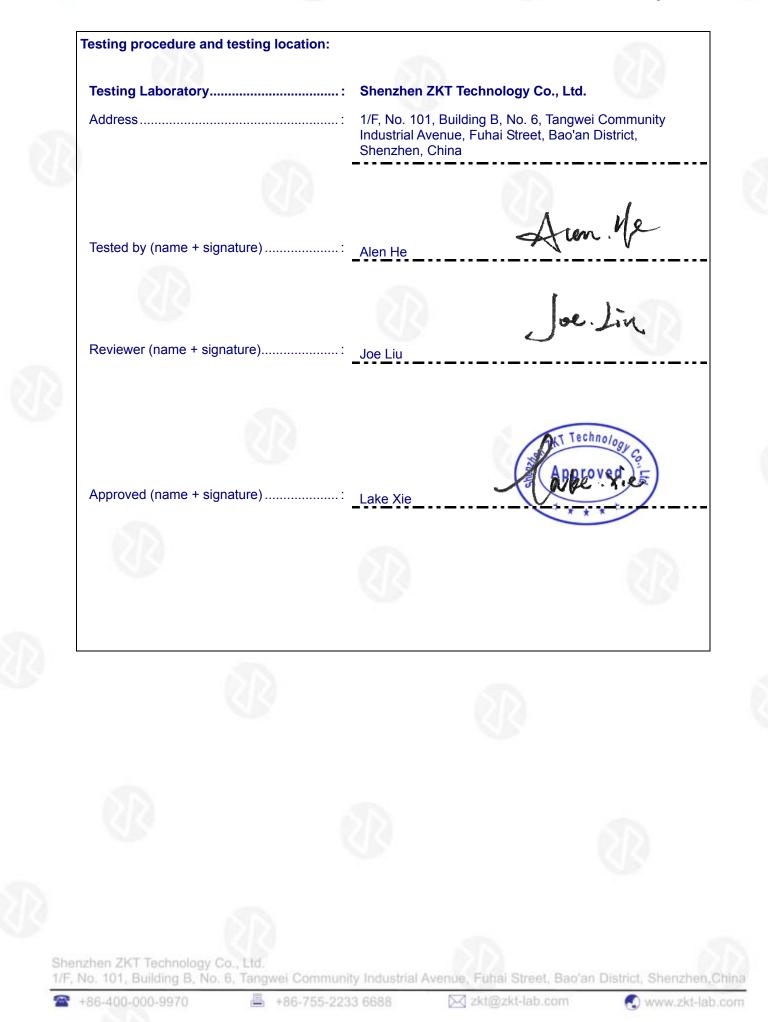


Project No.: ZKT-2109225031E Page 1 of 39


FCC TEST REPORT FCC ID:2A29G-SYL-HY

Report Number	: ZKT-2109225031E
Date of Test	. Sep. 22, 2021 to Sep. 28, 2021
Date of issue	: Sep. 28, 2021
Total number of pages	39
Test Result	: PASS
Testing Laboratory	: Shenzhen ZKT Technology Co., Ltd.
Address	1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China
Applicant's name	: Shenzhen Shenglong Titanium Industry Co., Ltd.
Address	401,4th floor, building A3, Chenwenli Industrial Park, 289 Louming : Road, Loucun community, Xinhu Street, Guangming District, Shenzhen City, China
Manufacturer's name	: Shenzhen Shenglong Titanium Industry Co., Ltd.
Address	401,4th floor, building A3, Chenwenli Industrial Park, 289 Louming : Road, Loucun community, Xinhu Street, Guangming District, Shenzhen City, China
Test specification:	
Standard	FCC CFR Title 47 Part 15 Subpart C Section 15.247 ANSI C63.10:2013
Test procedure	:/
Non-standard test method	: N/A
Test Report Form No	TRF-EL-111_V0
Test Report Form(s) Originator	ZKT Testing
Master TRF	Dated: 2020-01-06
test (EUT) is in compliance with the lidentified in the report. This report shall not be reproduced e	en tested by ZKT, and the test results show that the equipment under FCC requirements. And it is applicable only to the tested sample except in full, without the written approval of ZKT, this document may al only, and shall be noted in the revision of the document.
Product name	: Small waist floor lamp
Trademark	: N/A
Model/Type reference	SYL-HY
Ratings	: Input: DC 12V From AC Adapter
2010	

Shenzhen ZKT Technology Co., Ltd.

1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

Project No.: ZKT-210 Pa	9225031E age 3 of 39
Table of Contents	Page
1.VERSION	5
2.SUMMARY OF TEST RESULTS	6
2.1 TEST FACILITY	7
2.2 MEASUREMENT UNCERTAINTY	7
3. GENERAL INFORMATION	8
3.1 GENERAL DESCRIPTION OF EUT	8
3.2 DESCRIPTION OF TEST MODES	8 9
3.3 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED	9
3.4 DESCRIPTION OF SUPPORT UNITS(CONDUCTED MODE)	9 10
3.5 EQUIPMENTS LIST FOR ALL TEST ITEMS	10
4. EMC EMISSION TEST	12
4.1 CONDUCTED EMISSION MEASUREMENT 4.1.1 1POWER LINE CONDUCTED EMISSION LIMITS	12 12
4.1.2 TEST PROCEDURE	12
4.1.3 DEVIATION FROM TEST STANDARD	12
4.1.4 TEST SETUP	12
4.1.5 EUT OPERATING CONDITIONS	13
4.1.6 TEST RESULTS	14
4.2 RADIATED EMISSION MEASUREMENT 4.2.1 RADIATED EMISSION LIMITS	16 16
4.2.2 TEST PROCEDURE	17
4.2.3 DEVIATION FROM TEST STANDARD	17
4.2.4 TEST SETUP	17
4.2.5 EUT OPERATING CONDITIONS	18
5.RADIATED BAND EMISSION MEASUREMENT	23
5.1 TEST REQUIREMENT:	23
5.2 TEST PROCEDURE 5.3 DEVIATION FROM TEST STANDARD	23 23
5.4 TEST SETUP	23 24
5.5 EUT OPERATING CONDITIONS	24
5.6 TEST RESULT	25
6.POWER SPECTRAL DENSITY TEST	26
6.1 APPLIED PROCEDURES / LIMIT	26
6.2 TEST PROCEDURE	26
6.3 DEVIATION FROM STANDARD 6.4 TEST SETUP	26 26
	20

Shenzhen ZKT Technology Co., Ltd. 1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

www.zkt-lab.com

Table of Contents	Page
6.5 EUT OPERATION CONDITIONS 6.6 TEST RESULTS	26 27
7. CHANNEL BANDWIDTH 7.1 APPLIED PROCEDURES / LIMIT 7.2 TEST PROCEDURE 7.3 DEVIATION FROM STANDARD 7.4 TEST SETUP 7.5 EUT OPERATION CONDITIONS 7.6 TEST RESULTS	29 29 29 29 29 29 29 30
8.PEAK OUTPUT POWER TEST 8.1 APPLIED PROCEDURES / LIMIT 8.2 TEST PROCEDURE 8.3 DEVIATION FROM STANDARD 8.4 TEST SETUP 8.5 EUT OPERATION CONDITIONS 8.6 TEST RESULTS	32 32 32 32 32 32 32 32 33
9. CONDUCTED BAND EDGE AND SPURIOUS EMISSION 9.1 APPLICABLE STANDARD 9.2 TEST PROCEDURE 9.3 DEVIATION FROM STANDARD 9.4 TEST SETUP 9.5 EUT OPERATION CONDITIONS	34 34 34 34 34 34
10.ANTENNA REQUIREMENT	38
11. TEST SETUP PHOTO	39
12. EUT CONSTRUCTIONAL DETAILS	39

1.VERSION

Report No.	Version	Description	Approved
ZKT-2109225031E	Rev.01	Initial issue of report	Sep. 28, 2021

2. SUMMARY OF TEST RESULTS

Test procedures according to the technical standards:

Standard Test Item		Judgment	Remark
FCC part 15.203/15.247 (c)	Antenna requirement	PASS	
FCC part 15.207	AC Power Line Conducted Emission	PASS	
FCC part 15.247 (b)(3)	Conducted Peak Output Power	PASS	
FCC part 15.247 (a)(2)	Channel Bandwidth& 99% OCB	PASS	
FCC part 15.247 (e)	Power Spectral Density	PASS	
FCC part 15.247(d)	Band Edge	PASS	C.
FCC part 15.205/15.209	Spurious Emission	PASS	

NOTE:

(1)"N/A" denotes test is not applicable in this Test Report

2.1 TEST FACILITY

Shenzhen ZKT Technology Co., Ltd. Add. : 1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

FCC Test Firm Registration Number: 692225 Designation Number: CN1299 IC Registered No.: 27033

2.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement y \pm U , where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2 , providing a level of confidence of approximately 95 %_o

No.	Item	Uncertainty	
1	Conducted Emission Test	±1.38dB	1
2	RF power conducted	±0.16dB	
3	Spurious emissions conducted	±0.21dB	
4	All emissions radiated(<1G)	±4.68dB	
5	All emissions radiated(>1G)	±4.89dB	
6	Temperature	±0.5°C	
7	Humidity	±2%	

3.1 GENERAL DESCRIPTION OF EUT

Product Name:	Small waist floor lamp	
Model No.:	SYL-HY	
Model Different .:	N/A	
Serial No.:	N/A	
Hardware Version:	H1.0	
Software Version:	S1.0	
Sample(s) Status:	Engineer sample	
Operation Frequency:	2402MHz~2480MHz	
Channel Numbers:	40	
Channel Separation:	2MHz	212
Modulation Type:	GFSK	
Antenna Type:	PCB Antenna	
Antenna gain:	0dBi	
Power supply:	Input: DC 12V From AC Adapter	
SWITCHING POWER	N/A	
ADAPTER:		

Operation	Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency	
1	2402 MHz	11	2422 MHz	21	2442 MHz	31	2462 MHz	
2	2404 MHz	12	2424 MHz	22	2444 MHz	32	2464 MHz	
3	2406 MHz	13	2426 MHz	23	2446 MHz	33	2466 MHz	
4	2408 MHz	14	2428 MHz	24	2448 MHz	34	2468 MHz	
5	2410 MHz	15	2430 MHz	25	2450 MHz	35	2470 MHz	
6	2412 MHz	16	2432 MHz	26	2452 MHz	36	2472 MHz	
7	2414 MHz	17	2434 MHz	27	2454 MHz	37	2474 MHz	
8	2416 MHz	18	2436 MHz	28	2456 MHz	38	2476 MHz	
9	2418 MHz	19	2438 MHz	29	2458 MHz	39	2478 MHz	
10	2420 MHz	20	2440 MHz	30	2460 MHz	40	2480 MHz	

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2440MHz
The Highest channel	2480MHz

3.2 DESCRIPTION OF TEST MODES

Transmitting modeKeep the EUT in continuously transmitting mCharging modeKeep the EUT in Charging mode.Remark: During the test, the test voltage was tuned from 85% to 115%	000
Pomark: During the test, the test voltage was tuned from 85% to 115%	
voltage, and found that the worst case was under the nominal rated sup shows that condition's data.	

Test Software	BT Test Tool
Power level setup	<0dBm

3.3 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

Conducted Emission AC Line EUT Radiated Emission EUT Shenzhen ZKT Technology Co., Ltd.

Conducted Spurious

EUT

3.4 DESCRIPTION OF SUPPORT UNITS(CONDUCTED MODE)

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand	Model/Type No.	Series No.	Note
E-1	Small waist floor lamp	N/A	SYL-HY	N/A	EUT
	100				
	1212				
			20		DN
L	L				1818

Item	Shielded Type	Ferrite Core	Length	Note

Note:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in ^[]Length_. column.

Radiation Test equipment

Item	Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until
1	Spectrum Analyzer (9kHz-26.5GHz)	KEYSIGHT	9020A	MY45109572	Sep. 22, 2021	Sep. 21, 2022
2	Spectrum Analyzer (1GHz-40GHz)	Agilent	E4446A	100363	Sep. 22, 2021	Sep. 21, 2022
3	Test Receiver (9kHz-7GHz)	R&S	ESCI7	101169	Sep. 22, 2021	Sep. 21, 2022
4	Bilog Antenna (30MHz-1400MHz)	Schwarzbeck	VULB9168	00877	Sep. 22, 2021	Sep. 21, 2022
5	Horn Antenna (1GHz-18GHz)	SCHWARZBEC K	BBHA9120D	1541	Sep. 22, 2021	Sep. 21, 2022
6	Horn Antenna (18GHz-40GHz)	A.H. System	SAS-574	588	Sep. 22, 2021	Sep. 21, 2022
7	Amplifier (30-1000MHz)	EM Electronics	EM330 Amplifier	N/A	Sep. 22, 2021	Sep. 21, 2022
8	Amplifier (1GHz-40GHz)	全聚达	DLE-161	097	Sep. 22, 2021	Sep. 21, 2022
9	Loop Antenna (9KHz-30MHz)	SCHWARZBEC K	FMZB1519B	014	Sep. 22, 2021	Sep. 21, 2022
10	RF cables1 (9kHz-30MHz)	N/A	9kHz-30MHz	N/A	Sep. 22, 2021	Sep. 21, 2022
11	RF cables2 (30MHz-1GHz)	N/A	30MHz-1GHz	N/A	Sep. 22, 2021	Sep. 21, 2022
12	RF cables3 (1GHz-40GHz)	N/A	1GHz-40GHz	N/A	Sep. 22, 2021	Sep. 21, 2022
13	CMW500 Test	R&S	CMW500	106504	Sep. 22, 2021	Sep. 21, 2022
14	ESG Signal Generator	Agilent	E4421B	GB40051203	Sep. 22, 2021	Sep. 21, 2022
15	Signal Generator	Agilent	N5182A	MY47420215	Sep. 22, 2021	Sep. 21, 2022
16	D.C. Power Supply	LongWei	TPR-6405D	١	\	λ
17	Software	Frad	EZ-EMC	FA-03A2 RE	١	1

Conduction Test equipment

Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until
1	LISN	R&S	ENV216	101471	Sep. 22, 2021	Sep. 21, 2022
2	LISN	CYBERTEK	EM5040A	E185040014 9	Sep. 22, 2021	Sep. 21, 2022
3	Test Cable	N/A	C01	N/A	Sep. 22, 2021	Sep. 21, 2022
4	Test Cable	N/A	C02	N/A	Sep. 22, 2021	Sep. 21, 2022
5	EMI Test Receiver	R&S	ESRP3	101946	Sep. 22, 2021	Sep. 21, 2022
6	Absorbing Clamp	DZ	ZN23201	N/A	Sep. 22, 2021	Sep. 21, 2022
7	Power Meter	Anritsu	ML2495A	N/A	Sep. 22, 2021	Sep. 21, 2022

1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

4. EMC EMISSION TEST

4.1 CONDUCTED EMISSION MEASUREMENT

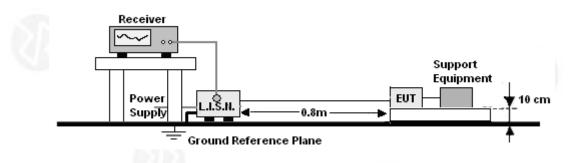
Test Requirement:	FCC Part15 C Section 15.207
Test Method:	ANSI C63.10:2013
Test Frequency Range:	150KHz to 30MHz
Receiver setup:	RBW=9KHz, VBW=30KHz, Sweep time=auto

4.1.1 POWER LINE CONDUCTED EMISSION Limits

FREQUENCY (MHz)	Limit (dBuV)	Standard
	Quas -peak	Average	Stanuaru
0.15 -0.5	66 - 56 *	56 - 46 *	FCC
0.50 -5.0	56.00	46.00	FCC
5.0 -30.0	60.00	50.00	FCC

Note:

(1) *Decreases with the logarithm of the frequency.


4.1.2 TEST PROCEDURE

- a. The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item -EUT Test Photos.

4.1.3 DEVIATION FROM TEST STANDARD

No deviation

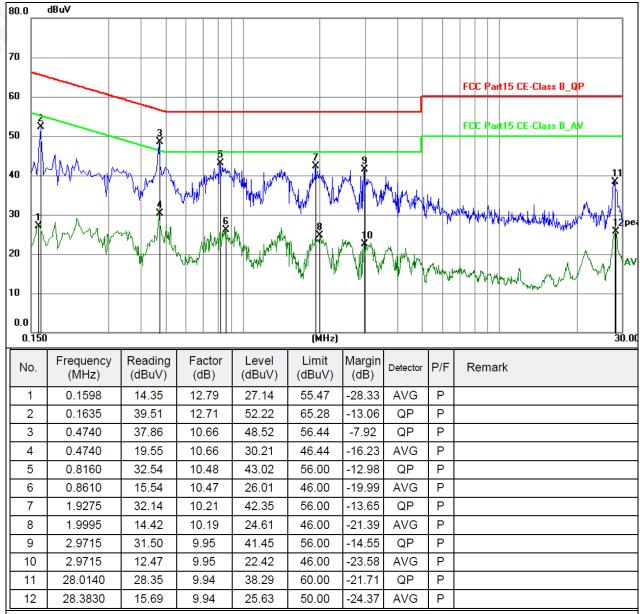
4.1.4 TEST SETUP

Shenzhen ZKT Technology Co., Ltd.

1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

4.1.5 EUT OPERATING CONDITIONS

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to Charging during test. This operating condition was tested and used to collect the included data.


We pretest AC 120V and AC 230V, the worst voltage was AC 120V and the data recording in the report.

4.1.6 TEST RESULTS:

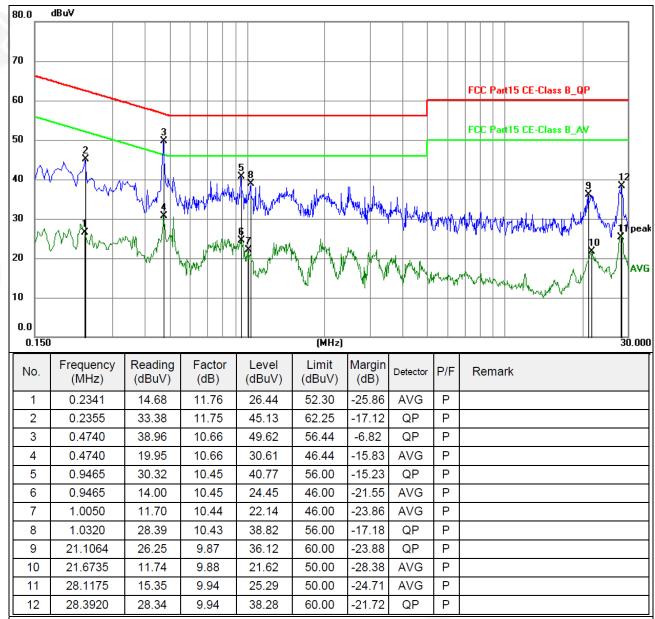
Temperature :	26 ℃	Relative Humidity:	54%
Pressure :	101kPa	Phase :	L (2)2
Test Voltage :	AC 120V/60Hz		

Notes:

1.An initial pre-scan was performed on the line and neutral lines with peak detector.

2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.

3.Mesurement Level = Reading level + Correct Factor



Shenzhen ZKT Technology Co., Ltd. 1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

Www.zkt-lab.com

Temperature :	26 ℃	Relative Humidity:	54%
Pressure :	101kPa	Phase :	Ν
Test Voltage :	AC 120V/60Hz		

Notes:

1.An initial pre-scan was performed on the line and neutral lines with peak detector.

2.Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.3.Mesurement Level = Reading level + Correct Factor

4.2 RADIATED EMISSION MEASUREMENT

Test Requirement:	FCC Part15 C Section 15.209					
Test Method:	ANSI C63.10:2013					
Test Frequency Range:	9kHz to 25GHz					
Test site:	Measurement Distance: 3m					
Receiver setup:	Frequency	Detector	RBW	VBW	Value	
	9KHz-150KHz	Quasi-peak	200Hz	600Hz	Quasi-peak	
	150KHz-30MHz	Quasi-peak	9KHz	30KHz	Quasi-peak	
	30MHz-1GHz	Quasi-peak	100KHz	300KHz	Quasi-peak	
		Peak	1MHz	3MHz	Peak	
	Above 1GHz	Peak	1MHz	10Hz	Average	

4.2.1 RADIATED EMISSION LIMITS

Frequencies	Field Strength	Measurement Distance
(MHz)	(micorvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

LIMITS OF RADIATED EMISSION MEASUREMENT

FREQUENCY (MHz)	Limit (dBuV/m) (at 3M)		
FREQUENCT (MHZ)	PEAK	AVERAGE	
Above 1000	74	54	

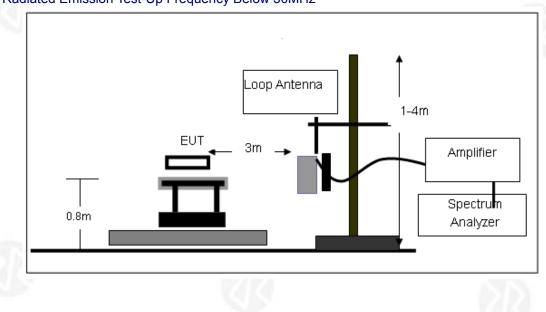
Notes:

(1) The limit for radiated test was performed according to FCC PART 15C.

- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).

- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 25GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
- b. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-chamber test. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8m; above 1GHz, the height was 1.5m, the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- e. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- f. For the actual test configuration, please refer to the related Item –EUT Test Photos.
- g. For the radiated emission test above 1GHz:
- Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response.

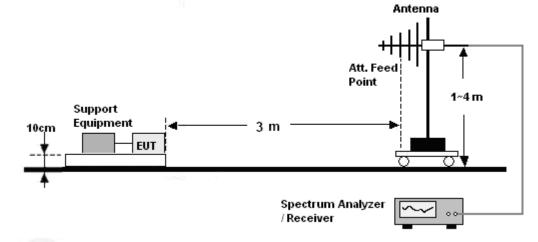
The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.

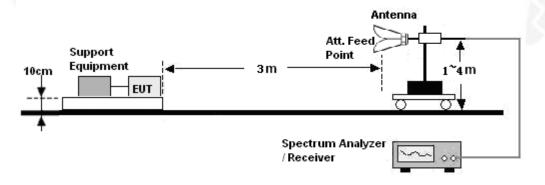

Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

4.2.3 DEVIATION FROM TEST STANDARD No deviation

4.2.4 TEST SETUP


(A) Radiated Emission Test-Up Frequency Below 30MHz



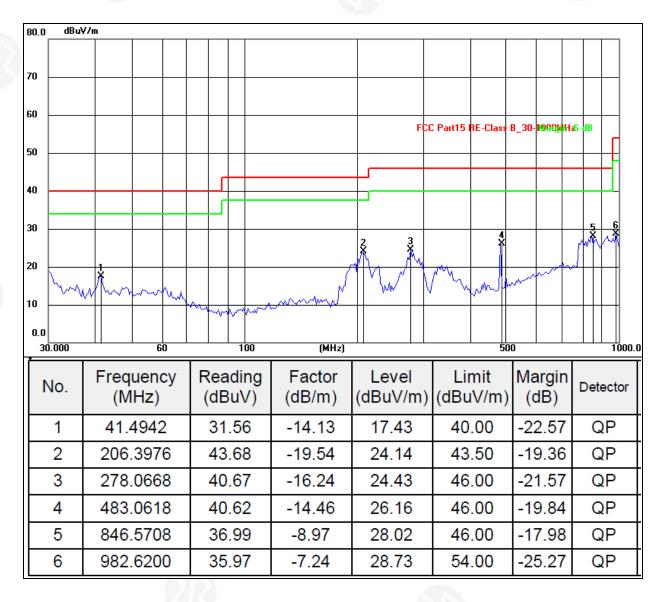
(B) Radiated Emission Test-Up Frequency 30MHz~1GHz

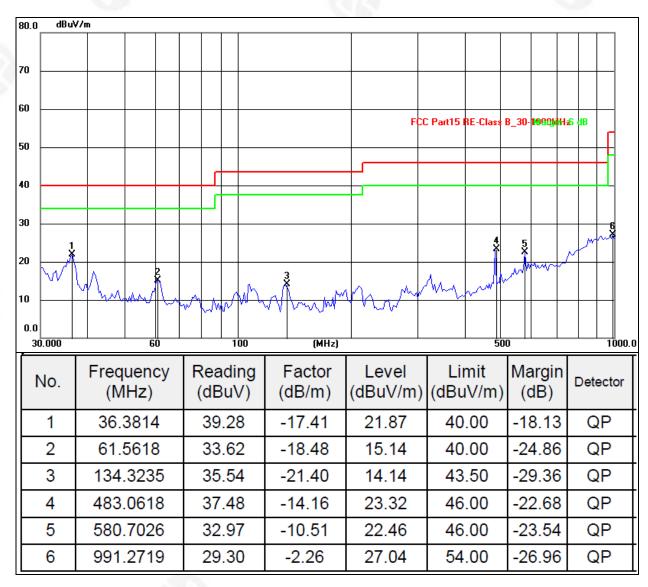
(C) Radiated Emission Test-Up Frequency Above 1GHz

4.2.5 EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

4.2.6 TEST RESULTS (Between 9KHz - 30 MHz)


The emission from 9 kHz to 30MHz was pre-tested and found the result was 20dB lower than the limit, and according to 15.31(o) & RSS-Gen 6.13, the test result no need to reported.


Between 30MHz - 1GHz

Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101 kPa	Polarization:	Horizontal
Test Voltage:	AC 120V/60Hz	1.1.	

Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101kPa	Polarization:	Vertical
Test Voltage:	AC 120V/60Hz		212

Remarks:

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

2. The emission levels of other frequencies are very lower than the limit and not show in test report.

3. The test data shows only the worst case GFSK mode

1GHz~25GHz

Polar	Frequency	Meter Reading	Pre-ampli fier	Cable Loss	Antenna Factor	Emission Level	Limits	Margin	Detector
(H/V)	(MHz)	(dBuV)	(dB)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	Туре
				Low Cha	nnel:2402N	ÍHz			
V	4804.00	57.12	30.55	5.77	24.66	57.00	74.00	-17.00	Pk
V	4804.00	46.25	30.55	5.77	24.66	46.13	54.00	-7.87	AV
V	7206.00	52.24	30.33	6.32	24.55	52.78	74.00	-21.22	Pk
V	7206.00	41.23	30.33	6.32	24.55	41.77	54.00	-12.23	AV
V	9608.00	47.85	30.85	7.45	24.69	49.14	74.00	-24.86	Pk
V	9608.00	36.24	30.85	7.45	24.69	37.53	54.00	-16.47	AV
V	12010.00	43.15	31.02	8.99	25.57	46.69	74.00	-27.31	Pk
V	12010.00	31.24	31.02	8.99	25.57	34.78	54.00	-19.22	AV
Н	4804.00	56.85	30.55	5.77	24.66	56.73	74.00	-17.27	Pk
Н	4804.00	46.25	30.55	5.77	24.66	46.13	54.00	-7.87	AV
Н	7206.00	52.48	30.33	6.32	24.55	53.02	74.00	-20.98	Pk
Н	7206.00	41.21	30.33	6.32	24.55	41.75	54.00	-12.25	AV
Н	9608.00	46.54	30.85	7.45	24.69	47.83	74.00	-26.17	Pk
Н	9608.00	35.64	30.85	7.45	24.69	36.93	54.00	-17.07	AV
Н	12010.00	43.12	31.02	8.99	25.57	46.66	74.00	-27.34	Pk
Н	12010.00	31.25	31.02	8.99	25.57	34.79	54.00	-19.21	AV
Polar (H/V)	Frequency	Meter Reading	Pre-ampli fier	Cable Loss	Antenna Factor	Emission Level	Limits	Margin	Detector
(11/V)	(MHz)	(dBuV)	(dB)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	Туре
			Ν						
V			IV	lidale Ch	annel:2440	MHz			
	4880.00	56.85	30.55	5.77	annel:2440 24.66	MHz 56.73	74.00	-17.27	Pk
V	4880.00 4880.00	56.85 44.16					74.00 54.00	-17.27 -9.96	Pk AV
V V			30.55	5.77	24.66	56.73			
	4880.00	44.16	30.55 30.55	5.77 5.77	24.66 24.66	56.73 44.04	54.00	-9.96	AV
V	4880.00 7320.00	44.16 51.23	30.55 30.55 30.33	5.77 5.77 6.32	24.66 24.66 24.55	56.73 44.04 51.77	54.00 74.00	-9.96 -22.23	AV Pk
V V	4880.00 7320.00 7320.00	44.16 51.23 40.13	30.55 30.55 30.33 30.33	5.77 5.77 6.32 6.32	24.66 24.66 24.55 24.55	56.73 44.04 51.77 40.67	54.00 74.00 54.00	-9.96 -22.23 -13.33	AV Pk AV
V V V	4880.00 7320.00 7320.00 9760.00	44.16 51.23 40.13 46.26	30.55 30.55 30.33 30.33 30.85	5.77 5.77 6.32 6.32 7.45	24.66 24.66 24.55 24.55 24.69	56.73 44.04 51.77 40.67 47.55	54.00 74.00 54.00 74.00	-9.96 -22.23 -13.33 -26.45	AV Pk AV Pk
V V V V	4880.00 7320.00 7320.00 9760.00 9760.00	44.16 51.23 40.13 46.26 34.25	30.55 30.55 30.33 30.33 30.85 30.85	5.77 5.77 6.32 6.32 7.45 7.45	24.66 24.66 24.55 24.55 24.69 24.69	56.73 44.04 51.77 40.67 47.55 35.54	54.00 74.00 54.00 74.00 54.00	-9.96 -22.23 -13.33 -26.45 -18.46	AV Pk AV Pk AV
V V V V V	4880.00 7320.00 7320.00 9760.00 9760.00 12200.00	44.16 51.23 40.13 46.26 34.25 41.25	30.55 30.55 30.33 30.33 30.85 30.85 31.02	5.77 5.77 6.32 6.32 7.45 7.45 8.99	24.66 24.55 24.55 24.69 24.69 25.57	56.73 44.04 51.77 40.67 47.55 35.54 44.79	54.00 74.00 54.00 74.00 54.00 74.00	-9.96 -22.23 -13.33 -26.45 -18.46 -29.21	AV Pk AV Pk AV Pk
V V V V V	4880.00 7320.00 7320.00 9760.00 9760.00 12200.00 12200.00	44.16 51.23 40.13 46.26 34.25 41.25 30.12	30.55 30.55 30.33 30.33 30.85 30.85 31.02 31.02	5.77 5.77 6.32 6.32 7.45 7.45 8.99 8.99	24.66 24.66 24.55 24.55 24.69 24.69 25.57 25.57	56.73 44.04 51.77 40.67 47.55 35.54 44.79 33.66	54.00 74.00 54.00 74.00 54.00 74.00 54.00	-9.96 -22.23 -13.33 -26.45 -18.46 -29.21 -20.34	AV Pk AV Pk AV Pk AV
V V V V V H	4880.00 7320.00 7320.00 9760.00 9760.00 12200.00 12200.00 4880.00	44.16 51.23 40.13 46.26 34.25 41.25 30.12 55.56	30.55 30.55 30.33 30.33 30.85 30.85 31.02 30.55	5.77 5.77 6.32 6.32 7.45 7.45 8.99 8.99 5.77	24.66 24.66 24.55 24.55 24.69 24.69 25.57 25.57 24.66	56.73 44.04 51.77 40.67 47.55 35.54 44.79 33.66 55.44	54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00	-9.96 -22.23 -13.33 -26.45 -18.46 -29.21 -20.34 -18.56	AV Pk AV Pk AV Pk AV Pk
V V V V V H H	4880.00 7320.00 7320.00 9760.00 9760.00 12200.00 12200.00 4880.00 4880.00	44.16 51.23 40.13 46.26 34.25 41.25 30.12 55.56 44.56 51.25	30.55 30.55 30.33 30.33 30.85 30.85 31.02 31.02 30.55 30.55	5.77 5.77 6.32 6.32 7.45 7.45 8.99 8.99 5.77 5.77	24.66 24.66 24.55 24.55 24.69 24.69 25.57 25.57 24.66 24.66	56.73 44.04 51.77 40.67 47.55 35.54 44.79 33.66 55.44 44.44	54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00	-9.96 -22.23 -13.33 -26.45 -18.46 -29.21 -20.34 -18.56 -9.56 -22.21	AV Pk AV Pk AV Pk AV Pk AV
V V V V V H H H	4880.00 7320.00 7320.00 9760.00 9760.00 12200.00 12200.00 4880.00 4880.00 7320.00 7320.00	44.16 51.23 40.13 46.26 34.25 41.25 30.12 55.56 44.56	30.55 30.55 30.33 30.33 30.85 30.85 31.02 30.55 30.55 30.33	5.77 5.77 6.32 6.32 7.45 7.45 8.99 8.99 5.77 5.77 6.32 6.32	24.66 24.66 24.55 24.55 24.69 24.69 25.57 25.57 24.66 24.66 24.55 24.55	56.73 44.04 51.77 40.67 47.55 35.54 44.79 33.66 55.44 44.44 51.79 41.77	54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00	-9.96 -22.23 -13.33 -26.45 -18.46 -29.21 -20.34 -18.56 -9.56 -22.21 -12.23	AV Pk AV Pk AV Pk AV Pk AV Pk
V V V V V H H H	4880.00 7320.00 7320.00 9760.00 9760.00 12200.00 12200.00 4880.00 4880.00 7320.00 7320.00 9760.00	44.16 51.23 40.13 46.26 34.25 41.25 30.12 55.56 44.56 51.25 41.23 46.32	30.55 30.55 30.33 30.33 30.85 30.85 31.02 30.55 30.55 30.33 30.55 30.33 30.33 30.33 30.33 30.85	5.77 5.77 6.32 6.32 7.45 7.45 8.99 8.99 5.77 5.77 6.32 6.32 7.45	24.66 24.66 24.55 24.69 24.69 25.57 25.57 24.66 24.66 24.55 24.55 24.69	56.73 44.04 51.77 40.67 47.55 35.54 44.79 33.66 55.44 44.44 51.79 41.77 47.61	54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00	-9.96 -22.23 -13.33 -26.45 -18.46 -29.21 -20.34 -18.56 -9.56 -22.21 -12.23 -26.39	AV Pk AV Pk AV Pk AV Pk AV Pk AV
V V V V V H H H H	4880.00 7320.00 7320.00 9760.00 9760.00 12200.00 12200.00 4880.00 4880.00 7320.00 7320.00	44.16 51.23 40.13 46.26 34.25 41.25 30.12 55.56 44.56 51.25 41.23	30.55 30.55 30.33 30.33 30.85 30.85 31.02 30.55 30.55 30.33	5.77 5.77 6.32 6.32 7.45 7.45 8.99 8.99 5.77 5.77 6.32 6.32	24.66 24.66 24.55 24.55 24.69 24.69 25.57 25.57 24.66 24.66 24.55 24.55	56.73 44.04 51.77 40.67 47.55 35.54 44.79 33.66 55.44 44.44 51.79 41.77	54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00	-9.96 -22.23 -13.33 -26.45 -18.46 -29.21 -20.34 -18.56 -9.56 -22.21 -12.23	AV Pk AV Pk AV Pk AV Pk AV Pk AV Pk

Project No.: ZKT-2109225031E Page 22 of 39

Polar	Frequency	Meter Reading	Pre-ampli fier	Cable Loss	Antenna Factor	Emission Level	Limits	Margin	Detector
(H/V)	(MHz)	(dBuV)	(dB)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	Туре
	2	× .	I	High Cha	nnel:2480M	1Hz			
V	4960.00	55.25	30.55	5.77	24.66	55.13	74.00	-18.87	Pk
V	4960.00	45.24	30.55	5.77	24.66	45.12	54.00	-8.88	AV
V	7440.00	50.12	30.33	6.32	24.55	50.66	74.00	-23.34	Pk
V	7440.00	40.23	30.33	6.32	24.55	40.77	54.00	-13.23	AV
V	9920.00	41.21	30.85	7.45	24.69	42.50	74.00	-31.50	Pk
V	9920.00	35.26	30.85	7.45	24.69	36.55	54.00	-17.45	AV
V	12400.00	40.23	31.02	8.99	25.57	43.77	74.00	-30.23	Pk
V	12400.00	31.02	31.02	8.99	25.57	34.56	54.00	-19.44	AV
Н	4960.00	55.56	30.55	5.77	24.66	55.44	74.00	-18.56	Pk
Н	4960.00	45.12	30.55	5.77	24.66	45.00	54.00	-9.00	AV
Н	7440.00	50.23	30.33	6.32	24.55	50.77	74.00	-23.23	Pk
Н	7440.00	40.23	30.33	6.32	24.55	40.77	54.00	-13.23	AV
Н	9920.00	45.48	30.85	7.45	24.69	46.77	74.00	-27.23	Pk
Н	9920.00	35.89	30.85	7.45	24.69	37.18	54.00	-16.82	AV
Н	12400.00	40.56	31.02	8.99	25.57	44.10	74.00	-29.90	Pk
Н	12400.00	30.74	31.02	8.99	25.57	34.28	54.00	-19.72	AV

Remark:

1. Emission Level = Meter Reading + Antenna Factor + Cable Loss – Pre-amplifier, Margin= Emission Level - Limit

- 2. If peak below the average limit, the average emission was no test.
- 3. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Shenzhen ZKT Technology Co., Ltd.

1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

5.RADIATED BAND EMISSION MEASUREMENT

5.1 TEST REQUIREMENT:

Test Requirement:	FCC Part15 C Section 15.209 and 15.205						
Test Method:	ANSI C63.10: 2013						
Test Frequency Range:	All of the restrict bands were tested, only the worst band's (2310MHz to 2500MHz) data was showed.						
Test site:	Measurement Distance: 3m						
Receiver setup:	Frequency	Detector	RBW	VBW	Value		
	Above	Peak	1MHz	3MHz	Peak		
	1GHz	Average	1MHz	3MHz	Average		

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

FREQUENCY (MHz)	Limit (dBuV/m) (at 3M)			
	PEAK	AVERAGE		
Above 1000	74	54		

Notes:

- (1) The limit for radiated test was performed according to FCC PART 15C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).

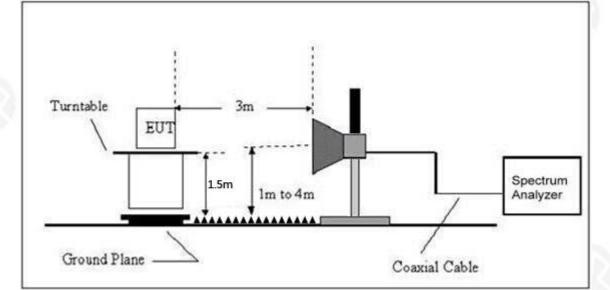
5.2 TEST PROCEDURE

Above 1GHz test procedure as below:

- a. 1. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
- g. Test the EUT in the lowest channel,the Highest channel Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

5.3 DEVIATION FROM TEST STANDARD No deviation


Shenzhen ZKT Technology Co., Ltd. 1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

www.zkt-lab.com

5.4 TEST SETUP

5.5 EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.

5.6 TEST RESULT

	Polar (H/V)	Frequenc y (MHz)	Meter Reading (dBuV)	Pre- amplifier (dB)	Cable Loss (dB)	Antenna Factor (dB/m)	Emission level (dBuV/m)	Limit (dBuV /m)	Detec tor Type	Result	
				Low	Channe	el: 2402MHz	Z	0			
	Н	2390.00	57.26	30.22	4.85	23.98	55.87	74.00	PK	PASS	
	Н	2390.00	46.34	30.22	4.85	23.98	44.95	54.00	AV	PASS	
	Н	2400.00	54.28	30.22	4.85	23.98	52.89	74.00	PK	PASS	
	Н	2400.00	44.68	30.22	4.85	23.98	43.29	54.00	AV	PASS	
	V	2390.00	51.67	30.22	4.85	23.98	50.28	74.00	PK	PASS	
	V	2390.00	42.36	30.22	4.85	23.98	40.97	54.00	AV	PASS	
	V	2400.00	49.87	30.22	4.85	23.98	48.48	74.00	PK	PASS	
OFEK	V	2400.00	36.45	30.22	4.85	23.98	35.06	54.00	AV	PASS	
GFSK		High Channel: 2480MHz									
	Н	2483.50	57.56	30.22	4.85	23.98	56.17	74.00	PK	PASS	
	Н	2485.50	45.66	30.22	4.85	23.98	44.27	54.00	AV	PASS	
	Н	2483.50	54.23	30.22	4.85	23.98	52.84	74.00	PK	PASS	
	Н	2485.50	44.52	30.22	4.85	23.98	43.13	54.00	AV	PASS	
	V	2483.50	52.14	30.22	4.85	23.98	50.75	74.00	PK	PASS	
	V	2485.50	40.16	30.22	4.85	23.98	38.77	54.00	AV	PASS	
	V	2483.50	48.97	30.22	4.85	23.98	47.58	74.00	PK	PASS	
	V	2485.50	39.54	30.22	4.85	23.98	38.15	54.00	AV	PASS	

1. Emission Level = Meter Reading + Antenna Factor + Cable Loss – Pre-amplifier, Margin= Emission Level - Limit

6.POWER SPECTRAL DENSITY TEST

Test Requirement:	FCC Part15 C Section 15.247 (e)
Test Method:	KDB558074 D0115.247 Meas Guidance v05r02

6.1 APPLIED PROCEDURES / LIMIT

FCC Part15 (15.247) , Subpart C								
Section	Test Item	Limit	Frequency Range (MHz)	Result				
15.247	Power Spectral Density	8dBm/3kHz	2400-2483.5	PASS				

6.2 TEST PROCEDURE

- 2. Set the span to 1.5 times the DTS bandwidth.
- 3. Set the RBW to: 3 kHz \leq RBW \leq 100 kHz.
- 4. Set the VBW \geq 3 x RBW.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level within the RBW.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

6.3 DEVIATION FROM STANDARD

No deviation.

6.4 TEST SETUP

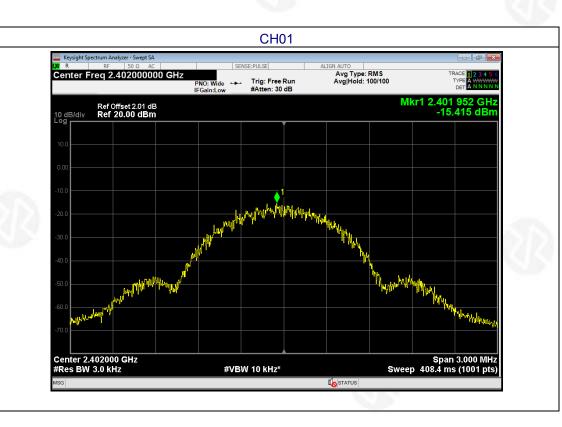
EUT	SPECTRUM	ĺ
	ANALYZER	

6.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.1 Unless otherwise a special operating condition is specified in the follows during the testing.

Shenzhen ZKT Technology Co., Ltd. 1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

www.zkt-lab.com



6.6 TEST RESULT

Temperature :	26 ℃	Relative Humidity :	54%
Test Mode :	GFSK	Test Voltage :	AC 120V/60Hz

	Frequency	Power Spectral Density (dBm/3kHz)	Limit (dBm/3kHz)	Result
	2402 MHz	-15.415	8	PASS
	2440 MHz	-15.354	8	PASS
3	2480 MHz	-15.175	8	PASS

CH20

CH40

7. CHANNEL BANDWIDTH

Test Requirement:	FCC Part15 C Section 15.247 (a)(2)	
Test Method:	KDB558074 D0115.247 Meas Guidance v05r02	

7.1 APPLIED PROCEDURES / LIMIT

FCC Part15 (15.247) , Subpart C							
Section	Test Item	Limit	Frequency Range (MHz)	Result			
15.247(a)(2)	Bandwidth	>= 500KHz (6dB bandwidth)	2400-2483.5	PASS			

7.2 TEST PROCEDURE

- 1. Set RBW = 30 kHz.
- 2. Set the video bandwidth (VBW) \ge 3 x RBW.
- 3. Detector = Peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.

7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

7.3 DEVIATION FROM STANDARD

No deviation.

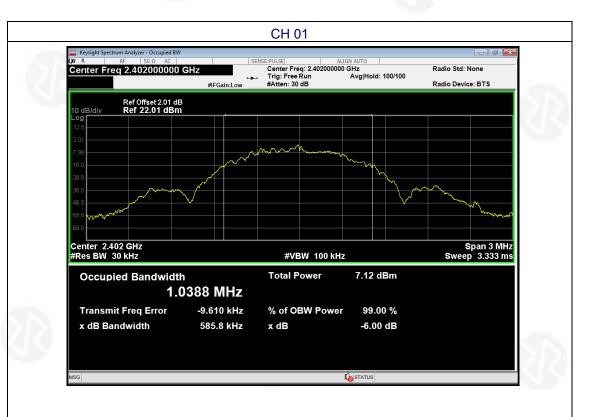
7.4 TEST SETUP

7.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

www.zkt-lab.com



7.6 TEST RESULT

Temperature :	26 ℃	Relative Humidity :	54%
Test Mode :	GFSK	Test Voltage :	AC 120V/60Hz

20	Test channel	Channel Bandwidth (MHz)	Limit(KHz)	Result
24	Lowest	0.586		
1	Middle	0.584	>500	Pass
	Highest	0.580	212	



Shenzhen ZKT Technology Co., Ltd. 1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

X zkt@zkt-lab.com

8.PEAK OUTPUT POWER TEST

Test Requirement:	FCC Part15 C Section 15.247 (b)(3)
Test Method:	KDB558074 D0115.247 Meas Guidance v05r02

8.1 APPLIED PROCEDURES / LIMIT

0		FC	C Part15 (15.247) , Subp	oart C	
	Section	Test Item	Limit	Frequency Range (MHz)	Result
	15.247(b)(3)	Peak Output Power	1 watt or 30dBm	2400-2483.5	PASS

8.2 TEST PROCEDURE

a. The EUT was directly connected to the Power meter

8.3 DEVIATION FROM STANDARD No deviation.

8.4 TEST SETUP

8.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

Temperature :	26 ℃	Relative Humidity :	54%
Test Mode :	GFSK	Test Voltage :	AC 120V/60Hz

Test channel	Peak Output Power (dBm)	Limit(dBm)	Result
Lowest	-1.28		
Middle	-1.32	30.00	Pass
Highest	-1.41		

Project No.: ZKT-2109225031E Page 34 of 39

9. CONDUCTED BAND EDGE AND SPURIOUS EMISSION

Test Requirement:	FCC Part15 C Section 15.247 (d)
Test Method:	KDB558074 D0115.247 Meas Guidance v05r02

9.1 APPLICABLE STANDARD

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

9.2 TEST PROCEDURE

Using the following spectrum analyzer setting:

A) Set the RBW = 100KHz.

- B) Set the VBW = 300KHz.
- C) Sweep time = auto couple.
- D) Detector function = peak.
- E) Trace mode = max hold.
- F) Allow trace to fully stabilize.

9.3 DEVIATION FROM STANDARD

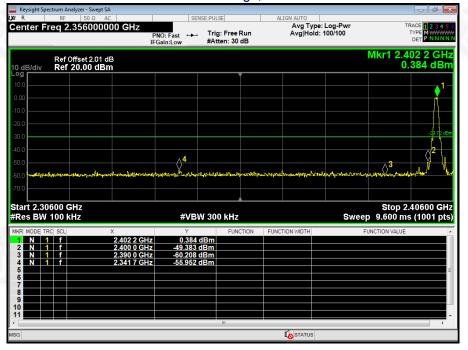
No deviation.

9.4 TEST SETUP

EUT	SPECTRUM
	ANALYZER

9.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.


9.6 TEST RESULTS

GFSK: Band Edge, Left Side

GFSK: Band Edge, Right Side

	Analyzer - Swept SA F 50 Ω AC		CEN	SE:PULSE	,	ALIGN AUTO			
enter Freq		00 GHz	NO: Fast	Trig: Free I #Atten: 30		Avg Type Avg Hold:			ACE 1 2 3 4 5 YPE MWWW DET P N N N
	ef Offset 2.04 di ef 20.00 dBn							Mkr1 2.48 -2.	30 2 GH 147 dBr
0.0									
	♦ 4								-31 79 df
	2 Marmenselwy	3 	dent proposed	๛ณ ^{ึงเส} าร์เหมาะเกาไป	upper and	-	gerenderen geneelder die ge	washiner the	and and a start of the start of
70.0				,					
tart 2.47600 Res BW 100			#VBV	V 300 kHz			Sweep	Stop 2.: 9.600 ms	57600 GH (1001 pt
KR MODE TRC SC 1 N 1 f 2 N 1 f 3 N 1 f 4 N 1 f		× 2.480 2 GHz 2.483 5 GHz 2.500 0 GHz 2.485 0 GHz	-2.147 c -57.644 c -58.626 c -43.950 c	IBM IBM IBM	TION FI	UNCTION WIDTH	FU	NCTION VALUE	
5 6 7 8 9									
				m					4
						STATUS			

Lowest channel

the second second	RF			SI	ENSE:PULS	E	ALI	IGN AUTO Avg Type:	Lon Dur		PACE DIR
enter	Freq	13.26500		PNO: Fast 🔸 FGain:Low		Free Run en: 30 dB		Avg Hold:			TYPE MWW DET P N N
0 dB/di		Offset 2.01 7 20.00 dB									2.412 G .941 dE
10.0											
0.00											
10.0											
20.0											
80.0											-29.17
40.0											
50.0			∧ <mark>3</mark> ∆ ⁴	5					hand the second second	and the second s	manamuth
i0.0 	Jor marrie	home have	Jammennen	mannah	render	stal water way	www.	and the state of t			
70.0											
	03 GHz W 100			#VE	W 300	kHz			Swe	Stop eep 2.530	o 26.50 G s (1001 p
					1	FUNCTION		ION WIDTH		FUNCTION VALUE	
	TRC SCL		Х	Y		FUNCTION	FUNCT	ION WIDTH	1	FUNCTION VALUE	
	TRC SCL		2.412 GHz	-1.941		FUNCTION	FUNCT	ION WIDTH	ł	-UNCTION VALUE	
			2.412 GHz 25.653 GHz	-1.941 -42.758	dBm	FUNCTION	FUNCT		ł	-UNCTION VALUE	
			2.412 GHz 25.653 GHz 4.980 GHz 7.256 GHz	-1.941 -42.758 -57.319 -56.122	dBm dBm dBm	FUNCTION	FUNCT		ł	-UNCTION VALUE	
IKR MODE 1 N 2 N 3 N 4 N 5 N			2.412 GHz 25.653 GHz 4.980 GHz	-1.941 -42.758 -57.319 -56.122	dBm dBm dBm	FUNCTION	FUNCT		ł	-UNCTION VALUE	
IKR MODE 1 N 2 N 3 N 4 N 5 N 6 7			2.412 GHz 25.653 GHz 4.980 GHz 7.256 GHz	-1.941 -42.758 -57.319 -56.122	dBm dBm dBm	FUNCTION	FUNCT		} 	-UNCTION VALUE	
IKR MODE 1 N 2 N 3 N 4 N 5 N 6 7 8			2.412 GHz 25.653 GHz 4.980 GHz 7.256 GHz	-1.941 -42.758 -57.319 -56.122	dBm dBm dBm	FUNCTION	FUNCI		}	-UNC HON VALUE	
IKR MODE 1 N 2 N 3 N 4 N 5 N 6 7 8 9			2.412 GHz 25.653 GHz 4.980 GHz 7.256 GHz	-1.941 -42.758 -57.319 -56.122	dBm dBm dBm	FUNCTION	FUNCI		ł	-UNC HON VALUE	
IKR MODE 1 N 2 N 3 N 4 N 5 N 6 7 8			2.412 GHz 25.653 GHz 4.980 GHz 7.256 GHz	-1.941 -42.758 -57.319 -56.122	dBm dBm dBm dBm	FUNCTION	FUNCI			ONC TON VALUE	

Middle channel

	RF	50.0 **		Loc						- đ
R enter F		50 Ω AC 13.265000	000 GHz	NO: Fast	NSE:PULSE	Run	ALIGN AUTO Avg Typ Avg Hold	e: Log-Pwr I: 10/10	1	TYPE MWWW
				Gain:Low	#Atten: 30	dB	<u>.</u>			DET
0 dB/div	Ref Ref	Offset 2.02 d 20.00 dBn	B n							2.439 GH .868 dBr
og										
10.0	4	1								
0.00										
0.0										
.0.0										
0.0										-30.46 df
0.0										مالوسيارين
io.o			−−− 0 ⁴				مر مدر الرائيس م	and the second s	when the state of	and the second s
0.0 	A CARGO AND A	mortual magnetices	with Martine Many	mannator	- Antonio Contractor	and and a start of the second				
'0.0 										
tart 0.03				#VB	W 300 kHz			Swe	Stop eep 2.530	o 26.50 GH s (1001 pt
tart 0.03 Res BW	100	kHz	x	Y	FUNC	CTION F	UNCTION WIDTH		Stop eep 2.530	o 26.50 GH s (1001 pt
tart 0.03 Res BW	100	kHz	2.439 GHz	۲ -1.86 8	FUNC	CTION F	UNCTION WIDTH		eep 2.530	o 26.50 GH s (1001 pt
tart 0.03 Res BW	100 RC SCL	kHz	2.439 GHz 26.447 GHz 4.715 GHz	-1.868 -42.209 -56.813	dBm dBm dBm	CTION F	UNCTION WIDTH		eep 2.530	o 26.50 GH s (1001 pt
tart 0.03 Res BW KR MODE TF 1 N 1 2 N 1 3 N 1 4 N 1	100 RC SCL	kHz	2.439 GHz 26.447 GHz 4.715 GHz 7.230 GHz	-1.868 -42.209 -56.813 -56.061	dBm dBm dBm dBm	CTION F	UNCTION WIDTH		eep 2.530	o 26.50 GH s (1001 pt
tart 0.03 Res BW KR MODE TH 1 N 1 2 N 1 3 N 1 4 N 1 5 N 1 6	100 RC SCL 1 f 1 f 1 f	kHz	2.439 GHz 26.447 GHz 4.715 GHz	-1.868 -42.209 -56.813	dBm dBm dBm dBm	CTION F			eep 2.530	o 26,50 GH s (1001 pt
tart 0.03 Res BW KR MODE TF 1 N 1 2 N 1 3 N 1 4 N 1 5 N 1 6 7	100 RC SCL 1 f 1 f 1 f 1 f 1 f	kHz	2.439 GHz 26.447 GHz 4.715 GHz 7.230 GHz	-1.868 -42.209 -56.813 -56.061	dBm dBm dBm dBm	TION F	UNCTION WIDTH		eep 2.530	o 26.50 GH s (1001 pt
tart 0.03 Res BW KR MODE TF 1 N 1 2 N 1 3 N 1 4 N 1 5 N 1 6 7 8 8	100 RC SCL 1 f 1 f 1 f 1 f 1 f	kHz	2.439 GHz 26.447 GHz 4.715 GHz 7.230 GHz	-1.868 -42.209 -56.813 -56.061	dBm dBm dBm dBm	CTION F	UNCTION WIDTH		eep 2.530	o 26.50 GH s (1001 pt
tart 0.03 Res BW KR MODE TF 1 N 1 2 N 1 3 N 1 4 N 1 5 N 1 6 7	100 RC SCL 1 f 1 f 1 f 1 f 1 f	kHz	2.439 GHz 26.447 GHz 4.715 GHz 7.230 GHz	-1.868 -42.209 -56.813 -56.061	dBm dBm dBm dBm	CTION F	UNCTION WIDTH		eep 2.530	o 26.50 GH s (1001 pt

1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

Highest channel

	-req 13.2	2650000		PNO: Fast		g: Free F ten: 30				ype: Log old: 10/1			11	TYPE MWWW
10 dB/div		et 2.04 dE .00 dBm	3	FGain:Low	#41	ten: 30	ав					Μ	kr1 2 -1.	.492 GH 601 dBr
-og 10.0	.1-													
0.00	^ !													
10.0	<mark> </mark>													
-20.0														-31.71.dF
30.0														
-50.0			3	4	5				-		Proved and Proved	man	للتمعسولهم	umman
-60.0	- and and the second	mannan	merensen	man	والمعتهديداس	مالية الرياسية.	ر میں اور مردوم اور	mahan	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					
70.0														
Start 0.03													Stop	26.50 GH
-70.0 Start 0.03 #Res BW	3 GHz / 100 kHz			#	VBW 30	0 kHz					Sw	eep 2	Stop 2.530 s	26.50 GH s (1001 pts
Start 0.03 #Res BW	100 kHz		× 2 492 GH)	(0 kHz Func	CTION	FUNCT	TION WIDTH			еер 2	2.530 s	26.50 GH s (1001 pts
Start 0.03 #Res BW	/ 100 kHz		2.492 GHz 26.024 GHz	-1.0 -42.4	01 dBm 43 dBm		CTION	FUNCT	FION WIDTH			_	2.530 s	26.50 GH s (1001 pt
Start 0.03 #Res BW	100 kHz (RC SCL 1 f		2.492 GHz 26.024 GHz 5.112 GHz	2 -1.0 -42.4 -55.4	01 dBm 43 dBm		CTION	FUNCT	TION WIDTH			_	2.530 s	26.50 GH 3 (1001 pts
Start 0.03 #Res BW MKR MODE T 1 N 2 N 3 N 4 N	100 kHz (RC SCL 1 f		2.492 GHz 26.024 GHz	2 -1.0 -42.4 -55.4	01 dBm 43 dBm		CTION	FUNCT	TION WIDTH			_	2.530 s	26.50 GH
Start 0.03 #Res BW MKR MODE TI 1 N 2 N 3 N 4 N 5 N	I 100 kHz TRC SCL 1 f 1 f 1 f 1 f 1 f		2.492 GHz 26.024 GHz 5.112 GHz 7.574 GHz	2 -1.0 -42.4 -55.4	01 dBm 43 dBm		CTION	FUNCT	TION WIDTH			_	2.530 s	26.50 GH
Start 0.03 #Res BW MKR MODE T 2 N 2 N 3 N 4 N 5 N 6 7 8	I 100 kHz TRC SCL 1 f 1 f 1 f 1 f 1 f		2.492 GHz 26.024 GHz 5.112 GHz 7.574 GHz	2 -1.0 -42.4 -55.4	01 dBm 43 dBm		CTION	FUNCT	TION WIDTH			_	2.530 s	26.50 GH
Start 0.03 #Res BW MKR MODE T 1 N 2 N 3 N 4 N 5 N 6 7 8 9	I 100 kHz TRC SCL 1 f 1 f 1 f 1 f 1 f		2.492 GHz 26.024 GHz 5.112 GHz 7.574 GHz	2 -1.0 -42.4 -55.4	01 dBm 43 dBm		CTION	FUNCT	TION WIDTH			_	2.530 s	26,50 GH s (1001 pts
Start 0.03 #Res BW MKR MODE T 2 N 2 N 3 N 4 N 5 N 6 7 8	I 100 kHz TRC SCL 1 f 1 f 1 f 1 f 1 f		2.492 GHz 26.024 GHz 5.112 GHz 7.574 GHz	2 -1.0 -42.4 -55.4	01 dBm 43 dBm		TION	FUNC	TION WIDTH			_	2.530 s	26,50 GH s (1001 pts

10.ANTENNA REQUIREMENT

Standard requirement:

FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

EUT Antenna:

The antenna is PCB antenna, the best case gain of the antennas is 0dBi, reference to the appendix II for details

Project No.: ZKT-2109225031E Page 39 of 39

11. TEST SETUP PHOTO

Reference to the appendix I for details.

12. EUT CONSTRUCTIONAL DETAILS

Reference to the appendix II for details.

******* END OF REPORT ******

