No. 1 Workshop, M-10, Middle section, Science & Technology Park, Shenzhen, Guangdong, China 518057 Telephone: +86 (0) 755 2601 2053 Report No.: SZEM170400297001 Fax: +86 (0) 755 2671 0594 Page: 1 of 83 ### TEST REPORT Application No.: SZEM1704002970CR Applicant: Winners'Sun Plastic & Electronic (Shenzhen) Co., Ltd Address of Applicant: Zone E, Ying Tai Industrial Park, Dalang, Longhua Town, Bao An District, Shenzhen, Guang Dong Providence, China Manufacturer: Winners'Sun Plastic & Electronic (Shenzhen) Co., Ltd Address of Manufacturer: Zone E, Ying Tai Industrial Park, Dalang, Longhua Town, Bao An District, Shenzhen, Guang Dong Providence, China Factory: Winners'Sun Plastic & Electronic (Shenzhen) Co., Ltd Address of Factory: Zone E, Ying Tai Industrial Park, Dalang, Longhua Town, Bao An District, Shenzhen, Guang Dong Providence, China **Equipment Under Test (EUT):** **EUT Name:** Tripod Selfie Stick Model No.: WS-SQB641, WS-SQB645B * Please refer to section 2 of this report which indicates which model was actually tested and which were electrically identical. Trade mark: Dispho FCC ID: UR9WS-SQB627BT Standards: 47 CFR Part 15, Subpart C 15.247 **Date of Receipt**: 2017-04-11 **Date of Test**: 2017-04-13 to 2017-04-18 **Date of Issue**: 2017-04-25 Test Result : Pass* Jack Zhang EMC Laboratory Manager The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of SGS International Electrical Approvals or testing done by SGS International Electrical Approvals in connection with, distribution or use of the product described in this report must be approved by SGS International Electrical Approvals in writing. This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sqs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sqs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only. ^{*} In the configuration tested, the EUT complied with the standards specified above. Report No.: SZEM170400297001 Page: 2 of 83 | Revision Record | | | | | | | | |--------------------------------------|--|------------|--|----------|--|--|--| | Version Chapter Date Modifier Remark | | | | | | | | | 01 | | 2017-04-25 | | Original | Authorized for issue by: | | | |--------------------------|-----------------------------|------------| | Tested By | Brir Chen | 2017-04-18 | | | Bill Chen /Project Engineer | Date | | Checked By | Eric Fu | 2017-04-25 | | | Eric Fu /Reviewer | Date | Report No.: SZEM170400297001 Page: 3 of 83 ### 2 Test Summary | Radio Spectrum Technical Requirement | | | | | | | |--|-------------------------------------|--------|---|--------|--|--| | Item | Standard | Method | Requirement | Result | | | | Antenna
Requirement | 47 CFR Part 15,
Subpart C 15.247 | N/A | 47 CFR Part 15,
Subpart C 15.203
& 15.247(c) | Pass | | | | Other requirements Frequency Hopping Spread Spectrum System Hopping Sequence | 47 CFR Part 15,
Subpart C 15.247 | N/A | 47 CFR Part 15,
Subpart C
15.247(a)(1),(g),(h | Pass | | | | Radio Spectrum Matter Part | | | | | | | | |---|-------------------------------------|---|---|--------|--|--|--| | Item | Standard | Method | Requirement | Result | | | | | Conducted Disturbance at AC Power Line(150kHz- 30MHz) | 47 CFR Part 15,
Subpart C 15.247 | ANSI C63.10 (2013)
Section 6.2 | 47 CFR Part 15,
Subpart C 15.207 | Pass | | | | | 20dB Bandwidth | 47 CFR Part 15,
Subpart C 15.247 | ANSI C63.10 (2013)
Section 7.8.7 | 47 CFR Part 15,
Subpart C
15.247(a)(1) | Pass | | | | | Conducted Peak
Output Power | 47 CFR Part 15,
Subpart C 15.247 | ANSI C63.10 (2013)
Section 7.8.5 | 47 CFR Part 15,
Subpart C
15.247(b)(1) | Pass | | | | | Carrier Frequencies
Separation | 47 CFR Part 15,
Subpart C 15.247 | ANSI C63.10 (2013)
Section 7.8.2 | 47 CFR Part 15,
Subpart C
15.247a(1) | Pass | | | | | Hopping Channel
Number | 47 CFR Part 15,
Subpart C 15.247 | ANSI C63.10 (2013)
Section 7.8.3 | 47 CFR Part 15,
Subpart C
15.247a(1)(iii) | Pass | | | | | Dwell Time | 47 CFR Part 15,
Subpart C 15.247 | ANSI C63.10 (2013)
Section 7.8.4 | 47 CFR Part 15,
Subpart C
15.247a(1)(iii) | Pass | | | | | Conducted Spurious
Emissions | 47 CFR Part 15,
Subpart C 15.247 | ANSI C63.10 (2013)
Section 7.8.8 | 47 CFR Part 15,
Subpart C
15.247(d) | Pass | | | | | Radiated Spurious
Emissions | 47 CFR Part 15,
Subpart C 15.247 | ANSI C63.10 (2013)
Section 6.4,6.5,6.6 | 47 CFR Part 15,
Subpart C 15.205
& 15.209 | Pass | | | | | Radiated Emissions
which fall in the
restricted bands | 47 CFR Part 15,
Subpart C 15.247 | ANSI C63.10 (2013)
Section 6.10.5 | 47 CFR Part 15,
Subpart C 15.205
& 15.209 | Pass | | | | | Conducted Band
Edges Measurement | 47 CFR Part 15,
Subpart C 15.247 | ANSI C63.10 (2013)
Section 7.8.6 | 47 CFR Part 15,
Subpart C
15.247(d) | Pass | | | | Report No.: SZEM170400297001 Page: 4 of 83 Remark: Model No.: WS-SQB641, WS-SQB645B Only the model WS-SQB641 was tested, since the electrical circuit design, layout, components used, internal wiring and functions were identical for all the above models, with only difference on the surface shape a little difference. Report No.: SZEM170400297001 Page: 5 of 83 ### 3 Contents | | | | Page | |---|----------------|--|------| | 1 | COVE | R PAGE | 1 | | 2 | TEST | SUMMARY | 3 | | 3 | CONT | ENTS | 5 | | 4 | | RAL INFORMATION | | | 4 | | | | | | | TAILS OF E.U.T. | | | | | SCRIPTION OF SUPPORT UNITS | | | | | ASUREMENT UNCERTAINTY | | | | | T LOCATION | | | | | T FACILITYVIATION FROM STANDARDS | | | | | NORMALITIES FROM STANDARD CONDITIONS | | | 5 | | PMENT LIST | | | J | EQUI | FMENT LIST | 11 | | 6 | RADIO | O SPECTRUM TECHNICAL REQUIREMENT | 14 | | Ī | | | | | | | TENNA REQUIREMENT | | | | 6.1.1
6.1.2 | Test Requirement: | | | | - | HER REQUIREMENTS FREQUENCY HOPPING SPREAD SPECTRUM SYSTEM HOPPING SEQUENCE | | | | 6.2.1 | Test Requirement: | | | | 6.2.2 | Conclusion | | | _ | _ | | | | 7 | RADIO | O SPECTRUM MATTER TEST RESULTS | 17 | | | 7.1 Con | NDUCTED DISTURBANCE AT AC POWER LINE(150kHz-30MHz) | 17 | | | 7.1.1 | E.U.T. Operation | | | | 7.1.2 | Test Setup Diagram | | | | 7.1.3 | Measurement Data | | | | | B BANDWIDTH | | | | 7.2.1 | E.U.T. Operation | | | | 7.2.2
7.2.3 | Test Setup Diagram | | | | _ | Measurement Data NDUCTED PEAK OUTPUT POWER | | | | 7.3 Col | | | | | 7.3.2 | Test Setup Diagram | | | | 7.3.3 | Measurement Data | | | | | RRIER FREQUENCIES SEPARATION | | | | 7.4.1 | E.U.T. Operation | | | | 7.4.2 | Test Setup Diagram | 24 | | | 7.4.3 | Measurement Data | 24 | | | | PPING CHANNEL NUMBER | | | | 7.5.1 | E.U.T. Operation | | | | 7.5.2 | Test Setup Diagram | | | | 7.5.3 | Measurement Data | | | | | ELL TIME | | | | 7.6.1
7.6.2 | E.U.T. Operation | | | | 7.6.2
7.6.3 | Test Setup DiagramMeasurement Data | | | | | NDUCTED SPURIOUS EMISSIONS | | | | ,., COI | DOCIED SI ORIOGO ENIGOIO. | ∠೨ | Report No.: SZEM170400297001 Page: 6 of 83 | 7.7.1 | E.U.T. Operation | 30 | |---------|---|--| | 7.7.2 | | | | 7.7.3 | | | | 7.8 RAD | DIATED SPURIOUS EMISSIONS | 31 | | 7.8.1 | E.U.T. Operation | | | 7.8.2 | Test Setup Diagram | | | 7.8.3 | | | | 7.9 RAD | | | | 7.9.1 | E.U.T. Operation | 41 | | 7.9.2 | | | | 7.9.3 | | | | 7.10 C | | | | 7.10.1 | • | | | 7.10.2 | Past Setup Diagram | 47 | | 7.10.3 | B Measurement Data | 47 | | PHOT | OGRAPHS | 48 | | 8.1 Con | NDUCTED DISTURBANCE AT AC POWER
LINE(150kHz-30MHz) TEST SETUP | 48 | | 8.2 RAD | DIATED SPURIOUS EMISSIONS TEST SETUP | 49 | | 8.3 ANT | TENNA REQUIREMENT TEST SETUP | 50 | | 8.4 EUT | T Constructional Details. | 51 | | APPE | NDIX | 58 | | 9.1 App | PENDIX 15.247 | 58-83 | | | 7.7.2 7.7.3 7.8 RAI 7.8.1 7.8.2 7.8.3 7.9 RAI 7.9.1 7.9.2 7.9.3 7.10 7.10.3 PHOT 8.1 Con 8.2 RAI 8.3 AN 8.4 EU APPE | 7.7.3 Measurement Data 7.8 RADIATED SPURIOUS EMISSIONS 7.8.1 E.U.T. Operation 7.8.2 Test Setup Diagram 7.8.3 Measurement Data 7.9 RADIATED EMISSIONS WHICH FALL IN THE RESTRICTED BANDS 7.9.1 E.U.T. Operation 7.9.2 Test Setup Diagram 7.9.3 Measurement Data 7.10 CONDUCTED BAND EDGES MEASUREMENT 7.10.1 E.U.T. Operation 7.10.2 Test Setup Diagram 7.10.3 Measurement Data PHOTOGRAPHS 8.1 CONDUCTED DISTURBANCE AT AC POWER LINE(150kHz-30MHz) TEST SETUP 8.2 RADIATED SPURIOUS EMISSIONS TEST SETUP 8.3 ANTENNA REQUIREMENT TEST SETUP 8.4 EUT CONSTRUCTIONAL DETAILS APPENDIX | Report No.: SZEM170400297001 Page: 7 of 83 ### 4 General Information ### 4.1 Details of E.U.T. Frequency Range: 2402MHz to 2480MHz Bluetooth Version: V3.0 Modulation Type: GFSK Number of Channels: 79 Sample Type: Portable production Antenna Type: Built-in antenna Antenna Gain: 2.3dBi Power supply: Rechargeable battery:DC 3.7V 0.24Wh(Charge by USB) Report No.: SZEM170400297001 Page: 8 of 83 #### **Operation Frequency each of channel** | Channel | Frequency | Channel | Frequency | Channel | Frequency | Channel | Frequency | |---------|-----------|---------|-----------|---------|-----------|---------|-----------| | 0 | 2402MHz | 20 | 2422MHz | 40 | 2442MHz | 60 | 2462MHz | | 1 | 2403MHz | 21 | 2423MHz | 41 | 2443MHz | 61 | 2463MHz | | 2 | 2404MHz | 22 | 2424MHz | 42 | 2444MHz | 62 | 2464MHz | | 3 | 2405MHz | 23 | 2425MHz | 43 | 2445MHz | 63 | 2465MHz | | 4 | 2406MHz | 24 | 2426MHz | 44 | 2446MHz | 64 | 2466MHz | | 5 | 2407MHz | 25 | 2427MHz | 45 | 2447MHz | 65 | 2467MHz | | 6 | 2408MHz | 26 | 2428MHz | 46 | 2448MHz | 66 | 2468MHz | | 7 | 2409MHz | 27 | 2429MHz | 47 | 2449MHz | 67 | 2469MHz | | 8 | 2410MHz | 28 | 2430MHz | 48 | 2450MHz | 68 | 2470MHz | | 9 | 2411MHz | 29 | 2431MHz | 49 | 2451MHz | 69 | 2471MHz | | 10 | 2412MHz | 30 | 2432MHz | 50 | 2452MHz | 70 | 2472MHz | | 11 | 2413MHz | 31 | 2433MHz | 51 | 2453MHz | 71 | 2473MHz | | 12 | 2414MHz | 32 | 2434MHz | 52 | 2454MHz | 72 | 2474MHz | | 13 | 2415MHz | 33 | 2435MHz | 53 | 2455MHz | 73 | 2475MHz | | 14 | 2416MHz | 34 | 2436MHz | 54 | 2456MHz | 74 | 2476MHz | | 15 | 2417MHz | 35 | 2437MHz | 55 | 2457MHz | 75 | 2477MHz | | 16 | 2418MHz | 36 | 2438MHz | 56 | 2458MHz | 76 | 2478MHz | | 17 | 2419MHz | 37 | 2439MHz | 57 | 2459MHz | 77 | 2479MHz | | 18 | 2420MHz | 38 | 2440MHz | 58 | 2460MHz | 78 | 2480MHz | | 19 | 2421MHz | 39 | 2441MHz | 59 | 2461MHz | | | #### Note: In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below: | Channel | Frequency | |---------------------|-----------| | The Lowest channel | 2402MHz | | The Middle channel | 2441MHz | | The Highest channel | 2480MHz | Report No.: SZEM170400297001 Page: 9 of 83 ### 4.2 Description of Support Units The EUT has been tested with associated equipment below. | Description | Manufacturer | Model No. | |-------------|---------------|-----------| | Laptop | Lenovo | T430u | | Test board | Supply to SGS | FT232 | ### 4.3 Measurement Uncertainty | No. | Item | Measurement Uncertainty | |-----|---------------------------------|-------------------------| | 1 | Radio Frequency | 7.25 x 10-8 | | 2 | Timeout | 2s | | 3 | Duty cycle | 0.37% | | 4 | Occupied Bandwidth | 3% | | 5 | RF conducted power | 0.75dB | | 6 | RF power density | 2.84dB | | 7 | Conducted Spurious emissions | 0.75dB | | 8 | DE Dadiated mayor | 4.5dB (below 1GHz) | | 0 | RF Radiated power | 4.8dB (above 1GHz) | | 0 | Dadiated Courieus amission tost | 4.5dB (30MHz-1GHz) | | 9 | Radiated Spurious emission test | 4.8dB (1GHz-18GHz) | | 10 | Temperature test | 1℃ | | 11 | Humidity test | 3% | | 12 | Supply voltages | 1.5% | | 13 | Time | 3% | Report No.: SZEM170400297001 Page: 10 of 83 #### 4.4 Test Location All tests were performed at: SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen Branch No. 1 Workshop, M-10, Middle Section, Science & Technology Park, Shenzhen, Guangdong, China. 518057. Tel: +86 755 2601 2053 Fax: +86 755 2671 0594 No tests were sub-contracted. ### 4.5 Test Facility The test facility is recognized, certified, or accredited by the following organizations: #### CNAS (No. CNAS L2929) CNAS has accredited SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch EMC Lab to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing. #### • A2LA (Certificate No. 3816.01) SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory is accredited by the American Association for Laboratory Accreditation(A2LA). Certificate No. 3816.01. #### VCCI The 10m Semi-anechoic chamber and Shielded Room of SGS-CSTC Standards Technical Services Co., Ltd. have been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-823, R-4188, T-1153 and C-2383 respectively. #### • FCC - Registration No.: 556682 SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No.: 556682. #### Industry Canada (IC) Two 3m Semi-anechoic chambers and the 10m Semi-anechoic chamber of SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch EMC Lab have been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 4620C-1, 4620C-2, 4620C-3. #### 4.6 Deviation from Standards None ### 4.7 Abnormalities from Standard Conditions None Report No.: SZEM170400297001 Page: 11 of 83 ### 5 Equipment List | RE in Chamber | | | | | | | | |--------------------------------------|----------------------|-----------|---------------|-------------------------------|-------------------------------|--|--| | Test Equipment | Manufacturer | Model No. | Inventory No. | Cal. Date
(yyyy-mm-
dd) | Cal. Due date
(yyyy-mm-dd) | | | | 3m Semi-
Anechoic
Chamber | ETS-LINDGREN | N/A | SEM001-01 | 2016-05-13 | 2017-05-13 | | | | EMI Test
Receiver | Agilent Technologies | N9038A | SEM004-05 | 2016-10-09 | 2017-10-09 | | | | BiConiLog
Antenna
(26-3000MHz) | ETS-LINDGREN | 3142C | SEM003-01 | 2014-11-01 | 2017-11-01 | | | | Pre-amplifier
(0.1-1300MHz) | Agilent Technologies | 8447D | SEM005-01 | 2016-04-25 | 2017-04-25 | | | | Conducted Disturbance at AC Power Line(150kHz-30MHz) | | | | | | | | |--|--|---------------------|--------------|------------|--------------|--|--| | Equipment | Manufacturer | Model No | Inventory No | Cal Date | Cal Due Date | | | | Shielding Room | ZhongYu Electron | GB-88 | SEM001-06 | 2016-05-13 | 2017-05-13 | | | | LISN | Rohde & Schwarz | ENV216 | SEM007-01 | 2016-10-09 | 2017-10-09 | | | | LISN | ETS-LINDGREN | 3816/2 | SEM007-02 | 2016-04-25 | 2017-04-25 | | | | 8 Line ISN | Fischer Custom
Communications
Inc. | FCC-TLISN-
T8-02 | EMC0120 | 2016-09-28 | 2017-09-28 | | | | 4 Line ISN | Fischer Custom
Communications
Inc. | FCC-TLISN-
T4-02 | EMC0121 | 2016-09-28 | 2017-09-28 | | | | 2 Line ISN | Fischer Custom | FCC-TLISN-
T2-02 | EMC0122 | 2016-09-28 | 2017-09-28 | | | | RE in Chamber | | | | | | | | | |--------------------------------------|-----------------------------|-----------|---------------|-------------------------------|-------------------------------|--|--|--| | Test Equipment | Manufacturer | Model No. | Inventory No. | Cal. Date
(yyyy-mm-
dd) | Cal. Due date
(yyyy-mm-dd) | | | | | 3m Semi-
Anechoic
Chamber | AUDIX | N/A | SEM001-02 | 2016-05-13 | 2017-05-13 | | | | | EXA Spectrum
Analyzer | Agilent Technologies
Inc | N9010A | SEM004-09 | 2016-07-19 | 2017-07-19 | | | | | BiConiLog
Antenna
(26-3000MHz) | ETS-Lindgren | 3142C | SEM003-02 | 2014-11-15 | 2017-11-15 | | | | | Amplifier (0.1-1300MHz) | HP | 8447D | SEM005-02 | 2016-10-09 | 2017-10-09 | | | | | Horn Antenna
(1-18GHz) | Rohde & Schwarz | HF907 | SEM003-07 | 2015-06-14 | 2018-06-14 | | | | This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at https://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at https://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless
otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only. Report No.: SZEM170400297001 Page: 12 of 83 | Low Noise
Amplifier | Black Diamond
Series | BDLNA-0118-
352810 | SEM005-05 | 2016-10-09 | 2017-10-09 | |------------------------|-------------------------|-----------------------|-----------|------------|------------| | Band filter | Amindeon | Asi 3314 | SEM023-01 | N/A | N/A | | 20dB Bandwidth | | | | | | | | | | |-------------------|-----------------|----------|--------------|------------|--------------|--|--|--|--| | Equipment | Manufacturer | Model No | Inventory No | Cal Date | Cal Due Date | | | | | | DC Power Supply | ZhaoXin | RXN-305D | SEM011-02 | 2016-10-09 | 2017-10-09 | | | | | | Spectrum Analyzer | Rohde & Schwarz | FSP | SEM004-06 | 2016-10-09 | 2017-10-09 | | | | | | Power Meter | Rohde & Schwarz | NRVS | SEM014-02 | 2016-10-09 | 2017-10-09 | | | | | | Conducted Peak Output Power | | | | | | | | | | | |-----------------------------|-----------------|----------|--------------|------------|--------------|--|--|--|--|--| | Equipment | Manufacturer | Model No | Inventory No | Cal Date | Cal Due Date | | | | | | | DC Power Supply | ZhaoXin | RXN-305D | SEM011-02 | 2016-10-09 | 2017-10-09 | | | | | | | Spectrum Analyzer | Rohde & Schwarz | FSP | SEM004-06 | 2016-10-09 | 2017-10-09 | | | | | | | Power Meter | Rohde & Schwarz | NRVS | SEM014-02 | 2016-10-09 | 2017-10-09 | | | | | | | Carrier Frequencies Separation | | | | | | | | | | | |--------------------------------|-----------------|----------|--------------|------------|--------------|--|--|--|--|--| | Equipment | Manufacturer | Model No | Inventory No | Cal Date | Cal Due Date | | | | | | | DC Power Supply | ZhaoXin | RXN-305D | SEM011-02 | 2016-10-09 | 2017-10-09 | | | | | | | Spectrum Analyzer | Rohde & Schwarz | FSP | SEM004-06 | 2016-10-09 | 2017-10-09 | | | | | | | Power Meter | Rohde & Schwarz | NRVS | SEM014-02 | 2016-10-09 | 2017-10-09 | | | | | | Report No.: SZEM170400297001 Page: 13 of 83 | Hopping Channel Number | | | | | | | | | | |------------------------|-----------------|----------|--------------|------------|--------------|--|--|--|--| | Equipment | Manufacturer | Model No | Inventory No | Cal Date | Cal Due Date | | | | | | DC Power Supply | ZhaoXin | RXN-305D | SEM011-02 | 2016-10-09 | 2017-10-09 | | | | | | Spectrum Analyzer | Rohde & Schwarz | FSP | SEM004-06 | 2016-10-09 | 2017-10-09 | | | | | | Power Meter | Rohde & Schwarz | NRVS | SEM014-02 | 2016-10-09 | 2017-10-09 | | | | | | Dwell Time | | | | | | | | | | | |-------------------|-----------------|----------|--------------|------------|--------------|--|--|--|--|--| | Equipment | Manufacturer | Model No | Inventory No | Cal Date | Cal Due Date | | | | | | | DC Power Supply | ZhaoXin | RXN-305D | SEM011-02 | 2016-10-09 | 2017-10-09 | | | | | | | Spectrum Analyzer | Rohde & Schwarz | FSP | SEM004-06 | 2016-10-09 | 2017-10-09 | | | | | | | Power Meter | Rohde & Schwarz | NRVS | SEM014-02 | 2016-10-09 | 2017-10-09 | | | | | | | Conducted Spurious Emissions | | | | | | | | | | | |------------------------------|-----------------|----------|--------------|------------|--------------|--|--|--|--|--| | Equipment | Manufacturer | Model No | Inventory No | Cal Date | Cal Due Date | | | | | | | DC Power Supply | ZhaoXin | RXN-305D | SEM011-02 | 2016-10-09 | 2017-10-09 | | | | | | | Spectrum Analyzer | Rohde & Schwarz | FSP | SEM004-06 | 2016-10-09 | 2017-10-09 | | | | | | | Power Meter | Rohde & Schwarz | NRVS | SEM014-02 | 2016-10-09 | 2017-10-09 | | | | | | | Conducted Band Edges Measurement | | | | | | | | | | |----------------------------------|-----------------|----------|--------------|------------|--------------|--|--|--|--| | Equipment | Manufacturer | Model No | Inventory No | Cal Date | Cal Due Date | | | | | | DC Power Supply | ZhaoXin | RXN-305D | SEM011-02 | 2016-10-09 | 2017-10-09 | | | | | | Spectrum Analyzer | Rohde & Schwarz | FSP | SEM004-06 | 2016-10-09 | 2017-10-09 | | | | | | Power Meter | Rohde & Schwarz | NRVS | SEM014-02 | 2016-10-09 | 2017-10-09 | | | | | | General used equipment | | | | | | | | | | |------------------------------------|---|----------|--------------|------------|--------------|--|--|--|--| | Equipment | Manufacturer | Model No | Inventory No | Cal Date | Cal Due Date | | | | | | Humidity/ Temperature
Indicator | Shanghai
Meteorological
Industry Factory | ZJ1-2B | SEM002-03 | 2016-10-12 | 2017-10-12 | | | | | | Humidity/ Temperature
Indicator | Shanghai
Meteorological
Industry Factory | ZJ1-2B | SEM002-04 | 2016-10-12 | 2017-10-12 | | | | | | Humidity/ Temperature Indicator | Mingle | N/A | SEM002-08 | 2016-10-12 | 2017-10-12 | | | | | | Barometer | Changchun
Meteorological
Industry Factory | DYM3 | SEM002-01 | 2016-05-18 | 2017-05-18 | | | | | Report No.: SZEM170400297001 Page: 14 of 83 ### 6 Radio Spectrum Technical Requirement ### 6.1 Antenna Requirement #### 6.1.1 Test Requirement: 47 CFR Part 15, Subpart C 15.247 #### 6.1.2 Conclusion #### Standard Requirment: An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. #### 15.247(b) (4) requirement: The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi. #### EUT Antenna: The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 2.3dBi. Report No.: SZEM170400297001 Page: 15 of 83 ### 6.2 Other requirements Frequency Hopping Spread Spectrum System Hopping Sequence #### 6.2.1 Test Requirement: 47 CFR Part 15, Subpart C 15.247 #### 6.2.2 Conclusion #### Standard Requirment: The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals. Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmitter be presented with a continuous data (or information) stream. In addition, a system employing short transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmissions over the minimum number of hopping channels specified in this section. The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hopsets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted. Compliance for section 15.247(a)(1): According to Technical Specification, the pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones. Number of shift register stages: 9 Length of pseudo-random sequence: 29 -1 = 511 bits Longest sequence of zeros: 8 (non-inverted signal) Linear Feedback Shift Register for Generation of the PRBS sequence An example of Pseudorandom Frequency Hopping Sequence as follow: Each frequency used equally on the average by each transmitter. According to Technical Specification, the receivers are designed to have input and IF bandwidths that match the hopping channel bandwidths of any transmitters and shift frequencies in synchronization with the transmitted signals. Compliance for section 15.247(g): According to Technical Specification, the system transmits the packet with the pseudorandom hopping frequency with a continuous data and the short burst transmission from the Bluetooth system is also transmitted under the frequency hopping system with the pseudorandom hopping frequency system. Compliance for section 15.247(h): Report No.: SZEM170400297001 Page: 16 of 83 According to Technical specification, the system incorporates with an adaptive system to detect other user within the spectrum band so that it individ Report No.: SZEM170400297001 Page: 17 of 83 ### 7 Radio Spectrum Matter Test Results ### 7.1 Conducted Disturbance at AC Power Line(150kHz-30MHz) Test Requirement 47 CFR Part 15, Subpart C 15.207 Test Method: ANSI C63.10 (2013) Section 6.2 Limit: | | Conducted limit(dBµV) | | | | | |------------------------------------|-----------------------|-----------|--|--|--| | Frequency of emission(MHz) | Quasi-peak |
Average | | | | | 0.15-0.5 | 66 to 56* | 56 to 46* | | | | | 0.5-5 | 56 | 46 | | | | | 5-30 | 60 | 50 | | | | | *Decreases with the logarithm of t | he frequency. | | | | | Report No.: SZEM170400297001 Page: 18 of 83 #### 7.1.1 E.U.T. Operation Operating Environment: Temperature: 25.0 °C Humidity: 55 % RH Atmospheric Pressure: 1020 mbar Test mode: b:TX+Charge_Keep the EUT in transmitting mode and being charged #### 7.1.2 Test Setup Diagram #### 7.1.3 Measurement Data - 1) The mains terminal disturbance voltage test was conducted in a shielded room. - 2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a 50ohm/50µH + 5ohm linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded. - 3) The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane, - 4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2. - 5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement. Report No.: SZEM170400297001 Page: 19 of 83 Mode:b; Line:Live Line Site : Shielding Room Condition : CE LINE Job No. : 02970CR Test mode : b | | Free | | LISN
Factor | | | | Over | Domanic | |-----|---------|------|----------------|-------|-------|-------|--------|---------| | | rieq | TOSS | ractor | rever | rever | TIME | LIMIC | Veligik | | | MHz | dB | dB | dBuV | dBuV | dBuV | dB | | | 1 | 0.19140 | 0.02 | 9.64 | 24.02 | 33.68 | 53.98 | -20.30 | Peak | | 2 | 0.26583 | 0.02 | 9.64 | 22.38 | 32.04 | 51.25 | -19.20 | Peak | | 3 @ | 0.58231 | 0.02 | 9.65 | 24.27 | 33.94 | 46.00 | -12.06 | Peak | | 4 | 1.619 | 0.03 | 9.66 | 14.23 | 23.92 | 46.00 | -22.08 | Peak | | 5 | 6.951 | 0.08 | 9.79 | 15.54 | 25.41 | 50.00 | -24.59 | Peak | | 6 | 24.529 | 0.16 | 10.32 | 11.80 | 22.28 | 50.00 | -27.72 | Peak | Report No.: SZEM170400297001 Page: 20 of 83 #### Mode:b; Line:Neutral Line Site : Shielding Room Condition : CE NEUTRAL Job No. : 02970CR Test mode : b | | _ | | LISN | | | | Over | | |-----|---------|------|--------|-------|-------|-------|--------|--------| | | Freq | Loss | Factor | revel | revel | Line | Limit | Kemark | | | MHz | dB | dB | dBuV | dBuV | dBuV | dB | | | 1 | 0.21279 | 0.02 | 9.63 | 25.89 | 35.54 | 53.10 | -17.55 | Peak | | 2 | 0.31163 | 0.02 | 9.63 | 24.84 | 34.49 | 49.93 | -15.44 | Peak | | 3 @ | 0.58851 | 0.02 | 9.63 | 27.06 | 36.71 | 46.00 | -9.29 | Peak | | 4 | 2.261 | 0.03 | 9.66 | 14.20 | 23.89 | 46.00 | -22.11 | Peak | | 5 | 7.526 | 0.09 | 9.78 | 18.83 | 28.70 | 50.00 | -21.30 | Peak | | 6 | 11.621 | 0.15 | 9.89 | 14.42 | 24.45 | 50.00 | -25.55 | Peak | Report No.: SZEM170400297001 Page: 21 of 83 #### 7.2 20dB Bandwidth Test Requirement 47 CFR Part 15, Subpart C 15.247(a)(1) Test Method: ANSI C63.10 (2013) Section 7.8.7 #### 7.2.1 E.U.T. Operation Operating Environment: Temperature: 23.0 °C Humidity: 56 % RH Atmospheric Pressure: 1015 mbar Exploratory Test Mode: Non-hopping transmitting with all kind of modulation and all kind of data type Transmitting mode and Charge + Transmitting mode. Final Test Mode: Through Pre-scan, find the DH1 of data type is the worst case of GFSK modulation type. Transmitting mode. Only the worst case is recorded in the report. #### 7.2.2 Test Setup Diagram ### Ground Reference Plane #### 7.2.3 Measurement Data The detailed test data see: Appendix 15.247 Report No.: SZEM170400297001 Page: 22 of 83 ### 7.3 Conducted Peak Output Power Test Requirement 47 CFR Part 15, Subpart C 15.247(b)(1) Test Method: ANSI C63.10 (2013) Section 7.8.5 Limit: | Frequency range(MHz) | Output power of the intentional radiator(watt) | | | | |----------------------|--|--|--|--| | | 1 for ≥50 hopping channels | | | | | 902-928 | 0.25 for 25≤ hopping channels <50 | | | | | | 1 for digital modulation | | | | | | 1 for ≥75 non-overlapping hopping channels | | | | | 2400-2483.5 | 0.125 for all other frequency hopping systems | | | | | | 1 for digital modulation | | | | | 5725-5850 | 1 for frequency hopping systems and digital modulation | | | | Report No.: SZEM170400297001 Page: 23 of 83 #### 7.3.1 E.U.T. Operation Operating Environment: Temperature: 23.0 °C Humidity: 56 % RH Atmospheric Pressure: 1015 mbar Exploratory Test Mode: Non-hopping transmitting with all kind of modulation and all kind of data type Transmitting mode and Charge + Transmitting mode. Final Test Mode: Through Pre-scan, find the DH1 of data type is the worst case of GFSK modulation type. Transmitting mode. Only the worst case is recorded in the report. ### 7.3.2 Test Setup Diagram ### Ground Reference Plane #### 7.3.3 Measurement Data The detailed test data see: Appendix 15.247 Report No.: SZEM170400297001 Page: 24 of 83 ### 7.4 Carrier Frequencies Separation Test Requirement 47 CFR Part 15, Subpart C 15.247a(1) Test Method: ANSI C63.10 (2013) Section 7.8.2 Limit: 2/3 of the 20dB bandwidth base on the transmission power is less than 0.125W #### 7.4.1 E.U.T. Operation Operating Environment: Temperature: 23.0 °C Humidity: 56 % RH Atmospheric Pressure: 1015 mbar Exploratory Test Mode: Hopping transmitting with all kind of modulation and all kind of data type Transmitting mode and Charge + Transmitting mode. Final Test Mode: Through Pre-scan, find the DH1 of data type is the worst case of GFSK modulation type. Transmitting mode Only the worst case is recorded in the report. ### 7.4.2 Test Setup Diagram ### Ground Reference Plane #### 7.4.3 Measurement Data The detailed test data see: Appendix 15.247 This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only. Report No.: SZEM170400297001 Page: 25 of 83 ### 7.5 Hopping Channel Number Test Requirement 47 CFR Part 15, Subpart C 15.247a(1)(iii) Test Method: ANSI C63.10 (2013) Section 7.8.3 Limit: | Frequency range(MHz) | Number of hopping channels (minimum) | |----------------------|--------------------------------------| | 000 000 | 50 for 20dB bandwidth <250kHz | | 902-928 | 25 for 20dB bandwidth ≥250kHz | | 2400-2483.5 | 15 | | 5725-5850 | 75 | Report No.: SZEM170400297001 Page: 26 of 83 #### 7.5.1 E.U.T. Operation Operating Environment: Temperature: 23.0 °C Humidity: 56 % RH Atmospheric Pressure: 1015 mbar Exploratory Test Mode: Hopping transmitting with all kind of modulation and all kind of data type Transmitting mode and Charge + Transmitting mode. Final Test Mode: Through Pre-scan, find the DH1 of data type is the worst case of GFSK modulation type. Transmitting mode Only the worst case is recorded in the report. #### 7.5.2 Test Setup Diagram ### Ground Reference Plane #### 7.5.3 Measurement Data The detailed test data see: Appendix 15.247 Report No.: SZEM170400297001 Page: 27 of 83 #### 7.6 Dwell Time Test Requirement 47 CFR Part 15, Subpart C 15.247a(1)(iii) Test Method: ANSI C63.10 (2013) Section 7.8.4 Limit: | Frequency(MHz) | Limit | |----------------|---| | | 0.4S within a 20S period(20dB bandwidth<250kHz) | | 902-928 | 0.4S within a 10S period(20dB bandwidth≥250kHz) | | | 0.4S within a period of 0.4S multiplied by the number | | 2400-2483.5 | of hopping channels | | 5725-5850 | 0.4S within a 30S period | Report No.: SZEM170400297001 Page: 28 of 83 #### 7.6.1 E.U.T. Operation Operating Environment: Temperature: 23.0 °C Humidity: 56 % RH Atmospheric Pressure: 1015 mbar Exploratory Test Mode: Hopping transmitting with all kind of modulation and all kind of data type Transmitting mode and Charge + Transmitting mode. Final Test Mode: Transmitting mode Only the worst case is recorded in the report. #### 7.6.2 Test Setup Diagram ### Ground Reference Plane #### 7.6.3 Measurement Data The detailed test
data see: Appendix 15.247 Report No.: SZEM170400297001 Page: 29 of 83 ### 7.7 Conducted Spurious Emissions Test Requirement 47 CFR Part 15, Subpart C 15.247(d) Test Method: ANSI C63.10 (2013) Section 7.8.8 Limit: In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Report No.: SZEM170400297001 Page: 30 of 83 #### 7.7.1 E.U.T. Operation Operating Environment: Temperature: 23.0 °C Humidity: 56 % RH Atmospheric Pressure: 1015 mbar Exploratory Test Mode: Non-hopping transmitting with all kind of modulation and all kind of data type Transmitting mode and Charge + Transmitting mode. Final Test Mode: Through Pre-scan, find the DH1 of data type is the worst case of GFSK modulation type. Transmitting mode Only the worst case is recorded in the report. ### 7.7.2 Test Setup Diagram ### Ground Reference Plane #### 7.7.3 Measurement Data The detailed test data see: Appendix 15.247 Report No.: SZEM170400297001 Page: 31 of 83 ### 7.8 Radiated Spurious Emissions Test Requirement 47 CFR Part 15, Subpart C 15.205 & 15.209 Test Method: ANSI C63.10 (2013) Section 6.4,6.5,6.6 Measurement Distance: 3m Limit: | Frequency(MHz) | Field strength(microvolts/meter) | Measurement distance(meters) | | | |----------------|----------------------------------|------------------------------|--|--| | 0.009-0.490 | 2400/F(kHz) | 300 | | | | 0.490-1.705 | 24000/F(kHz) | 30 | | | | 1.705-30.0 | 30 | 30 | | | | 30-88 | 100 | 3 | | | | 88-216 | 150 | 3 | | | | 216-960 | 200 | 3 | | | | Above 960 | 500 | 3 | | | Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. Report No.: SZEM170400297001 Page: 32 of 83 #### 7.8.1 E.U.T. Operation Operating Environment: Temperature: 25.0 °C Humidity: 55 % RH Atmospheric Pressure: 1020 mbar Exploratory Test Mode: Non-hopping transmitting mode with all kind of modulation and all kind of data type Transmitting mode and Charge + Transmitting mode. Final Test Mode: Through Pre-scan, find the DH1 of data type and 8DPSK modulation is the worst case. Charge + Transmitting mode For below 1GHz part, through pre-scan, the worst case is the lowest channel. Only the worst case is recorded in the report. #### 7.8.2 Test Setup Diagram Below 30MHz 30MHz-1GHz Above 1GHz Report No.: SZEM170400297001 Page: 33 of 83 #### 7.8.3 Measurement Data - a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation. - b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation. - c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. - d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. - e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. - f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. - g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. - h. Test the EUT in the lowest channel, the middle channel, the Highest channel. - i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case. - j. Repeat above procedures until all frequencies measured was complete. Report No.: SZEM170400297001 Page: 34 of 83 below 1GHz Detector:QP Mode:b; Polarization:Horizontal; Condition: 3m HORIZONTAL Job No. : 02970CR Test Mode: Charge+Tx | | | Cable | Ant | Preamp | Read | | Limit | 0ver | |------|--------|-------|--------|--------|-------|--------|--------|--------| | | Freq | Loss | Factor | Factor | Level | Level | Line | Limit | | | MHz | dB | dB/m | dB | dBuV | dBuV/m | dBuV/m | dB | | 1 | 30.00 | 0.60 | 18.70 | 27.36 | 24.71 | 16.65 | 40.00 | -23.35 | | 2 | 100.93 | 1.20 | 9.05 | 27.19 | 33.82 | 16.88 | 43.50 | -26.62 | | 3 | 280.02 | 1.81 | 13.02 | 26.45 | 30.26 | 18.64 | 46.00 | -27.36 | | 4 | 560.69 | 2.66 | 18.99 | 27.60 | 27.38 | 21.43 | 46.00 | -24.57 | | 5 | 771.45 | 3.12 | 21.96 | 27.33 | 26.24 | 23.99 | 46.00 | -22.01 | | 6 pp | 893.86 | 3.58 | 23.15 | 26.82 | 25.74 | 25.65 | 46.00 | -20.35 | Report No.: SZEM170400297001 Page: 35 of 83 Mode:b; Polarization: Vertical; Condition: 3m VERTICAL Job No. : 02970CR Test Mode: Charge+Tx | | Freq | | | Preamp
Factor | | | | | |------|--------|------|-------|------------------|-------|--------|--------|--------| | | MHz | dB | dB/m | dB | dBuV | dBuV/m | dBuV/m | dB | | 1 | 33.21 | 0.60 | 16.90 | 27.34 | 25.02 | 15.18 | 40.00 | -24.82 | | 2 | 53.32 | 0.80 | 8.20 | 27.28 | 32.70 | 14.42 | 40.00 | -25.58 | | 3 | 96.77 | 1.17 | 8.97 | 27.20 | 37.80 | 20.74 | 43.50 | -22.76 | | 4 | 106.76 | 1.22 | 8.76 | 27.15 | 32.39 | 15.22 | 43.50 | -28.28 | | 5 | 640.61 | 2.79 | 20.56 | 27.49 | 25.91 | 21.77 | 46.00 | -24.23 | | 6 pp | 897.00 | 3.59 | 23.18 | 26.78 | 25.57 | 25.56 | 46.00 | -20.44 | Report No.: SZEM170400297001 Page: 36 of 83 #### **Above 1GHz** Mode:b; Polarization:Horizontal; Modulation Type:GFSK; Channel:Low #### Peak | ı can | | | | | | | | |--------------------|------------------------------|-----------------------|---------------------|----------------------------|-------------------|-------------------|-----------------------| | Frequency
(MHz) | Antenna
factors
(dB/m) | Cable
Loss
(dB) | Preamp
Gain (dB) | Reading
Level
(dBmV) | Level
(dBmV/m) | Limit
(dBmV/m) | Over
limit
(dB) | | 3853.298 | 33.21 | 6.59 | 37.99 | 45.46 | 47.75 | 74.00 | -26.25 | | 4804.000 | 34.16 | 7.73 | 38.40 | 51.74 | 55.62 | 74.00 | -18.38 | | 5828.433 | 34.60 | 8.58 | 38.33 | 44.84 | 50.07 | 74.00 | -23.93 | | 7206.000 | 36.42 | 9.65 | 37.11 | 49.59 | 58.81 | 74.00 | -15.19 | | 9608.000 | 37.52 | 11.06 | 35.10 | 39.44 | 53.37 | 74.00 | -20.63 | | 12010.000 | 38.61 | 12.42 | 35.62 | 46.29 | 62.46 | 74.00 | -11.54 | Average | Frequency (MHz) | Antenna
factors
(dB/m) | Cable
Loss
(dB) | Preamp
Gain (dB) | Reading
Level
(dBmV) | Level
(dBmV/m) | Limit
(dBmV/m) | Over
limit
(dB) | |-----------------|------------------------------|-----------------------|---------------------|----------------------------|-------------------|-------------------|-----------------------| | 4804.000 | 34.16 | 7.73 | 38.40 | 44.88 | 48.76 | 54.00 | -5.24 | | 7206.000 | 36.42 | 9.65 | 37.11 | 41.38 | 50.60 | 54.00 | -3.40 | | 12010.000 | 38.61 | 12.42 | 35.62 | 35.80 | 51.97 | 54.00 | -2.03 | Mode:b; Polarization:Vertical; Modulation Type:GFSK; Channel:Low #### Peak | - Car | | | | | | | | |--------------------|------------------------------|-----------------------|---------------------|----------------------|-------------------|-------------------|-----------------------| | Frequency
(MHz) | Antenna
factors
(dB/m) | Cable
Loss
(dB) | Preamp
Gain (dB) | Reading Level (dBmV) | Level
(dBmV/m) | Limit
(dBmV/m) | Over
limit
(dB) | | 3881.276 | 33.28 | 6.61 | 37.99 | 44.70 | 47.08 | 74.00 | -26.92 | | 4804.000 | 34.16 | 7.73 | 38.40 | 49.00 | 52.88 | 74.00 | -21.12 | | 5887.766 | 34.63 | 8.64 | 38.32 | 44.58 | 49.89 | 74.00 | -24.11 | | 7206.000 | 36.42 | 9.65 | 37.11 | 48.10 | 57.32 | 74.00 | -16.68 | | 9608.000 | 37.52 | 11.06 | 35.10 | 39.66 | 53.59 | 74.00 | -20.41 | | 12010.000 | 38.61 | 12.42 | 35.62 | 45.30 | 61.47 | 74.00 | -12.53 | Report No.: SZEM170400297001 Page: 37 of 83 Average | Frequency
(MHz) | Antenna
factors
(dB/m) | Cable
Loss
(dB) | Preamp
Gain (dB) | Reading
Level
(dBmV) | Level
(dBmV/m) | Limit
(dBmV/m) | Over
limit
(dB) | |--------------------|------------------------------|-----------------------|---------------------|----------------------------|-------------------|-------------------|-----------------------| | 7206.000 | 36.42 | 9.65 | 37.11 | 41.52 | 50.74 | 54.00 | -3.26 | | 12010.000 | 38.61 | 12.42 | 35.62 | 36.86 | 53.03 | 54.00 | -0.97 | Mode:b; Polarization:Horizontal; Modulation Type:GFSK; Channel:middle #### Peak | Frequency
(MHz) | Antenna
factors
(dB/m) | Cable
Loss
(dB) | Preamp
Gain (dB) | Reading
Level
(dBmV) | Level
(dBmV/m) | Limit
(dBmV/m) | Over
limit
(dB) | |--------------------|------------------------------|-----------------------|---------------------|----------------------------|-------------------|-------------------|-----------------------| | 3754.236 | 32.94 | 6.51
| 37.98 | 45.21 | 47.19 | 74.00 | -26.81 | | 4882.000 | 34.30 | 7.84 | 38.44 | 49.74 | 53.85 | 74.00 | -20.15 | | 6016.949 | 34.71 | 8.76 | 38.28 | 44.36 | 49.87 | 74.00 | -24.13 | | 7323.000 | 36.37 | 9.73 | 37.01 | 46.18 | 55.50 | 74.00 | -18.50 | | 9764.000 | 37.55 | 11.21 | 35.02 | 39.34 | 53.54 | 74.00 | -20.46 | | 12205.000 | 38.72 | 12.71 | 36.09 | 44.10 | 60.14 | 74.00 | -13.86 | <u>Average</u> | Frequency (MHz) | Antenna
factors
(dB/m) | Cable
Loss
(dB) | Preamp
Gain (dB) | Reading
Level
(dBmV) | Level
(dBmV/m) | Limit
(dBmV/m) | Over
limit
(dB) | |-----------------|------------------------------|-----------------------|---------------------|----------------------------|-------------------|-------------------|-----------------------| | 7323.000 | 36.37 | 9.73 | 37.01 | 38.72 | 48.04 | 54.00 | -5.96 | | 12205.000 | 38.72 | 12.71 | 36.09 | 35.37 | 51.41 | 54.00 | -2.59 | Mode:b; Polarization:Vertical; Modulation Type:GFSK; Channel:middle #### Peak | Frequency
(MHz) | Antenna
factors
(dB/m) | Cable
Loss
(dB) | Preamp
Gain (dB) | Reading
Level
(dBmV) | Level
(dBmV/m) | Limit
(dBmV/m) | Over
limit
(dB) | |--------------------|------------------------------|-----------------------|---------------------|----------------------------|-------------------|-------------------|-----------------------| | 3786.970 | 33.03 | 6.54 | 37.98 | 44.18 | 46.27 | 74.00 | -27.73 | | 4882.000 | 34.30 | 7.84 | 38.44 | 48.35 | 52.46 | 74.00 | -21.54 | | 5887.766 | 34.63 | 8.64 | 38.32 | 44.83 | 50.14 | 74.00 | -23.86 | | 7323.000 | 36.37 | 9.73 | 37.01 | 44.37 | 53.69 | 74.00 | -20.31 | | 9764.000 | 37.55 | 11.21 | 35.02 | 39.31 | 53.51 | 74.00 | -20.49 | | 12205.000 | 38.72 | 12.71 | 36.09 | 45.21 | 61.25 | 74.00 | -12.75 | Report No.: SZEM170400297001 Page: 38 of 83 Average | Frequency
(MHz) | Antenna
factors
(dB/m) | Cable
Loss
(dB) | Preamp
Gain (dB) | Reading
Level
(dBmV) | Level
(dBmV/m) | Limit
(dBmV/m) | Over
limit
(dB) | |--------------------|------------------------------|-----------------------|---------------------|----------------------------|-------------------|-------------------|-----------------------| | 12205.000 | 38.72 | 12.71 | 36.09 | 35.97 | 52.01 | 54.00 | -1.99 | Report No.: SZEM170400297001 Page: 39 of 83 Mode:b; Polarization:Horizontal; Modulation Type:GFSK; Channel:High #### Peak | Frequency
(MHz) | Antenna
factors
(dB/m) | Cable
Loss
(dB) | Preamp
Gain (dB) | Reading
Level
(dBmV) | Level
(dBmV/m) | Limit
(dBmV/m) | Over
limit
(dB) | |--------------------|------------------------------|-----------------------|---------------------|----------------------------|-------------------|-------------------|-----------------------| | 3636.612 | 32.60 | 6.41 | 37.96 | 44.19 | 45.76 | 74.00 | -28.24 | | 4960.000 | 34.43 | 7.94 | 38.48 | 48.77 | 53.09 | 74.00 | -20.91 | | 6131.199 | 34.81 | 8.83 | 38.17 | 44.35 | 50.11 | 74.00 | -23.89 | | 7440.000 | 36.32 | 9.81 | 36.90 | 43.03 | 52.48 | 74.00 | -21.52 | | 9920.000 | 37.59 | 11.37 | 34.94 | 38.50 | 52.98 | 74.00 | -21.02 | | 12279.260 | 38.77 | 12.82 | 36.27 | 37.03 | 53.03 | 74.00 | -20.97 | Mode:b; Polarization:Vertical; Modulation Type:GFSK; Channel:High #### Peak | Frequency
(MHz) | Antenna
factors
(dB/m) | Cable
Loss
(dB) | Preamp
Gain (dB) | Reading
Level
(dBµV) | Level
(dBμV/m) | Limit
(dBμV/m) | Over
limit
(dB) | |--------------------|------------------------------|-----------------------|---------------------|----------------------------|-------------------|-------------------|-----------------------| | 3960.700 | 33.50 | 6.67 | 38.00 | 45.12 | 47.74 | 74.00 | -26.26 | | 4960.000 | 34.43 | 7.94 | 38.48 | 47.51 | 51.83 | 74.00 | -22.17 | | 6104.642 | 34.79 | 8.82 | 38.20 | 44.16 | 49.86 | 74.00 | -24.14 | | 7440.000 | 36.32 | 9.81 | 36.90 | 43.57 | 53.02 | 74.00 | -20.98 | | 9920.000 | 37.59 | 11.37 | 34.94 | 42.04 | 56.52 | 74.00 | -17.48 | | 12385.000 | 38.83 | 12.97 | 36.53 | 43.68 | 59.59 | 74.00 | -14.41 | #### Average | Frequency
(MHz) | Antenna
factors
(dB/m) | Cable
Loss
(dB) | Preamp
Gain (dB) | Reading
Level
(dBmV) | Level
(dBmV/m) | Limit
(dBmV/m) | Over
limit
(dB) | |--------------------|------------------------------|-----------------------|---------------------|----------------------------|-------------------|-------------------|-----------------------| | 9920.000 | 37.59 | 11.37 | 34.94 | 33.12 | 47.60 | 54.00 | -6.40 | | 12385.000 | 38.83 | 12.97 | 36.53 | 30.05 | 45.96 | 54.00 | -8.04 | #### Remark: - 1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows: - Final Test Level = Receiver Reading + Antenna Factor + Cable Factor Preamplifier Factor - 2) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported. This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only. Report No.: SZEM170400297001 Page: 40 of 83 3) As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak measurements were shown in the report. Report No.: SZEM170400297001 Page: 41 of 83 #### 7.9 Radiated Emissions which fall in the restricted bands Test Requirement 47 CFR Part 15, Subpart C 15.205 & 15.209 Test Method: ANSI C63.10 (2013) Section 6.10.5 Measurement Distance: 3m Limit: | Frequency(MHz)⊷ | Field-
strength(microvolts/meter)- | Measurement-
distance(meters)₽ | |-----------------|---------------------------------------|-----------------------------------| | 0.009-0.490₽ | 2400/F(kHz)₽ | 300₽ | | 0.490-1.705₽ | 24000/F(kHz)↔ | 30€ | | 1.705-30.0₽ | 30₽ | 3043 | | 30-88¢ | 100€ | 3₽ | | 88-216₽ | 150₽ | 3₽ | | 216-960₽ | 200₽ | 3₽ | | Above-960₽ | 500€ | 3₄፣ | Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. #### 7.9.1 E.U.T. Operation Operating Environment: Temperature: 23.0 °C Humidity: 53 % RH Atmospheric Pressure: 1015 mba Exploratory Test Non-hopping transmitting mode with all kind of modulation and all kind of Mode: data type Transmitting mode and Charge + Transmitting mode. Final Test Mode: Through Pre-scan, find the DH1 of data type and 8DPSK modulation is the worst case. Charge + Transmitting mode For below 1GHz part, through pre-scan, the worst case is the lowest channel. Only the worst case is recorded in the report. Report No.: SZEM170400297001 Page: 42 of 83 #### 7.9.2 Test Setup Diagram 30MHz-1GHz Above 1GHz #### 7.9.3 Measurement Data - a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation. - b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation. - c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. - d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. - e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. - f. The test-receiver system was set to Peak
Detect Function and Specified Bandwidth with Maximum Hold Mode. - g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. - h. Test the EUT in the lowest channel,the middle channel,the Highest channel. - i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case. - j. Repeat above procedures until all frequencies measured was complete. Report No.: SZEM170400297001 Page: 43 of 83 Mode:b; Polarization:Horizontal; Modulation Type:GFSK; Channel:Low Condition: 3m Horizontal Job No: : 02970CR Mode: : 2402 Bandedge | louc | 240. | z Dana | cugc | | | | | | | | |------|------------|--------|--------|--------|-------|--------|--------|--------|--------|---| | | | Cable | Ant | Preamp | Read | | Limit | 0ver | | | | | Freq | Loss | Factor | Factor | Level | Level | Line | Limit | Remark | | | | | | | | | | | | | | | | MHz | dB | dB/m | dB | dBuV | dBuV/m | dBuV/m | dB | | _ | | | | | | | | | | | | | | 1 | 2390.000 | 5.34 | 29.08 | 37.96 | 46.20 | 42.66 | 74.00 | -31.34 | Peak | | | 2 - | | | | | | | | | | | | r | p 2402.191 | 5.55 | 29.11 | 3/.90 | ŏb.45 | 82.95 | 74.00 | 0.95 | reak | | Report No.: SZEM170400297001 Page: 44 of 83 Mode:b; Polarization:Vertical; Modulation Type:GFSK; Channel:Low Condition: 3m Vertical Job No: : 02970CR Mode: : 2402 Bandedge | iouc. | . 240 | z Dana | cugc | | | | | | | |-------|----------|--------|--------|--------|-------|--------|--------|--------|--------| | | | Cable | Ant | Preamp | Read | | Limit | 0ver | | | | Freq | Loss | Factor | Factor | Level | Level | Line | Limit | Remark | | | • | | | | | | | | | | | MHz | dB | dB/m | dB | dBuV | dBuV/m | dBuV/m | dB | | | | | | | | | • | • | | | | 1 | 2390.000 | 5.34 | 29.08 | 37.96 | 45.62 | 42.08 | 74.00 | -31.92 | Peak | | _ | | | | | | | | | | | 2 pp | 2402.191 | 5.35 | 29.11 | 37.96 | 79.67 | 76.17 | 74.00 | 2.17 | Peak | Report No.: SZEM170400297001 Page: 45 of 83 Mode:b; Polarization:Horizontal; Modulation Type:GFSK; Channel:High Condition: 3m HORIZONTAL Job No: : 02970CR Mode: : 2480 Bandedge | | | Cable | Ant | Preamp | Read | | Limit | 0ver | | |------|----------|-------|--------|--------|-------|--------|--------|--------|--------| | | Freq | Loss | Factor | Factor | Level | Level | Line | Limit | Remark | | | | | | | | | | | | | | MHz | dB | dB/m | dB | dBuV | dBuV/m | dBuV/m | dB | | | | | | | | | | | | | | 1 pp | 2480.204 | 5.41 | 29.34 | 37.95 | 83.49 | 80.29 | 74.00 | 6.29 | Peak | | 2 | 2483.500 | 5.41 | 29.35 | 37.95 | 53.44 | 50.25 | 74.00 | -23.75 | Peak | Report No.: SZEM170400297001 Page: 46 of 83 Mode:b; Polarization:Vertical; Modulation Type:GFSK; Channel:High Condition: 3m Vertical Job No: : 02970CR Mode: : 2480 Bandedge | | Freq | | | Preamp
Factor | | | | | Remark | |------|----------|------|-------|------------------|-------|--------|--------|--------|--------| | | MHz | dB | dB/m | dB | dBuV | dBuV/m | dBuV/m | dB | | | 1 pp | 2480.204 | 5.41 | 29.34 | 37.95 | 78.97 | 75.77 | 74.00 | 1.77 | Peak | | 2 | 2483.500 | 5.41 | 29.35 | 37.95 | 44.56 | 41.37 | 74.00 | -32.63 | Peak | | 3 | 2495.180 | 5.42 | 29.39 | 37.95 | 46.72 | 43.58 | 74.00 | -30.42 | Peak | Report No.: SZEM170400297001 Page: 47 of 83 #### 7.10 Conducted Band Edges Measurement Test Requirement 47 CFR Part 15, Subpart C 15.247(d) Test Method: ANSI C63.10 (2013) Section 7.8.6 #### 7.10.1E.U.T. Operation Operating Environment: Temperature: 23.0 °C Humidity: 56 % RH Atmospheric Pressure: 1015 mbar Exploratory Test Mode: Hopping and Non-hopping transmitting with all kind of modulation and all kind of data type Transmitting mode and Charge + Transmitting mode. Final Test Mode: Through Pre-scan, find the DH1 of data type is the worst case of GFSK modulation type. Charge + Transmitting mode Only the worst case is recorded in the report. #### 7.10.2Test Setup Diagram #### Ground Reference Plane #### 7.10.3Measurement Data The detailed test data see: Appendix 15.247 Report No.: SZEM170400297001 Page: 48 of 83 #### 8 Photographs #### 8.1 Conducted Disturbance at AC Power Line(150kHz-30MHz) Test Setup Report No.: SZEM170400297001 Page: 49 of 83 #### 8.2 Radiated Spurious Emissions Test Setup Report No.: SZEM170400297001 Page: 50 of 83 #### 8.3 Antenna Requirement Test Setup Report No.: SZEM170400297001 Page: 51 of 83 #### 8.4 EUT Constructional Details Report No.: SZEM170400297001 Page: 52 of 83 Report No.: SZEM170400297001 Page: 53 of 83 Report No.: SZEM170400297001 Page: 54 of 83 Report No.: SZEM170400297001 Page: 55 of 83 Report No.: SZEM170400297001 Page: 56 of 83 Report No.: SZEM170400297001 Page: 57 of 83 Report No.: SZEM170400297001 Page: 58 of 83 #### 9 Appendix #### 9.1 Appendix 15.247 #### 1.20 dB Bandwidth | Test Mode | Test Channel | EBW[MHz] | Limit[MHz] | Verdict | |-----------|--------------|----------|------------|---------| | DH5 | 2402 | 0.978 | | PASS | | DH5 | 2441 | 0.980 | | PASS | | DH5 | 2480 | 0.980 | | PASS | Report No.: SZEM170400297001 Page: 59 of 83 Report No.: SZEM170400297001 Page: 60 of 83 Report No.: SZEM170400297001 Page: 61 of 83 Report No.: SZEM170400297001 Page: 62 of 83 #### 2.Conducted Peak Output Power | Test Mode | Test Channel | Power[dBm] | Limit[dBm] | Verdict | |-----------|--------------|------------|------------|---------| | DH5 | 2402 | 0.02 | <20.97 | PASS | | DH5 | 2441 | 0.65 | <20.97 | PASS | | DH5 | 2480 | 0.92 | <20.97 | PASS | Report No.: SZEM170400297001 Page: 63 of 83 Report No.: SZEM170400297001 Page: 64 of 83 Report No.: SZEM170400297001 Page: 65 of 83 Report No.: SZEM170400297001 Page: 66 of 83 #### 3. Carrier Frequency Separation | Test Mode | Test Channel | Result[MHz] | Limit[MHz] | Verdict | |-----------|--------------|-------------|------------|---------| | DH5 | 2441 | 1.002 | >=0.653 | PASS | Report No.: SZEM170400297001 Page: 67 of 83 #### 4.Dwell Time | Test
Mode | Test
Channel | Burst Width[ms/hop/ch] | Total
Hops[hop*ch] | Dwell
Time[s] | Limit[s] | Verdict | |--------------|-----------------|------------------------|-----------------------|------------------|----------|---------| | DH1 | 2402 | 0.41 | 320 | 0.131 | <0.4 | PASS | | DH3 | 2402 | 1.68 | 160 | 0.269 | <0.4 | PASS | | DH5 | 2402 | 2.92 | 100 | 0.292 | <0.4 | PASS | Report No.: SZEM170400297001 Page: 68 of 83 Report No.: SZEM170400297001 Page: 69 of 83 Report No.: SZEM170400297001 Page: 70 of 83 Report No.: SZEM170400297001 Page: 71 of 83 #### **5.Hopping Channel Number** | Test Mode | Test Channel | Number of Hopping Channel[N] | Limit[N] | Verdict | |-----------|--------------|------------------------------|----------|---------| | DH5 | 2402 | 79 | >=15 | PASS | Report No.: SZEM170400297001 Page: 72 of 83 #### 6.Band-edge for RF Conducted Emissions | Test
Mode | Test
Channel | Hopping | Carrier
Power[dBm] | Max. Spurious Level [dBm] | Limit[dBm] | Verdict | |--------------|-----------------|---------|-----------------------|---------------------------|------------|---------| | DH5 | 2402 | On | -0.500 | -47.912 | <-20.5 | PASS | | DH5 | 2402 | Off | -0.860 | -48.809 | <-20.86 | PASS | | DH5 | 2480 | On | -0.350 | -47.960 | <-20.35 | PASS | | DH5 | 2480 | Off | 0.190 | -47.406 | <-19.81 | PASS | Report No.: SZEM170400297001 Page: 73 of 83 Report No.: SZEM170400297001 Page: 74 of 83 Report No.: SZEM170400297001 Page: 75 of 83 Report No.: SZEM170400297001 Page: 76 of 83 Report No.: SZEM170400297001 Page: 77 of 83 #### 7.RF Conducted Spurious Emissions | Test Mode | Test
Channel | StartFre
[MHz] | StopFre
[MHz] | RBW
[kHz] | VBW
[kHz] | Pref[dBm | Max.
Level
[dBm] | Limit
[dBm] | Verdict | |-----------|-----------------|-------------------|------------------|--------------|--------------|----------|------------------------|----------------|---------| | DH5 | 2402 | 30 | 10000 | 1000 | 3000 | -0.56 | -51.000 | <-
20.56 | PASS | | DH5 | 2402 | 10000 | 25000 | 1000 | 3000 | -0.56 | -60.790 | <-
20.56 | PASS | | DH5 | 2441 | 30 | 10000 | 1000 | 3000 | -0.04 | -50.490 | <-
20.04 | PASS | | DH5 | 2441 | 10000 | 25000 | 1000 | 3000 | -0.04 | -60.550 | <-
20.04 | PASS | | DH5 | 2480 | 30 | 10000 | 1000 | 3000 | 0.24 | -50.760 | <-
19.76 | PASS | | DH5 | 2480 | 10000 | 25000 | 1000 | 3000 | 0.24 | -55.050 | <-
19.76 | PASS | Report No.: SZEM170400297001 Page: 78 of 83 Report No.: SZEM170400297001 Page: 79 of 83 Report No.: SZEM170400297001 Page: 80 of 83 Report No.: SZEM170400297001 Page: 81 of 83 Report No.: SZEM170400297001 Page: 82 of 83 Report No.: SZEM170400297001 Page: 83 of 83