements of the Section 15.207 under the FCC Rules Part 15 Subpart C.

2.3 General Test Procedures

2.3.1 Conducted Emissions

The EUT is placed on the turntable, which is 0.8 m above ground plane. According to the requirements in Section 6.2.1 of ANSI C63.10-2013 Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using Quasi-peak and average detector modes.

2.3.2 Radiated Emissions

The EUT is placed on a turn table, which is 0.8 m above ground plane below 1GHz and 1.5 m above ground plane above 1GHz. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3m away from the receiving antenna, which varied from 1m to 4m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the maximum emissions, exploratory radiated emission measurements were made according to the requirements in Section 6.3 of ANSI C63.10-2013

2.4. Test Sample

The application provides 2 samples to meet requirement;

Sample Number	Description
Sample 1(A250213074-1)	Engineer sample – continuous transmit
Sample 2(A250213074-2)	Normal sample – Intermittent transmit

Shenzhen LCS Compliance Testing Laboratory Ltd.

Add: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen,

5 18000, China

Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com Scan code to check authenticity

Page 9 of 24

FCC ID: 2BNVU-Z7171

Report No.: LCSA02135153EA

3. SYSTEM TEST CONFIGURATION

3.1 Justification

The system was configured for testing in a normal condition.

3.2 EUT Exercise Software

N/A.

3.3 Special Accessories

3.3	Special Acces	ssories					
No.	Equipment	Manufacturer	Model No.	Serial No.	Length	shielded/ unshielded	Notes
1	1	1	1	1	1	/	/

3.4 Block Diagram/Schematics

Please refer to the related document.

3.5 Equipment Modifications

Shenzhen LCS Compliance Testing Laboratory Ltd. has not done any modification on the EUT.

3.6 Test Setup

Please refer to the test setup photo.

4. SUMMARY OF TEST EQUIPMENT

4. SI	UMMARY OF TE	ST EQUIPN	IENT			
Item	Equipment	Manufacturer	Model No.	Serial No.	Cal Date	Due Date
1	MXA Signal Analyzer	Agilent	N9020A	MY49100040	2024-06-06	2025-06-05
2	RS SPECTRUM ANALYZER	R&S	FSP40	100503	2024-06-06	2025-06-05
3	3m Semi Anechoic Chamber	SIDT FRANKONIA	SAC-3M	03CH03-HY	2024-06-06	2025-06-05
4	Positioning Controller	Max-Full	MF7802BS	MF780208586	N/A	N/A
5	EMI Test Software	AUDIX	E3	/	N/A	N/A
6	EMI Test Receiver	R&S	ESR 7	101181	2024-06-06	2025-06-05
7	Active Loop Antenna	SCHWARZBECK	FMZB 1519B	00005	2024-07-13	2027-07-12
8	By-log Antenna	SCHWARZBECK	VULB9163	9163-470	2024-08-03	2027-08-02
9	EMI Test Receiver	R&S	ESPI	101940	2024-06-06	2025-06-05
10	Artificial Mains	R&S	ENV216	101288	2024-06-06	2025-06-05
11	10dB Attenuator	SCHWARZBECK	MTS-IMP-136	261115-001-0032	2024-06-06	2025-06-05
12	EMI Test Software	Farad	EZ	1	N/A	N/A
13	Antenna Mast	Max-Full	MFA-515BSN	1308572	N/A	N/A
14	Pulse Limiter	R&S	ESH3-Z2	102750-NB	2024-06-06	2025-06-05
15	Low-frequency amplifier	SchwarzZBECK	BBV9745	00253	2024-10-08	2025-10-07

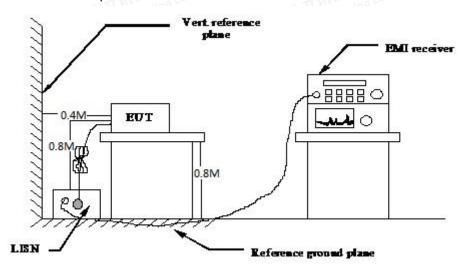
Page 11 of 24 FCC ID: 2BNVU-Z7171 Report No.: LCSA02135153EA

5. SUMMARY OF TEST RESULT

五粒测度份 A 1 a b	- 混检测度份		
FCC Rules	Description of Test	Test Sample	Result
§15.207(a)	AC Conducted Emissions	Sample 1	Compliant
§15.209	Radiated Spurious Emissions	Sample 1	Compliant
§15.215	20 dB Bandwidth	Sample 1	Compliant

Remark: The measurement uncertainty is not included in the test result.

N/A - Not Applicable!!!



6. POWER LINE CONDUCTED MEASUREMENT

6.1. Block Diagram of Test Setup

6.2. Standard Applicable

According to §15.207: For all the consumer devices which is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed 250 microvolts (The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz). The limits at specific frequency range are listed as follows:

Special St.	Frequency Range	Limits (dBμV)			
V.	(MHz)	Quasi-peak	Average		
	0.15 to 0.50	66 to 56	56 to 46		
	0.50 to 5	56	46		
	5 to 30	60	50		

^{*} Decreasing linearly with the logarithm of the frequency

6.3 Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor (if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS (dBuV/m) = RA (dBuV) + AF (dB/m) + CL (dB) - AG (dB)

Where FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)
RA = Reading Amplitude	AG = Amplifier Gain
AF = Antenna Factor	

6.4 Test Results

PASS

The test data please refer to following page.

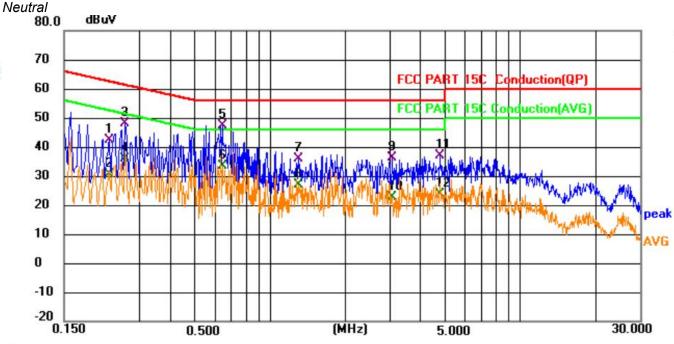
Temperature	22.5℃	Humidity	53.7%
Test Engineer	Paddi Chen	Configurations	Mode 1

Report No.: LCSA02135153EA

AC Power Line Conducted Emission (Power input to adapter @ AC 120V/60Hz (Worst Case))

Line

No. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin			
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment	
1	0.240	26.92	19.71	46.63	62.10	-15.47	QP		
2	0.240	16.05	19.71	35.76	52.10	-16.34	AVG		
3	0.335	25.11	19.88	44.99	59.33	-14.34	QP		
4	0.335	10.71	19.88	30.59	49.33	-18.74	AVG		
5 *	0.555	29.50	19.67	49.17	56.00	-6.83	QP		
6	0.555	15.66	19.67	35.33	46.00	-10.67	AVG		
7	0.978	24.41	19.13	43.54	56.00	-12.46	QP		
8	0.978	19.00	19.13	38.13	46.00	-7.87	AVG		
9	1.315	23.15	19.08	42.23	56.00	-13.77	QP		
10	1.315	16.49	19.08	35.57	46.00	-10.43	AVG		
11	1.766	23.00	18.99	41.99	56.00	-14.01	QP		
12	1.766	19.19	18.99	38.18	46.00	-7.82	AVG		


Shenzhen LCS Compliance Testing Laboratory Ltd.
Add: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen,

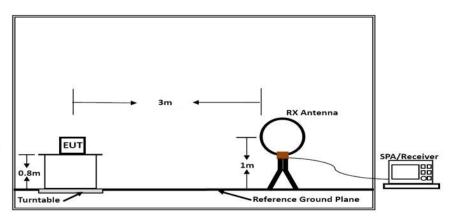
Page 14 of 24

FCC ID: 2BNVU-Z7171

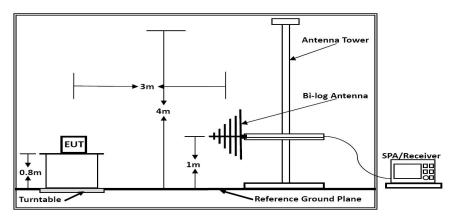
Report No.: LCSA02135153EA

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.227	22.56	19.78	42.34	62.56	-20.22	QP	
2		0.227	10.74	19.78	30.52	52.56	-22.04	AVG	
3		0.263	28.34	19.78	48.12	61.34	-13.22	QP	
4		0.263	16.07	19.78	35.85	51.34	-15.49	AVG	
5	*	0.645	28.01	19.48	47.49	56.00	-8.51	QP	
6		0.645	13.99	19.48	33.47	46.00	-12.53	AVG	
7		1.302	16.96	18.90	35.86	56.00	-20.14	QP	
8		1.302	8.08	18.90	26.98	46.00	-19.02	AVG	
9		3.075	17.39	18.99	36.38	56.00	-19.62	QP	
10		3.075	3.80	18.99	22.79	46.00	-23.21	AVG	
11		4.763	18.27	18.86	37.13	56.00	-18.87	QP	
12		4.763	4.87	18.86	23.73	46.00	-22.27	AVG	

^{***}Note: Pre-scan all modes and recorded the worst case results in this report. Margin=Reading level + Correct - Limit; Correct Factor=Lisn Factor+Cable Factor+Insertion loss of Pulse Limitter



FCC ID: 2BNVU-Z7171


Report No.: LCSA02135153EA

7. RADIATED EMISSION MEASUREMENT

7.1. Block Diagram of Test Setup

Below 30MHz

Below 1GHz

FCC ID: 2BNVU-Z7171

Report No.: LCSA02135153EA

7.2. Radiated Emission Limit

15.205 (a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
\1\ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293.	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(\2\)
13.36-13.41			

\1\ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

\2\ Above 38.6

According to §15.247 (d): 20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequencies	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3, 705 (118
Above 960	500	3

7.3. EUT Configuration on Measurement

The following equipment are installed on Radiated Emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

Shenzhen LCS Compliance Testing Laboratory Ltd.

Add: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China

Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com Scan code to check authenticity

Page 17 of 24 FCC ID: 2BNVU-Z7171 Report No.: LCSA02135153EA

7.4. Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor (if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS (dBuV/m) = RA (dBuV) + AF (dB/m) + CL (dB) - AG (dB)

Where FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)
RA = Reading Amplitude	AG = Amplifier Gain
AF = Antenna Factor	

7.5. Operating Condition of EUT

(1) Setup the EUT as shown in Section 7.1.

7.6. Measuring Setting

The following table is the setting of spectrum analyzer and receiver.

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP/Average
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP/Average
Start ~ Stop Frequency	30MHz~1000MHz / RB 100kHz for QP

7.7. Test Procedure

1) Sequence of testing 9 kHz to 30 MHz

Setup:

- --- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.
- --- If the EUT is a tabletop system, a rotatable table with 0.8 m height is used.
- --- If the EUT is a floor standing device, it is placed on the ground.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions.
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 3 meter.
- --- The EUT was set into operation.

Premeasurement:

- --- The turntable rotates from 0° to 315° using 45° steps.
- --- The antenna height is 1.0 meter.
- --- At each turntable position the analyzer sweeps with peak detection to find the maximum of all emissions

Final measurement:

Page 18 of 24 FCC ID: 2BNVU-Z7171 Report No.: LCSA02135153EA

- --- Identified emissions during the premeasurement the software maximizes by rotating the turntable position (0° to 360°) and by rotating the elevation axes (0° to 360°).
- --- The final measurement will be done in the position (turntable and elevation) causing the highest emissions with QPK detector.
- --- The final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement and the limit will be stored.

2) Sequence of testing 30 MHz to 1 GHz

Setup:

- --- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.
- --- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- --- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 3 meter.
- --- The EUT was set into operation.

Premeasurement:

- --- The turntable rotates from 0° to 315° using 45° steps.
- --- The antenna is polarized vertical and horizontal.
- --- The antenna height changes from 1 to 3 meter.
- --- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

Final measurement:

- --- The final measurement will be performed with minimum the six highest peaks.
- --- According to the maximum antenna and turntable positions of premeasurement the software maximize the peaks by changing turntable position (± 45°) and antenna movement between 1 and 4 meter.
- --- The final measurement will be done with QP detector with an EMI receiver.
- --- The final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement with marked maximum final measurements and the limit will be stored.

7.8. Test Results

PASS.

Both AC and DC modes were tested, only AC mode was recorded Only report the worst test data (Mode 1) in test report;

The test data please refer to following page:

Shenzhen LCS Compliance Testing Laboratory Ltd.

518000, Chin

NA NA NA			
Temperature	23.6℃	Humidity	52.2%
Test Engineer	Paddi Chen	Configurations	Transmit

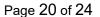
0.009 MHz - 30 MHz

			$\overline{}$			
1						
					FCC PART 15.209	
				4	Margin -6 dB	=
				7		
		1				
	with an A	- marriage Marrie	3	3		
frank marin frank	The state of the s	Mary Mary Mary Mary Mary	Z X	Mary mary or or or or or	- A STATE OF THE S	w.X.
						\dashv
						=

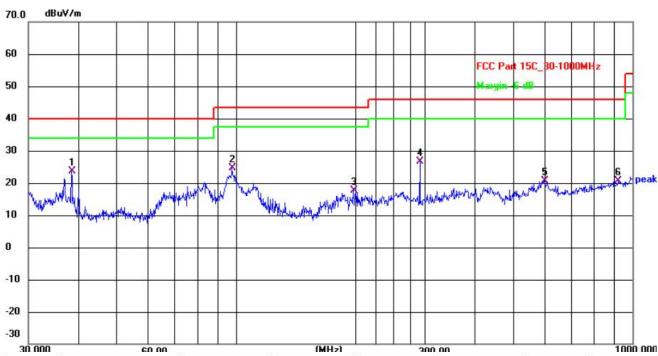
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	0.3300	54.43	-10.33	44.10	97.21	-53.11	peak
2	0.5500	43.69	-10.28	33.41	72.80	-39.39	peak
3	1.3753	41.82	-10.03	31.79	64.84	-33.05	peak
4	2.9008	37.71	-9.97	27.74	69.54	-41.80	peak
5	8.5324	36.75	-9.74	27.01	69.54	-42.53	peak
6	25.9244	38.19	-9.08	29.11	69.54	-40.43	peak

Remark: 1). Measured at antenna position 0 degree and 90 degree, recorded worst case at 0 degree.

2). Margin=Reading level + Factor- Limit



Shenzhen LCS Compliance Testing Laboratory Ltd.
Add: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen,



Temperature	23.8°C	Humidity	52.1%
Test Engineer	Paddi Chen	Configurations	Transmit 5 05

Below 1GHz

Horizontal

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	38.4809	40.72	-17.13	23.59	40.00	-16.41	QP
2	97.7983	42.46	-17.94	24.52	43.50	-18.98	QP
3	197.8928	36.48	-18.75	17.73	43.50	-25.77	QP
4	291.0358	42.63	-15.89	26.74	46.00	-19.26	QP
5	599.3212	30.46	-9.95	20.51	46.00	-25.49	QP
6	919.2865	28.16	-7.50	20.66	46.00	-25.34	QP



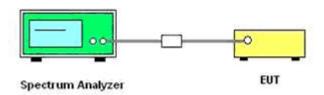
Shenzhen LCS Compliance Testing Laboratory Ltd.
Add: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen,

Vertical

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	38.4809	46.90	-17.62	29.28	40.00	-10.72	QP
2	38.4809	46.90	-17.62	29.28	40.00	-10.72	QP
3	82.3588	43.21	-19.64	23.57	40.00	-16.43	QP
4	194.4534	57.23	-17.91	39.32	43.50	-4.18	QP
5	316.5890	40.19	-14.66	25.53	46.00	-20.47	QP
6	595.1329	48.19	-10.52	37.67	46.00	-8.33	QP

- 1). Emission level (dBuV/m) = 20 log Emission level (uV/m).
- 2). Margin=Reading level + Factor- Limit.

 Correct Factor=Antenna Factor+Cable Factor- Pre-amplifier Factor



8. 20 DB BANDWIDTH MEASUREMENT

8.1. Block Diagram of Test Setup

8.2. Test Procedure

Use the following spectrum analyzer settings:

Span = 5KHz

RBW = 30Hz

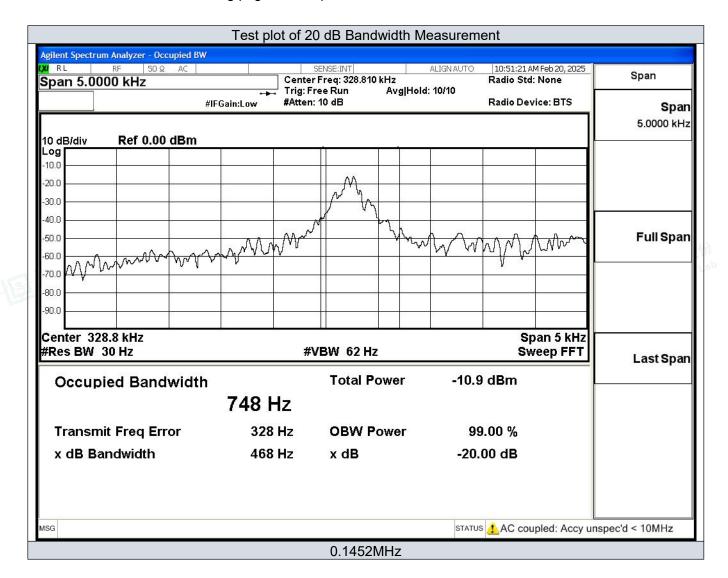
VBW = 62Hz

Sweep = auto

Detector function = peak

Trace = max hold

The EUT should be transmitting at its maximum data rate. Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission. Use the marker-delta function to measure 20 dB down one side of the emission. Reset the marker-delta function, and move the marker to the other side of the emission, until it is (as close as possible to) even with the reference marker level. The marker-delta reading at this point is the 20 dB bandwidth of the emission. If this value varies with different modes of operation (e.g., data rate, modulation format, etc.), repeat this test for each variation. The limit is specified in one of the subparagraphs of this Section. Submit this plot(s).


Page 23 of 24 FCC ID: 2BNVU-Z7171 Report No.: LCSA02135153EA

8.3. Test Results

Test Result Of 20dB Bandwidth Measurement							
Test Mode	Test Frequency	20dB Bandwidth	Limit				
rest Mode	(MHz)	(kHz)	(kHz)				
TM1	0.3288	0.468	Non-Specified				

Result: Pass

Please refer to the following page for test plot.

9. PHOTOGRAPHS OF TEST SETUP

Please refer to separated files for Test Setup Photos of the EUT.

10. EXTERNAL PHOTOGRAPHS OF THE EUT

Please refer to separated files for External Photos of the EUT.

11. INTERNAL PHOTOGRAPHS OF THE EUT

Please refer to separated files for Internal Photos of the EUT.

