

RF Test Report

For

Globe Electric Company Inc.

	Part 15C Subpart C §15.247		
Test Standards:	ds: RSS 247 Issue 2		
Product Name:	Wi-Fi Smart Outdoor Power Adapter		
Tested Model:	<u>50333</u>		
Brand Name:	Globe		
FCC ID:	2AQUQGE50333		
IC:	8290A-GE50333		
Classification	(DTS) Digital Transmission System		
Report No.:	EC2109022RF01		
Tested Date:	2021-09-16 to 2021-10-14		
Issued Date:	<u>2021-10-14</u>		
Prepared By:	Jack Lin.		
	Jack Liu / Engineer		
Approved By:	Tiny-yang		
	Tiny Yang / RF Manager		
Hunan Ecloud	Hunan Ecloud Testing Technology Co., Ltd.		
Building A1, Changsha E Center,	No. 18 Xiangtai Avenue, Liuyang Economic and		
Technological De	velopment Zone, Hunan, P.R.C		
Tel.: +86-731-896	34887 Fax.: +86-731-89634887		
ww	w.hn-ecloud.com		
te. The test results in this report apply exclusively to the tested model / sample. Without written approval of			

Note: The test results in this report apply exclusively to the tested model / sample. Without written approval of

Hunan Ecloud Testing Technology Co., Ltd., the test report shall not be reproduced except in full.

Report Revise Record

Report Version	Revise Time	Issued Date	Valid Version	Notes
V1.0	/	2021.10.14	Valid	Update the PCB
				board based on
				the original report
				EC2011039RF01,
				replace non-RF
				components for
				verification test

TABLE OF CONTENTS

1	TEST		5
	1.1	Test facility	5
2	GEN	ERAL DESCRIPTION	6
	2.1	Applicant	6
	2.2	Manufacturer	6
	2.3	General Description Of EUT	6
	2.4	Modification of EUT	7
	2.5	Applicable Standards	7
3	TEST	CONFIGURATION OF EQUIPMENT UNDER TEST	8
	3.1	Descriptions of Test Mode	8
	3.2	Test Mode	9
	3.3	Support Equipment	9
	3.4	Test Setup	.10
	3.5	Measurement Results Explanation Example	.13
4	TEST	RESULT	.14
	4.1	Radiated Band Edges and Spurious Emission Measurement	.14
	4.2	AC Conducted Emission Measurement	.26
5	LIST	OF MEASURING EQUIPMENT	.29
6	UNC	ERTAINTY OF EVALUATION	.31
	Арре	endix H: Setup Photographs	.32

Summary Of Test Result

FCC Rule	IC Rule	Description	Limit	Result	Remark
15.247(d)	RSS-247 5.5	Radiated Band Edges and Spurious Emission	15.209(a) & 15.247(d)	Pass	Under limit 10.36 dB at 167.74 MHz
15.207	RSS-GEN 8.8	AC Conducted Emission	15.207(a)	Pass	Under limit 5.63 dB at 0.437 MHz

1 Test Laboratory

1.1 Test facility

CNAS (accreditation number: L11138)

Hunan Ecloud Testing Technology Co., Ltd. has obtained the accreditation of China National Accreditation

Service for Conformity Assessment (CNAS).

FCC (Designation number: CN1244, Test Firm Registration Number: 793308)

Hunan Ecloud Testing Technology Co., Ltd. has been listed on the US Federal Communications Commission

list of test facilities recognized to perform electromagnetic emissions measurements.

ISED(CAB identifier: CN0012, ISED# :24347)

Hunan Ecloud Testing Technology Co., Ltd. has been listed on the Wireless Device Testing Laboratories list of

innovation, Science and Economic Development Canada to test to Canadian radio equipment requirements.

A2LA (Certificate Code : 4895.01)

Hunan Ecloud Testing Technology Co., Ltd. has been listed by American Association for Laboratory

Accreditation to perform electromagnetic emission measurement.

2 General Description

2.1 Applicant

Globe Electric Company Inc.

150 Oneida, Montreal, Quebec, Canada, H9R 1A8

2.2 Manufacturer

Globe Electric Company Inc.

150 Oneida, Montreal, Quebec, Canada, H9R 1A8

2.3 General Description Of EUT

Product	Wi Ei Smor	t Outdoor Bower Adoptor	
	Wi-Fi Smart Outdoor Power Adapter		
Model No.	50333		
Brand Name	Globe		
Additional No.	N/A		
Difference Description	N/A		
FCC ID	2AQUQGE	50333	
IC	8290A-GE5	50333	
Power Supply*	125Vac		
		CCK, DQPSK, DBPSK for DSSS	
	WLAN	64QAM, 16QAM, QPSK, BPSK for OFDM	
Modulation Technology	BLE	GFSK	
	Bluetooth	GFSK, π/4-DQPSK, 8DPSK	
	WLAN	2412MHz~2462MHz	
Operating Frequency	BLE	2402MHz~2480MHz	
	Bluetooth	2402MHz~2480MHz	
	WLAN	11	
Number Of Channel	BLE	40	
	Bluetooth	79	
Antenna Type	PCB Antenna type with -1dBi gain		
HW Version	V0.2		
SW Version	smart_plug 1.0-alpha		
I/O Ports	Refer to user's manual		

Building A1, Changsha E Center, No. 18 Xiangtai Avenue,

1. For a more detailed features description, please refer to the manufacturer's specifications or the user's manual.

- 2. For the test results, the EUT had been tested with all conditions. But only the worst case was shown in test report.
- 3. *: Pre-test AC120V and AC125V, only the worst AC125V test data is recorded in the report

2.4 Modification of EUT

No modifications are made to the EUT during all test items.

2.5 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15 Subpart C §15.247
- ANSI C63.10-2013
- IC RSS-247 Issue 2
- IC RSS-Gen Issue 5
- KDB 558074 D01 15.247 Meas Guidance v05r02

Remark:

1. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B&ICES-003, recorded in a separate test report.

3 Test Configuration of Equipment Under Test

3.1 Descriptions of Test Mode

11 channels are provided for 802.11b, 802.11g and 802.11n(HT20):

CHANNEL	FREQUENCY	CHANNEL	FREQUENCY
1	2412 MHz	7	2442 MHz
2	2417 MHz	8	2447 MHz
3	2422 MHz	9	2452 MHz
4	2427 MHz	10	2457 MHz
5	2432 MHz	11	2462 MHz
6	2437 MHz		

7 channels are provided for 802.11n(HT40):

CHANNEL	FREQUENCY	CHANNEL	FREQUENCY
		7	2442 MHz
		8	2447 MHz
3	2422 MHz	9	2452 MHz
4	2427 MHz		
5	2432 MHz		
6	2437 MHz		

Bluetooth LE:

Channel	Frequency	Mode
Ch00	2402MHz	GFSK
Ch19	2440MHz	GFSK
Ch39	2480MHz	GFSK

Bluetooth BR+EDR:

Mode	Channel	Frequency
	Ch00	2402MHz
GFSK	Ch39	2441MHz
	Ch78	2480MHz
4π-DQPSK	Ch00	2402MHz
	Ch39	2441MHz
	Ch78	2480MHz
8DPSK	Ch00	2402MHz
	Ch39	2441MHz
	Ch78	2480MHz

a. Radiated emission and power line conducted emission were performed with the EUT set to transmit at the channel with highest output power as worst-case scenario.

3.2 Test Mode

3.2.1 Radiated Emission Test (Below 1GHz)

Radiated	802.11 b
Test Cases	Mode 1: CH01

Note : 1. Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, XYZ axis, antenna ports (if EUT with antenna diversity architecture) and packet type. Z orientation was worst-case orientation; therefore, all final radiated testing was performed with the EUT in Z orientation.

2. Following channel(s) was (were) selected for the final test as listed above

3.2.2 Radiated Emission Test (Above 1GHz)

Toot Kom	Modulation	
Test Item	802.11 b	
Radiated	Mode 1: CH01	
Test Cases		

Note : 1. The fundamental of the EUT was investigated in three orthogonal orientations X, Y and Z it was determined that Z orientation was worst-case orientation; therefore, all final radiated testing was performed with the EUT in Z orientation.

2. Following channel(s) was (were) selected for the final test as listed above

3. For frequency above 18GHz, the measured value is much lower than the limit, therefore, it is not reflected in the report.

3.2.3 Power Line Conducted Emission Test:

AC	
Conducted	Mode 1 : WLAN Linking + BT Linking + Switching On + Lighting
Emission	

3.3 Support Equipment

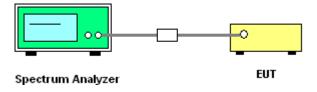
Item	Equipment	Equipment Trade Name		FCC ID	Data Cable	Power Cord
1.	WLAN AP	NETGEAR	R7800	PY315100319	N/A	shielded, 1.8 m
2.	Notebook	Lenovo	E470C	FCC sDoC	N/A	shielded cable DC O/P 1.8 m unshielded AC

Building A1, Changsha E Center, No. 18 Xiangtai Avenue, Liuyang Economic and Technological Development Zone, Hunan, P.R.C FCC ID : 2AQUQGE50333 IC : 8290A-GE50333 www.hn-ecloud.com Tel.:+86-731-89634887 Fax.: +86-731-89634887

Report No.: EC2109022RF01

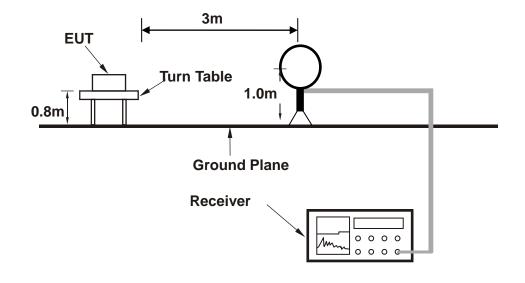
						I/P cable1.2 m
3.	WiFi Smart Bulb	Globe	34202*	2AQUQGB34202	N/A	N/A

3.4 Test Setup

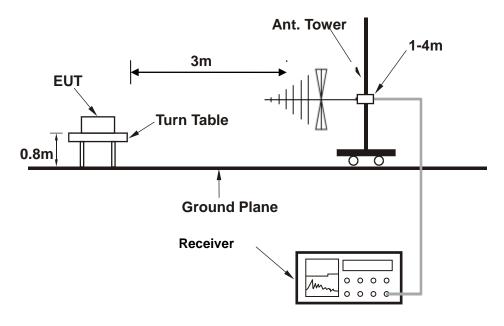

The EUT is continuously communicating to the WIFI tester during the tests.

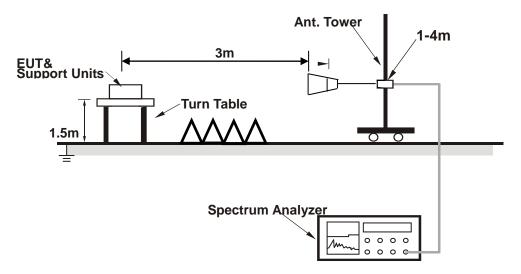
EUT was set in the Hidden menu mode to enable WIFI communications.

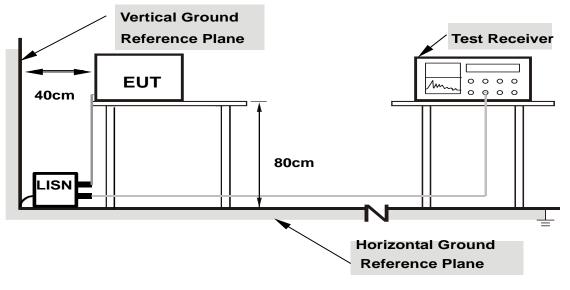
The following picture is a screenshot of the test software


Tools Help						
ChipType ESP8266 🔻	COM	➡ BaudRate	9600	•		
IDIG					RAM	•
IDIE				0%	load	bin
wifi Test BT Test v Test Mode: TX continues v Attenuation(dB) 0 x0.4	WiFi Rate: 11b 1M -	Manual BandWidth: 20M	▼ start	Channel: 1/2412 st	- op	

Setup diagram for Conducted Test




Setup diagram for Raidation(9KHz~30MHz) Test


Setup diagram for Raidation(Below 1G) Test

Setup diagram for Raidation(Above1G) Test

Setup diagram for AC Conducted Emission Test

Note: 1.Support units were connected to second LISN. 2.Both of LISNs (AMN) are 80 cm from EUT and at least 80 from other units and other metal planes

3.5 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example:

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

Following shows an offset computation example with cable loss 5 dB and 10dB attenuator.

Offset(dB) = RF cable loss(dB) + attenuator factor(dB).

= 5 + 10 = 15 (dB)

For all radiated test items:

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level Over Limit (dB μ V/m) = Level(dB μ V/m) - Limit Level (dB μ V/m)

4 Test Result

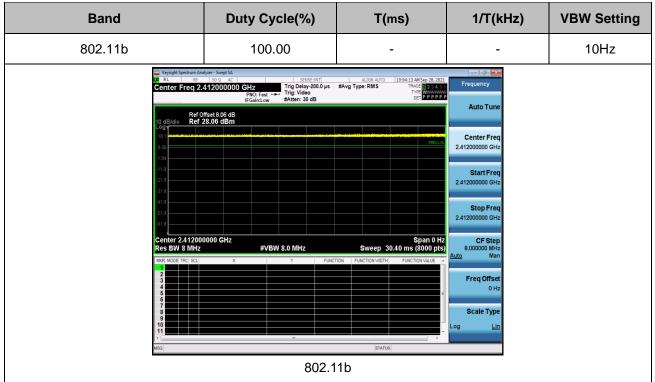
4.1 Radiated Band Edges and Spurious Emission Measurement

4.1.1 Limit of Radiated Band Edges and Spurious Emission

FCC §15.247 (d)

IC RSS-247 5.5

In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics/spurious must be at least 30 dB below the highest emission level within the authorized band. In addition, radiated emissions which fall in the restricted bands must also comply with the FCC section 15.209 limits as below.


Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30 – 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

4.1.2 Test Procedures

- 1. The EUT was placed on a turntable with 0.8 meter for frequency below 1GHz and 1.5 meter for frequency above 1GHz respectively above ground.
- 2. The measurement distance is 3 meter.
- 3. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 4. Set to the maximum power setting and enable the EUT transmit continuously.
- 5. Use the following spectrum analyzer settings:
 - (1) Span shall wide enough to fully capture the emission being measured;
 - Set RBW=100 kHz for f < 1 GHz, RBW=1MHz for f>1GHz; VBW RBW; Sweep = auto;
 Detector function = peak; Trace = max hold for peak
 - (3) For average measurement:

VBW = 10 Hz, when duty cycle is no less than 98 percent.

VBW \geq 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.

6. Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level

4.1.3 Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz)

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported.

e:	802.11b	CH01 (24	12 MHz)		Tempera	ture :	23~25 ℃	
neer :	Jack Liu				Relative	Humidity :	63~65%	
ey Range	2.3GHz-	2.425GH	Z		Polarizat	ion :	Horizontal	
6							-	
.evel (dB	uV/m)							
							- Á	
							RSS-24	7 PEAK
								-6dB
								-+
						2 2	/	فمر
upperspectition and se	makerener	the manuscription	un and the second	with the second stands	an a	we and the second		
2300	2	330	2350	23	270	2390	2410	. 242
	2					2000.	2410	. 242
		ntenna actor	loss		level		Over limit	Remark
z dBu		lB/m	dB	dB	dBuV/m	dBuV/m	dB	
z dBu 	1V d 4.91 2	7.38	4. 08	35.68	40.69	74.00	-33. 31	
z dBu 000 44 250 48 000 46	1V d 4.91 2 3.50 2 5.83 2	7.38 7.55		35.68 35.87 35.88		74.00		Peak Peak Peak Peak Peak
	ey Range	ey Range 2.3GHz~ 6 _evel (dBuV/m)	ey Range 2.3GHz~2.425GH	ey Range 2.3GHz~2.425GHz 6 _evel (dBuV/m)	ey Range 2.3GHz~2.425GHz	ey Range 2.3GHz~2.425GHz Polarizat	ey Range 2.3GHz~2.425GHz Polarization : 6 .evel (dBuV/m) 2.3GHz~2.425GHz evel (dBuV/m) 2.3GHz~2.425GHz 2.3GHz~2.3GHz~2.3GHz 2.3GHz~2.3GHz~2.3GHz 2.3GHz~2.3GHz~2.3GHz 2.3GHz~2.3GHz~2.3GHz 2.3GHz~2.3GHz~2.3GHz 2.3GHz~2.3GHz~2.3GHz~2.3GHz 2.3GHz~2.3GHz~2.3GHz~2.3GHz~2.3GHz 2.3GHz~	ey Range 2.3GHz~2.425GHz Polarization : Horizont 6 .evel (dBuV/m) Date: 20 .evel (dBuV/m) Polarization :

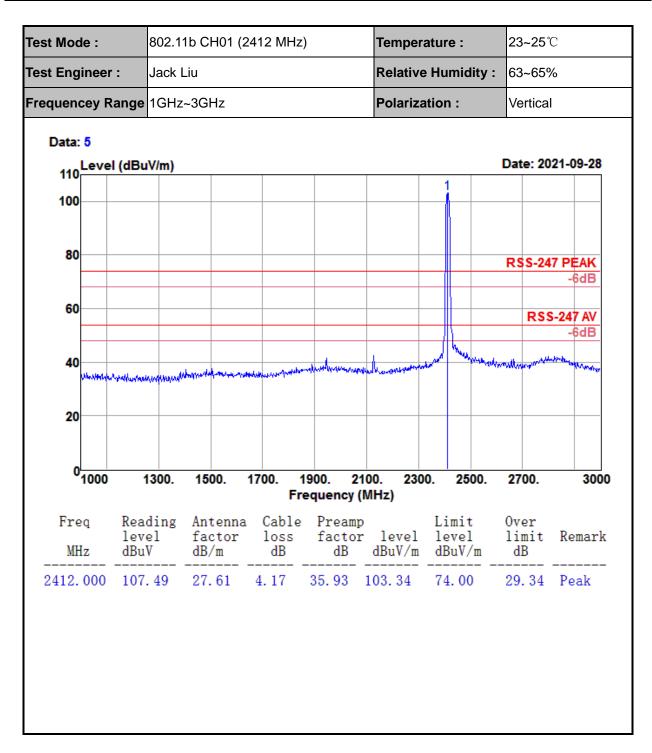
4.1.4 Test Result of Radiated Spurious at Band Edges

802.	11b CH01 (2412 MH	z)	Tempe	ature :	23~25 ℃			
: Jack	c Liu			Relativ	e Humidity	: 63~65	%		
ange 2.30	GHz~2.425G	iHz		Polariz	ation :	Horizo	Horizontal		
(dBuV/m)						Date: 20	21-09-28		
							\rightarrow		
						RSS	-247 AV -6dB		
					2 [
1									
	2330.				2390.	2410	. 2425		
				level		Over limit dB	Remark		
31. 37 33. 80 96. 95	27.56	4.16	35.88	29.64	54.00	-24.36	Average Average Average		
	:: Jack kange 2.30 (dBuV/m)	: Jack Liu kange 2.3GHz~2.425G (dBuV/m)	: Jack Liu ange 2.3GHz~2.425GHz (dBuV/m)	Range 2.3GHz~2.425GHz (dBuV/m)	:: Jack Liu Relative kange 2.3GHz~2.425GHz Polarizity (dBuV/m)	Image Jack Liu Relative Humidity Range 2.3GHz~2.425GHz Polarization : (dBuV/m) Image Image Image (dBuV/m) Image Image Image Image (dBuV/m) Image Image Image Image Image (dBuV/m) Image Image Image Image Image Image (dBuV/m) Image Image Image Image Image Image Image (dBuV/m) Image Image Image Image Image Image Image 2330. 2350. 2370. 2390. Image Image Image 2330. 2350. 2370. 2390. Image Image Image Reading Antenna Cable Preamp Image Image Reading Antenna Cable Preamp Image Image 31. 37 27. 38 4. 08 35. 68 27. 15 54. 00 33. 80 27. 56 4. 16 35. 88 29. 64	Jack Liu Relative Humidity: 63-65 tange 2.3GHz-2.425GHz Polarization : Horizo (dBuV/m) Date: 20 20 21 (dBuV/m) Date: 20 31.37 27.38 4.08 35.68 27.15 54.00 -26.85 31.37 27.38 4.08 35.68 27.15 54.00 -26.85		

Test Mode :		802.11	b CH01 (2	2412 MH	z)	Tempera	iture :	23~25°C	
Test Enginee	r:	Jack Li	u			Relative	Humidity :	63~65%)
Frequencey R	Range	2.3GHz	z~2.425G	Hz		Polariza	tion :	Vertical	
Data: 3 110	l (dBu	V/m)						Date: 20	21-09-28
		,						4	
100									
80								RSS-24	7 PEAK
									-6dB
60									-t
					1	and the second dealers	2 3		
40	manter	Constanting Phillip	at the second state of the second states of the second states of the second states of the second states of the	approved and the second se	y an and a second second second				
20									
0 2300		:	2330.	2350		370.	2390.	2410	. 2425
Ener	D				requency (I	-	Linia	0	
Freq MHz		el	Antenna factor dB/m 			level	Limit level dBuV/m		Remark
2310.000 2384.250 2390.000 2413.125	49. 47.	. 06 . 61	27.55 27.56	4.15 4.16	35. 68 35. 86 35. 88 35. 93	44. 90 43. 45	74.00 74.00	-30.55	Peak Peak

est Mode :	802.	11b CH01 (2412 MH	<u>z</u>)	Temper	rature :	23~25	5°C
est Engineer	: Jack	c Liu			Relativ	e Humidity	: 63~65	5%
requencey R	ange 2.30	GHz~2.425G	θHz		Polariz	ation :	Vertica	al
Data: 4								
110 Level	(dBuV/m)						Date: 20	21-09-28
100							3	3
							\bigwedge	
80								
60								
							RSS	-6dB
40								
	1					_2		
20								
0 ²³⁰⁰	1	2330.	2350 Fr	. 2 equency (370. MHz)	2390.	2410	. 2425
Freq	Reading	Antenna		Preamp)	Limit	0ver	
MHz	level dBuV	factor dB/m	loss dB	factor dB	∙ level dBuV/m	level dBuV/m	limit dB	Remark
2310.000	29.59			35.68		54.00		Average
2390.000 2412.875	34.12 97.88	27.56 27.61	4.16 4.17	35.88 35.93	29.96 93.73	54.00 54.00	-24.04 39.73	Average Average

4.1.1 Test Result of Radiated Spurious Emission (1GHz ~ 10th Harmonic)


	002.1	1b CH01 (2	412 MHz)		Temper	ature :	23~25 ℃			
st Engineer	: Jack I	_iu			Relative	e Humi	dity :	63~65	%	
equencey R	ange 1GHz	~3GHz			Polariza	ation :	Horizo	Horizontal		
Data: 8										
110	l (dBuV/m)							Date: 2	2021-09-28	
100										
80										
								R\$S-2	247 PEAK -6dB	
60										
								R	-6dB	
40						A	WWW WALL		with man	
40 40 20	Whaten in Anopen White the	n an	gnelije dinanska kolonisk	order-conservation of	and the mail of the second second			vene Man terme	perten and an and a	
Madaination			1700. 1		100. 23		500.	2700.	1921 Percenter 1949	
20	1300.		1700. 1 Fr	1900. 24 equency (Preamp	100. 23 MHz)	DO. 2	500. it		300	

est Mode :	802.1	1b CH01	(2412 MHz	<u>z)</u>	Temper	ature :	23~25	C	
est Engineer	: Jack	Liu			Relative	e Humidity	: 63~65	%	
equencey R	ange 3GHz	z~18GHz			Polariza	Horizo	Horizontal		
Data: 1							Date: 20	21-09-28	
110	(dBuV/m)						Date. 20	21-09-28	
100									
80							RSS-24	7 PFAK	
								-6dB	
60				6			RSS	-247 AV	
	2	4		Ī				-6dB	
40		3		5					
20									
0 <mark></mark>	60	00.	8000. Fr	10000. equency (I	12000. ИНz)	14000.	16000.	18000	
Freq MHz	Reading level dBuV	Antenn factor dB/m			level dBuV/m	Limit level dBuV/m	Over limit dB	Remark	
4824.000 4824.000 7236.000 7236.000 9648.000 9648.000	26.06 40.03 24.32 38.49 25.76 38.40		6.59 6.59 8.71 8.71 11.55 11.55	34.09 34.09 34.41 34.41 34.16 34.16	29.51 43.48 34.09 48.26 41.57 54.21		-24. 49 -30. 52 -19. 91 -25. 74 -12. 43 -19. 79	Average Peak Average Peak Average Peak	

fest Mode :	80)2.11b CH(01 (24	12 MHz	<u>:</u>)		Те	mper	ature	:	23	~25°	С	
fest Engineer	: Ja	ack Liu					Re	elative	e Hun	nidity	: 63	~65%	%	
Frequencey R	ange 30	GHz~18G⊦	lz	F				Polarization :				Vertical		
Data: 2														
110	(dBuV/ı	n)									Date	e: 202	21-09-28	
100														
80											De	C 04		
											RS	5-24	7 PEAK -6dB	
60					6							RSS	-247 AV	
2		4			Ť								-6dB	
40	$-\overline{+}$		3		5									
	1													
20														
0 <mark></mark> 3000		6000.	800)00. Jency (I		00.	14	000.	16	000.	18000	
Freq	Readi	ng Ante	nna		P	reamp	-		Lim		0ve	r		
MHz	level dBuV	fact dB/m		loss dB	f	actor dB		evel N/m		el V/m 	lin dE		Remark	
$\begin{array}{r} 4824.\ 000\\ 4824.\ 000\\ 7236.\ 000\\ 7236.\ 000\\ 9648.\ 000\\ 9648.\ 000\\ \end{array}$	26.0 40.8 24.4 37.7 25.7 37.9	1 35.4 9 35.4 6 38.4	5 7 7 2 1	6.59	34 34 34 34	. 09	44.	26 18 56 57	74.	00 00 00 00	-29. -19. -26. -12.	74 82 44 43		

Note: Emission was scanned up to 26GHz; No emissions were detected above the noise floor which was at least 20dB below the specification limit.

4.1.2 Test Result of Radiated Spurious Emission (30MHz ~ 1GHz)

Test Mode :	1	802.1′	b CH)1 (2	412 N	ИHz)			Те	mpera	atur	e :	24°(C		
Test Enginee	r:	Jack L	iu						Re	lative	Hu	midity :	60%	60%		
Frequencey F	Range	30MH	z~1G⊦	łz					Ро	lariza	tion	ı:	Horizontal			
Data: 10																
110 Level	l (dBuV	//m)											Dat	e: 20	21-09	-28
100											_					
80																
60													RS	S-24	7 PEA -60	
40	Mund		Under	-thut	3	4 /~~~~	5	harmath	A.A	6 Aul	with	ah Martin	Wincher		white	
0 <mark>30 1</mark>	00.	200.	30)0.	40)0.	60		70	0. 80)0.	90	0.	1000
Freq MHz	Read leve dBuV	1	Ante fact dB/m	or		ble ss	Pr fa	ncy (N eamp ctor dB	1	-	1	imit evel BuV/m	Ov lin dl	mit	Rem	ark
40. 670 167. 740 359. 800 408. 300 455. 830 647. 890	45. 50. 46. 47. 45. 40.	03 29 16 99	14.3 13.4 14.2 15.1 16.2 19.2	5 4 7 5	1.0 2.2 3.3 3.5 3.7 4.5	2 4 8 5	32. 32. 32. 32. 32. 32. 32.	57 66 71 76	33 31 33 33	. 06 . 13 . 21 . 20 . 23 . 86	4 4 4 4	0.00 3.50 6.00 6.00 6.00 6.00 6.00	-11 -10 -14 -12 -12 -12 -14	. 37 . 79 . 80 . 77	QP QP QP QP QP QP	

Test Mode :		802.11b CH01 (2412 MHz)				Т	empera	ature :	24 °C	2				
Test Enginee	r:	Jack I	Jack Liu				R	Relative Humidity :		: 60%	60%			
Frequencey R	Range	30MH	z~1GH	z					Ρ	Polarization :		Vert	Vertical	
Data: 9 110	l (dBu	V/m)										Date	: 2021-0	9-28
100														
80														
60												RSS	5-247 PE -6	AK dB
40 20	Mhu	2	Whenterm	N <mark>I N</mark> IYA	3	4 	5	e Limer	; Alla	(million	which Machael		wantheinden	Laurin
⁰ 30 1	00.	200.	30	0.	40		50 eque	0. ncy (_	00. z)	700. 8	00.	900.	1000
Freq MHz	Rea lev dBu	el 🗍	Anter facto dB/m			ble ss B	fa	eamp ctor dB	·]	level BuV/m	Limit level dBuV/m	Over lim: dB	-	mark
40. 670 167. 740 359. 800 408. 300 455. 830 553. 800	50, 46, 46, 45,	56 04 10 76 53 38	14. 39 13. 49 14. 24 15. 17 16. 29 17. 69	5 4 7 5	1. 0 2. 2 3. 3 3. 5 3. 5 3. 7 4. 2	2 4 8 5	32. 32. 32. 32. 32. 32. 32.	66 71 76	33 31 32 32	3. 36 3. 14 1. 02 2. 80 2. 77 9. 47	$\begin{array}{c} 40.\ 00\\ 43.\ 50\\ 46.\ 00\\ 46.\ 00\\ 46.\ 00\\ 46.\ 00\end{array}$	-11. -10. -14. -13. -13. -16.	98 QP 20 QP 23 QP	

4.2 AC Conducted Emission Measurement

4.2.1 Limit of AC Conducted Emission

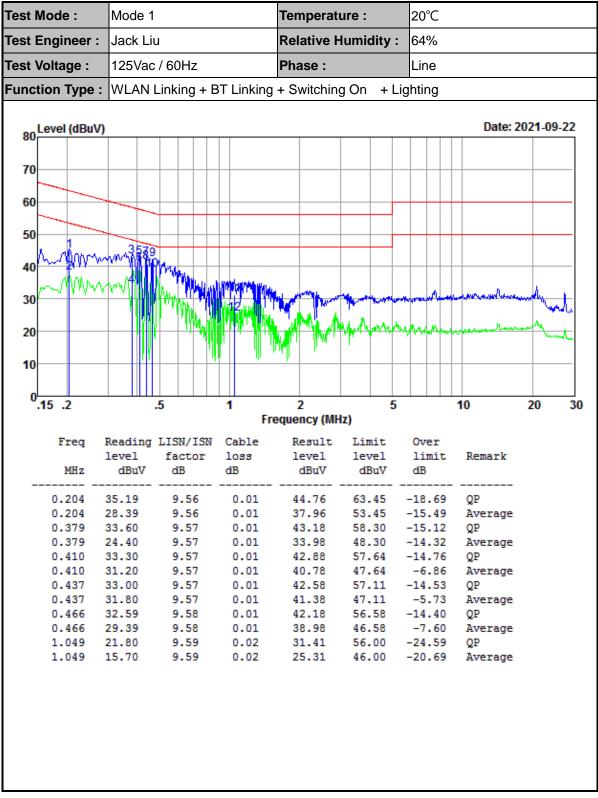
FCC §15.207

IC RSS-GEN 8.8

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

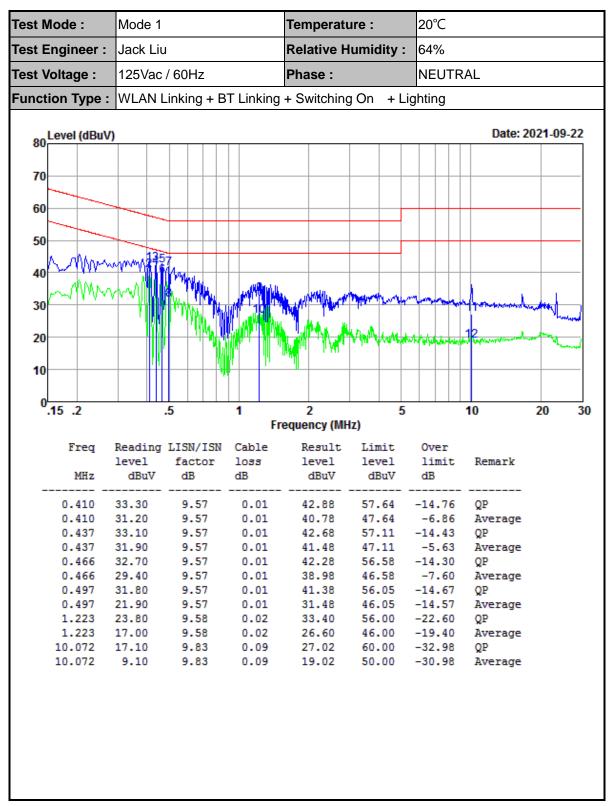
Frequency of omission (MHz)	Conducted limit (dBµV)					
Frequency of emission (MHz)	Quasi-peak	Average				
0.15-0.5	66 to 56*	56 to 46*				
0.5-5	56	46				
5-30	60	50				

*Decreases with the logarithm of the frequency.


4.2.2 Test Procedures

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- 6. Both sides of AC line were checked for maximum conducted interference.
- 7. The frequency range from 150 kHz to 30 MHz was searched.
- Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.

Tel.:+86-731-89634887



4.2.3 Test Result of AC Conducted Emission

Result Level= Reading Level + LISN Factor + Cable Loss

Result Level= Reading Level + LISN Factor + Cable Loss

5 List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Calibration Date	Due Date	Remark
Spectrum Analyzer	Keysight	N9010A	MY56070788	2021-01-05	2022-01-04	Conducted
Power Sensor	Keysight	U2021XA	MY56510025	2021-01-05	2022-01-04	Conducted
Power Sensor	Keysight	U2021XA	MY57030005	2021-01-05	2022-01-04	Conducted
Power Sensor	Keysight	U2021XA	MY56510018	2021-01-05	2022-01-04	Conducted
Power Sensor	Keysight	U2021XA	MY56480002	2021-01-05	2022-01-04	Conducted
Thermal Chamber	Howkin	UHL-34	19111801	2021-04-21	2022-04-20	Conducted
Base Station	R&S	CMW 270	101231	2021-01-05	2022-01-04	Conducted
Signal Generator (Interferer)	Keysight	N5182B	MY56200384	2021-01-05	2022-01-04	Conducted
Signal Generator (Blocker)	Keysight	N5171B	MY56200661	2021-01-05	2022-01-04	Conducted

Instrument	Manufacturer	Model No.	Serial No.	Calibration Date	Due Date	Remark
Spectrum Analyzer	R&S	FSV 40	101433	2021-01-05	2022-01-04	Radiation
Amplifier	Sonoma	310	363917	2021-01-06	2022-01-05	Radiation
Amplifier	Schwarzbeck	BBV 9718	327	2021-01-06	2022-01-05	Radiation
Amplifier	Narda	TTA1840-35-HG	2034380	2020-11-28	2021-11-27	Radiation
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B-051	2020-02-14	2023-02-13	Radiation
Broadband Antenna	Schwarzbeck	VULB 9168	9168-757	2020-09-27	2023-09-26	Radiation
Horn Antenna	Schwarzbeck	BBHA 9120 D	1677	2020-02-14	2023-02-13	Radiation
Horn Antenna	COM-POWER	AH-1840	101117	2021-06-05	2024-06-04	Radiation
Test Software	Audix	E3	6.111221a	N/A	N/A	Radiation
Filter	Micro-Tronics	BRM 50702	G266	N/A	N/A	Radiation

Instrument	Manufacturer	Model No.	Serial No.	Calibration Date	Due Date	Remark
LISN	R&S	ENV216	102125	2021-01-05	2022-01-04	Conducted
LISN	R&S	ENV432	101327	2021-01-06	2022-01-05	Conducted
EMI Test	R&S	ESR3	102143	2021-01-06	2022-01-05	Conducted
Receiver	Rae	EORO	102140	2021 01 00	2022 01 05	Conducted
EMI Test	Audix	Γ2	N/A	N/A	N/A	Conducted
Software	Audix	E3	IN/A	IN/A	IN/A	Conducted

N/A: No Calibration Required

6 Uncertainty of Evaluation

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

MEASUREMENT	FREQUENCY	UNCERTAINTY	
Conducted emissions	9kHz~30MHz	2.42dB	
	30MHz ~ 1GMHz	2.50dB	
Radiated emission	1GHz ~ 18GHz	3.51dB	
	18GHz ~ 40GHz	3.96dB	

MEASUREMENT	UNCERTAINTY
Occupied Channel Bandwidth	±196.4Hz
RF output power, conducted	±2.31dB
Power density, conducted	±2.31dB

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Appendix H: Setup Photographs



Fig. 1 Radiated emission setup photo(Below 30MHz)

Fig. 2 Radiated emission setup photo(30MHz-1GHz)

Fig. 3 Radiated emission setup photo(Above 1GHz)

Fig. 4 Power line conducted emission setup photo

-----End of the report-----

Building A1, Changsha E Center, No. 18 Xiangtai Avenue, Liuyang Economic and Technological Development Zone, Hunan, P.R.C FCC ID : 2AQUQGE50333 IC : 8290A-GE50333 www.hn-ecloud.com Tel.:+86-731-89634887 Fax.: +86-731-89634887