

Test report No. : 10258275S-A Page : 1 of 50 : July 18, 2014 Issued date : August 29, 2014 (-r01) Revised date

FCC ID : AZD228

SAR TEST REPORT

Test Report No.: 10258275S-A

Applicant Canon Inc.

Type of Equipment Wireless Module

Model No. WM228 (*. Wireless module for the single platform.)

FCC ID AZD228

FCC 47CFR §2.1093 **Test Standard**

Test Result Complied

Highest Reporte SAR(1g) Value	Plattorm #	Platform type	Platform model	Remarks
0.73 W/kg	Single platform	Digital camera	PC2064	(DTS) 2462MHz, IEEE 802.11b (1Mbps, DBPSK/DSSS) *. This was a highest measured SAR(1g) value: 0.546 W/kg (output power: 13.75dBm).

The highest reported SAR (1g) value for body-touch condition is "0.73 W/kg" = grant listing

- 1. This test report shall not be reproduced in full or partial, without the written approval of UL Japan, Inc.
- The results in this report apply only to the sample tested.
- This sample tested is in compliance with the limits of the above regulation.
- The test results in this test report are traceable to the national or international standards.
- This test report must not be used by the customer to claim product certification, approval, or endorsement by any agency of the Federal Government.
- The opinions and the interpretations to the result of the description in this report are outside scopes where UL Japan has been accredited.

Date of test:

74. Fraker. Test engineer:

Hiroshi Naka

Engineer, Consumer Technology Division

Approved by:

Toyokazu Imamura

Leader, Consumer Technology Division

Since highest reported SAR (1g): 0.73 W/kg of this platform which obtained in accordance with KDB447498 (v05) was kept under 1.2 W/kg, this EUT was approved to operate single platform (which were tested in above.).

Test report No. : 10258275S-A
Page : 2 of 50
Issued date : July 18, 2014
Revised date : August 29, 2014 (-r01)

FCC ID : AZD228

REVISION HISTORY

Revision	Test report No.	Date	Page revised	Contents
Original	10258275S-A	July 18, 2014	-	-
-r01	10258275S-A	August 29, 2014	p1,2,9,27	Correction of a calculation mistake and a written mistake.

^{*.} By issue of new revision report, the report of an old revision becomes invalid.

CONTENTS		PAGE
REVISION HISTO	RY	2
CONTENTS		2
SECTION 1:	Customer information	3
SECTION 2:	Equipment under test (EUT)	3
2.1	Identification of EUT	3
2.1	Product Description.	3
2.3	Tx output power specification (antenna port terminal conducted)	4
2.4	Maximum output power which may possible	4
SECTION 3:	Test specification, procedures and results	
3.1	Test specification.	
3.2	Exposure limit	
3.3	Procedure and result	
3.4	Test location	
3.5	Confirmation before SAR testing	6
3.6	Confirmation after SAR testing	6
3.7	Test setup of EUT and SAR measurement procedure	7
SECTION 4:	Operation of EUT during testing	7
SECTION 5:	Uncertainty assessment (SAR measurement)	
SECTION 6:	Confirmation before testing	
6.1	SAR reference power measurement (antenna terminal conducted average power of EUT)	
6.2	Comparison of power of EMC sample	9
SECTION 7:	Measurement results	10
7.1	SAR test results	
Contents of ap	<u>pendixes</u>	
APPENDIX 1:	Photographs of test setup	11
Appendix 1-1	Photograph of Platform and antenna position	11
Appendix 1-2	EUT and support equipment	12
Appendix 1-3	Photograph of test setup / Platform-Digital camera	13
APPENDIX 2:	SAR Measurement data	15
Appendix 2-1	Evaluation procedure	15
Appendix 2-2	SAR measurement data	16
APPENDIX 3:	Test instruments	27
Appendix 3-1	Equipment used	
Appendix 3-2	Configuration and peripherals	
Appendix 3-3	Test system specification	29
Appendix 3-4	Simulated tissues composition and parameter confirmation	30
Appendix 3-5	System check results.	
Appendix 3-6	System check measurement data	
Appendix 3-7	System check uncertainty	
Appendix 3-8	Calibration certificate: E-Field Probe (EX3DV4)	
Appendix 3-9	Calibration certificate: Dipole (D2450V2)	43

Test report No. : 10258275S-A Page : 3 of 50 Issued date : July 18, 2014

FCC ID : AZD228

SECTION 1: Customer information

Company Name	Canon Inc.
Brand Name	Canon
Address	30-2, Shimomaruko 3-chome, Ohta-ku, Tokyo 146-8501 Japan
Telephone Number	+81-3-5482-8070
Facsimile Number	+81-3-3757-8431
Contact Person	Hironobu Saida

SECTION 2: Equipment under test (EUT)

2.1 Identification of EUT

Type of Equipment	Wireless Module (*. The EUT was installed into the platform: digital camera
Model Number	WM228 (*. Platform model: PC2064)
Serial Number	E4813949ECE3 (*. Platform serial number: 139)
Condition of EUT	WM228: Production model (*. Platform: Engineering prototype)
Condition of LC 1	(*. Not for sale: This sample is equivalent to mass-produced items.)
	February 3, 2014 (*. EUT for power measurement.) *. No modification by the Lab.
	July 3, 2014(*. EUT for SAR test.) *. No modification by the Lab.
Receipt Date of Sample	(*. The EUT that had been measured the power of SAR test reference, was installed into the platform-digital
	camera (model: PC2064) from the beginning. After power measurement, the EUT was returned to the customer,
	and the RF wiring was changed to the original antenna line form the antenna conducted power measurement line of the SAR test. The EUT was installed into a platform which SAR tested, by the customer.)
C + CM 1 +	
Country of Mass-production	WM228: Philippines (*. Platform: Japan)
	Portable device
Category Identified	*. Since EUT may contact and/or very close to a human body during Wi-Fi operation, the partial-body SAR (1g) shall be observed.
	DC3.3V and DC1.8V supplied form the platform
Rating	*. The EUT is installed into the specified the platform that was operated by the re-chargeable Li-ion battery. Therefore, each
Rading	SAR test, the platform which had built-in EUT was operated with full-charged battery.
	The EUT is a Wireless Module which installs into the single platform (digital camera, model:
Feature of EUT	
	PC2064).
SAR Accessory	None

2.2 Product Description (Wireless module: WM228)

Equipment type	Transceiver								
Frequency of operation	2412-2462MHz (11b, 11g,, 11n(20HT)), 242	2-2452MHz (11n(40HT))							
Channel spacing	5MHz								
Bandwidth	20MHz(11b, 11g,, 11n(20HT)), 40MHz(11n((40HT))							
Type of modulation DSSS(11b): CCK, DQPSK, DBPSK									
	OFDM(11g, 11n(20HT), 11n(40HT)): 64QA	M, 16QAM, QPSK, BPSK							
Q'ty of Antenna	1 pc.								
Antenna type	Monopole type chip antenna								
Antenna gain (peak)	-3.30dBi (2442MHz)								
	11b: 13dBm+2dBm/-2.5dB	11g: 10.7dBm+2dBm/-2.5dB							
Transmit power and tolerance	11n(20HT): 10.7dBm +2dBm/-2.5dB	11n(40HT): 10.7dBm+2dBm/-2.5dB							
(Manufacture variation)	*. Refer to clause 2.3 for more detail.								
	*. The measured Tx output power (conducted)	refers to section 6 in this report.							
Maximum autmut marrian	11b: 15dBm	11g: 12.7dBm							
Maximum output power	11n(20HT): 12.7dBm	11n(40HT): 12.7dBm							
which may possible	*. Refer to clause 2.4 for more detail.								
Power supply	DC 3.3V, DC1.8V (*. The power of DC3.3V and	DC1.8V are supplied from the platform via constant voltage circuit.)							
Operation temperature range	-20 to +85 deg.C.								

^{*.} The EUT do not use the special transmitting technique such as "beam-forming" and "time-space code diversity."

Test report No. : 10258275S-A Page : 4 of 50 Issued date : July 18, 2014

FCC ID : AZD228

2.3 Tx output power specification (antenna port terminal conducted)

											Target Power [dBm] (average)																		
			11	b					11	lg											11n(2	OHT)							
[MHz]	CH	1	2	5.5	11	6	9	12	18	24	36	48	54	MCS0	MCS1	MCS2	MCS3	MCS4	MCS5	MCS6	MCS7	MCS8	MCS9	MCS10	MCS11	MCS12	MCS13	MCS14	MCS15
2412	1	13	13	13	13	10.7	10.7	10.7	10.7	10.7	10.7	10.7	10.7	10.7	10.7	10.7	10.7	10.7	10.7	10.7	10.7		-	L - :					
2417	2	13	13	13	13	10.7	10.7	10.7	10.7	10.7	10.7	10.7	10.7	10.7	10.7	10.7	10.7	10.7	10.7	10.7	10.7	L		L	J				L J
2422	3	13	13	13	13	10.7	10.7	10.7	10.7	10.7	10.7	10.7	10.7	10.7	10.7	10.7	10.7	10.7	10.7	10.7	10.7	-	-						
2427	4	13	13	13	13	10.7	10.7	10.7	10.7	10.7	10.7	10.7	10.7	10.7	10.7	10.7	10.7	10.7	10.7	10.7	10.7	-	-						
2432	5	13	13	13	13	10.7	10.7	10.7	10.7	10.7	10.7	10.7	10.7	10.7	10.7	10.7	10.7	10.7	10.7	10.7	10.7		-					-	
2437	6	13	13	13	13	10.7	10.7	10.7	10.7	10.7	10.7	10.7	10.7	10.7	10.7	10.7	10.7	10.7	10.7	10.7	10.7		-] -]				
2442	7	13	13	13	13	10.7	10.7	10.7	10.7	10.7	10.7	10.7	10.7	10.7	10.7	10.7	10.7	10.7	10.7	10.7	10.7	-	-	-	-	-	-	-	-
2447	8	13	13	13	13	10.7	10.7	10.7	10.7	10.7	10.7	10.7	10.7	10.7	10.7	10.7	10.7	10.7	10.7	10.7	10.7		-] -]				
2452	9	13	13	13	13	10.7	10.7	10.7	10.7	10.7	10.7	10.7	10.7	10.7	10.7	10.7	10.7	10.7	10.7	10.7	10.7		-] -]				
2457	10	13	13	13	13	10.7	10.7	10.7	10.7	10.7	10.7	10.7	10.7	10.7	10.7	10.7	10.7	10.7	10.7	10.7	10.7	-			-		-	-	
2462	11	13	13	13	13	10.7	10.7	10.7	10.7	10.7	10.7	10.7	10.7	10.7	10.7	10.7	10.7	10.7	10.7	10.7	10.7	-	-	-	-	-	-	-	_

							Tar	get Po	ower [dBm]	(aver	age)					
			11n(40HT)														
[MHz]	CH	MCS0	MCS1	MCS2	MCS3	MCS4	MCS5	MCS6	MCS7	MCS8	MCS9	MCS10	MCS11	MCS12	MCS13	MCS14	MCS15
2422	3	10.7	10.7	10.7	10.7	10.7	10.7	10.7	10.7					-			
2427	4	10.7	10.7	10.7	10.7	10.7	10.7	10.7	10.7					-			
2432	5	10.7	10.7	10.7	10.7	10.7	10.7	10.7	10.7	L_=			L		L . :		L_=_1
2437	6	10.7	10.7	10.7	10.7	10.7	10.7	10.7	10.7	-		-		-			
2442	7	10.7	10.7	10.7	10.7	10.7	10.7	10.7	10.7	L_=			L		L . :		L_=_1
2447	8	10.7	10.7	10.7	10.7	10.7	10.7	10.7	10.7				L		L		LI
2452	9	10.7	10.7	10.7	10.7	10.7	10.7	10.7	10.7	-	-	-	-	-	-	-	

2.4. Maximum output power which may possible

												Target Power [dBm] (average)																	
			1.	1b					11	lg											11n(2	OHT)							
[MHz]	CH	1	2	5.5	11	6	9	12	18	24	36	48	54	MCS0	MCS1	MCS2	MCS3	MCS4	MCS5	MCS6	MCS7	MCS8	MCS9	MCS10	MCS11	MCS12	MCS13	MCS14	MCS15
2412	1	15	15	15	15	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	-	-	-			-		
2417	2	15	15	15	15	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7]				
2422	3	15	15	15	15	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	-	-						
2427	4	15	15	15	15	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	-	-	-	-	-	-	-	-
2432	5	15	15	15	15	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7		-		-		-	-	- 1
2437	6	15	15	15	15	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	-	-	-	-	-	-	-	- 1
2442	7	15	15	15	15	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7		-		-		-	-	- 1
2447	8	15	15	15	15	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7		-][-[[::]
2452	9	15	15	15	15	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	-		[-	[- ·		-	- 1
2457	10	15	15	15	15	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7		-][-[
2462	11	15	15	15	15	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	-	-		-		-	-	-

								Tar	get Po	wer [dBm]	(aver	age)					
				11n(40HT)														
Γ	[MHz]	CH	MCS0	MCS1	MCS2	MCS3	MCS4	MCS5	MCS6	MCS7	MCS8	MCS9	MCS10	MCS11	MCS12	MCS13	MCS14	MCS15
E	2422	3	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	-	-	-		-			-
[2427	4	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7			-		-			
[2432	5	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7			-		- 1			
[2437	6	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7			-		-			
ſ	2442	7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	-	-	-	-	-	-	-	-
[2447	8	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7			-		-			
ſ	2452	9	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	-	-		-	-		-	

Test report No. : 10258275S-A Page : 5 of 50 Issued date : July 18, 2014

FCC ID : AZD228

SECTION 3: Test specification, procedures and results

3.1 Test specification

The US Federal Communications Commission has released the report and order "Guidelines for Evaluating the Environmental Effects of RF Radiation", ET Docket No. 93-62 in August 1996. The order requires routine SAR evaluation prior to equipment authorization of portable transmitter devices, including portable telephones. For consumer products, the applicable limit is 1.6 mW/g for an uncontrolled environment and 8.0 mW/g for an occupational/controlled environment as recommended by the ANSI/IEEE standard C95.1-1992. The device should be evaluated at maximum output power (radiated from the antenna) under "worst-case" conditions for normal or intended use, incorporating normal antenna operating positions, device peak performance frequencies and positions for maximum RF energy coupling in accordance with the following measurement procedures...

KDB 447498 D01 (v05r02): General RF exposure guidance

KDB 248227 D01 (v01r02): SAR Measurement Procedures for 802.11a/b/g Transmitters

KDB 865664 D01 (v01r03): SAR measurement 100MHz to 6GHz

IEEE Std. 1528-2003: IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in

the Human Head from Wireless Communications Devices: Measurement Techniques

IEEE Std. 1528-2013: IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in

the Human Head from Wireless Communications Devices: Measurement Techniques.

(*. The reference for Uncertainty in SAR correction for deviations in permittivity and conductivity, in clause E.3.2.)

3.2 Exposure limit

Environments of exposure limit	Whole-Body (averaged over the entire body)	Partial-Body (averaged over any 1g of tissue)	Hands, Wrists, Feet and Ankles (averaged over any 10g of tissue)
(A) Limits for Occupational /Controlled Exposure (W/kg)	0.4	8.0	20.0
(B) Limits for General population /Uncontrolled Exposure (W/kg)	0.08	<u>1.6</u>	4.0

^{*.} Occupational/Controlled Environments:

The limit applied in this test report is;

General population / uncontrolled exposure, Partial-Body (averaged over any 1g of tissue) limit: 1.6 W/kg

3.3 Procedures and Results

	Wi-Fi (DTS) / in Platform (digital camera)
Test Procedure	SAR measurement; KDB 447498, KDB 248227, KDB
1est i roccuire	865664, IEEE Std.1528
Category	FCC 47CFR §2.1093 (Portable device)
Results (SAR(1g))	Complied
Reported SAR value (*. Scaled)	<mark>0.73 W/kg</mark>
Measured SAR value	0.546 W/kg
Operation mode, channel	11b, 1Mbps, 2462MHz (11ch)
Power measured/max. (scaled factor)	13.75 dBm/15dBm (×1.33)

Note: UL Japan's SAR Work Procedures No.13-EM-W0429 and 13-EM-W0430. No addition, deviation nor exclusion has been made from standards

<u>Test outline:</u> Where this product is built into a new platform, it was verified whether multiplatform conditions can be suited in according with section 2) of 5.2.2 2 in KDB447498 D01 (v05).

Consideration of the test results: The highest reported SAR (1g) of EUT in a platform was kept; \leq 1.2 W/kg.

Since highest reported SAR (1g) on a EUTs platform obtained in accordance with KDB447498 (v05) was kept under 1.2 W/kg, this EUT was approved to operate single-platform.

3.4 Test Location

No.7 shielded room (2.76m (Width) × 3.76m (Depth) × 2.4m (Height)) for SAR testing.

UL Japan, Inc., Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken 259-1220 JAPAN Telephone number: +81 463 50 6400 / Facsimile number: +81 463 50 6401

UL Japan, Inc. Shonan EMC Lab.

are defined as locations where there is exposure that may be incurred by people who are aware of the potential for exposure, (i.e. as a result of employment or occupation).

^{*.} General Population/Uncontrolled Environments: are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure.

Test report No. : 10258275S-A Page : 6 of 50 Issued date : July 18, 2014

FCC ID : AZD228

3.5 Confirmation before SAR testing

3.5.1 Average power for SAR tests

Before SAR test, the RF wiring for the sample had been switched to the antenna conducted power measurement line from the antenna line and the average power was measured. The result is shown in Section 6.

*. The EUT transmission power was verified that it was within 2dB lower than the maximum tune-up tolerance limit when it was set the rated power. (Clause 4.1, KDB447498 D01(v05))

Step.1 Check the power by data rate and operation channel

The data rate check was measured for all modes in one of default channel. For the SAR test reference, the average output power was measured on the low/middle/high channels with the worst data rate condition in.

11b		11g			11n(20	HT)	11n(40HT)			
Modulation	Data rate [Mbps]	Modulation	Data rate [Mbps]	MCS Index	Spatial Stream	Modulation	MCS Index	Spatial Stream	Modulation	
DBPSK/DSSS	1	BPSK/OFDM	6	MCS0	1	BPSK/OFDM	MCS0	1	BPSK/OFDM	
DQPSK/DSSS	2	BPSK/OFDM	9	MCS1	1	QPSK/OFDM	MCS1	1	QPSK/OFDM	
CCK/DSSS	5.5	QPSK/OFDM	12	MCS2	1	QPSK/OFDM	MCS2	1	QPSK/OFDM	
CCK/DSSS	11	QPSK/OFDM	18	MCS3	1	16QAM/OFDM	MCS3	1	16QAM/OFDM	
		16QAM/OFDM	24	MCS4	1	16QAM/OFDM	MCS4	1	16QAM/OFDM	
		16QAM/OFDM	36	MCS5	1	64QAM/OFDM	MCS5	1	64QAM/OFDM	
		64QAM/OFDM	48	MCS6	1	64QAM/OFDM	MCS6	1	64QAM/OFDM	
			54	MCS7	1	64QAM/OFDM	MCS7	1	64QAM/OFDM	

Step.2 Consideration of SAR test channel

The following operation mode, data rate and channels were determined to apply SAR test by SAR reference power measured.

Mode	Mode MHz Channel		default		SAR Teste	Remarks		
Mode	MILIZ	Chamer	11b/g/n(20HT)	11b	11g	11n(20HT)	11n(40HT)	Kemarks
	2412	1 (*1)	$\sqrt{}$	Tested	Reduced (*2)	Reduced (*2)		
802.11	2422 3	3					Tested	CAD 4
b/g/n	2437	6	\checkmark	Tested	Reduced (*2)	Reduced (*2)		SAR test were applied to 11b and 11n(40HT) mode, in lowest data rate. (*3)
D/g/II	2452	9					Reduced (*4)	lowest data rate. (3)
	2462	11 (*1)	$\sqrt{}$	Tested	Reduced (*2)	Reduced (*2)		

 $[\]sqrt{}$ = "default test channels of requested by KDB248227"

- *1. Any output power reducing for channel 1 and 11 to meet restricted band requirements was not observed. Therefore channel 1 and 11 was selected for the default channels of power measurement and SAR test plan.
- *2. (KDB248227) Since the target average power of 11g and 11n(20HT) were more than 2dB lower than the corresponded 11b power, SAR test was only applied to the 11b mode for 20MHz BW operation. (Refer to Section 6.)
- *3. (KDB248227) In 11b and 11n(40HT) mode, since the average power of higher data rate were less than 0.25dB higher than the lowest data rate, SAR test were only applied to the lowest data rate. (Refer to Section 6.)
- *4. (KDB248227) During SAR test, since the extrapolated maximum peak SAR for the maximum output channel was ≤1.6W/kg and the 1g averaged SAR was ≤0.8W/kg, the testing for other channels were omitted.

3.6 Confirmation after SAR testing

It was checked that the power drift [W] is within $\pm 5\%$ in the evaluation procedure of SAR testing. The verification of power drift during the SAR test is that DASY5 system calculates the power drift by measuring the e-filed at the same location at beginning and the end of the scan measurement for each test position.

The result is shown in APPENDIX 2.

*. DASY5 system calculation Power drift value [dB] = $20\log(\text{Ea})/(\text{Eb})$ (where, Before SAR testing: Eb[V/m] / After SAR testing: Ea[V/m])

Limit of power drift[W] = $\pm 5\%$

Power drift limit (\dot{X}) [dB] = $10\log(P_drift) = 10\log(1.05/1) = 10\log(1.05) - 10\log(1) = 0.21dB$

from E-filed relations with power.

S=E×H=E^2/ η =P/(4× π ×r^2) (η : Space impedance) \rightarrow P=(E^2×4× π ×r^2)/ η

Therefore, The correlation of power and the E-filed

Power drift limit (X) dB=10log(P_drift)=10log(E_drift)^2=20log(E_drift)

From the above mentioned, the calculated power drift of DASY5 system must be the less than ±0.21dB.

Test report No. : 10258275S-A Page : 7 of 50 Issued date : July 18, 2014

FCC ID : AZD228

3.7 Test setup of EUT and SAR measurement procedure

After considering the outline of EUT, the SAR test was carried out on the following setup conditions.

Setup	Explanation of EUT setup position (*. Refer to Appendix 1 for test setup photographs.)	Antenna distance [mm]	(*1) SAR Tested /Reduced	SAR type
Left	The left-hand surface of platform (digital camera) was touched to the Flat phantom.	3.28	Tested	
Left-rear	The back part on the left-hand side of a platform (digital camera) was touched to the Flat phantom. (*.The LCD panel was set for both closing and opening position. Refer to Appendix 1-2, "Open (1)" LCD position.)	≈3.28	Tested	
Top	The top surface of platform (digital camera) was touched to the Flat phantom.	44.1	Tested (*2)	D. 1.
Bottom	The bottom flat surface of platform (digital camera) was touched to the Flat phantom.	22.4	Tested (*2)	Body (touch)
Right	The right-hand surface of platform (digital camera) was touched to the Flat phantom.	≈107	Tested (*2)	(touch)
Front	The front side (Lens) of a platform (digital camera) was touched to the Flat phantom.	≈19	Tested	
Rear	The rear side (LCD) of platform (digital camera) was touched to the Flat phantom. (*.The LCD panel was set for both closing and 180 degrees open position. 14.6 mm of antenna distance was when LCD was 180 degrees open position. Refer to Appendix 1-2, "Open (2)" LCD position.)	16.4	Tested	

^{*.} Antenna distance: this means the distance from the EUT antenna inside a platform to the outer surface of platform which an operator may touch.

*1. SAR test reduction consideration

KDB 447498 D01 (v05) was taken into consideration as other approaches to reduce SAR test..

Parenthesis 1), Clause 4.3.1, KDB 447498 D01 (v05) gives the following formula to calculate the SAR(1g) test exclusion thresholds for 100MHz-6GHz at test separation distance \leq 50mm.

[(max.power of channel, including tune-up tolerance, mW)/(min.test separation distance, mm)] \times [\sqrt{f} (GHz)] \leq 3.0 (for SAR(1g))....(formula (1)) If power is calculated from the upper formula (1);

 $[\text{test exclusion thresholds}, \text{mW}] = [(\text{Power allowed at numeric threshold for 50mm in formula (1)})] + [(\text{test separation distance}, \text{mm}) - (50mm)] \times 10 \ (\text{formula (3)}) + (\text{test separation distance}, \text{mm}) - (50mm)] \times 10 \ (\text{formula (3)}) + (\text{test separation distance}, \text{mm}) - (50mm)] \times 10 \ (\text{formula (3)}) + (\text{test separation distance}, \text{mm}) - (50mm)] \times 10 \ (\text{formula (3)}) + (\text{test separation distance}, \text{mm}) - (50mm)] \times 10 \ (\text{formula (3)}) + (\text{test separation distance}, \text{mm}) - (50mm)] \times 10 \ (\text{formula (3)}) + (\text{test separation distance}, \text{mm}) - (50mm)] \times 10 \ (\text{formula (3)}) + (\text{test separation distance}, \text{mm}) - (50mm)] \times 10 \ (\text{formula (3)}) + (\text{test separation distance}, \text{mm}) - (50mm)] \times 10 \ (\text{formula (3)}) + (\text{test separation distance}, \text{mm}) - (50mm)] \times 10 \ (\text{formula (3)}) + (\text{test separation distance}, \text{mm}) - (50mm)] \times 10 \ (\text{formula (3)}) + (\text{test separation distance}, \text{mm}) - (50mm)] \times 10 \ (\text{formula (3)}) + (\text{test separation distance}, \text{mm}) - (50mm)] \times 10 \ (\text{formula (3)}) + (\text{test separation distance}, \text{mm}) - (50mm)] \times 10 \ (\text{formula (3)}) + (\text{test separation distance}, \text{mm}) - (50mm)] \times 10 \ (\text{formula (3)}) + (\text{test separation distance}, \text{mm}) - (50mm)] \times 10 \ (\text{formula (3)}) + (\text{test separation distance}, \text{mm}) - (50mm)] \times 10 \ (\text{formula (3)}) + (\text{test separation distance}, \text{mm}) - (50mm)] \times 10 \ (\text{formula (3)}) + (\text{test separation distance}, \text{mm}) - (50mm)] \times 10 \ (\text{formula (3)}) + (\text{test separation distance}, \text{mm}) - (50mm)] \times 10 \ (\text{formula (3)}) + (\text{test separation distance}, \text{mm}) - (50mm)] \times 10 \ (\text{formula (3)}) + (\text{test separation distance}, \text{mm}) - (50mm)] \times 10 \ (\text{formula (3)}) + (\text{test separation distance}, \text{mm}) - (50mm)] \times 10 \ (\text{formula (3)}) + (\text{test separation distance}, \text{mm}) - (50mm)] \times 10 \ (\text{formula (3)}) + (50mm)$

cording to this formula, the calculated results in typical antenna distance of platform are shown in the following table.

SAR(1g) test exclusion thre	sholds [mW]										
Frequency Antenna separation distance [mm]												
[GHz]	5	20										
2.462 10 (10dBm) 38 (15.8dBn												

^{*.} The measured average power of EUT was shown in Section 6: Confirmation before SAR testing.

By the determined test setup shown above, the SAR test was applied in the following procedures.

Step 1	Change the setup positions and channels (at worst setup).
Step 2	Change the operation mode. (at the worst setup)

^{*.} During SAR test, the radiated power is always monitored by Spectrum Analyzer.

SECTION 4: Operation of EUT during testing

4.1 Operating modes for SAR testing

This EUT has IEEE.802.11b, 11g, 11n(20HT) and 11n(40HT) continuous transmitting modes.

The frequency and the modulation used in the SAR testing are shown as a following.

Operation mode	11b	11g	11n(20HT)	11n(40HT)
Tx frequency band		2412-2462MHz		2422-2452MHz
Tested frequency	2412, 2437, 2462MHz	Reduced (*4)	Reduced (*4)	2422MHz (*3)
Modulation	DBPSK/DSSS	-	-	BPSK/OFDM
Data rate	1Mbps (*5)	-	-	MCS0
Crest factor	1.0 (100% duty cycle)	-	-	1.0 (100% duty cycle)
Controlled software	"RFTEST" mode. (*. Power setting	ng (for power measurement and	1 SAR test): 14(11b), 12(11g, 1	1n(20HT), 11n(40HT))

^{*3.} SAR test was only applied to a highest output channels of 11n(40HT), because the reported SAR (1g) value of highest output power channel was small enough to 0.8W/kg and the peak-SAR was small enough to 1.6W/kg. (KDB248227)

^{*.} Size of EUT: 22.5mm (width) × 11.5mm (depth) × 2.05mm max (height)

^{*.} Size of platform: 110.9mm (width) ×36.3mm (depth) ×68.0mm (height) (*. This size is when the LCD is in closed position. The convex portion is not contained in size.)

^{*2.} Although SAR(1g) test exclusion threshold power was satisfied (*. maximum output power of EUT was 15dBm), since the platform was small at the compact digital camera, the SAR test was carried out in all setup surfaces.

^{*4.} Since the target average power of 11g and 11n(20HT) were more than 2dB lower than the corresponded 11b power, SAR test was only applied to the 11b mode for 20MHz BW operation.. (KDB248227)

^{*5.} Since the average powers of higher data rate were less than 0.25dB higher than the lowest data rate, SAR test was only applied to the lowest data rate. (KDB248227)

Test report No. : 10258275S-A Page : 8 of 50 : July 18, 2014 Issued date

FCC ID : AZD228

SECTION 5: Uncertainty Assessment (SAR measurement)

Uncertainty of SAR measurement (2.4-6GHz) (*.ε&σ:≤±5%, DAK3.5, Tx:≈100% duty cycle) (v08)	1g SAR	10g SAR
Combined measurement uncertainty of the measurement system (k=1)	± 13.7%	± 13.6%
Expanded uncertainty (k=2)	± 27.4%	± 27.2%

	Error Description (2.4-6GHz) (v08)	Uncertainty Value	Probability distribution	Divisor	ci (1g)	ci (10g)	ui (1g)	ui (10g)	Vi, veff
Α	Measurement System (DASY5)						(std. uncertainty)	(std. uncertainty)	
1	Probe Calibration Error	±6.55 %	Normal	1	1	1	±6.55 %	±6.55 %	∞
2	Axial isotropy Error	±4.7 %	Rectangular	√3	√0.5	√0.5	±1.9 %	±1.9 %	∞
3	Hemispherical isotropy Error	±9.6 %	Rectangular	√3	√0.5	√0.5	±3.9 %	±3.9 %	∞
4	Linearity Error	±4.7 %	Rectangular	√3	1	1	±2.7 %	±2.7 %	∞
5	Probe modulation response	±2.4 %	Rectangular	√3	1	1	±1.4 %	±1.4 %	oc o
6	Sensitivity Error (detection limit)	±1.0 %	Rectangular	√3	1	1	±0.6 %	±0.6 %	∞
7	Boundary effects Error	±4.3%	Rectangular	√3	1	1	±2.5 %	±2.5 %	∞
8	Readout Electronics Error(DAE)	±0.3 %	Rectangular	√3	1	1	±0.3 %	±0.3 %	∞
9	Response Time Error	±0.8 %	Normal	1	1	1	±0.8 %	±0.8 %	œ
10	Integration Time Error (≈100% duty cycle)	±0 %	Rectangular	√3	1	1	0 %	0%	∞
11	RF ambient conditions-noise	±3.0 %	Rectangular	√3	1	1	±1.7 %	±1.7 %	∞
12	RF ambient conditions-reflections	±3.0 %	Rectangular	√3	1	1	±1.7 %	±1.7 %	∞
13	Probe positioner mechanical tolerance	±3.3 %	Rectangular	√3	1	1	±1.9 %	±1.9 %	∞
14	Probe Positioning with respect to phantom shell	±6.7 %	Rectangular	√3	1	1	±3.9 %	±3.9 %	∞
15	Max. SAR evaluation (Post-processing)	±4.0 %	Rectangular	√3	1	1	±2.3 %	±2.3 %	∞
В	Test Sample Related		_						
16	Device Holder or Positioner Tolerance	±3.6 %	Normal	1	1	1	±3.6 %	±3.6 %	5
17	Test Sample Positioning Error	±5.0 %	Normal	1	1	1	±5.0 %	±5.0 %	145
18	Power scaling	±0%	Rectangular	√3	1	1	±0 %	±0 %	8
19	Drift of output power (measured, <0.2dB)	±2.3%	Rectangular	√3	1	1	±2.9 %	±2.9 %	8
C	Phantom and Setup								
20	Phantom uncertainty (shape, thickness tolerances)	±7.5 %	Rectangular	√3	1	1	±4.3 %	±4.3 %	00
21	Algorithm for correcting SAR (e',σ: ≤5%)	±1.2 %	Normal	1	1	0.84	±1.2 %	±0.97 %	∞
22	Measurement Liquid Conductivity Error (DAK3.5)	±3.0 %	Normal	1	0.78	0.71	±2.3 %	±2.1 %	7
23	Measurement Liquid Permittivity Error (DAK3.5)	±3.1 %	Normal	1	0.23	0.26	±0.7 %	±0.8 %	7
24	Liquid Conductivity-temp.uncertainty (≤2deg.C.)	±5.3 %	Rectangular	√3	0.78	0.71	±2.4 %	±2.2 %	∞
25	Liquid Permittivity-temp.uncertainty (≤2deg.C.)	±0.9 %	Rectangular	√3	0.23	0.26	±0.1 %	±0.1 %	∞
	Combined Standard Uncertainty						±13.7 %	±13.6 %	733
	Expanded Uncertainty (k=2)						±27.4 %	±27.2 %	

Table of uncertainties are listed for ISO/IEC 17025. This measurement uncertainty budget is suggested by IEEE Std.1528(2013) and determined by Schmid & Partner Engineering AG (DASY5 Uncertainty Budget). Per KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r01 Section 2.8.1., when the highest measured SAR(1g) within a frequency band is < 1.5W/kg, the extensive SAR measurement uncertainty analysis described in IEEE Std.1528 (2013) is not required in SAR reports submitted for equipment approval.

Test report No. : 10258275S-A
Page : 9 of 50
Issued date : July 18, 2014
Revised date : August 29, 2014 (-r01)

FCC ID : AZD228

SECTION 6: Confirmation before testing

6.1 SAR reference power measurement (antenna terminal conducted average power of EUT) - Worst data rate/channel determination

		Data	Cable	Atten-	Duty	A	Average power			Power	tolerance o	& correct	ion	SAR	
Mode	Frequency	rate	Loss	uator	factor	P/M	Rest	ılt	PAR	Target &	Deviation	Scaled	$\leq 2 dB$	Tested/	Remarks
Wiode	[MHz]	[Mbps]	[dB]	[dB]	[dB]	Reading			[dB]	(+)tolerance		Factor	from	Reduced	TOTICINS
		[P]			. ,	[dBm]	[dBm]	[mW]		[dBm]	[dB]	[-]	max.?		
	2412	1	0.50	10.02	0.00	3.67	14.19	26.2	2.56	13.0 +2	-0.81	x1.21	Yes	Tested	Highest in Ch.(11b)
	2412	2	0.50	10.02	0.00	3.66	14.18	26.2	2.56	13.0+2	-0.82	x1.21	Yes		-
11b	2412	5.5	0.50	10.02	0.00	3.73	14.25	26.6	1.90	13.0 +2	-0.75	x1.19	Yes	(*1)	Highest in D/R.(11b)
110	2412	11	0.50	10.02	0.00	3.70	14.22	26.4	2.55	13.0 +2	-0.78	x1.20	Yes	-	-
	2437	1	0.50	10.02	0.00	3.13	13.65	23.2	2.54	13.0+2	-1.35	x1.36	Yes	Tested	-
	2462	1	0.50	10.02	0.00	3.23	13.75	23.7	2.57	13.0 +2	-1.25	x1.33	Yes	Tested	-
	2412	6	0.50	10.02	0.00	1.34	11.86	15.3	9.47	10.7 ± 2	-0.84	x1.21	Yes	Reduced(*2)	Highest in Ch.(11g)
	2412	9	0.50	10.02	0.00	1.34	11.86	15.3	8.95	10.7 ± 2	-0.84	x1.21	Yes		-
	2412	12	0.50	10.02	0.00	1.32	11.84	15.3	9.28	10.7 ± 2	-0.86	x1.22	Yes		-
	2412	18	0.50	10.02	0.00	1.37	11.89	15.5	8.76	10.7 ± 2	-0.81	x1.21	Yes	(*1)	Highest in D/R.(11g)
11g	2412	24	0.50	10.02	0.00	1.27	11.79	15.1	9.55	10.7 ± 2	-0.91	x1.23	Yes		-
118	2412	36	0.50	10.02	0.00	1.22	11.74	14.9	9.41	10.7 ± 2	-0.96	x1.25	Yes	l .	-
	2412	48	0.50	10.02	0.00	1.28	11.80	15.1	9.13	10.7 ± 2	-0.90	x1.23	Yes		-
	2412	56	0.50	10.02	0.00	1.28	11.80	15.1	9.35	10.7 ± 2	-0.90	x1.23	Yes	-	-
	2437	6	0.50	10.02	0.00	0.81	11.33	13.6	9.55	10.7 ± 2	-1.37	x1.37	Yes	Reduced(*2)	-
	2462	6	0.50	10.02	0.00	1.04	11.56	14.3	9.53	10.7 ± 2	-1.14	x1.30	Yes	Reduced(*2)	-
	2412	MCS0	0.50	10.02	0.00	1.35	11.87	15.4	8.75	10.7 ± 2	-0.83	x1.21	Yes	Reduced(*2)	Highest in D/R&Ch.(n20)
	2412	MCS1	0.50	10.02	0.00	1.33	11.85	15.3	8.78	10.7 ± 2	-0.85	x1.22	Yes		-
	2412	MCS2	0.50	10.02	0.00	1.31	11.83	15.2	8.76	10.7 ± 2	-0.87	x1.22	Yes	<u> </u>	-
	2412	MCS3	0.50	10.02	0.00	1.29	11.81	15.2	8.73	10.7 ± 2	-0.89	x1.23	Yes	l .	-
11n	2412	MCS4	0.50	10.02	0.00	1.30	11.82	15.2	8.84	10.7 ± 2	-0.88	x1.22	Yes		-
(20HT)	2412	MCS5	0.50	10.02	0.00	1.31	11.83	15.2	8.78	10.7 ± 2	-0.87	x1.22	Yes	l .	-
	2412	MCS6	0.50	10.02	0.00	1.34	11.86	15.3	8.76	10.7 ± 2	-0.84	x1.21	Yes	l .	-
	2412	MCS7	0.50	10.02	0.00	1.33	11.85	15.3	8.79	10.7 ± 2	-0.85	x1.22	Yes	-	-
	2437	MCS0	0.50	10.02	0.00	0.82	11.34	13.6	8.88	10.7 ± 2	-1.36	x1.37	Yes	Reduced(*2)	-
	2462	MCS0	0.50	10.02	0.00	1.12	11.64	14.6	8.78	10.7 ± 2	-1.06	x1.28	Yes	Reduced(*2)	-
	2422	MCS0	0.50	10.02	0.00	1.38	11.90	15.5	8.85	10.7 ± 2	-0.80	x1.20	Yes		Highest in D/R&Ch.(n40)
	2422	MCS1	0.50	10.02	0.00	1.32	11.84	15.3	8.81	10.7 ± 2	-0.86	x1.22	Yes		-
	2422	MCS2	0.50	10.02	0.00	1.30	11.82	15.2	9.41	10.7 ± 2	-0.88	x1.22	Yes	l .	-
	2422	MCS3	0.50	10.02	0.00	1.27	11.79	15.1	9.59	10.7 ± 2	-0.91	x1.23	Yes		-
11n	2422	MCS4	0.50	10.02	0.00	1.27	11.79	15.1	9.39	10.7 ± 2	-0.91	x1.23	Yes	l	-
(40HT)	2422	MCS5	0.50	10.02	0.00	1.29	11.81	15.2	9.59	10.7 ± 2	-0.89	x1.23	Yes	l	-
	2422	MCS6	0.50	10.02	0.00	1.36	11.88	15.4	9.21	10.7 ± 2	-0.82	x1.21	Yes	[-
	2422	MCS7	0.50	10.02	0.00	1.33	11.85	15.3	8.88	10.7 ± 2	-0.85	x1.22	Yes		-
	2437	MCS0	0.50	10.02	0.00	1.32	11.84	15.3	8.86	10.7 ± 2	-0.86	x1.22	Yes	Reduced(*3)	-
	2452	MCS0	0.50	10.02	0.00	0.73	11.25	13.3	8.81	10.7 ± 2	-1.45	x1.40	Yes	Reduced(*3)	-

- *1. (KDB248227) Since the average power of higher data rate was less than 0.25dB higher than lowest data rate, SAR test was considered at lowest data rate.
- *2. (KDB248227) Since the target average power of 11g and 11n(20HT) were more than 2dB lower than the corresponded 11b power, SAR test was only applied to 11b mode for 20MHz BW mode.
- *3. (KDB248227) Since the extrapolated maximum peak SAR for the maximum output channel was ≤1.6W/kg and the 1g averaged SAR was ≤0.8W/kg, the testing for other channels were omitted.
- *. Duty Factor: 0dB=100% duty cycle, P/M: Power Meter, PAR: Peak average ratio ("Peak power"."Average power", in dBm), Ch: channel, D/R: Data Rate.
- *. Calculating formula: Results (Ave, dBm) = (P/M Reading)+(Cable loss)+(Attenuator)+(duty factor), where (duty factor, dBm)=10 × log (100/(duty cycle, %)) Deviation form max.: (Power deviation, dB) = (results power (average, dBm)) (Max.-specification output power (average, dBm)) Scaled Factor: Power scaled factor for obtained SAR value, Scaled Factor [-] = 1 / (10 ^ ("Deviation from max." / 10))
- * SAR reference; Date measured February 10, 2014/measured by: Hiroshi Naka/21deg, C/32%RH (at preparation room of No.7 shielded room)
- *. Uncertainty of antenna port conducted test; Power measurement uncertainty above 1GHz for this test was: (±) 1.5dB

6.2 Comparison of power of EMC sample

		EMC test	SAR test			
		-	single platform			
Platform	model No.	-	PC2064			
Sen	ial No.	2C9EFCFF E915	E4813949E CE3			
Date pow	er measured	Aug. 14, 2013	Feb. 10, 2014			
Referen	ice report#	10048647S-M	This report.			
Tx open	ation mode	11b	11b			
Data ra	te [Mbps]	1	1			
Average	2412	13.59	14.19			
power	2437	13.91	13.65			
[dBm]	2462	14.02	13.75			
fannil	4 1 : /	C4 .	10.73			

^{*.} Since the deviation of the maximum output average power between EMC ample and SAR sample was less than 0.5dB, it was judged that the EUT was equivalent.

Test report No. : 10258275S-A Page : 10 of 50 Issued date : July 18, 2014

FCC ID : AZD228

SECTION 7: Measurement results

7.1 SAR test results of platform-Digital camera (model: PC2064)

Measurement date: July 7, 2014 Measurement by: Hiroshi Naka

[Liquid measurement]

Target	Target						s (Body lic	ruid) (*a)			Coefficients (*c)			
Frequency	Liquid type		Permittivi	. /	T ::4			vity [S/m]	Limit	Temp.	Depth	ΔSAR	Correction	Date measured
[MHz] type	Target	Meas.	ured Aer	Limit (*b)	Target	Meas.	sured Δσ	(*b)	[deg.C.]	[mm]	(1g)[%]	required?		
2412		52.75	50.93	-3.5%		1.914	1.935	+1.1%				+1.32	not required.	July 7, 2014
2422	Dodr	52.74	50.85	-3.6%	-5% ≤	1.923	1.945	+1.1%	0% ≤	22.1	155	+1.36		before SAR test
2437	Body	52.72	50.83	-3.6%	ET-meas. ≤0%	1.938	1.971	+1.7%	σ-meas. <+5%	22.1	133	+1.63	not required.	(ambient; 23.9 deg.C.,
2462		52.68	50.69	-3.8%		1.967	2.001	+1.7%				+1.67	not required.	63%RH)

[SAR measurement results (Partial-Body)]

														Rei	orted	
			EUT	setup con	ditions	s	Liquid	l temp.	Power	SAR	(1g) [W	/kg]	Data#	SA	R(1g)	
Mode	[MHz]	Modulation		LCD	Gan	Batterv	[deg	z.C.]	drift	maximum v	alue of n	ıulti-peak	in	[W/kg]		Remarks
	(CH)	/Data rate	Position	position	[mm]		Before After	[dB]	Observed	ASAR [%]	ΔSAR corrected	Appendix 2-2		Tuned-up SAR (*d)	Tomana	
Step 1: Change the setup positions and channels																
	2412(1) Left Close 0 #42 22.3 22.3 0.14 0.493 +1.32 - (*c) Plot 1-2												×1.21	0.60	-	
	2412(1)			Close	0	#42	22.4	22.4	-0.04	0.558	+1.32	- (*c)	Plot 1-3	×1.21	0.68	-
	2437(6)			Close	0	#42	22.4	22.4	0	0.492	+1.63	- (*c)	Plot 1-4	×1.36	0.67	-
	2462(11)			Close	0	#42	22.4	22.5	0.03	0.520	+1.67	- (*c)	Plot 1-5	×1.33	0.69	-
	2412(1)		Left-rear	Open(1)	0	#43	22.5	22.6	-0.01	0.579	+1.32	- (*c)	Plot 1-6	×1.21	0.70	->Highest measured SAR.
11b	2437(6)	DBPSK-DSSS		Open(1)	0	#43	22.6	22.5	0.04	0.517	+1.63	- (*c)	Plot 1-7	×1.36	0.70	-
(*2)	2462(11)	/1Mbps		Open(1)	0	#43	22.6	22.6	0.05	0.546	+1.67	- (*c)	Plot 1-1	×1.33	0.73	->Highest reported SAR.
			Тор	Close	0	#44	22.5	22.5	0.10	0.018	+1.32	- (*c)	Plot 1-8	×1.21	< 0.1	•
			Bottom	Close	0	#44	22.5	22.5	0.06	0.017	+1.32	- (*c)	Plot 1-9	×1.21	< 0.1	-
	2412(1)		Right	Close	0	#44	22.4	22.4	-0.20	0.00234	+1.32	- (*c)	Plot 1-10	×1.21	< 0.1	•
	2412(1)		Front	Close	0	#42	22.4	22.4	0.20	0.00559	+1.32	- (*c)	Plot 1-11	×1.21	< 0.1	•
			Rear	Close	0	#42	22.4	22.4	-0.12	0.0156	+1.32	- (*c)	Plot 1-12	×1.21	< 0.1	•
			(LCD)	Open(2)	0	#42	22.4	22.5	-0.03	0.0172	+1.32	- (*c)	Plot 1-13	×1.21	< 0.1	-
Step 2:	Change t	he operation n	node													
11n (40HT)	2422(3)	BPSK-OFDM /MCS0	Left-rear	Close	0	#43	22.6	22.6	-0.11	0.332	+1.36	- (*c)	Plot 2-1	×1.20	0.40	(*1)

Notes:

- *1. At the highest output power channel, since the extrapolated maximum peak SAR for the maximum output channel was ≤1.6W/kg and the 1g averaged SAR was ≤0.8W/kg, the testing for other channels were omitted. (KDB248227)
- *2. Since the target average power of 11g and 11n(20HT) were more than 2dB lower than the corresponded 11b power, SAR test were not applied to the 11g and 11n(20HT) mode for 20MHz BW operation. (KDB248227)
- *. Gap: It is the separation distance between the nearest position of platform outer surface and the bottom outer surface of phantom; n/a: not applied.
- *. Battery No.#42, #43 and #44 were same model. Refer to Appendix 1 for more details.
- *. LCD positions of "Close", "Open(1)" and "Open(2)" are shown in "Appendix 1-3 Setup photograph" in this report.
- *. During test, the EUT was operated with full-charged battery and without all signal interface cables.

*. Calibration frequency of the SAR measurement probe (and used conversion factors)

SAR test frequency	Probe calibration frequency	Validity	Conversion factor	Uncertainty
2412, 2422, 2437, 2462MHz	2450MHz	within ±50MHz of calibration frequency	6.82	±12.0%

^{*} The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

- *a. The target value is a parameter defined in Appendix A of KDB865664 D01, the dielectric parameters suggested for head and body tissue simulating liquid are given at 2000, 2450 and 3000MHz. (*.The parameters of the head liquid are the same value as IEEE Std 1528-2013.) Parameters for the frequencies 2000-3000MHz were obtained using linear interpolation. (Refer to appendix 3-4.)
- *b. Refer to KDB865664 D01, item 2), Clause 2.6; "When nominal tissue dielectric parameters are recorded in the probe calibration data; for example, only target values and tolerance are reported, the measured εr and σ of the liquid used in routine measurements must be: ≤the target εr and ≥ the target σ values and also within 5% of the required target dielectric parameters."
- *c. The coefficients are parameters defined in clause E.3.3.2, IEEE Std 1528(2013). Since the measured liquid parameters were ≤ the target σr and ≥ the target σ values and also within 5% of the required target dielectric parameters, the measured SAR was not compensated by ΔSAR coefficients (*. Clause 2) of 2.6, KDB865664 D01). ΔSAR(1g)= Cer ×Δer + Cσ ×Δσ, Cer=-7.854E-4×f³+9.402E-3×f²-2.742E-2×f-0.2026 / Cσ =9.804E-3×f³-8.661E-2×f²+2.981E-2×f+0.7829
- *d. Tuned-up SAR by scaled factor: Accordance with KDB 447498 D01; "When SAR is not measured at the maximum power level allowed for production units, the results must be scaled to the maximum tune-up tolerance limit according to the power applied to the individual channels tested to determine compliance (clause 4, 4.1, 4))." (Refer to section 6 in this report for "Scaled factor" of channels, each operation mode.)
- *. Calculating formula: ΔSAR corrected SAR (1g) (W/kg) = (Observed SAR(1g) (W/kg)) × (100 (ΔSAR (%)) / 100 Reported SAR(1g) (=Tuned-up SAR) (W/kg) = (Observed SAR(1g) (W/kg)) × (Sacled factor)

UL Japan, Inc. Shonan EMC Lab.