

Page 1 of 107

TEST REPORT

Product Name : WIFI/BT module

Brand Mark : Fn-link

Model No. : H158A-SM

FCC ID : 2AATL-H158ASM

Report Number : BLA-EMC-202203-A9202

Date of Sample Receipt : 2022/3/23

Date of Test : 2022/4/1 to 2022/5/9

: 2022/5/9 Date of Issue

Test Standard : 47 CFR Part 15, Subpart C 15.247

Test Result : Pass

Prepared for:

FN-LINK TECHNOLOGY LIMITED

No.8, Litong Road, Liuyang Economic & Technical Development Zone, Changsha, Hunan, CHINA

Prepared by:

BlueAsia of Technical Services (Shenzhen) Co.,Ltd. Building C, No. 107, Shihuan Road, Shiyan Sub-District, Baoan District, Shenzhen, Guangdong Province, China

TEL: +86-755-23059481

Jozu Blue Zhong Compiled by:

Review by:

Approved by:

Date:

Page 2 of 107

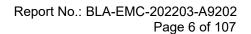
REPORT REVISE RECORD

Version No. Date		Description	
00 2022/5/9		Original	

TABLE OF CONTENTS

1	TE	ST SUMMARY	5
2	GE	ENERAL INFORMATION	6
3	GE	ENERAL DESCRIPTION OF E.U.T	6
4	BL	OCK DIAGRAM OF EUT CONNECTION	6
5	TE	ST ENVIRONMENT	7
6	TE	ST MODE	7
7	ME	EASUREMENT UNCERTAINTY	7
	DE	SCRIPTION OF SUPPORT UNIT	1
8		BORATORY LOCATION	
9			
10		ST INSTRUMENTS LIST	
11	CO	ONDUCTED EMISSIONS AT AC POWER LINE (150KHZ-30MHZ)	
1	11.1	LIMITS	12
1	11.2	BLOCK DIAGRAM OF TEST SETUP	
1	11.3	PROCEDURE	
	11.4	TEST DATA	
12	RA	ADIATED SPURIOUS EMISSIONS	16
1	12.1	LIMITS	16
1	12.2	BLOCK DIAGRAM OF TEST SETUP	17
1	12.3	PROCEDURE	17
1	12.4	TEST DATA	19
13	РО	OWER SPECTRUM DENSITY	27
1	13.1	LIMITS	27
1	13.2	BLOCK DIAGRAM OF TEST SETUP	27
1	13.3	TEST DATA	27
14	CO	ONDUCTED PEAK OUTPUT POWER	28
1	14.1	LIMITS	28
	14.2	BLOCK DIAGRAM OF TEST SETUP	
1	14.3	TEST Data	29
15	AN	ITENNA REQUIREMENT	30

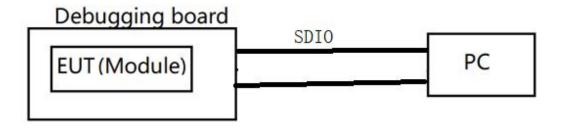
Page 4 of 107


15.1	Conclusion	30
16 RA	DIATED EMISSIONS WHICH FALL IN THE RESTRICTED BANDS	31
16.1	LIMITS	31
16.2	BLOCK DIAGRAM OF TEST SETUP	32
16.3	PROCEDURE	32
16.4	TEST Data	34
17 CO	NDUCTED SPURIOUS EMISSIONS	50
17.1	LIMITS	50
17.2	BLOCK DIAGRAM OF TEST SETUP	50
17.3	TEST Data	
18 CO	NDUCTED BAND EDGES MEASUREMENT	52
18.1	LIMITS	52
18.2	BLOCK DIAGRAM OF TEST SETUP	52
18.3	TEST DATA	53
19 MII	NIMUM 6DB BANDWIDTH	54
19.1	LIMITS	54
19.2	BLOCK DIAGRAM OF TEST SETUP	54
19.3	TEST DATA	54
20 AP	PENDIX	55
VDDENI	DIX A: PHOTOGRAPHS OF TEST SETUP	105

Page 5 of 107

1 TEST SUMMARY

Test item	Test Requirement	Test Method	Class/Severity	Result
Conducted Emissions at AC Power Line (150kHz-30MHz)	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 6.2 47 CFR Part 15, Subpart 15.207		Pass
Radiated Spurious Emissions	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 6.4,6.5,6.6	47 CFR Part 15, Subpart C 15.209 & 15.247(d)	Pass
Power Spectrum Density	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 11.10.2	47 CFR Part 15, Subpart C 15.247(e)	Pass
Conducted Peak Output Power	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 7.8.5 & Section 11.9.1	47 CFR Part 15, Subpart C 15.247(b)(1) & 15.247(b)(3)	Pass
Antenna Requirement	47 CFR Part 15, Subpart C 15.247	N/A	47 CFR Part 15, Subpart C 15.203 & 15.247(c)	Pass
Radiated Emissions which fall in the restricted bands	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 6.10.5	47 CFR Part 15, Subpart C 15.209 & 15.247(d)	Pass
Conducted Spurious Emissions	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 7.8.6 & Section 11.11	47 CFR Part 15, Subpart C 15.247(d)	Pass
Conducted Band Edges Measurement			47 CFR Part 15, Subpart C 15.247(d)	Pass
Minimum 6dB Bandwidth	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 11.8.1	47 CFR Part 15, Subpart C 15.247a(2)	Pass


2 GENERAL INFORMATION

Applicant	FN-LINK TECHNOLOGY LIMITED			
Address	No.8, Litong Road, Liuyang Economic & Technical Development Zone, Changsha, Hunan, CHINA			
Manufacturer	FN-LINK TECHNOLOGY LIMITED			
Address	No.8, Litong Road, Liuyang Economic & Technical Development Zone, Changsha, Hunan,CHINA			
Factory	FN-LINK TECHNOLOGY LIMITED			
Address	No.8, Litong Road, Liuyang Economic & Technical Development Zone, Changsha, Hunan, CHINA			
Product Name	WIFI/BT module			
Test Model No.	H158A-SM			

3 GENERAL DESCRIPTION OF E.U.T.

Hardware Version	V1.0		
Software Version	V1.0		
Operation Frequency:	802.11b/g/n(HT20): 2412MHz to 2462MHz 802.11n(HT40): 2422MHz to 2452MHz		
Modulation Type: 802.11b: DSSŚ (CCK, DQPSK, DBPSK) 802.11g/n: OFDM (64QAM, 16QAM, QPSK, BPSK)			
Channel Spacing:	5MHz		
Number of Channels:	802.11b/g/n(HT20):11 802.11n(HT40):7		
Antenna Type:	External Antenna		
Antenna Gain:	2dBi (Provided by the customer)		

4 BLOCK DIAGRAM OF EUT CONNECTION

Page 7 of 107

5 TEST ENVIRONMENT

Environment	nent Temperature Voltage	
Normal	25	DC3.3V

6 TEST MODE

TEST MODE	TEST MODE DESCRIPTION				
TX	Keep the EUT in transmitting mode with modulation(dutycycle >98%)				
Remark:Only th	Remark:Only the data of the worst mode would be recorded in this report.				

7 MEASUREMENT UNCERTAINTY

Parameter	Expanded Uncertainty (Confidence of 95%)		
Radiated Emission(9kHz-30MHz)	±4.34dB		
Radiated Emission(30Mz-1000MHz)	±4.24dB		
Radiated Emission(1GHz-18GHz)	±4.68dB		
AC Power Line Conducted Emission(150kHz-30MHz)	±3.45dB		

Page 8 of 107

8 DESCRIPTION OF SUPPORT UNIT

Device Type	Manufacturer	Model Name	Serial No.	Remark
PC	HASEE	K610D	N/A	N/A

9 LABORATORY LOCATION

All tests were performed at:

BlueAsia of Technical Services(Shenzhen) Co., Ltd.

Building C, No. 107, Shihuan Road, Shiyan Sub-District, Baoan District, Shenzhen, Guangdong Province, China

Telephone: TEL: +86-755-28682673 FAX: +86-755-28682673

No tests were sub-contracted.

Page 9 of 107

10 TEST INSTRUMENTS LIST

Test Equipment Of Conducted Emissions at AC Power Line (150kHz-30MHz)							
Equipment Manufacturer Model S/N Cal.Date Cal.D							
Shield room	SKET	833	N/A	25/11/2020	24/11/2023		
Receiver	R&S	ESPI3	101082	24/9/2021	23/9/2022		
LISN	R&S	ENV216	3560.6550.15	24/9/2021	23/9/2022		
LISN	安泰信	AT166-2	AKK1806000003	26/9/2021	25/9/2022		
EMI software	EZ	EZ-EMC	N/A	N/A	N/A		

Test Equipment Of Radiated Spurious Emissions						
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due	
Chamber	SKET	966	N/A	10/11/2020	9/11/2023	
Spectrum	R&S	FSP40	100817	24/9/2021	23/9/2022	
Receiver	R&S	ESR7	101199	24/9/2021	23/9/2022	
broadband Antenna	Schwarzbeck	VULB9168	00836 P:00227	26/9/2020	25/9/2022	
Horn Antenna	Schwarzbeck	9120D	01892 P:00331	26/9/2020	25/9/2022	
Amplifier	SKET	LNPA-0118-45	N/A	24/9/2021	23/9/2022	
EMI software	EZ	EZ-EMC	N/A	N/A	N/A	
Loop antenna	SCHNARZBECK	FMZB1519B	00102	26/9/2020	25/9/2022	

Test Equipment Of Power Spectrum Density							
Equipment	ent Manufacturer Model S/N Cal.Date Cal.Du						
Spectrum	R&S	FSP40	100817	24/9/2021	23/9/2022		

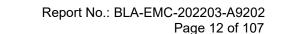
Page 10 of 107

Spectrum	Agilent	N9020A	MY49100060	24/9/2021	23/9/2022
Signal Generator	Agilent	N5182A	MY49060650	24/9/2021	23/9/2022
Signal Generator	Agilent	E8257D	MY44320250	24/9/2021	23/9/2022

Test Equipment Of Conducted Peak Output Power								
Equipment	Manufacturer	S/N	Cal.Date	Cal.Due				
Spectrum	R&S	FSP40	100817	24/9/2021	23/9/2022			
Spectrum	Agilent	N9020A	MY49100060	24/9/2021	23/9/2022			
Signal Generator	Agilent	N5182A	MY49060650	24/9/2021	23/9/2022			
Signal Generator	Agilent	E8257D	MY44320250	24/9/2021	23/9/2022			

Test Equipment Of Antenna Requirement					
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due

Test Equipment Of Radiated Emissions which fall in the restricted bands								
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due			
Chamber	SKET	966	N/A	10/11/2020	9/11/2023			
Spectrum	R&S	FSP40	100817	24/9/2021	23/9/2022			
Receiver	R&S	ESR7	101199	24/9/2021	23/9/2022			
broadband Antenna	Schwarzbeck	VULB9168	00836 P:00227	26/9/2020	25/9/2022			
Horn Antenna	Schwarzbeck	9120D	01892 P:00331	26/9/2020	25/9/2022			
Amplifier	SKET	LNPA-0118-45	N/A	24/9/2021	23/9/2022			
EMI software	EZ	EZ-EMC	N/A	N/A	N/A			

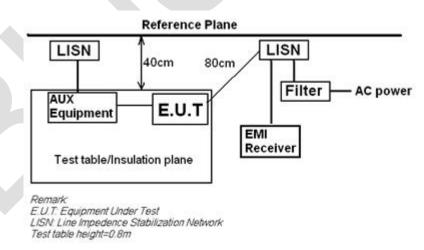

Page 11 of 107

Loop antenna	SCHNARZBECK	FMZB1519B	00102	26/9/2020	25/9/2022
--------------	-------------	-----------	-------	-----------	-----------

Test Equipment Of Conducted Spurious Emissions								
Equipment	Manufacturer	Model	S/N Cal.Date Cal.Du					
Spectrum	R&S	FSP40	100817	24/9/2021	23/9/2022			
Spectrum	Agilent	N9020A	MY49100060	24/9/2021	23/9/2022			
Signal Generator	Agilent	N5182A	MY49060650	24/9/2021	23/9/2022			
Signal Generator	Agilent	E8257D	MY44320250	24/9/2021	23/9/2022			

Test Equipment Of Conducted Band Edges Measurement								
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due			
Spectrum	R&S	FSP40	100817	24/9/2021	23/9/2022			
Spectrum	Agilent	N9020A	MY49100060	24/9/2021	23/9/2022			
Signal Generator	Agilent	N5182A	MY49060650	24/9/2021	23/9/2022			
Signal Generator	Agilent	E8257D	MY44320250	24/9/2021	23/9/2022			

Test Equipment Of Minimum 6dB Bandwidth								
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due			
Spectrum	R&S	FSP40	100817	24/9/2021	23/9/2022			
Spectrum	Agilent	N9020A	MY49100060	24/9/2021	23/9/2022			
Signal Generator	Agilent	N5182A	MY49060650	24/9/2021	23/9/2022			
Signal Generator	Agilent	E8257D	MY44320250	24/9/2021	23/9/2022			


11 CONDUCTED EMISSIONS AT AC POWER LINE (150KHZ-30MHZ)

Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	ANSI C63.10 (2013) Section 6.2
Test Mode (Pre-Scan)	TX
Test Mode (Final Test)	TX
Tester	Jozu
Temperature	25 ℃
Humidity	60%

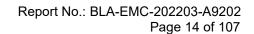
11.1 LIMITS

Frequency of	Conducted limit(dBµV)					
emission(MHz)	Quasi-peak	Average				
0.15-0.5	66 to 56*	56 to 46*				
0.5-5	56	46				
5-30	60	50				
*Decreases with the logarithm	of the frequency.					

11.2 BLOCK DIAGRAM OF TEST SETUP

11.3 PROCEDURE

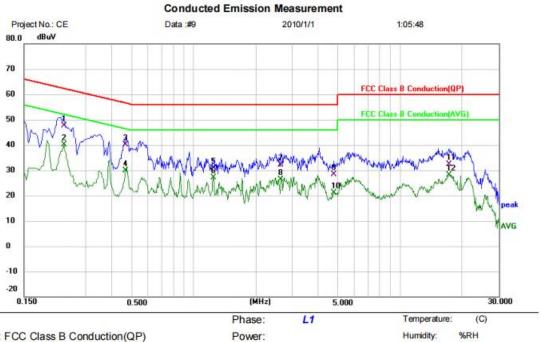
- 1) The mains terminal disturbance voltage test was conducted in a shielded room.
- 2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a 50ohm/50H + 5ohm linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded.


Page 13 of 107

3) The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane,

4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2.

5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement.


Remark: LISN=Read Level+ Cable Loss+ LISN Factor

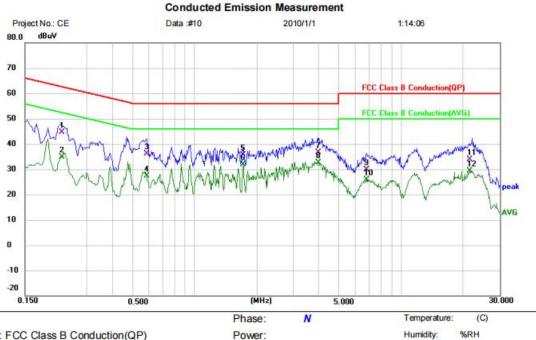
11.4 TEST DATA

[TestMode: TX]; [Line: Line]

Limit: FCC Class B Conduction(QP)

EUT: WIFI/BT module M/N: H158A-SM Mode: 2.4GWIFI mode

Note:


Site

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.2340	37.25	10.30	47.55	62.31	-14.76	QP	
2	*	0.2340	29.73	10.30	40.03	52.31	-12.28	AVG	
3		0.4660	30.37	9.87	40.24	56.58	-16.34	QP	
4		0.4660	19.95	9.87	29.82	46.58	-16.76	AVG	
5		1.2460	21.07	9.92	30.99	56.00	-25.01	QP	
6		1.2460	17.22	9.92	27.14	46.00	-18.86	AVG	
7		2.6500	22.09	9.96	32.05	56.00	-23.95	QP	
8		2.6500	16.33	9.96	26.29	46.00	-19.71	AVG	
9		4.7740	18.33	9.99	28.32	56.00	-27.68	QP	
10		4.7740	11.04	9.99	21.03	46.00	-24.97	AVG	
11		17.2660	22.04	10.39	32.43	60.00	-27.57	QP	
12		17.2660	17.73	10.39	28.12	50.00	-21.88	AVG	

x:Over limit !:over margin *:Maximum data (Reference Only

[TestMode: TX]; [Line: Nutral]

Limit: FCC Class B Conduction(QP)

EUT: WIFI/BT module M/N: H158A-SM Mode: 2.4GWIFI mode

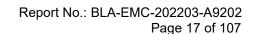
Note:

Site

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.2260	34.44	10.22	44.66	62.60	-17.94	QP	
2		0.2260	24.72	10.22	34.94	52.60	-17.66	AVG	
3		0.5820	26.26	9.80	36.06	56.00	-19.94	QP	
4		0.5820	17.61	9.80	27.41	46.00	-18.59	AVG	
5		1.7140	25.79	9.85	35.64	56.00	-20.36	QP	
6		1.7140	22.07	9.85	31.92	46.00	-14.08	AVG	
7		3.9740	26.68	9.91	36.59	56.00	-19.41	QP	
8	*	3.9740	22.74	9.91	32.65	46.00	-13.35	AVG	
9		6.7820	19.95	10.02	29.97	60.00	-30.03	QP	
10		6.7820	15.93	10.02	25.95	50.00	-24.05	AVG	
11		21.5980	23.43	10.41	33.84	60.00	-26.16	QP	
12		21.5980	18.98	10.41	29.39	50.00	-20.61	AVG	

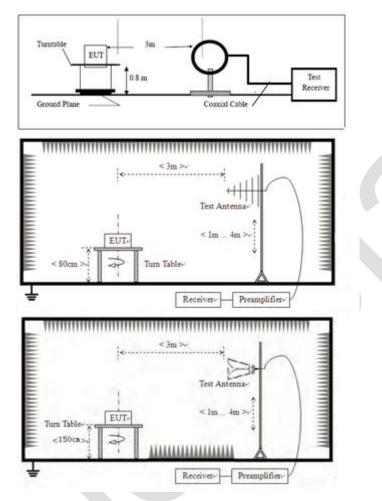
*:Maximum data x:Over limit !:over margin (Reference Only

Page 16 of 107


12 RADIATED SPURIOUS EMISSIONS

Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	ANSI C63.10 (2013) Section 6.4,6.5,6.6
Test Mode (Pre-Scan)	TX mode (SE) below 1G;TX mode (SE) Above 1G
Test Mode (Final Test)	TX mode (SE) below 1G;TX mode (SE) Above 1G
Tester	Jozu
Temperature	25 ℃
Humidity	60%

12.1 LIMITS

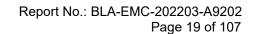

Frequency(MHz)	Field strength(microvolts/meter)	Measurement distance(meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

12.2 BLOCK DIAGRAM OF TEST SETUP

12.3 PROCEDURE

- a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

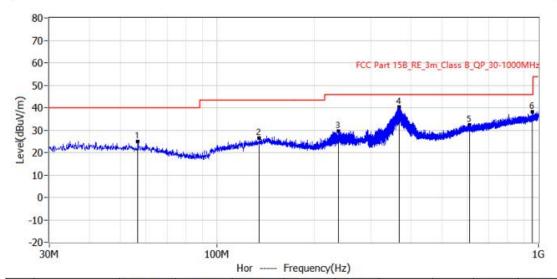


Page 18 of 107

- h. Test the EUT in the lowest channel, the middle channel, the Highest channel.
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
- j. Repeat above procedures until all frequencies measured was complete.

Remark:

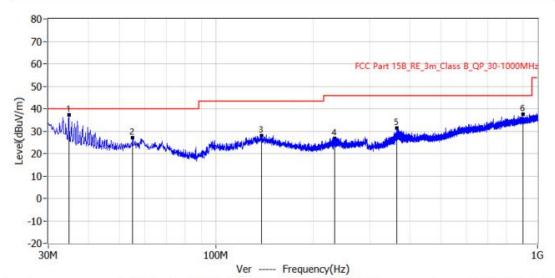
- 1) For emission below 1GHz, through pre-scan found the worst case is the lowest channel. Only the worst case is recorded in the report.
- 2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:
- Final Test Level =Receiver Reading + Antenna Factor + Cable Factor Preamplifier Factor
- 3) Scan from 9kHz to 25GHz, the disturbance above 18GHz and below 30MHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.
- 4) For frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.



12.4 TEST DATA

[TestMode: TX mode (SE) below 1G]; [Polarity: Horizontal]

Test Lab: BlueAsia EMC Lab (RE #1)	Project: BLA-EMC-202203-A92	
EUT: WIFI/BT module	Test Engineer: York	
M/N: H158A-SM	Temperature:	
S/N:	Humidity:	
Test Mode: 2.4Gwifi mode	Test Voltage:	
Note:	Test Data: 2022-04-25 16:53:19	



No.	Frequency	Limit	Level	Delta	Reading	Factor	Detector	Polar	Height	Angle
140.	requericy	dBuV/m	dBuV/m	dB	dBuV	dB/m	Detector	rolai	cm	deg
1*	56.554MHz	40.0	24.9	-15.1	1.3	23.6	QP	Hor	100.0	119.0
2*	135.245MHz	43.5	26.6	-16.9	3.1	23.5	QP	Hor	100.0	240.0
3*	237.823MHz	46.0	29.6	-16.4	6.9	22.7	QP	Hor	100.0	266.0
4*	367.681MHz	46.0	40.3	-5.7	14.1	26.2	QP	Hor	100.0	137.0
5*	610.545MHz	46.0	32.3	-13.7	1.0	31.3	QP	Hor	100.0	0.0
6*	958.533MHz	46.0	38.3	-7.7	2.6	35.7	QP	Hor	100.0	215.0

[TestMode: TX mode (SE) below 1G]; [Polarity: Vertical]

Test Lab: BlueAsia EMC Lab (RE #1)	Project: BLA-EMC-202203-A92	
EUT: WIFI/BT module	Test Engineer: York	
M/N: H158A-SM	Temperature:	
S/N:	Humidity:	
Test Mode: 2.4Gwifi mode	Test Voltage:	
Note:	Test Data: 2022-04-25 16:55:06	

No.	Frequency	Limit dBuV/m	Level dBuV/m	Delta dB	Reading dBuV	Factor dB/m	Detector	Polar	Height cm	Angle deq
1*	34.729MHz	40.0	37.2	-2.8	13.7	23.5	QP	Ver	100.0	45.0
2*	54.856MHz	40.0	27.0	-13.0	3.3	23.7	QP	Ver	100.0	104.0
3*	138.398MHz	43.5	27.9	-15.6	4.3	23.6	QP	Ver	100.0	135.0
4*	234.185MHz	46.0	26.9	-19.1	4.4	22.5	QP	Ver	100.0	76.0
5*	363.923MHz	46.0	31.4	-14.6	5.3	26.1	QP	Ver	100.0	344.0
6*	899.484MHz	46.0	37.5	-8.5	2.5	35.0	QP	Ver	100.0	217.0

%RH

Page 21 of 107

Above 1GHz:

[TestMode: TX lowest channel]; [Polarity: Vertical] Radiated Emission Measurement

Limit: FCC Part15 (PK)

EUT: WIFI/BT module M/N: H158A-SM

Mode: 2.4GWIFI-11B-TX-L

Note:

Mk.	Freq.	Reading Level	Correct	Measure- ment	Limit	Over			
	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment	
	3843.500	43.04	7.12	50.16	74.00	-23.84	peak		
	4830.500	45.32	3.58	48.90	74.00	-25.10	peak		
	7326.000	39.15	6.44	45.59	74.00	-28.41	peak		
	8120.500	41.14	8.11	49.25	74.00	-24.75	peak		
	9648.000	38.80	9.37	48.17	74.00	-25.83	peak		
*	11105.000	39.06	12.02	51.08	74.00	-22.92	peak		
		MHz 3843.500 4830.500 7326.000 8120.500	Mk. Freq. Level MHz dBuV 3843.500 43.04 4830.500 45.32 7326.000 39.15 8120.500 41.14 9648.000 38.80	Mk. Freq. Level Factor MHz dBuV dB/m 3843.500 43.04 7.12 4830.500 45.32 3.58 7326.000 39.15 6.44 8120.500 41.14 8.11 9648.000 38.80 9.37	Mk. Freq. Level Factor ment MHz dBuV dB/m dBuV/m 3843.500 43.04 7.12 50.16 4830.500 45.32 3.58 48.90 7326.000 39.15 6.44 45.59 8120.500 41.14 8.11 49.25 9648.000 38.80 9.37 48.17	Mk. Freq. Level Factor ment Limit MHz dBuV dBuW dBuV/m dBu	Mk. Freq. Level Factor ment Limit Over MHz dBuV dBuW dBuW dBuV/m dBuV/m dBuV/m dBuV/m dBuV/m dB 3843.500 43.04 7.12 50.16 74.00 -23.84 4830.500 45.32 3.58 48.90 74.00 -25.10 7326.000 39.15 6.44 45.59 74.00 -28.41 8120.500 41.14 8.11 49.25 74.00 -24.75 9648.000 38.80 9.37 48.17 74.00 -25.83	Mk. Freq. Level Factor ment Limit Over MHz dBuV dBuW dBuV/m dBuV dBuV/m dBuV/m<	Mk. Freq. Level Factor ment Limit Over MHz dBuV dBuW dBuV/m dBuV/m dB Detector Comment 3843.500 43.04 7.12 50.16 74.00 -23.84 peak 4830.500 45.32 3.58 48.90 74.00 -25.10 peak 7326.000 39.15 6.44 45.59 74.00 -28.41 peak 8120.500 41.14 8.11 49.25 74.00 -24.75 peak 9648.000 38.80 9.37 48.17 74.00 -25.83 peak

Power:

%RH

[TestMode: TX lowest channel]; [Polarity: Horizontal]

Limit: FCC Part15 (PK) EUT: WIFI/BT module M/N: H158A-SM

Mode: 2.4GWIFI-11B-TX-L

Note:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment	
1		3632.000	41.93	7.77	49.70	74.00	-24.30	peak		
2		4824.000	39.99	3.62	43.61	74.00	-30.39	peak		
3		7326.000	40.12	6.44	46.56	74.00	-27.44	peak		
4		8167.500	41.22	8.17	49.39	74.00	-24.61	peak		
5		9648.000	39.35	9.37	48.72	74.00	-25.28	peak		
6		11387.000	39.79	11.78	51.57	74.00	-22.43	peak		

Power:

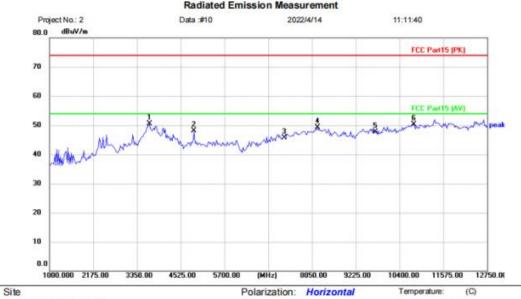
%RH

[TestMode: TX middle channel]; [Polarity: Vertical] Radiated Emission Measurement

Limit: FCC Part15 (PK) EUT: WIFI/BT module M/N: H158A-SM

Mode: 2.4GWIFI-11B-TX-M

Note:


No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment	
1		3655.500	42.90	7.76	50.66	74.00	-23.34	peak		
2		4874.000	42.16	3.39	45.55	74.00	-28.45	peak		
3		6005.500	47.92	0.98	48.90	74.00	-25.10	peak		
4		7311.000	39.56	6.37	45.93	74.00	-28.07	peak		
5		9748.000	37.97	9.59	47.56	74.00	-26.44	peak		
6		10940.500	39.11	11.93	51.04	74.00	-22.96	peak		

Power:

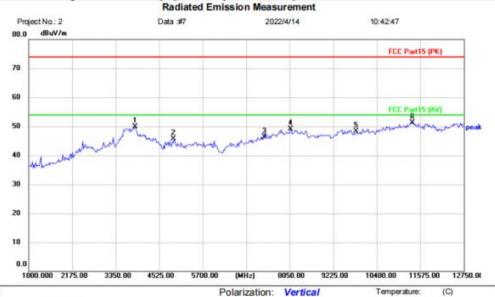
%RH

[TestMode: TX middle channel]; [Polarity: Horizontal]

Limit: FCC Part15 (PK)

EUT: WIFI/BT module M/N: H158A-SM

Mode: 2.4GWIFI-11B-TX-M


Note:

Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment	
*	3679.000	42.81	7.73	50.54	74.00	-23.46	peak		
	4877.500	44.71	3.37	48.08	74.00	-25.92	peak		
	7311.000	39.43	6.37	45.80	74.00	-28.20	peak		
	8191.000	41.08	8.20	49.28	74.00	-24.72	peak		
	9748.000	38.16	9.59	47.75	74.00	-26.25	peak		
	10776.000	38.54	11.70	50.24	74.00	-23.76	peak		
	•	* 3679.000 4877.500 7311.000	Mk. Freq. Level MHz dBuV * 3679.000 42.81 4877.500 44.71 7311.000 39.43 8191.000 41.08 9748.000 38.16	Mk. Freq. Level Factor MHz dB _U /V dB/m * 3679.000 42.81 7.73 4877.500 44.71 3.37 7311.000 39.43 6.37 8191.000 41.08 8.20 9748.000 38.16 9.59	Mk. Freq. Level Factor ment MHz dBuV dBl/m dBuV/m * 3679.000 42.81 7.73 50.54 4877.500 44.71 3.37 48.08 7311.000 39.43 6.37 45.80 8191.000 41.08 8.20 49.28 9748.000 38.16 9.59 47.75	Mk. Freq. Level Factor ment Limit MHz dBuV dBuW dBuV/m dBu	Mk. Freq. Level Factor ment Limit Over MHz dBuV dBuM dBuM dBuV/m 48.00 -23.46 4877.500 44.71 3.37 48.08 74.00 -25.92 -26.25 8191.000 41.08 8.20 49.28 74.00 -24.72 9748.000 38.16 9.59 47.75 74.00 -26.25	Mk. Freq. Level Factor ment Limit Over MHz dBuV dBuV dBuV/m dBuV dBuV/m dBuV/m<	Mk. Freq. Level Factor ment Limit Over MHz dBuV dBuV dBuV/m dBuV/m dB Detector Comment * 3679.000 42.81 7.73 50.54 74.00 -23.46 peak 4877.500 44.71 3.37 48.08 74.00 -25.92 peak 7311.000 39.43 6.37 45.80 74.00 -28.20 peak 8191.000 41.08 8.20 49.28 74.00 -24.72 peak 9748.000 38.16 9.59 47.75 74.00 -26.25 peak

Power:

[TestMode: TX highest channl]; [Polarity: Vertical] Radiated Emission Measurement

Limit: FCC Part15 (PK) EUT: WIFI/BT module

M/N: H158A-SM

Mode: 2.4GWIFI-11B-TX-H

Note:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment	
1		3867.000	43.09	6.82	49.91	74.00	-24.09	peak		
2		4924.000	42.23	3.46	45.69	74.00	-28.31	peak		
3		7386.000	39.54	6.68	46.22	74.00	-27.78	peak		
4		8073.500	41.00	8.04	49.04	74.00	-24.96	peak		
5		9848.000	38.45	9.88	48.33	74.00	-25.67	peak		
6	•	11363.500	39.47	11.81	51.28	74.00	-22.72	peak		

Power:

Humidity:

%RH

[TestMode: TX highest channl]; [Polarity: Horizontal]

Limit: FCC Part15 (PK) EUT: WIFI/BT module M/N: H158A-SM

Mode: 2.4GWIFI-11B-TX-H

Note:

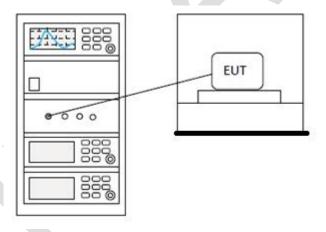
No. M	lk. Freq.	Reading Level	Correct	Measure- ment	Limit	Over			
	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment	
1	3632.000	42.76	7.77	50.53	74.00	-23.47	peak		
2	4924.000	44.15	3.46	47.61	74.00	-26.39	peak		
3	7386.000	39.68	6.68	46.36	74.00	-27.64	peak		
4	8214.500	40.81	8.21	49.02	74.00	-24.98	peak		
5	9848.000	37.24	9.88	47.12	74.00	-26.88	peak		
6 *	10893.500	38.84	11.87	50.71	74.00	-23.29	peak		

Power:

Humidity:

%RH

Page 27 of 107


13 POWER SPECTRUM DENSITY

Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	ANSI C63.10 (2013) Section 11.10.2
Test Mode (Pre-Scan)	TX
Test Mode (Final Test)	TX
Tester	Jozu
Temperature	25℃
Humidity	60%

13.1 LIMITS

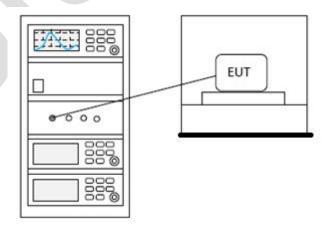
Limit: | ≤8dBm in any 3 kHz band during any time interval of continuous transmission

13.2 BLOCK DIAGRAM OF TEST SETUP

13.3 TEST DATA

Pass: Please Refer To Appendix: Appendix1 For Details

Page 28 of 107


14 CONDUCTED PEAK OUTPUT POWER

Test Standard	47 CFR Part 15, Subpart C 15.247				
Test Method	ANSI C63.10 (2013) Section 7.8.5 & Section 11.9.1				
Test Mode (Pre-Scan)	TX				
Test Mode (Final Test)	TX				
Tester	Jozu				
Temperature	25℃				
Humidity	60%				

14.1 LIMITS

Frequency range(MHz)	Output power of the intentional radiator(watt)				
	1 for ≥50 hopping channels				
902-928	0.25 for 25≤ hopping channels <50				
	1 for digital modulation				
	1 for ≥75 non-overlapping hopping channels				
2400-2483.5	0.125 for all other frequency hopping systems				
	1 for digital modulation				
5505 5050	1 for frequency hopping systems and digital				
5725-5850	modulation				

14.2 BLOCK DIAGRAM OF TEST SETUP

Page 29 of 107

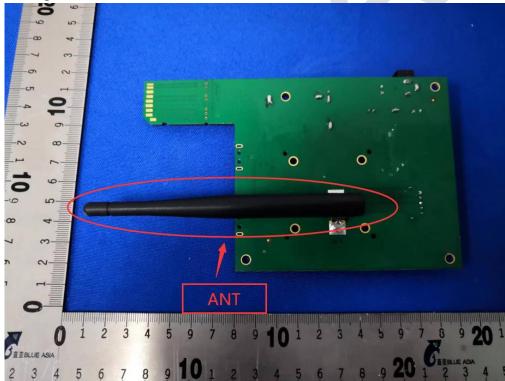
14.3 TEST DATA

Pass: Please Refer To Appendix: Appendix1 For Details

Page 30 of 107

15 ANTENNA REQUIREMENT

Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	N/A


15.1 CONCLUSION

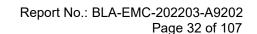
Standard Requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit permanently attached antenna or of an so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

EUT Antenna:

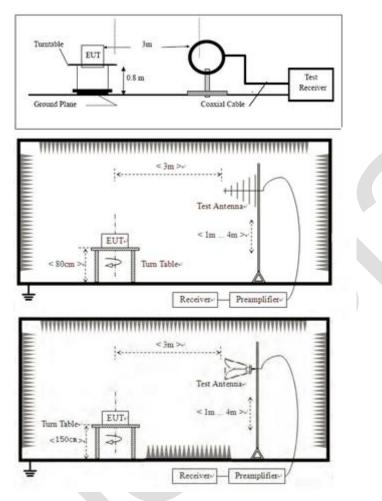
The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 2dBi.

Page 31 of 107


16 RADIATED EMISSIONS WHICH FALL IN THE RESTRICTED BANDS

Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	ANSI C63.10 (2013) Section 6.10.5
Test Mode (Pre-Scan)	TX
Test Mode (Final Test)	TX
Tester	Jozu
Temperature	25℃
Humidity	60%

16.1 LIMITS


Frequency(MHz)	Field strength(microvolts/meter)	Measurement distance(meters)		
0.009-0.490	2400/F(kHz)	300		
0.490-1.705	24000/F(kHz)	30		
1.705-30.0	30	30		
30-88	100	3		
88-216	150	3		
216-960	200	3		
Above 960	500	3		

Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

16.2 BLOCK DIAGRAM OF TEST SETUP

16.3 PROCEDURE

- a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Page 33 of 107

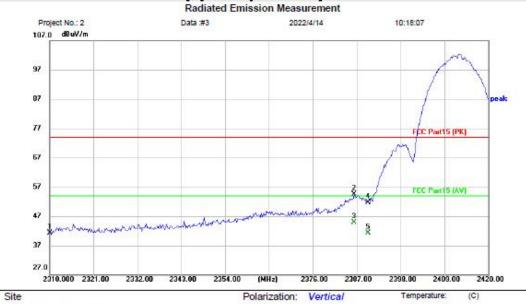
h. Test the EUT in the lowest channel, the middle channel, the Highest channel.

i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.

j. Repeat above procedures until all frequencies measured was complete.

Remark 1: Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor

Remark 2: For frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.


%RH

16.4 TEST DATA

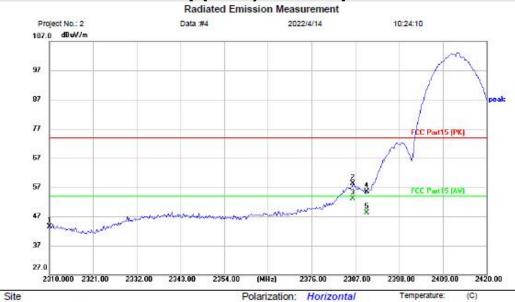
802.11b:

[TestMode: TX lowest chanenl]; [Polarity: Vertical]

Limit: FCC Part15 (PK) EUT: WIFI/BT module

M/N: H158A-SM

Mode: 2.4GWIFI-11B-TX-L


Note:

No. M	k.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment	
1	23	10.000	45.19	-3.93	41.26	74.00	-32.74	peak		
2	23	86.340	58.20	-3.60	54.60	74.00	-19.40	peak		
3 *	23	86.340	48.43	-3.60	44.83	54.00	-9.17	AVG		
4	23	90.000	55.32	-3.58	51.74	74.00	-22.26	peak		
5	23	90.000	44.94	-3.58	41.36	54.00	-12.64	AVG		

Power:

[TestMode: TX lowest channel]; [Polarity: Horizontal]

Limit: FCC Part15 (PK) EUT: WIFI/BT module M/N: H158A-SM

Mode: 2.4GWIFI-11B-TX-L

Note:

No.	Mk.	Freq.	Reading Level	Correct	Measure- ment		Over			
		MHZ	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment	
1		2310.000	47.51	-3.93	43.58	74.00	-30.42	peak		
2		2386.340	61.89	-3.60	58.29	74.00	-15.71	peak		
3	*	2386.340	56.72	-3.60	53.12	54.00	-0.88	AVG		
4		2390.000	59.07	-3.58	55.49	74.00	-18.51	peak		
5		2390.000	51.93	-3.58	48.35	54.00	-5.65	AVG		

Power:

Humidity:

%RH

%RH

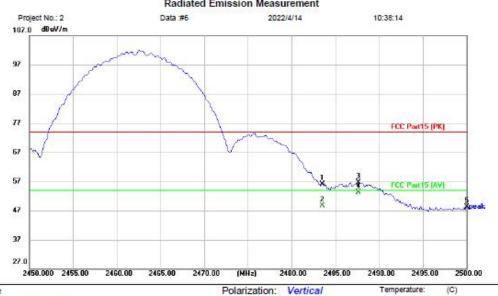
[TestMode: TX highest channel]; [Polarity: Horizontal]

Site

Limit: FCC Part15 (PK) EUT: WIFI/BT module M/N: H158A-SM

Mode: 2.4GWIFI-11B-TX-H

Note:


No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
- 11	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment
1	2483.500	62.58	-3.14	59.44	74.00	-14.56	peak	
2	2483.500	52.07	-3.14	48.93	54.00	-5.07	AVG	
3	2488.000	65.60	-3.13	62.47	74.00	-11.53	peak	
4 *	2488.000	56.82	-3.13	53.69	54.00	-0.31	AVG	
5	2500.000	56.40	-3.08	53.32	74.00	-20.68	peak	

Power:

%RH

[TestMode: TX highest channel]; [Polarity: Vertical] Radiated Emission Measurement

Site Limit: FCC Part15 (PK)

EUT: WIFI/BT module M/N: H158A-SM

Mode: 2.4GWIFI-11B-TX-H

Note:

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
	MHZ	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment	
1	2483.500	59.17	-3.14	56.03	74.00	-17.97	peak		
2	2483.500	51.92	-3.14	48.78	54.00	-5.22	AVG		
3	2487.600	59.80	-3.14	56.66	74.00	-17.34	peak		
4 *	2487.600	56.53	-3.14	53.39	54.00	-0.61	AVG		
5	2500.000	51.41	-3.08	48.33	74.00	-25.67	peak		

Power:

%RH

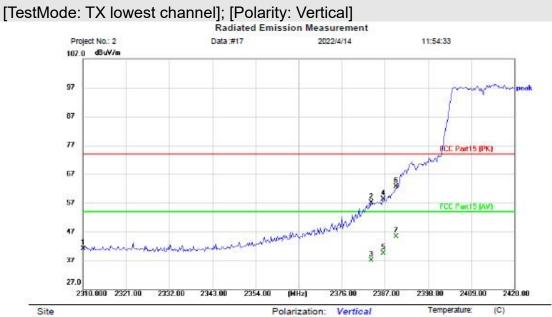
802.11g

[TestMode: TX lowest channel]; [Polarity: Horizontal]

Limit: FCC Part15 (PK)

EUT: WIFI/BT module M/N: H158A-SM

Mode: 2.4GWIFI-11G-TX-L


Note:

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment	
1	2310.000	49.17	-3.93	45.24	74.00	-28.76	peak		
2	2384.360	60.05	-3.60	56.45	74.00	-17.55	peak		
3	2384.360	39.64	-3.60	36.04	54.00	-17.96	AVG		
4	2390.000	63.86	-3.58	60.28	74.00	-13.72	peak		
5 *	2390.000	47.51	-3.58	43.93	54.00	-10.07	AVG		

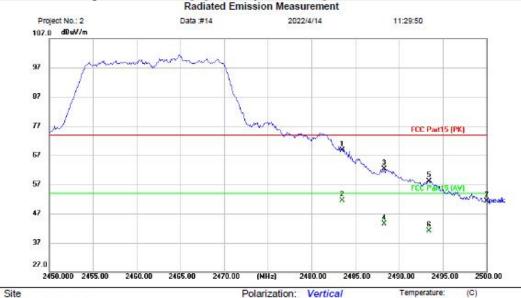
Power:

%RH

Limit: FCC Part15 (PK) EUT: WIFI/BT module M/N: H158A-SM

Mode: 2.4GWIFI-11G-TX-L

Note:


No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
	MHż	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment
1	2310.000	45.02	-3.93	41.09	74.00	-32.91	peak	
2	2383.480	60.78	-3.60	57.18	74.00	-16.82	peak	
3	2383.480	40.69	-3.60	37.09	54.00	-16.91	AVG	
4	2386.560	61.97	-3.60	58.37	74.00	-15.63	peak	
5	2386.560	43.15	-3.60	39.55	54.00	-14.45	AVG	
6	2390.000	66.24	-3.58	62.66	74.00	-11.34	peak	
7 *	2390.000	48.83	-3.58	45.25	54.00	-8.75	AVG	

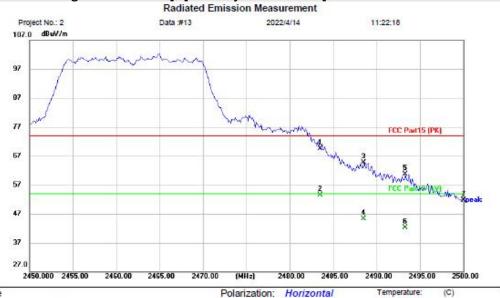
Power:

%RH

[TestMode: TX highest channel]; [Polarity: Vertical] Radiated Emission Measurement

Limit: FCC Part15 (PK) EUT: WIFI/BT module M/N: H158A-SM

Mode: 2.4GWIFI-11G-TX-H


Note:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment
1		2483.500	71.83	-3.14	68.69	74.00	-5.31	peak	
2	*	2483.500	54.66	-3.14	51.52	54.00	-2.48	AVG	
3		2488.300	65.53	-3.13	62.40	74.00	-11.60	peak	
4		2488.300	46.68	-3.13	43.55	54.00	-10.45	AVG	
5		2493.400	61.29	-3.11	58.18	74.00	-15.82	peak	
6		2493.400	44.15	-3.11	41.04	54.00	-12.96	AVG	
7		2500.000	54.34	-3.08	51.26	74.00	-22.74	peak	

Power:

[TestMode: TX highest channel]; [Polarity: Horizontal]

Limit: FCC Part15 (PK) EUT: WIFI/BT module M/N: H158A-SM

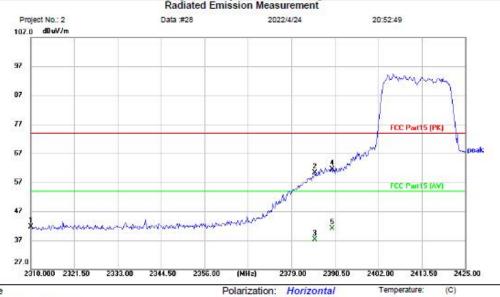
Mode: 2.4GWIFI-11G-TX-H

Note:

1 2 * 3 4 5		140.0-		Factor	ment	Limit	Over		
2 * 3 4		MHZ	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment
3 4 5		2483.500	72.61	-3.14	69.47	74.00	-4.53	peak	
4	ż	2483.500	56.70	-3.14	53.56	54.00	-0.44	AVG	
5		2488.500	67.86	-3.13	64.73	74.00	-9.27	peak	
3750		2488.500	48.35	-3.13	45.22	54.00	-8.78	AVG	
6		2493.300	63.88	-3.11	60.77	74.00	-13.23	peak	
0		2493.300	45.33	-3.11	42.22	54.00	-11.78	AVG	
7		2500.000	54.72	-3.08	51.64	74.00	-22.36	peak	

Power:

Report No.: BLA-EMC-202203-A9202


Humidity:

%RH

Page 42 of 107

802.11n20

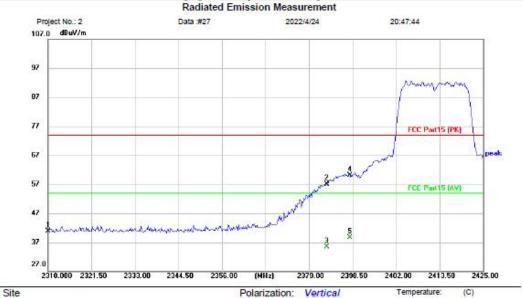
[TestMode: TX lowest channel]; [Polarity: Horizontal]

Site Limit: FCC Part15 (PK)

EUT: WIFI/BT module M/N: H158A-SM

Mode: 2.4GWIFI-11N20-TX-L

Note:


No. I	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment	
1		2310.000	45.63	-3.93	41.70	74.00	-32.30	peak		
2		2385.210	63.85	-3.60	60.25	74.00	-13.75	peak		
3		2385.210	40.81	-3.60	37.21	54.00	-16.79	AVG		
4	*	2390.000	65.17	-3.58	61.59	74.00	-12.41	peak		
5		2390.000	44.64	-3.58	41.06	54.00	-12.94	AVG		

Power:

%RH

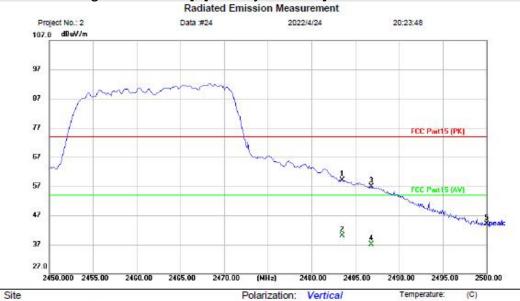
[TestMode: TX lowest channel]; [Polarity: Vertical] Radiated Emission Measurement

Limit: FCC Part15 (PK) EUT: WIFI/BT module

M/N: H158A-SM

Mode: 2.4GWIFI-11N20-TX-L

Note:


No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment	
1	2310.000	44.90	-3.93	40.97	74.00	-33.03	peak		
2	2383.600	60.76	-3.60	57.16	74.00	-16.84	peak		
3	2383.600	39.06	-3.60	35.46	54.00	-18.54	AVG		
4 *	2390.000	63.66	-3.58	60.08	74.00	-13.92	peak		
5	2390.000	42.18	-3.58	38.60	54.00	-15.40	AVG		

Power:

%RH

[TestMode: TX highest channel]; [Polarity: Vertical]

Limit: FCC Part15 (PK) EUT: WIFI/BT module

M/N: H158A-SM

Mode: 2.4GWIFI-11N20-TX-H

Note:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment	
1		2483.500	62.19	-3.14	59.05	74.00	-14.95	peak		
2	*	2483.500	43.19	-3.14	40.05	54.00	-13.95	AVG		
3		2486.800	59.97	-3.14	56.83	74.00	-17.17	peak		
4		2486.800	40.21	-3.14	37.07	54.00	-16.93	AVG		
5		2500.000	47.10	-3.08	44.02	74.00	-29.98	peak		

Power:

[TestMode: TX highest channel]; [Polarity: Horizontal]

Limit: FCC Part15 (PK)

EUT: WIFI/BT module M/N: H158A-SM

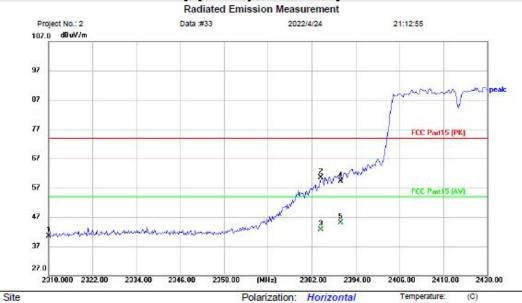
Mode: 2.4GWIFI-11N20-TX-H

Note:

Site

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment
1		2483.500	62.69	-3.14	59.55	74.00	-14.45	peak	
2	*	2483.500	43.91	-3.14	40.77	54.00	-13.23	AVG	
3		2487.700	62.41	-3.14	59.27	74.00	-14.73	peak	
4		2487.700	39.92	-3.14	36.78	54.00	-17.22	AVG	
5		2490.400	60.09	-3.11	56.98	74.00	-17.02	peak	
6		2490.400	39.13	-3.11	36.02	54.00	-17.98	AVG	
7		2500.000	51.75	-3.08	48.67	74.00	-25.33	peak	

Power:


Humidity:

%RH

802.11n40

[TestMode: TX lowest channel]; [Polarity: Horizontal]

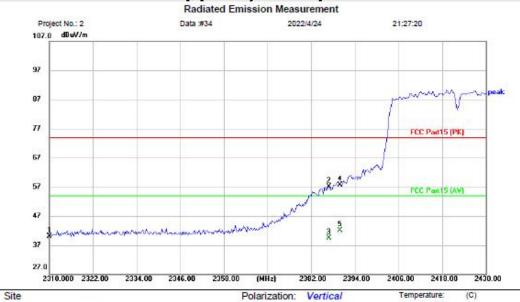
Limit: FCC Part15 (PK)

EUT: WIFI/BT module M/N: H158A-SM

Mode: 2.4GWIFI-11N40-TX-L

Note:

Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
MHZ	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment	
2310.000	44.46	-3.93	40.53	74.00	-33.47	peak		
2384.640	64.15	-3.60	60.55	74.00	-13.45	peak		
2384.640	46.25	-3.60	42.65	54.00	-11.35	AVG		
2390.000	62.93	-3.58	59.35	74.00	-14.65	peak		
2390.000	48.61	-3.58	45.03	54.00	-8.97	AVG		
	MHz 2310.000 2384.640 2384.640 2390.000	Freq. Level MHz dBuV 2310.000 44.46 2384.640 64.15 2384.640 46.25 2390.000 62.93	Freq. Level Factor MHz dBuV dB/m 2310.000 44.46 -3.93 2384.640 64.15 -3.60 2384.640 46.25 -3.60 2390.000 62.93 -3.58	Freq. Level Factor ment MHz dBuV dB/m dBuV/m 2310.000 44.46 -3.93 40.53 2384.640 64.15 -3.60 60.55 2384.640 46.25 -3.60 42.65 2390.000 62.93 -3.58 59.35	Freq. Level Factor ment Limit MHz dBuV dBuV dBuV/m dBuV/m dBuV/m 2310.000 44.46 -3.93 40.53 74.00 2384.640 64.15 -3.60 60.55 74.00 2384.640 46.25 -3.60 42.65 54.00 2390.000 62.93 -3.58 59.35 74.00	Freq. Level Factor ment Limit Over MHz dBuV dBuM dBuV/m dBuV/m dBuV/m dB 2310.000 44.46 -3.93 40.53 74.00 -33.47 2384.640 64.15 -3.60 60.55 74.00 -13.45 2384.640 46.25 -3.60 42.65 54.00 -11.35 2390.000 62.93 -3.58 59.35 74.00 -14.65	Freq. Level Factor ment Limit Over MHz dBuV dBm dBuV/m dBuV/m dB Detector 2310.000 44.46 -3.93 40.53 74.00 -33.47 peak 2384.640 64.15 -3.60 60.55 74.00 -13.45 peak 2384.640 46.25 -3.60 42.65 54.00 -11.35 AVG 2390.000 62.93 -3.58 59.35 74.00 -14.65 peak	Freq. Level Factor ment Limit Over MHz dBuV dBm dBuV/m dB Detector Comment 2310.000 44.46 -3.93 40.53 74.00 -33.47 peak 2384.640 64.15 -3.60 60.55 74.00 -13.45 peak 2384.640 46.25 -3.60 42.65 54.00 -11.35 AVG 2390.000 62.93 -3.58 59.35 74.00 -14.65 peak


Power:

Humidity:

%RH

[TestMode: TX lowest channel]; [Polarity: Vertical]

Limit: FCC Part15 (PK)

EUT: WIFI/BT module M/N: H158A-SM

Mode: 2.4GWIFI-11N40-TX-L


Note:

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment	
1	2310.000	44.09	-3.93	40.16	74.00	-33.84	peak		
2	2386.800	60.70	-3.60	57.10	74.00	-16.90	peak		
3	2386.800	43.16	-3.60	39.56	54.00	-14.44	AVG		
4	2390.000	61.37	-3.58	57.79	74.00	-16.21	peak		
5 *	2390.000	45.77	-3.58	42.19	54.00	-11.81	AVG		

%RH

[TestMode: TX highest channel]; [Polarity: Vertical] Radiated Emission Measurement

Limit: FCC Part15 (PK) EUT: WIFI/BT module

M/N: H158A-SM

Mode: 2.4GWIFI-11N40-TX-H

Note:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment
1		2483.500	62.88	-3.14	59.74	74.00	-14.26	peak	
2	*	2483.500	45.77	-3.14	42.63	54.00	-11.37	AVG	
3		2487.200	61.52	-3.14	58.38	74.00	-15.62	peak	
4		2487.200	43.57	-3.14	40.43	54.00	-13.57	AVG	
5		2491.300	58.32	-3.11	55.21	74.00	-18.79	peak	
6		2491.300	40.84	-3.11	37.73	54.00	-16.27	AVG	
7		2500.000	53.77	-3.08	50.69	74.00	-23.31	peak	

Power: