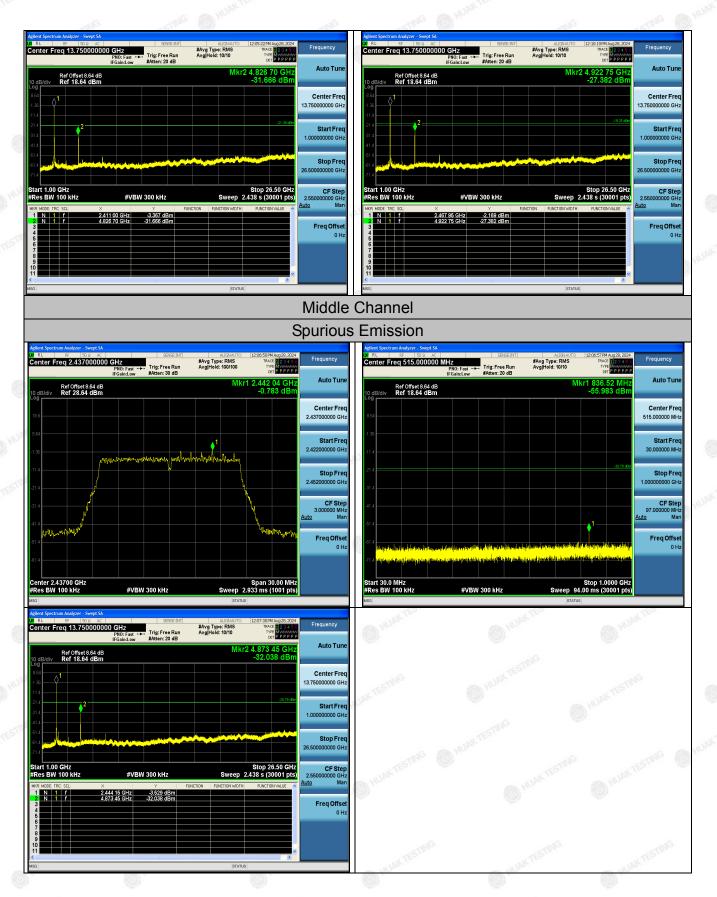


802.11g Modulation


The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

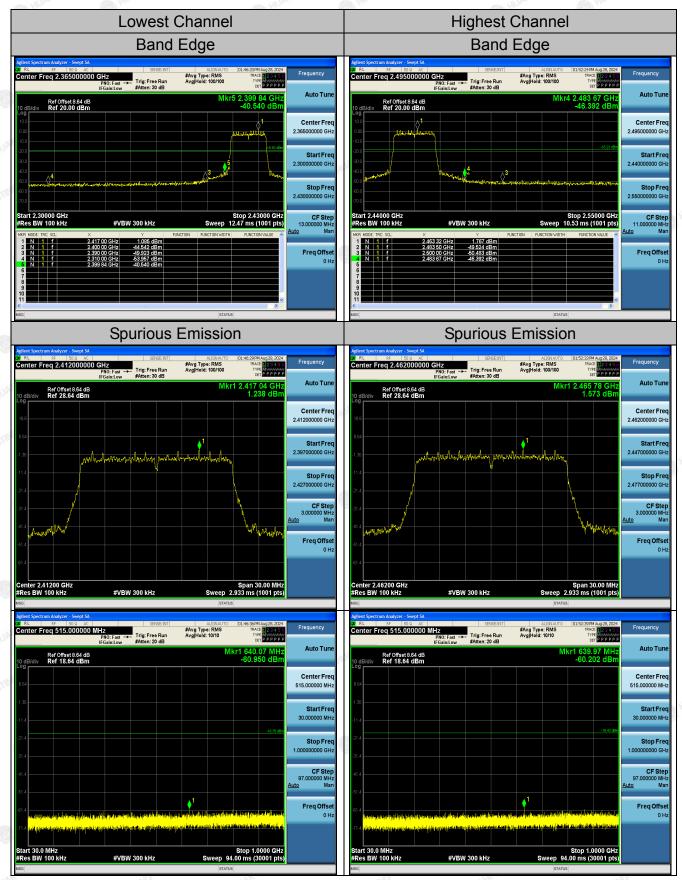
TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

Page 39 of 73

HST FIF

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL:+86-755 2302 9901 FAX:+86-755 2302 9901 E-mail: service@cer-mark.com

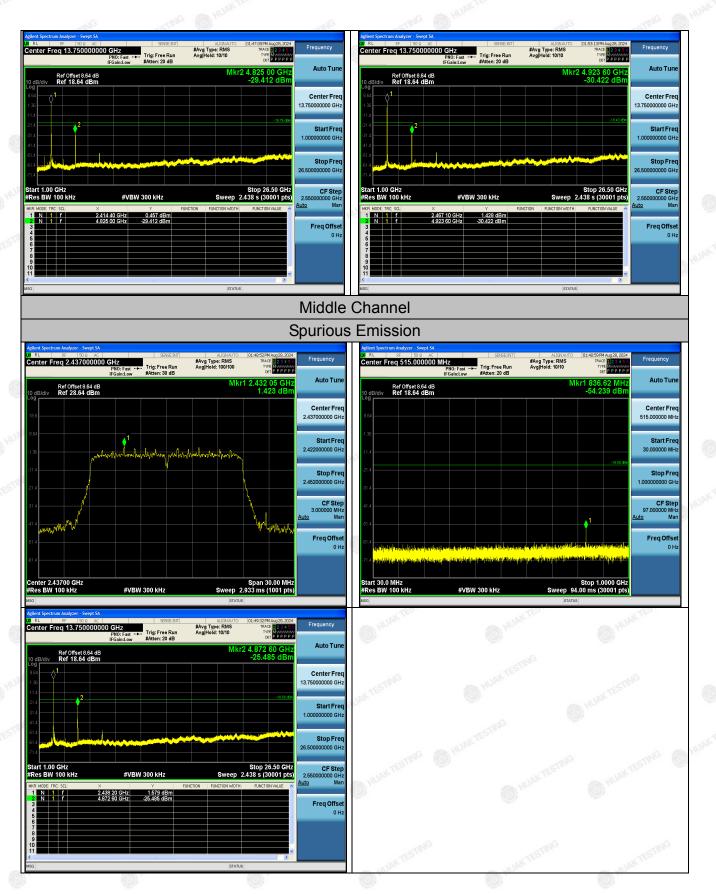

Page 40 of 73

NG

IE.

PR

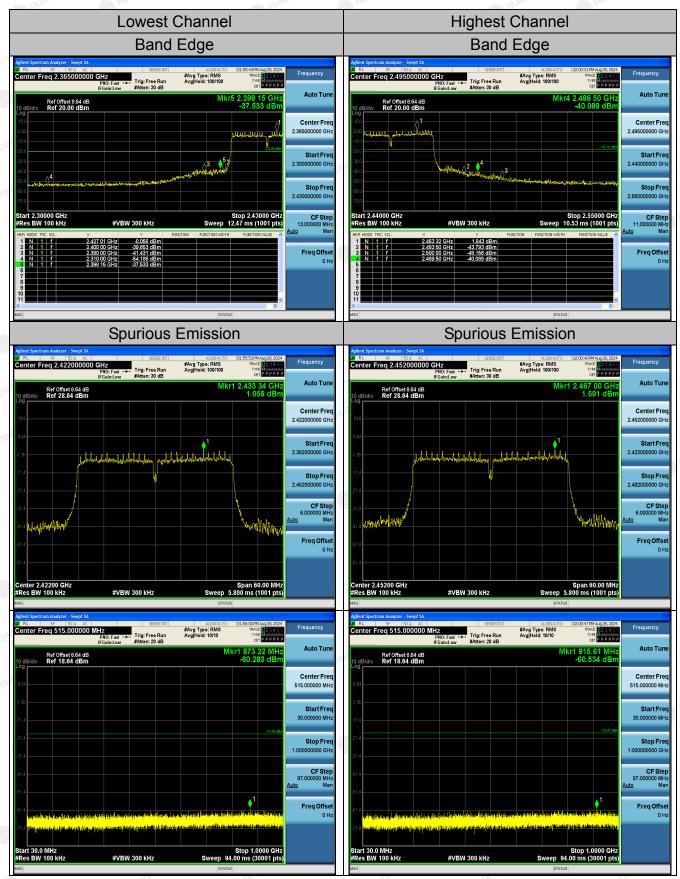
802.11n (HT20) Modulation


The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

Page 41 of 73

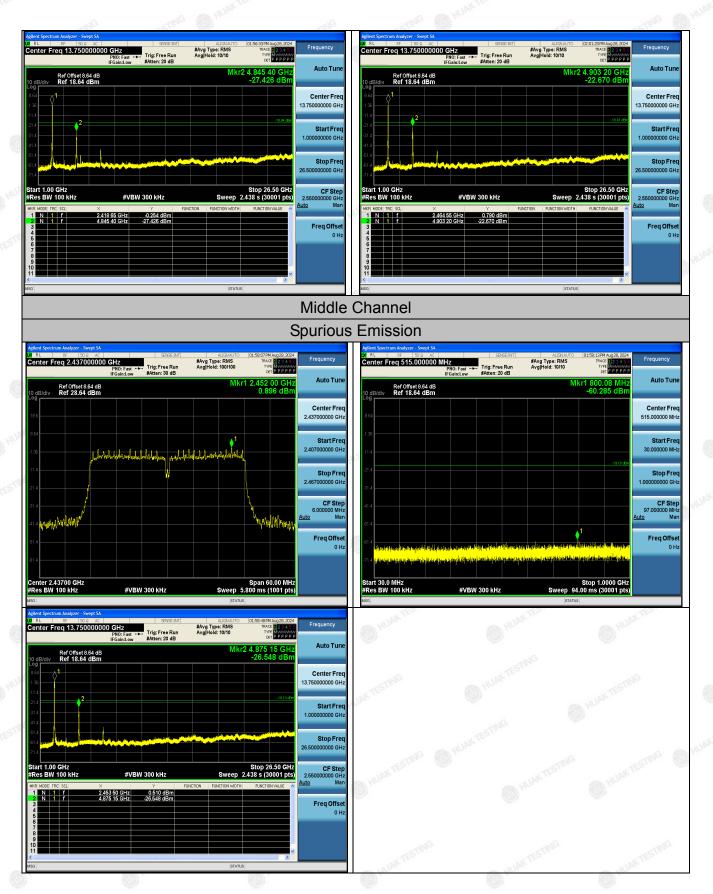
J.


The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

Page 42 of 73

802.11n (HT40) Modulation


The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

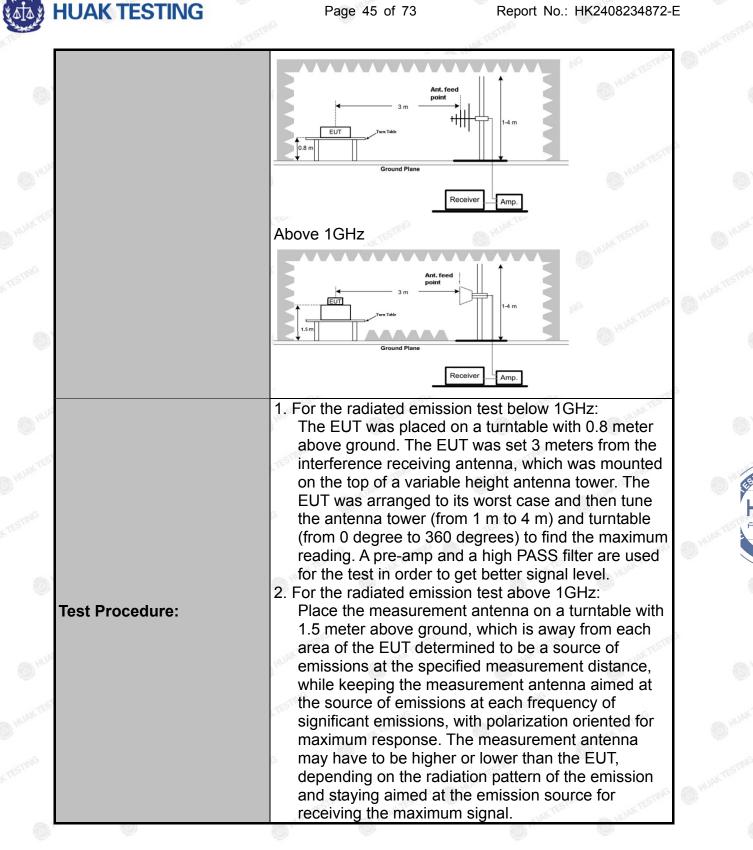
Page 43 of 73

FICATION

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

4.7 Radiated Spurious Emission Measurement


Test Specification

Test Requirement:	FCC Part15	C Section	15.209	TEST	1G	TES
Test Method:	ANSI C63.10): 2013	(HUAN		C HUAN
Frequency Range:	9 kHz to 25	GHz		TING		
Measurement Distance:	3 m	TESTING	(m) HIL	AKTES		TESTING
Antenna Polarization:	Horizontal &	Vertical	<i>w</i>	<i>C</i> .	0	HURL
Operation Mode:	Transmitting	mode with	n modulat	ion		
	Frequency	Detector	RBW	VBW	STING	Remark
	9kHz- 150kHz	Quasi-peak	200Hz	1kHz	Quas	i-peak Valu
Receiver Setup:	150kHz- 30MHz	Quasi-peak	9kHz	30kHz	Quas	i-peak Valu
	30MHz-1GHz	Quasi-peak	120KHz	300KHz	Quas	i-peak Value
	-TING	Peak	1MHz	3MHz	-	eak Value
	Above 1GHz	Peak	1MHz	10Hz		erage Value
	Frequer	icy	Field Stre (microvolts)		-	asurement nce (meters
	0.009-0.490		2400/F(KHz)		300	
	0.490-1.705		24000/F(KHz)			30
	1.705-30		30		30	
	30-88		100	lac		3
	88-216	150			3	
Limit:	216-96	200		STIME	3	
	Above 9	60	500	HUAN HUAN		3
	Frequency		Field Strength (microvolts/meter)		ment ice rs)	Detector
	Above 1GH	T WAK IS	500			Average
		- (O)	5000	3		Peak
Test Setup:	For radiated	3 m Twn Take Ground Plane				wax resting
	30MHz to 10	GHz				

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

Page 45 of 73

Report No.: HK2408234872-E

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

NG

¦К

	The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of
	from 1 m to 4 m above the ground or reference ground plane.
	 3. Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level
	4. For measurement below 1GHz, If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission
	level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.
	5. Use the following spectrum analyzer settings:(1) Span shall wide enough to fully capture the emission being measured;
	(2) Set RBW=120 kHz for f < 1 GHz; VBW ≥RBW; Sweep = auto; Detector function = peak; Trace = max hold;
	(3) Set RBW = 1 MHz, VBW= 3MHz for f 1 GHz for peak measurement.
	6.For average measurement: VBW = 10 Hz, when duty cycle is no less than 98 percent.VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the
	transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.
Test Results:	PASS

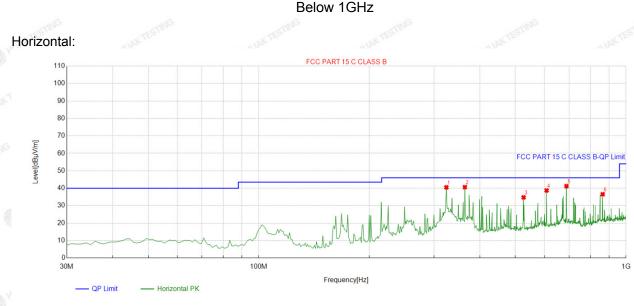
The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com/

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

*

Test Instruments

	Radiated Emission Test Site (966)									
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due					
Spectrum analyzer	Agilent	N9020A	HKE-025	Feb. 20, 2024	Feb. 19, 2025					
Spectrum analyzer	R&S	FSV3044	HKE-126	Feb. 20, 2024	Feb. 19, 2025					
Preamplifier	EMCI	EMC051845S	HKE-006	Feb. 20, 2024	Feb. 19, 2025					
Preamplifier	Schwarzbeck	BBV 9743	HKE-016	Feb. 20, 2024	Feb. 19, 2025					
Preamplifier	A.H. Systems	SAS-574	HKE-182	Feb. 20, 2024	Feb. 19, 2025					
6dB Attenuator	Pasternack	6db	HKE-184	Feb. 20, 2024	Feb. 19, 2025					
EMI Test Receiver	Rohde & Schwarz	ESR-7	HKE-010	Feb. 20, 2024	Feb. 19, 2025					
Broadband Antenna	Schwarzbeck	VULB9168	HKE-167	Feb. 21, 2024	Feb. 20, 2026					
Loop Antenna	COM-POWER	AL-130R	HKE-014	Feb. 21, 2024	Feb. 20, 2026					
Horn Antenna	Schewarzbeck	9120D	HKE-013	Feb. 21, 2024	Feb. 20, 2026					
EMI Test Software	Tonscend	JS32-RE 5.0.0	HKE-082	Instituc	ing the start the start					
RSE Test Software	Tonscend	JS36-RSE 5.0.0	HKE-184	O Maria	1					


The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

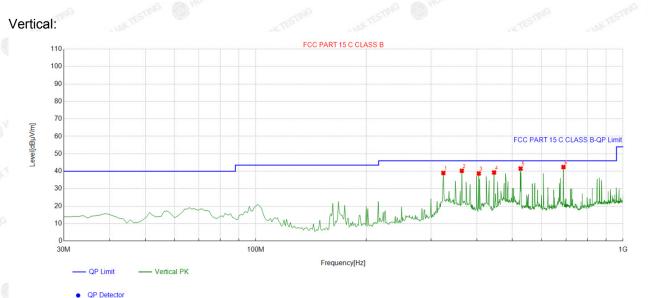
TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

Test Data

All the test modes completed for test. Only the worst result was reported as below:

QP Detector

3	Suspe	cted List								
		Freq.	Factor	Reading	Level	Limit	Margin	Height	Angle	
3	NO.	[MHz]	[dB]	[dBµV/m]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity
	1	324.20420	-11.03	51.55	40.52	46.00	5.48	100	11	Horizontal
	2	364.01401	-9.62	50.25	40.63	46.00	5.37	100	338	Horizontal
8	3	526.16616	-7.00	41.78	34.78	46.00	11.22	100	137	Horizontal
	4	607.72772	-5.20	43.92	38.72	46.00	7.28	100	0	Horizontal
	5	688.31831	-4.21	45.41	41.20	46.00	4.80	100	334	Horizontal
	6	864.06406	-1.48	<u>38.04</u>	36.56	46.00	9.44	100	22	Horizontal


Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Limit – Level;

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

FICATION

Suspected List

Freq.	Factor	Reading	Level	Limit	Margin	Height	Angle	
[MHz]	[dB]	[dBµV/m]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity
324.20420	-11.03	50.05	39.02	46.00	6.98	100	243	Vertical
364.01401	-9.62	49.89	40.27	46.00	5.73	100	254	Vertical
404.79479	-9.83	48.56	38.73	46.00	7.27	100	116	Vertical
445.57557	-8.66	47.97	39.31	46.00	6.69	100	222	Vertical
526.16616	-7.00	48.53	41.53	46.00	4.47	100	357	Vertical
688.31831	-4.21	46.62	42.41	46.00	3.59	100	282	Vertical
	[MHz] 324.20420 364.01401 404.79479 445.57557 526.16616	Freq. Factor [MHz] [dB] 324.20420 -11.03 364.01401 -9.62 404.79479 -9.83 445.57557 -8.66 526.16616 -7.00	Freq. Factor Reading [MHz] [dB] [dBµV/m] 324.20420 -11.03 50.05 364.01401 -9.62 49.89 404.79479 -9.83 48.56 445.57557 -8.66 47.97 526.16616 -7.00 48.53	Freq. Factor Reading Level [MHz] [dB] [dBµV/m] [dBµV/m] 324.20420 -11.03 50.05 39.02 364.01401 -9.62 49.89 40.27 404.79479 -9.83 48.56 38.73 445.57557 -8.66 47.97 39.31 526.16616 -7.00 48.53 41.53	Freq. Factor Reading Level Limit [MHz] [dB] [dBµV/m] [dBµV/m] [dBµV/m] [dBµV/m] 324.20420 -11.03 50.05 39.02 46.00 364.01401 -9.62 49.89 40.27 46.00 404.79479 -9.83 48.56 38.73 46.00 445.57557 -8.66 47.97 39.31 46.00 526.16616 -7.00 48.53 41.53 46.00	Freq. Factor Reading Level Limit Margin [MHz] [dB] [dBµV/m] [dBµV/m] [dBµV/m] [dBµV/m] [dBµV/m] [dBµV/m] [dBµV/m] [dB] 324.20420 -11.03 50.05 39.02 46.00 6.98 364.01401 -9.62 49.89 40.27 46.00 5.73 404.79479 -9.83 48.56 38.73 46.00 7.27 445.57557 -8.66 47.97 39.31 46.00 6.69 526.16616 -7.00 48.53 41.53 46.00 4.47	Freq. Factor Reading Level Limit Margin Height [MHz] [dB] [dBµV/m] [dBµV/m] [dBµV/m] [dBµV/m] [dBµV/m] [dBµV/m] [dB] [cm] 324.20420 -11.03 50.05 39.02 46.00 6.98 100 364.01401 -9.62 49.89 40.27 46.00 5.73 100 404.79479 -9.83 48.56 38.73 46.00 7.27 100 445.57557 -8.66 47.97 39.31 46.00 6.69 100 526.16616 -7.00 48.53 41.53 46.00 4.47 100	Freq. Factor Reading Level Limit Margin Height Angle [MHz] [dB] [dBµV/m] [dB] [cm] [°] 324.20420 -11.03 50.05 39.02 46.00 6.98 100 243 364.01401 -9.62 49.89 40.27 46.00 5.73 100 254 404.79479 -9.83 48.56 38.73 46.00 7.27 100 116 445.57557 -8.66 47.97 39.31 46.00 6.69 100 222 526.16616 -7.00 48.53 41.53 46.00 4.47 100 357

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Limit – Level;

Harmonics and Spurious Emissions

Frequency Range (9kHz-30MHz)

	Frequency (MHz)	Level@3m (dBµV/m)	Limit@3m (dBµV/m)		
NG			9m		
	TING	ALTES	- MARTES		
	- WAKTES-	- water			
	· · · · · · · · · · · · · · · · · ·	⁽⁰⁾	@``		

Note:1. Emission Level=Reading+ Cable loss-Antenna factor-Amp factor.

2. The emission levels are 20 dB below the limit value, which are not reported. It is deemed to comply with the requirement.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

Above 1GHz

Radiated Emission Test

LOW CH1 (802.11b Mode)/2412

Horizontal:

	and the second s		152	11-	AND Y
Reading Result	Factor	Emission Level	Limits	Margin	Detector
(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
53.15	-3.64	49.51	74	-24.49	peak
45.26	-3.64	41.62	54	-12.38	AVG
51.33	-0.95	50.38	74	-23.62	peak
41.07	-0.95	40.12	54	-13.88	AVG
	(dBµV) 53.15 45.26 51.33	(dBµV) (dB) 53.15 -3.64 45.26 -3.64 51.33 -0.95	(dBµV) (dB) (dBµV/m) 53.15 -3.64 49.51 45.26 -3.64 41.62 51.33 -0.95 50.38	(dBµV) (dB) (dBµV/m) (dBµV/m) 53.15 -3.64 49.51 74 45.26 -3.64 41.62 54 51.33 -0.95 50.38 74	(dBµV) (dB) (dBµV/m) (dBµV/m) (dB) 53.15 -3.64 49.51 74 -24.49 45.26 -3.64 41.62 54 -12.38 51.33 -0.95 50.38 74 -23.62

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:	D HO!	O HO	O HU.	0	HU	O HD
Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4824	53.59	-3.64	49.95	74	-24.05	peak
4824	46.42	-3.64	42.78	54	-11.22	AVG
7236	51.38	-0.95	50.43	74	-23.57	peak
7236	42.19	-0.95	41.24	54	-12.76	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

FIE FIE

MID CH6 (802.11b Mode)/2437

Horizontal	•
TIONZONIAL	•

Tionzontai.	-		-			-
Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4874	55.86	-3.51	52.35	74	-21.65	peak
4874	43.07	-3.51	39.56	54	-14.44	AVG
7311	52.14	-0.82	51.32	74	-22.68	peak
7311	41.98	-0.82	41.16	54	·12.84	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:		w.			w.	
Frequency	Reading Result Factor		Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4874	54.02	-3.51	50.51	74	-23.49	peak
4874	40.96	-3.51	37.45	54	-16.55	AVG
7311	50.88	-0.82	50.06	74	-23.94	peak
7311	40.93	-0.82	40.11	54	-13.89	AVG
.6	and and		.0	ALL AND Y	.0	

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

HIGH CH11 (802.11b Mode)/2462

1	ш,	- ri	70	n	hal	۱.

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz) (dBµV)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4924	55.14	-3.43	51.71	74	-22.29	peak
4924	46.35	-3.43	42.92	54	-11.08	AVG
7386	51.06	-0.75	50.31	74	-23.69	peak
7386	42.77	-0.75	42.02	54	-11.98	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:	HO.	HUAL	O HO		HUAN	O HU
Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4924	53.86	-3.43	50.43	74	-23.57	peak
4924	46.06	-3.43	42.63	54	-11.37	AVG
7386	51.93	-0.75	51.18	74	-22.82	peak
7386	42.14	-0.75	41.39	54	-12.61	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Remark:

(1) Measuring frequencies from 1 GHz to the 25 GHz.

(2) "F" denotes fundamental frequency; "H" denotes spurious frequency; "E" denotes band edge frequency.

(3) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.

(4) The emissions are attenuated more than 20dB below the permissible limits are not recorded in the report.

(5) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz.

(6) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54dBuV/m(AV Limit), the Average Detected not need to completed.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

LOW CH1 (802.11g Mode)/2412

Horizontal:	9		Ŵ		I A A A A A A A A A A A A A A A A A A A	~
Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4824	52.25	-3.64	48.61	74	-25.39	peak
4824	42.96	-3.64	39.32	54	-14.68	AVG
7236	51.08	-0.95	50.13	74	-23.87	peak
7236	40.11	-0.95	39.16	54	-14.84	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:					•	
Frequency	Reading Result	Factor	Emission Level	🔊 Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4824	52.36	-3.64	48.72	74	-25.28	peak
4824	41.75	-3.64	38.11	54	-15.89	AVG
7236	51.81	-0.95	50.86	74	-23.14	peak
7236	40.76	-0.95	39.81	54	-14.19	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

C al

MID CH6 (802.11g Mode)/2437

Horizontal:		w.		0	9	
Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4874	56.29	-3.51	52.78	74	-21.22	peak
4874	43.32	-3.51	39.81	54	-14.19	AVG
7311	53.09	-0.82	52.27	74	-21.73	peak
7311	42.18	-0.82	41.36	54	-12.64	AVG
		-410	-	110		-

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:	0	OHUN	0		O HUY	0
Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4874	55.47	-3.51	51.96	74	-22.04	peak
4874 ⁴	45.36	-3.51	41.85	54	-12.15	AVG
7311	53.18	-0.82	52.36	74	-21.64	peak
7311	42.99	-0.82	42.17	54	-11.83	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

VCATION

HIGH CH11 (802.11g Mode)/2462

Horizontal:		Ŵ			0	
Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4924	55.47	-3.43	52.04	74	-21.96	peak
4924	44.15	-3.43	40.72	54	-13.28	AVG
7386	53.03	-0.75	52.28	74	-21.72	peak
7386	42.78	-0.75	42.03	54	-11.97	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:		Ŵ			w.	
Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4924	52.36	-3.43	48.93	74	-25.07	peak
4924	43.52	-3.43	40.09	54	-13.91	AVG
7386	53.19	-0.75	52.44	74	-21.56	peak
7386	42.22	-0.75	41.47	54	-12.53	AVG
	C AND HO			a star you		

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Remark:

(1) Measuring frequencies from 1 GHz to the 25 GHz.

(2) "F" denotes fundamental frequency; "H" denotes spurious frequency; "E" denotes band edge frequency.

(3) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.

(4) The emissions are attenuated more than 20dB below the permissible limits are not recorded in the report.

(5) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz.

(6) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54dBuV/m(AV Limit), the Average Detected not need to completed.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

LOW CH1 (802.11n/H20 Mode)/2412

Horizontal:	-	Ŵ			9	-
Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4824	56.06	-3.64	52.42	74	-21.58	peak
4824	46.15	-3.64	42.51	54	-11.49	AVG
7236	51.37	-0.95	50.42	74	-23.58	peak
7236	43.39	-0.95	42.44	54	-11.56	AVG

Vertical:			,			1
Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4824	56.46	-3.64	52.82	74	-21.18	peak
4824	42.23	-3.64	38.59	54	-15.41	AVG
7236	53.16	-0.95	52.21	74	-21.79	peak
7236	43.87	-0.95	42.92	54	-11.08	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

FIF

MID CH6 (802.11n/H20 Mode)/2437

Horizontal:					I A A A A A A A A A A A A A A A A A A A	~
Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4874	51.05	-3.51	47.54	74	-26.46	peak
4874	42.96	-3.51	39.45	54	-14.55	AVG
7311	50.14	-0.82	49.32	74	-24.68	peak
7311	41.37	-0.82	40.55	54	-13.45	AVG
		2		alpr		

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:		ý			~	
Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4874	51.92	-3.51	48.41	74	-25.59	peak
4874	43.49	-3.51	39.98	54	-14.02	AVG
7311	50.51	-0.82	49.69	74	-24.31	peak
7311	40.07	-0.82	39.25	54	-14.75	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

HIGH CH11 (802.11n/H20 Mode)/2462

Horizontal:		Ŵ	~		9	
Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	HUAKTESTI
4924	55.26	-3.43	51.83	74	-22.17	peak
4924	44.19	-3.43	40.76	54	-13.24	AVG
7386	53.38	-0.75	52.63	74	-21.37	peak
7386	40.54	-0.75	39.79	54	-14.21	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

De la companya de la comp	0			0	
Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	IAK TESTI
55.21	-3.43	51.78	74	-22.22	peak
41.36	-3.43	37.93	54	-16.07	AVG
53.08	-0.75	52.33	74	-21.67	peak
40.72	-0.75	39.97	54	-14.03	AVG
	(dBµV) 55.21 41.36 53.08	(dBµV) (dB) 55.21 -3.43 41.36 -3.43 53.08 -0.75	(dBµV) (dB) (dBµV/m) 55.21 -3.43 51.78 41.36 -3.43 37.93 53.08 -0.75 52.33	(dBµV) (dB) (dBµV/m) (dBµV/m) 55.21 -3.43 51.78 74 41.36 -3.43 37.93 54 53.08 -0.75 52.33 74	(dBµV) (dB) (dBµV/m) (dBµV/m) (dBµV/m) 55.21 -3.43 51.78 74 -22.22 41.36 -3.43 37.93 54 -16.07 53.08 -0.75 52.33 74 -21.67

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Remark:

(1) Measuring frequencies from 1 GHz to the 25 GHz.

(2) "F" denotes fundamental frequency; "H" denotes spurious frequency; "E" denotes band edge frequency.

(3) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.

(4) The emissions are attenuated more than 20dB below the permissible limits are not recorded in the report.

(5) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz.

(6) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54dBuV/m(AV Limit), the Average Detected not need to completed.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

LOW CH3 (802.11n/H40 Mode)/2422

Horizontal		۲				~
Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	IAK TES
4844	53.19	-3.63	49.56	74	-24.44	peak
4844	43.08	-3.63	39.45	54	-14.55	AVG
7266	50.51	-0.94	49.57	74	-24.43	peak
7266	42.93	-0.94	41.99	54	-12.01	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:	O ^{hu}	O HUM	O H		C HUM	On
Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
4844	54.27	-3.63	50.64	74	-23.36	peak
4844	42.14	-3.63	38.51	54	-15.49	AVG
7266	53.66	-0.94	52.72	74	-21.28	peak
7266	42.85	-0.94	41.91	54	-12.09	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

MID CH6 (802.11n/H40 Mode)/2437

Horizontal:	~	۲	~		9	
Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	WAX TEST
4874	54.49	-3.51	50.98	74	-23.02	peak
4874	42.06	-3.51	38.55	54	-15.45	AVG
7311	50.11	-0.82	49.29	74	-24.71	peak
7311	40.87	-0.82	40.05	54	-13.95	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:	0	OHU.	0.		O HO.	0
Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
4874	52.34	-3.51	48.83	74	-25.17	peak
4874 ⁴	42.56	-3.51	39.05	54	-14.95	AVG
7311	50.83	-0.82	50.01	74	-23.99	peak
7311	41.35	-0.82	40.53	54	-13.47	AVG
	- I - I	4.5		191		

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

Detector Type

peak

AVG

peak

AVG

FICATION

HIGH CH9 (802.11n/H40 Mode)/2452

	Ś	~		0	~
Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	WUAK TESTIN
53.89	-3.43	50.46	74	-23.54	peak
42.04	-3.43	38.61	54	-15.39	AVG
52.09	-0.75	51.34	74	-22.66	peak
42.11	-0.75	41.36	54	-12.64	AVG
	(dBµV) 53.89 42.04 52.09	(dBµV) (dB) 53.89 -3.43 42.04 -3.43 52.09 -0.75	(dBµV) (dB) (dBµV/m) 53.89 -3.43 50.46 42.04 -3.43 38.61 52.09 -0.75 51.34	(dBµV) (dB) (dBµV/m) (dBµV/m) 53.89 -3.43 50.46 74 42.04 -3.43 38.61 54 52.09 -0.75 51.34 74	(dBµV) (dB) (dBµV/m) (dBµV/m) (dB) 53.89 -3.43 50.46 74 -23.54 42.04 -3.43 38.61 54 -15.39 52.09 -0.75 51.34 74 -22.66

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical: Reading Result Frequency Factor Emission Level Limits Margin (MHz) (dBµV) (dB) (dBµV/m) (dBµV/m) (dB)4904 54.92 51.49 74 -22.51 -3.43 4904 44.58 -3.43 41.15 -12.85 54 7356 52.76 -0.75 74 52.01 -21.99 7356 39.69 -0.75 38.94 54 -15.06

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Remark:

(1) Measuring frequencies from 1 GHz to the 25 GHz.

(2) "F" denotes fundamental frequency; "H" denotes spurious frequency; "E" denotes band edge frequency.
(3) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.

(4) The emissions are attenuated more than 20dB below the permissible limits are not recorded in the report.

(5) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz.

(6) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental 73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54 dBuV/m(AV Limit), the Average Detected not need to completed.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

Test Result of Radiated Spurious at Band edges

All modes have been tested. Only the worst result was reported as below:

Operation Mode:

802.11b Mode TX CH Low (2412MHz)

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
2310.00	54.16	-5.81	48.35	74	-25.65	peak
2310.00	44.29	-5.81	38.48	54	-15.52	AVG
2390.00	52.47	-5.84	46.63	74	-27.37	peak
2390.00	42.93	-5.84	37.09	54	-16.91	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

10	Vertical:		STING			STING	
(E	Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
8	(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
	2310.00	54.82	-5.81	49.01	74	-24.99	peak
	2310.00	42.21	-5.81	36.4	54	-17.6	AVG
3	2390.00	54.73	-5.84	48.89	74	-25.11	peak
	2390.00	43.96	-5.84	38.12	54	-15.88	AVG
	61	611	-EVP	63		- GI	

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

a P

Operation Mode: TX CH High (2462MHz)

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2483.50	55.15	-5.81	49.34	74	-24.66	peak
2483.50	44.09	-5.81	38.28	54	-15.72	AVG
2500.00	54.83	-6.06	48.77	74	-25.23	peak
2500.00	42.11	-6.06	36.05	54	-17.95	AVG

Vertical:

Frequency	Reading Result	Factor	Emission Level	🔊 Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
of 2483.50	54.29	-5.81	48.48	74	-25.52	peak
2483.50	43.08 ^{مرو}	-5.81	37.27	54 M ^{UM}	-16.73	AVG
2500.00	53.45	-6.06	47.39	74	-26.61	peak
2500.00	42.27	-6.06	36.21	54	-17.79	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Remark: All the other emissions not reported were too low to read and deemed to comply with FCC limit.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

Operation Mode: 802.11g Mode TX CH Low (2412MHz)

Horizontal:	· · ·		-		~	
Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	HUAN TES
2310.00	56.18	-5.81	50.37	74	-23.63	peak
2310.00	44.92	-5.81	39.11	54	-14.89	AVG
2390.00	51.37	-5.84	45.53	74	-28.47	peak
2390.00	42.46	-5.84	36.62	54	-17.38	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
32310.00	56.05	-5.81	50.24	74	-23.76	peak
2310.00	42.33	-5.81	36.52	54	-17.48	AVG
2390.00	52.49	-5.84	46.65	74	-27.35	peak
2390.00	42.48	-5.84	36.64	54	-17.36	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

Operation Mode: TX CH High (2462MHz)

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
2483.50	53.92	-5.65	48.27	74	-25.73	peak
2483.50	45.13	-5.65	39.48	54	-14.52	AVG
2500.00	53.84	-5.65	48.19	74	-25.81	peak
2500.00	43.16	-5.65	37.51	54	-16.49	AVG

Vertical:


Frequency	Reading Result	Factor	Emission Level	No Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	O HUAK
2483.50	53.29	-5.65	47.64	74	-26.36	peak
2483.50	43.83	-5.65	38.18	54	-15.82	AVG
2500.00	54.01	-5.65	48.36	74	-25.64	peak
2500.00	43.22	-5.65	37.57	54	-16.43	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Remark: All the other emissions not reported were too low to read and deemed to comply with FCC limit.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

C al

Operation Mode: 802.11n/H20 Mode TX CH Low (2412MHz)

Horizontal: Frequency	Reading Result	Factor	Emission Level	Limits	Margin	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2310.00	56.48	-5.81	50.67	74	-23.33	peak
2310.00	43.57	-5.81	37.76	54	-16.24	AVG
2390.00	54.06	-5.84	48.22	74	-25.78	peak
2390.00	42.19	-5.84	36.35	54	-17.65	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Frequency	Reading Result	Factor	Emission Level	🔊 Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	O HUAN
2310.00	53.24	-5.81	47.43	74	-26.57	peak
2310.00	45.19	-5.81	39.38	54	-14.62	AVG
2390.00	53.08	-5.84	47.24	74	-26.76	peak
2390.00	42.76	-5.84	36.92	54	-17.08	AVG
<i>c</i> .	ALC DIA			G ARREN V	6	- Ola

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

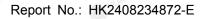
TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

ACATION

Operation Mode: TX CH High (2462MHz)

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	- HUAN TES JPC
2483.50	53.52	-5.65	47.87	74	-26.13	peak
2483.50	41.43	-5.65	35.78	54	-18.22	AVG
2500.00	53.86	-5.65	48.21	74	-25.79	peak
2500.00	43.79	-5.65	38.14	54	-15.86	AVG

Vertical:


Frequency	Reading Result	Factor	Emission Level	Sing Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m) 🍭	(dB)	
2483.50	53.09	-5.65	47.44	74	-26.56	peak
2483.50	45.11	-5.65	39.46	54	-14.54	AVG
2500.00	53.46	-5.65	47.81	74	-26.19	peak
2500.00	43.53	-5.65	37.88	54	-16.12	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Remark: All the other emissions not reported were too low to read and deemed to comply with FCC limit.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

Operation Mode: 802.11n/H40 Mode TX CH Low (2422MHz)

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
2310.00	53.82	-5.81	48.01	74	-25.99	peak
2310.00	ome /	-5.81	/ crinic	54	TEST I	AVG
2390.00	51.39	-5.84	45.55	74	-28.45	peak
2390.00	/	-5.84	/	54	1	AVG

Vertical:		~		-		
Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	O HUAN IL
2310.00	53.45	-5.81	47.64	74	-26.36	peak
2310.00	CESTING /	-5.81	A TESTING	54	1	AVG
2390.00	53.07	-5.84	47.23	74	-26.77	peak
2390.00		-5.84	/	54	1	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

Operation Mode: TX CH High (2452MHz)

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	C HUAK TE ST
۵2483.50	52.31	-5.65	46.66	74	-27.34	peak
2483.50	CESTING /	-5.65	A TESTING	54	1	AVG
2500.00	53.46	-5.65	47.81	74	-26.19	peak
2500.00		-5.65	/	54	1	AVG

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
2483.50	56.59	-5.65	50.94	74	-23.06	peak
2483.50	1	-5.65	O HUAK	54	1	AVG
2500.00	53.83	-5.65	48.18	74	-25.82	peak
2500.00	at restrug	-5.65	ING / NY TESTING	54	Testing	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Remark: All the other emissions not reported were too low to read and deemed to comply with FCC limit.

Remark:

1. If the PK measured levels comply with average limit, then the average level were deemed to comply with average limit.

2. In restricted bands of operation, the spurious emissions below the permissible value more than 20dB.

3. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

4.8 Antenna Requirement

Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. And according to FCC 47 CFR Section 15.247, if transmitting antennas of directional gain greater than6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

Refer to statement below for compliance.

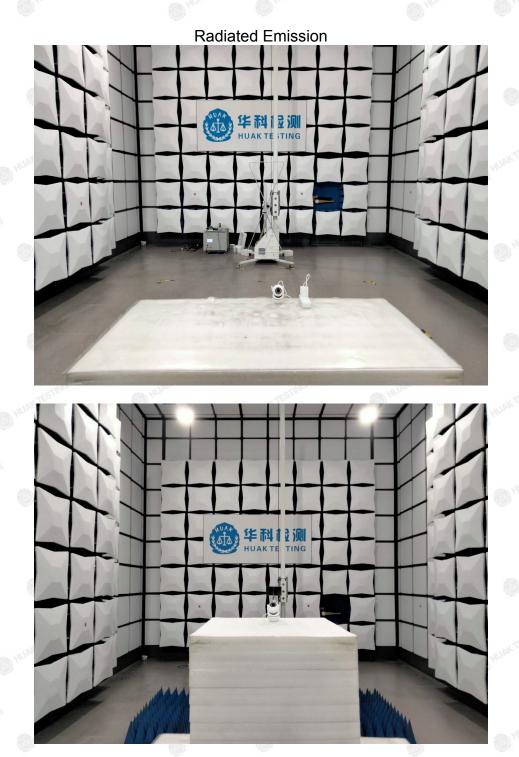
The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not apply to intentional radiators that must be professionally installed.

Antenna Connected Construction

The antenna used in this product is an External Antenna, need professional installation, not easy to remove. It conforms to the standard requirements. The directional gains of antenna used for transmitting is 2.17dBi.

WIFI ANTENNA

20 20 10 200 30 80 10 60 20 40 30 50 10 100 30 80 10 60 20 40 30 50 20


The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

Page 71 of 73

5. Photographs of Test

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

Report No.: HK2408234872-E

Conducted Emission

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com/

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

FICATION

6. Photos of the EUT

Reference to the report: ANNEX A of external photos and ANNEX B of internal photos.

----End of test report--

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com