

MRT Technology (Taiwan) Co., Ltd

Phone: +886-3-3288388 +886-3-3288918 www.mrt-cert.com Report No.: 2307TW5402-U2 Report Version: Issue Date: 2024-11-06

RF Exposure Evaluation

FCC ID 2APE2-CP89B

IC 24012-CP89B

APPLICANT ETS GEORGES RENAULT

Application Type : Certification

Product eTorqueWrench

Model No. : CP8916TC

Series Model No. : CP8918TC

Brand Name Chicago Pneumatic

FCC Rule Part(s) : Part 2.1093 (Portable)

ISED Standard RSS-102 (issue5)

Received Date July 19, 2023

Kaunaz Lee **Tested By**

(Kaunaz Lee)

Paddy Chen **Reviewed By**

(Paddy Chen)

: am her **Approved By**

(Chenz Ker)

The test results relate only to the samples tested.

The test results shown in the test report are traceable to the national/international standards through the calibration of the equipment and evaluated measurement uncertainty herein.

The test report shall not be reproduced except in full without the written approval of MRT Technology (Taiwan) Co., Ltd.

Revision History

Report No.	Version	Description	Issue Date	Note
2307TW5402-U2	1.0	Original Report	2024-11-06	

Page Number: 2 of 7

1. PRODUCT INFORMATION

1.1. Equipment Description

Product Name	eTorqueWrench			
Model No.	P8916TC			
Series Model No.	CP8918TC			
Brand Name	Chicago Pneumatic			
Bluetooth Specification	V5.0			

Note:

1. Model Difference:

	Product key description for CP89xx range:					
	Models / variants to consider					
	-Different maximum torque capacities					
	-Connectivity device (Wired and wireless Bluetooth transmission devices)					
	Product key description					
Model Difference	CP891 (1)(2)					
Description	(1) Max. torque value					
	a. 6 = 200N.m max					
	b. 8 = 340N.m max					
	(2) Communication device					
	a. Omitted = none					
	b. TC = Bluetooth communication					

- 2. The test was performed base on CP8916TC.
- 3. CP8916TC and CP8918TC are different in lengths and torques, but have the same internal circuit.

Page Number: 3 of 7

1.2. Antenna Description

No.	Brand	Part No.	Antenna Type	Peak Gain	
1	Raytac Corporation	MDBT42V	Chip	-1.12dBi	

2. RF Exposure Evaluation

2.1. FCC Limits

According to FCC KDB 447498 D04V01 - SAR-Based Exemption

This method shall only be used at separation distances from 0.5 cm to 40 cm and at frequencies from 0.3 GHz to 6 GHz (inclusive). Pth is given by Formula .

$$P_{\rm th} \; ({\rm mW}) = \begin{cases} ERP_{\rm 20 \; cm} (d/20 \; {\rm cm})^x & d \leq 20 \; {\rm cm} \\ \\ ERP_{\rm 20 \; cm} & 20 \; {\rm cm} < d \leq 40 \; {\rm cm} \end{cases}$$

where

$$x = -\log_{10}\left(\frac{60}{ERP_{20\,\mathrm{cm}}\sqrt{f}}\right)$$

and f is in GHz, d is the separation distance (cm), and ERP_{20cm} is per Formula.

$$P_{\rm th}~({\rm mW}) = ERP_{\rm 20~cm}~({\rm mW}) = \begin{cases} 2040f & 0.3~{\rm GHz} \le f < 1.5~{\rm GHz} \\ \\ 3060 & 1.5~{\rm GHz} \le f \le 6~{\rm GHz} \end{cases}$$

The example values shown as below are for illustration only.

Example Power Thresholds (mW)

		Distance (mm)									
		- 5	10	15	20	25	30	35	40	45	50
(z)	300	39	65	88	110	129	148	166	184	201	217
(MHz)	450	22	44	67	89	112	135	158	180	203	226
	835	9	25	44	66	90	116	145	175	207	240
Frequency	1900	3	12	26	44	66	92	122	157	195	236
edn	2450	3	10	_ 22	38	59	83	111	143	179	219
Fr	3600	2	8	18	32	49	71	96	125	158	195
	5800	1	6	14	25	40	58	80	106	136	169

Note: when 10-g extremity SAR applies, SAR test exemption may be considered by applying a factor of 2.5 to the SAR-based exemption thresholds.

2.2. IC Limits

Output power level shall be the higher of the maximum conducted or equivalent isotropically radiated power (e.i.r.p.) source-based, time-averaged output power. For controlled use devices where the 8 W/kg for 1 gram of tissue applies, the exemption limits for routine evaluation in Table 1 are multiplied by a factor of 5. For limb-worn devices where the 10 gram value applies, the exemption limits for routine evaluation in Table 1 are multiplied by a factor of 2.5. If the operating frequency of the device is between two frequencies located in Table 1, linear interpolation shall be applied for the applicable separation distance. For test separation distance less than 5 mm, the exemption limits for a separation distance of 5 mm can be applied to determine if a routine evaluation is required.

	Exemption Limits (mW)						
Frequency	At separation	At separation	At separation	At separation	At separation		
(MHz)	distance of	distance of	distance of	distance of	distance of		
	≤5 mm	10 mm	15 mm	20 mm	25 mm		
300	71 mW	101 mW	132 mW	162 mW	193 mW		
450	52 mW	70 mW	88 mW	106 mW	123 mW		
835	17 mW	30 mW	42 mW	55 mW	67 mW		
1900	7 mW	10 mW	18 mW	34 mW	60 mW		
2450	4 mW	7 mW	15 mW	30 mW	52 mW		
3500	2 mW	6 mW	16 mW	32 mW	55 mW		
5800	1 mW	6 mW	15 mW	27 mW	41 mW		
Fraguency	At separation	At separation	At separation	At separation	At separation		
Frequency (MHz)	distance of	distance of	distance of	distance of	distance of		
(MITZ)	30 mm	35 mm	40 mm	45 mm	≥50 mm		
≤300	223 mW	254 mW	284 mW	315 mW	345 mW		
450	141 mW	159 mW	177 mW	195 mW	213 mW		
835	80 mW	92 mW	105 mW	117 mW	130 mW		
1900	99 mW	153 mW	225 mW	316 mW	431 mW		
2450	83 mW	123 mW	173 mW	235 mW	309 mW		
3500	86 mW	124 mW	170 mW	225 mW	290 mW		
5800	56 mW	71 mW	85 mW	97 mW	106 mW		

Table 1: SAR evaluation – Exemption limits for routine evaluation based on frequency and separation distance.

2.3. Test Result of RF Exposure Evaluation

Mode	Frequency Band (MHz)	Average Output Power (dBm)	Output Power (mW)	Antenna Gain (dBi)	EIRP (mW)	FCC SAR Test Exclusion Threshold (mW)	IC SAR Test Exclusion Threshold (mW)
BLE	2402~2480	3.63	2.31	-1.12	1.75	3	4

So, this device can complies the SAR test exclu	SION.
———— The End	