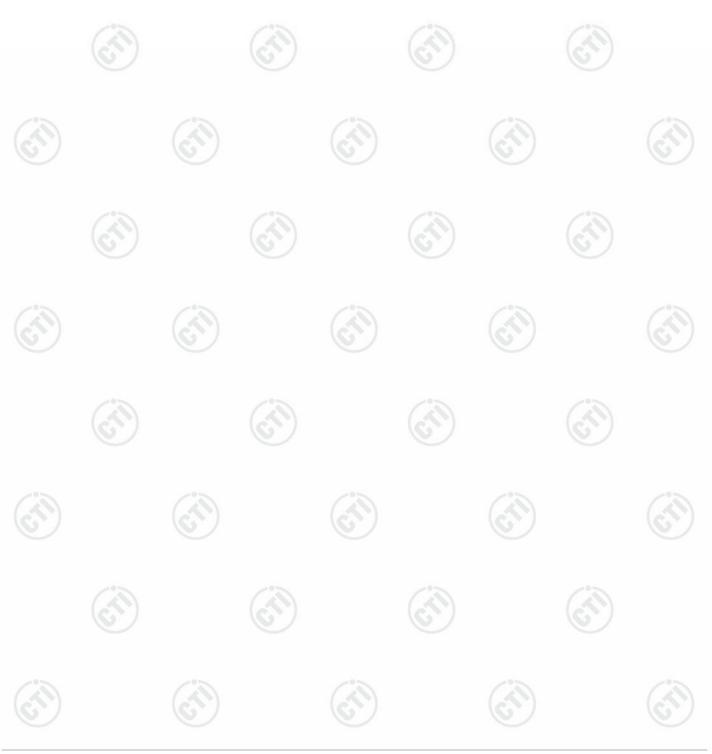


Page 2 of 41

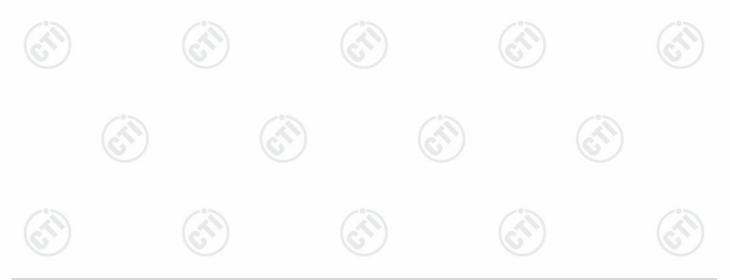

1 CONTENT	
2 VERSION	
3 TEST SUMMARY	<u></u>
4 GENERAL INFORMATION	
 4.1 CLIENT INFORMATION 4.2 GENERAL DESCRIPTION OF EUT 4.3 TEST CONFIGURATION 4.4 TEST ENVIRONMENT 4.5 DESCRIPTION OF SUPPORT UNITS 4.6 TEST LOCATION 4.7 MEASUREMENT UNCERTAINTY (95% CONFIDENCE LEVELS, K=2) 	
5 EQUIPMENT LIST	
6 TEST RESULTS AND MEASUREMENT DATA	
 6.1 ANTENNA REQUIREMENT 6.2 CONDUCTED EMISSIONS 6.3 MAXIMUM CONDUCTED OUTPUT POWER 6.4 DTS BANDWIDTH 6.5 MAXIMUM POWER SPECTRAL DENSITY 6.6 BAND EDGE MEASUREMENTS AND CONDUCTED SPURIOUS EMISSION 6.7 RADIATED SPURIOUS EMISSION & RESTRICTED BANDS	
7 APPENDIX BLUETOOTH LE	•••••••••••••••••••••••••••••••••••••••

2 Version

	Version No.	n No. Date		No. Date Descriptio			on 🕥	
	00	Jan. 09, 2025		Original				
-	1	1	10	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	100			
	6	$\langle \mathcal{O} \rangle$	(2S)	(25)	(2)			

Page 4 of 41

 47 CFR Part 15 Subpart C Section 15.203/15.247 (c) 47 CFR Part 15 Subpart C Section 15.207 47 CFR Part 15 Subpart C Section 15.247 (a)(2) 47 CFR Part 15 Subpart C Section 15.247 (b)(3) 	PASS PASS PASS PASS	
15.207 47 CFR Part 15 Subpart C Section 15.247 (a)(2) 47 CFR Part 15 Subpart C Section 15.247 (b)(3)	PASS	
15.247 (a)(2) 47 CFR Part 15 Subpart C Section 15.247 (b)(3)	1.45	
15.247 (b)(3)	PASS	
FR Part 15 Subpart C Section 15.247 (e)	PASS	
47 CFR Part 15 Subpart C Section 15.247(d)	PASS	
47 CFR Part 15 Subpart C Section 15.247(d)	PASS	
s Emission &47 CFR Part 15 Subpart C Sectionbands15.205/15.209		
	C	
G24 Sense		
) MG24	C.	
el: XIAO MG24 Sense	Q	
tested.		
G24 Sense and XIAO MG24 is that there is	a microphone.	
Difference description		
Normal	(C)	
	15.247(d) 47 CFR Part 15 Subpart C Section 15.205/15.209 G24 Sense 0 MG24 el: XIAO MG24 Sense tested. G24 Sense and XIAO MG24 is that there is Difference description	


4 General Information

4.1 Client Information

Applicant:	Seeed Technology Co., Ltd
Address of Applicant:	9F, G3 Building, TCL International E City, Zhongshanyuan Road, Nanshan District, Shenzhen
Manufacturer:	Seeed Technology Co., Ltd
Address of Manufacturer:	9F, G3 Building, TCL International E City, Zhongshanyuan Road, Nanshan District, Shenzhen
Factory:	Shenzhen Xinxian Technology Co.,Limited
Address of Factory:	F5, Building B17, Hengfeng Industrial City,No. 739 Zhoushi Rd, Baoan District, Shenzhen,Guangdong, P.R.C.

4.2 General Description of EUT

Product Name:	XIAO MG24
Model No.:	XIAO MG24, XIAO MG24 Sense
Test Model No.:	XIAO MG24
Trade mark:	Seeed Studio
Product Type:	Mobile Portable Fixed Location
Operation Frequency:	2402MHz~2480MHz
Modulation Type:	GFSK
Transfer Rate:	⊠ 1Mbps ⊠ 2Mbps
Number of Channel:	40
Antenna Type:	Ceramic Antenna
Antenna Gain:	4.97dBi
Power Supply:	Battery: DC 5V
Test Voltage:	DC 5V
Sample Received Date:	Dec. 25, 2024
Sample tested Date:	Dec. 25, 2024 to Dec. 30, 2024

Page 5 of 41

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel (CH0)	2402MHz
The middle channel (CH19)	2440MHz
The highest channel (CH39)	2480MHz

4.3 Test Configuration

EUT Test Software	e Settings:			
Test Software:	NcpCo	mmander.exe	(<u>~</u> ^)	(25)
EUT Power Grade: Default (Por selected)		•	in set parameters and c	cannot be changed and
Use test software to transmitting of the I	•	ency, the middle frec	uency and the highest f	frequency keep
Test Mode	Modulation	Rate	Channel	Frequency(MHz)
Mode a	GFSK	1Mbps	СН0	2402
Mode b	GFSK	1Mbps	CH19	2440
Mode c	GFSK	1Mbps	СН39	2480
Mode d	GFSK	2Mbps	СНО	2402
Mode e	GFSK	2Mbps	CH19	2440
Mode f	GFSK	2Mbps	CH39	2480

S

Page 7 of 41

4.4 Test Environment

	Operating Environment	:					
60	Radiated Spurious Emi	ssions:					
19	Temperature:	22~25.0 °C	(1)		(2)		(2)
2	Humidity:	50~55 % RH	e la		C		C
	Atmospheric Pressure:	1010mbar					
	Conducted Emissions:						
	Temperature:	22~25.0 °C					
	Humidity:	50~55 % RH		(\mathbf{C})		(C)	
	Atmospheric Pressure:	1010mbar					
	RF Conducted:						
2	Temperature:	22~25.0 °C	13		1		13
	Humidity:	50~55 % RH	(c^{γ})		$(c^{(n)})$		(\mathcal{O})
	Atmospheric Pressure:	1010mbar	J		U		U

4.5 Description of Support Units

The EUT has been tested with associated equipment below.

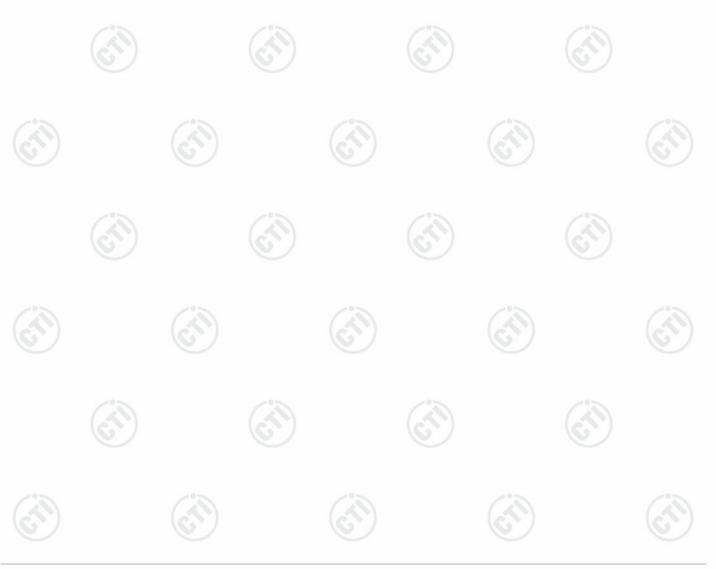
1)	support	equipment	
• /	ouppon	. oquipinoni	

Description	Manufacturer	Model No.	Certification	Supplied by
/	/	/	/	/

4.6 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385 No tests were sub-contracted. FCC Designation No.: CN1164



Page 8 of 41

4.7 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
2	DE nower, conducted	0.46dB (30MHz-1GHz)
2	RF power, conducted	0.55dB (1GHz-40GHz)
		3.3dB (9kHz-30MHz)
3	Radiated Spurious emission test	4.3dB (30MHz-1GHz)
	Radiated Spunous emission test	4.5dB (1GHz-18GHz)
a		3.4dB (18GHz-40GHz)
3	Conduction emission	3.5dB (9kHz to 150kHz)
4	Conduction emission	3.1dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	3.8%
7	DC power voltages	0.026%

5 Equipment List

		RF test	system		
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Spectrum Analyzer	Keysight	N9010A	MY54510339	12-14-2023	12-13-2024
Signal Generator	Keysight	N5182B	MY53051549	11-30-2024	11-29-2025
DC Power	Keysight	E3642A	MY56376072	11-30-2024	11-29-2025
Communication test set	R&S	CMW500	169004	03-08-2024	03-07-2025
RF control unit(power unit)	JS Tonscend	JS0806-2	22G8060592	07-22-2024	07-21-2025
Wi-Fi 7GHz Band Extendder	JS Tonscend	TS-WF7U2	2206200002	05-31-2024	05-30-2025
High-low temperature test chamber	Dong Guang Qin Zhuo	LK-80GA	QZ20150611879	11-30-2024	11-29-2025
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	05-29-2024	05-28-2025
BT&WI-FI Automatic test software	JS Tonscend	JS1120-3	V3.3.20		
Spectrum Analyzer	R&S	FSV3044	101509	01-17-2024	01-16-2025

	Conducted disturbance Test										
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)						
Receiver	R&S	ESCI	100435	04-18-2024	04-17-2025						
Temperature/ Humidity Indicator	Defu	TH128		04-25-2024	04-24-2025						
LISN	R&S	ENV216	100098	09-19-2024	09-18-2025						
Barometer	changchun	DYM3	1188		(2						
Test software	Fara	EZ-EMC	EMC-CON 3A1.1	S	0						

Page 9 of 41

Page 10 of 41

Report No. : EED32Q82089901

Capacitive voltage probe	Schwarzbeck	CVP 9222C	00124	06-18-2024	06-17-2025
ISN	TESEQ	ISN T800	30297	12/05/2024	12/04/2025

Equipment	Equipment Manufacturer M		quipment Manufacturer Model No. Serial Number			Cal. date (mm-dd-yyyy)	Cal. Due date	
3M Chamber & Accessory Equipment	TDK	SAC-3		05/22/2022	05/21/2025			
Receiver	R&S	ESCI7	100938- 003	09/07/2024	09/06/2025			
Spectrum Analyzer	R&S	FSV40	101200	07/18/2024	07/17/2025			
TRILOG Broadband Antenna	schwarzbeck	VULB 9163	9163-618	05/22/2022	05/21/2025			
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B-076	04/16/2024	04/15/2025			
Microwave Preamplifier	Tonscend	EMC051845SE	980380	12/05/2024	12/04/2025			
Horn Antenna	A.H.SYSTEMS	SAS-574	374	07/02/2023	07/01/2026			
Horn Antenna	ETS-LINGREN	BBHA 9120D	9120D- 1869	04/16/2024	04/15/2025			
Preamplifier	Agilent	11909A	12-1	03/22/2024	03/21/2025			
Preamplifier	CD	PAP-1840-60	6041.6042	06/19/2024	06/18/2025			
Test software	Fara	EZ-EMC	EMEC- 3A1-Pre	(S) -			
Cable line	Fulai(7M)	SF106	5219/6A	05/22/2022	05/21/2025			
Cable line	Fulai(6M)	SF106	5220/6A	05/22/2022	05/21/2025			
Cable line	Fulai(3M)	SF106	5216/6A	05/22/2022	05/21/2025			
Cable line	Fulai(3M)	SF106	5217/6A	05/22/2022	05/21/2025			
			~	/				

Page 11 of 41

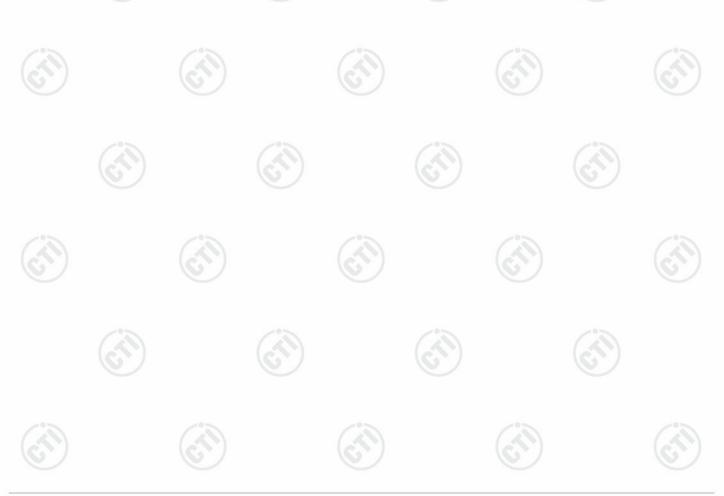
		3M full-anechoid	c Chamber		
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Fully Anechoic Chamber	TDK	FAC-3		01-09-2024	01-08-2027
Receiver	Keysight	N9038A	MY57290136	01-09-2024	01-08-2025
Spectrum Analyzer	Keysight	N9020B	MY57111112	01-29-2024	01-28-2025
Spectrum Analyzer	Keysight	N9030B	MY57140871	01-23-2024	01-22-2025
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-28-2024	04-27-2025
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-16-2024	04-15-2025
Horn Antenna	ETS-LINDGREN	3117	57407	07-03-2024	07-02-2025
Preamplifier	EMCI	EMC001330	980563	03-08-2024	03-07-2025
Preamplifier	Tonscend	TAP-011858	AP21B806112	07-18-2024	07-17-2025
Preamplifier	Tonscend	EMC051845SE	980380	12-05-2024	12-04-2025
Temperature/ Humidity Indicator	biaozhi	GM1360	EE1186631	04-07-2024	04-06-2025
RSE Automatic test software	JS Tonscend	JS36-RSE	V4.0.0.0	<u> </u>	-6
Cable line	Times	SFT205-NMSM-2.50M	394812-0001	01-09-2024	01-08-2027
Cable line	Times	SFT205-NMSM-2.50M	394812-0002	01-09-2024	01-08-2027
Cable line	Times	SFT205-NMSM-2.50M	394812-0003	01-09-2024	01-08-2027
Cable line	Times	SFT205-NMSM-2.50M	393495-0001	01-09-2024	01-08-2027
Cable line	Times	EMC104-NMNM-1000	SN160710	01-09-2024	01-08-2027
Cable line	Times	SFT205-NMSM-3.00M	394813-0001	01-09-2024	01-08-2027
Cable line	Times	SFT205-NMNM-1.50M	381964-0001	01-09-2024	01-08-2027
Cable line	Times	SFT205-NMSM-7.00M	394815-0001	01-09-2024	01-08-2027
Cable line	Times	HF160-KMKM-3.00M	393493-0001	01-09-2024	01-08-2027

6 Test results and Measurement Data

6.1 Antenna Requirement

Standard requirement: 47 CFR Part 15C Section 15.203 /247(c)

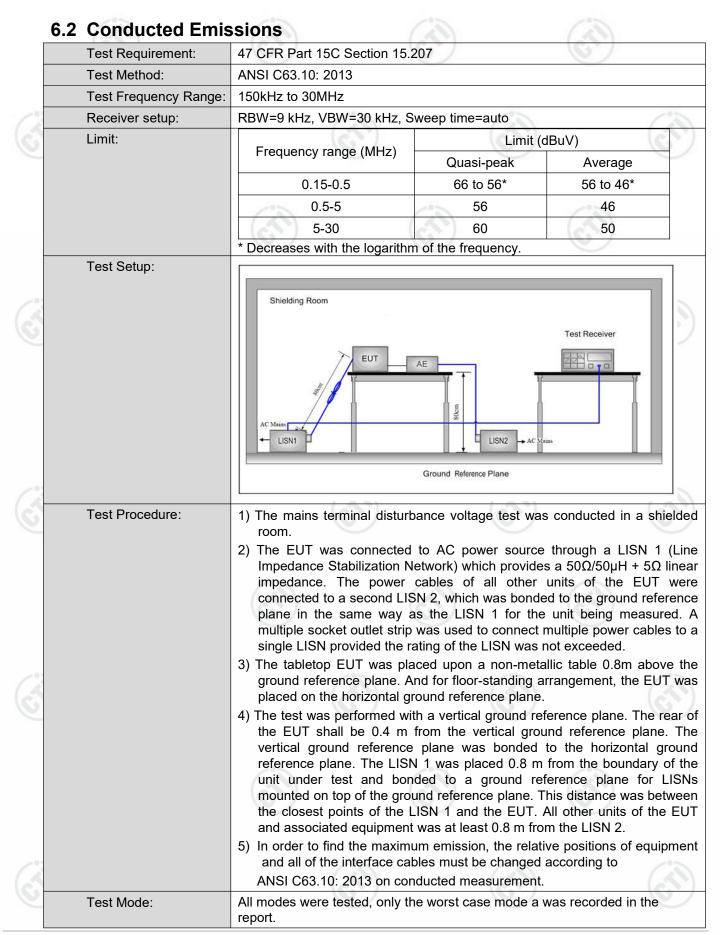
15.203 requirement:


An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

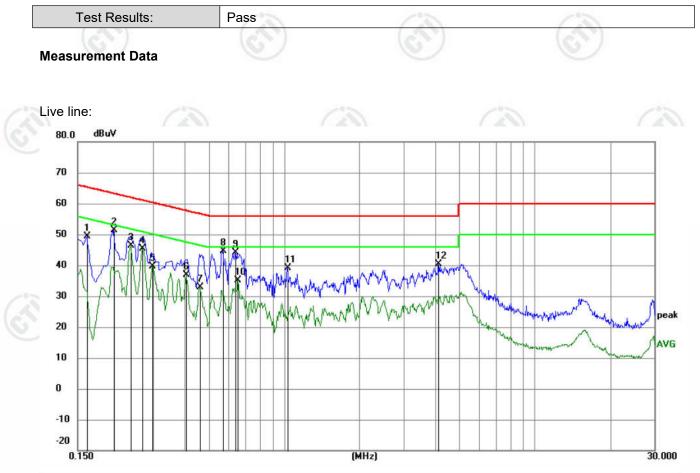
The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:	Please see Internal photos	1
ть с с с с		


The antenna is Ceramic antenna. The best case gain of the antenna is 4.97dBi.

Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com

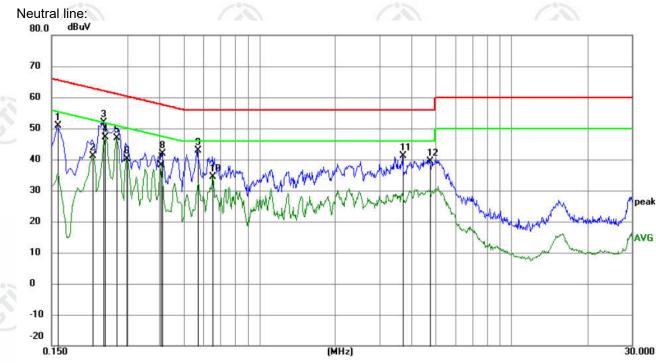
Page 13 of 41



S)

Page 14 of 41

3	No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
01		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
	1	0.1635	39.04	10.26	49.30	65.28	-15.98	QP	
-	2	0.2085	41.08	10.20	51.28	63.26	-11.98	QP	
	3 *	0.2445	36.12	10.17	46.29	51.94	-5.65	AVG	
1	4	0.2714	35.26	10.15	45.41	51.07	-5.66	AVG	
2	5	0.2985	29.49	10.13	39.62	50.28	-10.66	AVG	
-	6	0.4065	26.83	10.09	36.92	47.72	-10.80	AVG	
-	7	0.4605	22.72	10.08	32.80	46.68	-13.88	AVG	
3	8	0.5685	34.59	10.09	44.68	56.00	-11.32	QP	
-	9	0.6405	33.92	10.11	44.03	56.00	-11.97	QP	
	10	0.6540	25.03	10.12	35.15	46.00	-10.85	AVG	
	11	1.0275	28.95	10.18	39.13	56.00	-16.87	QP	
107	12	4.1235	30.17	10.09	40.26	56.00	-15.74	QP	

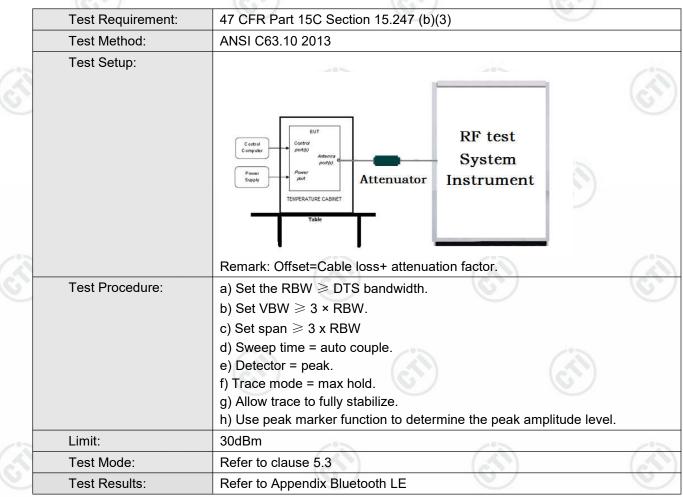

Remark:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

Page 15 of 41

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1590	40.61	10.27	50.88	65.52	-14.64	QP	
2		0.2175	30.93	10.20	41.13	52.91	-11.78	AVG	
3		0.2404	41.76	10.18	51.94	62.08	-10.14	QP	
4		0.2445	36.99	10.17	47.16	51.94	-4.78	AVG	
5	*	0.2714	36.75	10.15	46.90	51.07	-4.17	AVG	
6		0.2985	30.07	10.13	40.20	50.28	-10.08	AVG	
7		0.4065	28.08	10.09	38.17	47.72	-9.55	AVG	
8		0.4110	31.87	10.09	41.96	57.63	-15.67	QP	
9		0.5685	32.90	10.09	42.99	56.00	-13.01	QP	
10		0.6540	24.34	10.12	34.46	46.00	-11.54	AVG	
11		3.7005	30.98	10.11	41.09	56.00	-14.91	QP	
12		4.7355	29.22	10.07	39.29	56.00	-16.71	QP	

Remark:


- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

Page 16 of 41

6.3 Maximum Conducted Output Power

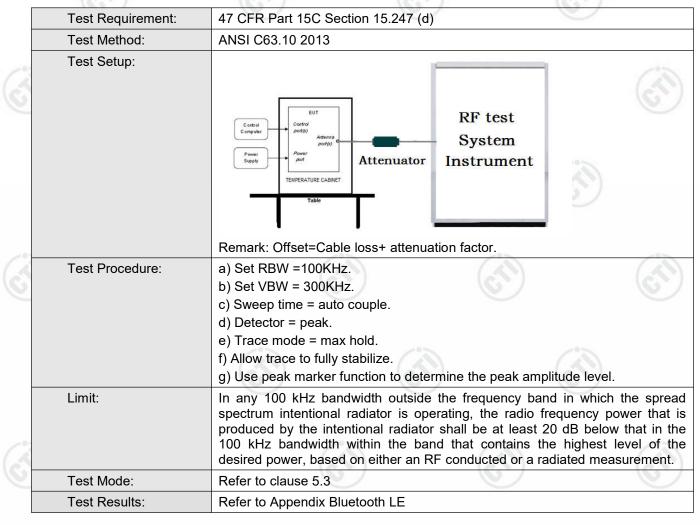
6.4 DTS Bandwidth

Test Requirement:	47 CFR Part 15C Section 15.247 (a)(2)
Test Method:	ANSI C63.10 2013
Test Setup:	
	Control Contro
Test Procedure:	Remark: Offset=Cable loss+ attenuation factor. a) Set RBW = 100 kHz.
	 b) Set the VBW ≥[3 × RBW]. c) Detector = peak. d) Trace mode = max hold. e) Sweep = auto couple. f) Allow the trace to stabilize. g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.
Limit:	≥ 500 kHz
Test Mode:	Refer to clause 5.3
Test Results:	Refer to Appendix Bluetooth LE

Page 18 of 41

6.5 Maximum Power Spectral Density

	Test Requirement:	47 CFR Part 15C Section 15.247 (e)							
	Test Method:	ANSI C63.10 2013							
3	Test Setup:								
		Control Computer Dotto Support Support TemPERATURE CABNET Table							
		Remark: Offset=Cable loss+ attenuation factor.							
	Test Procedure:	 a) Set analyzer center frequency to DTS channel center frequency. b) Set the span to 1.5 times the DTS bandwidth. c) Set the RBW to 3 kHz ≤ RBW ≤ 100 kHz. d) Set the VBW ≥ [3 × RBW]. e) Detector = peak. f) Sweep time = auto couple. g) Trace mode = max hold. h) Allow trace to fully stabilize. i) Use the peak marker function to determine the maximum amplitude leve within the RBW. j) If measured value exceeds requirement, then reduce RBW (but no less than 3 kHz) and repeat. 							
	Limit:	≤8.00dBm/3kHz							
	Test Mode:	Refer to clause 5.3							
	Test Results:	Refer to Appendix Bluetooth LE							

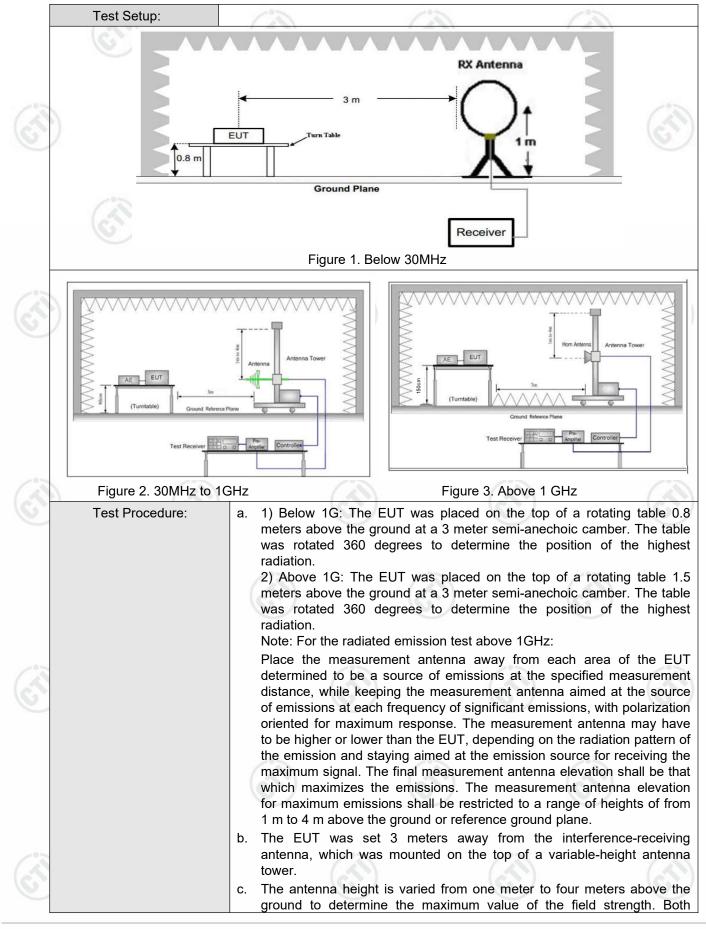


Page 19 of 41

6.6 Band Edge measurements and Conducted Spurious Emission

Page 20 of 41

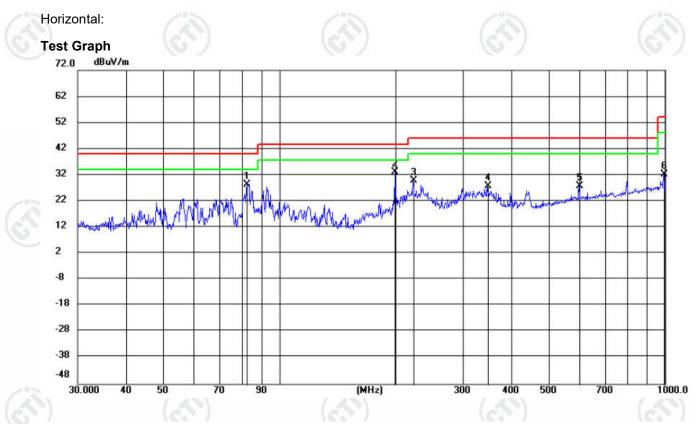
6.7 Radiated Spurious Emission & Restricted bands


	Test Requirement:	47 CFR Part 15C Secti	on 1	15.209 and 15	.205		C.	/			
	Test Method:	ANSI C63.10 2013									
	Test Site:	Measurement Distance: 3m (Semi-Anechoic Chamber)									
	Receiver Setup:	Frequency	1	Detector	RBW		VBW	Remark			
S.		0.009MHz-0.090MH	z	Peak	10kH	z	30kHz	Peak			
		0.009MHz-0.090MH	z	Average	10kH	z	30kHz	Average			
		0.090MHz-0.110MH	z	Quasi-peak	10kH	z	30kHz	Quasi-peak			
		0.110MHz-0.490MH	z	Peak	10kH	z	30kHz	Peak			
		0.110MHz-0.490MH	z	Average	10kH	z	30kHz	Average			
		0.490MHz -30MHz		Quasi-peak	10kH	z	30kHz	Quasi-peak			
		30MHz-1GHz		Quasi-peak	100 kł	Ηz	300kHz	Quasi-peak			
1		Above 1GHz		Peak	1MHz 1MHz		3MHz	Peak			
3				Peak			10kHz	Average			
	Limit:	Frequency		eld strength Limit crovolt/meter) (dBuV/m))	Remark	Measureme distance (m			
		0.009MHz-0.490MHz	2400/F(kHz)		-		- / 2	300			
		0.490MHz-1.705MHz	24	4000/F(kHz)	-		- (2)	30			
		1.705MHz-30MHz		30	-		<u>e</u>	30			
		30MHz-88MHz		100	40.0	G	Quasi-peak	3			
10-		88MHz-216MHz		150	43.5	G	Quasi-peak	3			
		216MHz-960MHz	2	200	46.0	G	Quasi-peak	3			
2		960MHz-1GHz)	500	54.0	G	Quasi-peak	3			
		Above 1GHz		500	54.0		Average	3			
		Note: 15.35(b), frequency emissions is limit applicable to the e peak emission level rac	20c quip	dB above the oment under t	maximum est. This ∣	pe	rmitted ave	erage emissior			

CTI华测检测

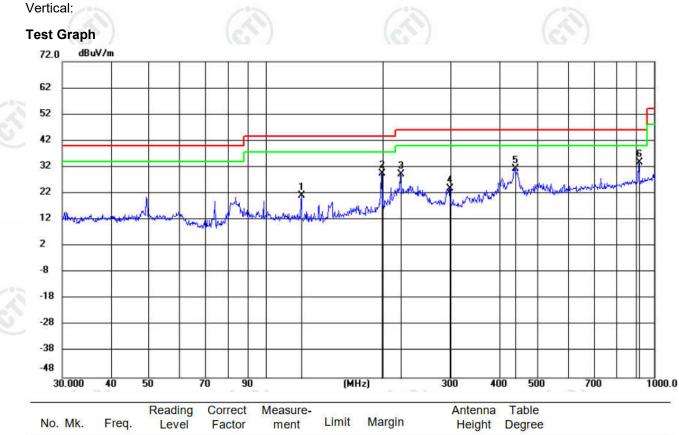
Report No. : EED32Q82089901

Т	est Results:	Pass
Т	est Mode:	Refer to clause 5.3
		i. Repeat above procedures until all frequencies measured was complete.
8		h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
		g. Test the EUT in the lowest channel (2402MHz),the middle channel (2440MHz),the Highest channel (2480MHz)
		f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
2		e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
3		d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
		horizontal and vertical polarizations of the antenna are set to make the measurement.



Radiated Spurious Emission below 1GHz:

During the test, the Radiates Emission from 30MHz to 1GHz was performed in all modes, only the worst case highest channel of GFSK 1M was recorded in the report.



No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		82.6191	18.68	9.82	28.50	40.00	-11.50	QP	200	355	
2	*	199.9154	20.67	12.38	33.05	43.50	-10.45	QP	200	250	
3	}	222.7939	16.50	13.24	29.74	46.00	-16.26	QP	100	60	
4		346.8700	10.84	17.04	27.88	46.00	-18.12	QP	100	352	
5		600.3729	5.56	22.26	27.82	46.00	-18.18	QP	200	7	
6		995.9755	5.78	26.48	32.26	54.00	-21.74	QP	100	92	
										-	

Page 24 of 41

	No. Mk.	Freq.	Level	Factor	ment	Limit	Margin		Height	Degree	
-		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
	1	123.8069	10.14	10.99	21.13	43.50	-22.37	QP	100	122	
1	2	199.0411	17.09	12.34	29.43	43.50	-14.07	QP	100	343	
	3	222.7549	16.14	13.24	29.38	46.00	-16.62	QP	100	154	
	4	297.2241	7.77	16.05	23.82	46.00	-22.18	QP	200	167	
	5	439.1941	12.66	18.75	31.41	46.00	-14.59	QP	100	185	
-	6 *	914.4640	7.88	26.00	33.88	46.00	-12.12	QP	200	126	

Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com

Radiated Spurious Emission above 1GHz:

During the test, the Radiated Spurious Emission from above 1GHz was performed in all modes, only the worst case BLE 1M was recorded in the report.

	ode	:		Bluetooth LE G	FSK Transmit	ting	Channel:		2402 MHz	
N	0	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	1157.8772	10.15	38.06	48.21	74.00	25.79	Pass	Н	PK
	2	1955.1303	16.78	35.78	52.56	74.00	21.44	Pass	Н	PK
	3	4804.1203	-10.45	53.04	42.59	74.00	31.41	Pass	Н	PK
4	4	7205.2804	-5.19	50.29	45.10	74.00	28.90	Pass	Н	PK
Į	5	12008.6006	5.19	46.15	51.34	74.00	22.66	Pass	Н	PK
(6	17445.9631	18.02	34.28	52.30	74.00	21.70	Pass	Н	PK
3	7	1145.2097	10.26	38.62	48.88	74.00	25.12	Pass	V	PK
8	8	1948.8633	17.04	35.51	52.55	74.00	21.45	Pass	V	PK
	9	4804.1203	-10.45	53.41	42.96	74.00	31.04	Pass	V	PK
1	0	7206.2804	-5.17	51.02	45.85	74.00	28.15	Pass	V	PK
1	1	12008.6006	5.19	46.80	51.99	74.00	22.01	Pass	V	PK
1	2	15885.8591	13.18	39.41	52.59	74.00	21.41	Pass	V	PK

	Mode	:		Bluetooth LE G	FSK Transmi	tting	Channel:		2440 MHz	2
2	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
2	1	1153.6102	10.29	37.82	48.11	74.00	25.89	Pass	Н	PK
	2	1913.2609	15.90	37.01	52.91	74.00	21.09	Pass	Н	PK
	3	4880.1253	-9.82	51.18	41.36	74.00	32.64	Pass	Н	PK
	4	7320.288	-4.43	50.32	45.89	74.00	28.11	Pass	Н	PK
	5	12200.6134	5.49	46.76	52.25	74.00	21.75	Pass	Н	PK
	6	15874.8583	12.77	40.27	53.04	74.00	20.96	Pass	Н	PK
	7	1154.277	10.26	37.93	48.19	74.00	25.81	Pass	V	PK
	8	1935.3957	16.61	36.16	52.77	74.00	21.23	Pass	V	PK
23	9	4502.1001	-8.48	49.46	40.98	74.00	33.02	Pass	V	PK
\mathbf{r}	10	7321.2881	-4.43	50.40	45.97	74.00	28.03	Pass	V	PK
-	11	12199.6133	5.48	46.62	52.10	74.00	21.90	Pass	V	PK
	12	16415.8944	12.83	39.55	52.38	74.00	21.62	Pass	V	PK

Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com

Page 26 of 41

	200		1000		10%				
Мо	de:		Bluetooth LE	FSK Transmi	tting	Channel:		2480 MHz	Z
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1152.4102	10.33	38.15	48.48	74.00	25.52	Pass	н	PK
2	1948.0632	17.02	35.56	52.58	74.00	21.42	Pass	Н	PK
3	4307.0871	-10.09	50.99	40.90	74.00	33.10	Pass	Н	PK
4	6407.2271	-5.52	47.85	42.33	74.00	31.67	Pass	Н	PK
5	9271.4181	1.10	45.53	46.63	74.00	27.37	Pass	Н	PK
6	15905.8604	13.26	39.27	52.53	74.00	21.47	Pass	Н	PK
7	1142.5428	10.16	38.43	48.59	74.00	25.41	Pass	V	PK
8	1928.8619	16.40	36.19	52.59	74.00	21.41	Pass	V	PK
9	3437.0291	-12.85	52.61	39.76	74.00	34.24	Pass	V	PK
10	4491.0994	-9.26	50.20	40.94	74.00	33.06	Pass	V	PK
11	7440.296	-4.56	48.61	44.05	74.00	29.95	Pass	V	PK
12	11985.599	5.89	45.17	51.06	74.00	22.94	Pass	V	PK
13	15893.8596	13.48	38.47	51.95	74.00	22.05	Pass	V	PK

Remark:

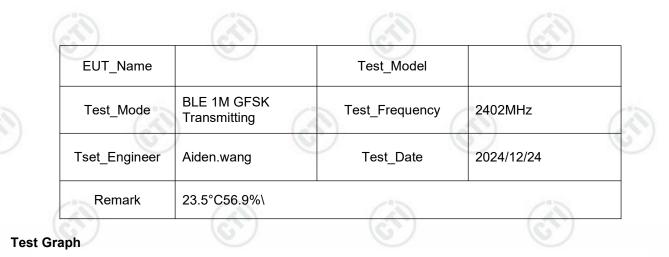
1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

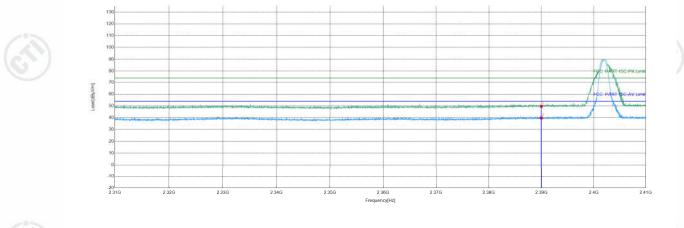
Final Test Level =Receiver Reading + Antenna Factor + Cable Factor – Preamplifier Factor

2) Scan from 9kHz to 25GHz, the disturbance above 10GHz and below 30MHz was very low. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak measurements were shown in the report.

Page 27 of 41

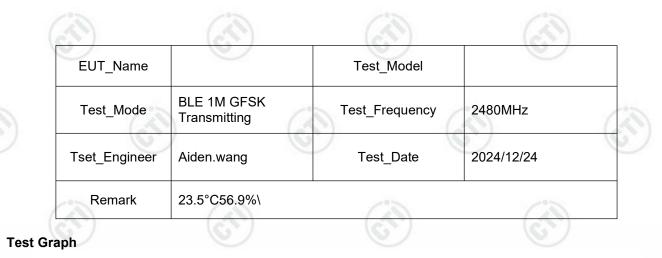
Restricted bands:

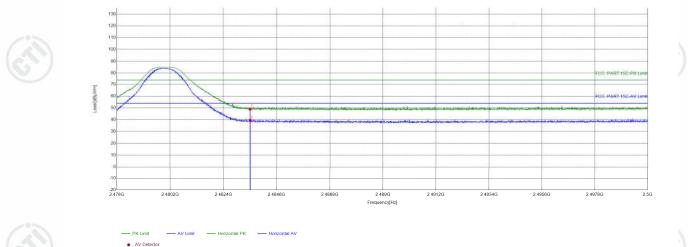

Test plot as follows:


Test_Mode BLE 1M GFSK Transmitting Test_Frequency 2402MHz Tset_Engineer Aiden.wang Test_Date 2024/12/24 Remark 23.5°C56.9%\	-	EUT_Name		Test_Model	
Remark $23.5^\circ C56.9\%$ Test Graph Image: Construction of the second	/	Test_Mode		Test_Frequency	2402MHz
	1	Tset_Engineer	Aiden.wang	Test_Date	2024/12/24
Test Graph		Remark			-0-
We have a set of the s	∟ Fest Gra	aph		<u>(</u> 1)	
$v_{r}}}}}}}}}$		6 2	E I E		
		120			
		120 110 100			Typ Pilet HSC-Pile
		120 110 00 00 70			
		120 110 00 00 70			
riequers(n/)		120 110 00 00 70			
)	120 110 100 00 00 00 00 00 00 00			2390 246

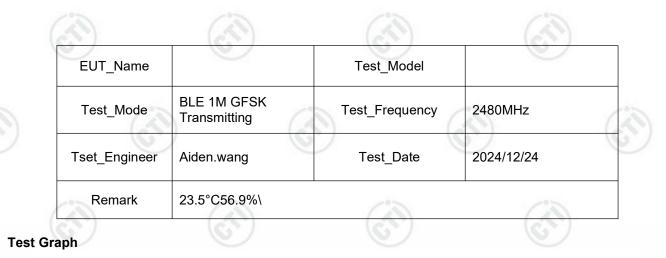
13	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
6	1	2390	15.31	35.17	50.48	74.00	23.52	PASS	Horizontal	PK
C.	2	2390	15.31	23.72	39.03	54.00	14.97	PASS	Horizontal	AV

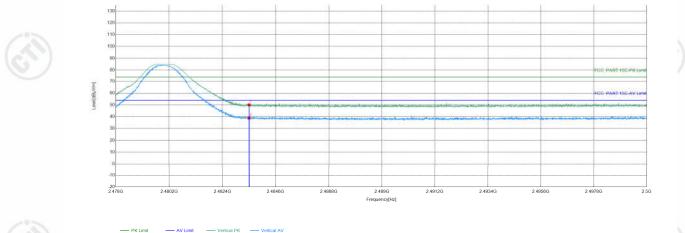
Page 28 of 41


PK Limit — AV Limit — Vertical PK — Vertical AV
 PK Detector AV Detector

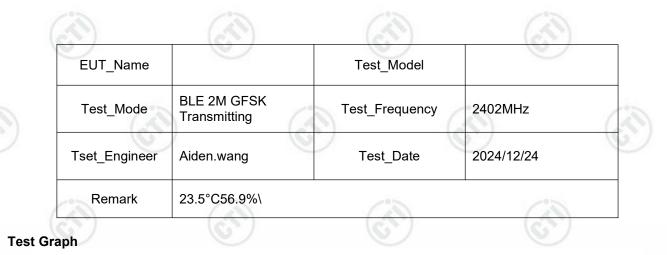

S	Suspected List													
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark				
	1	2390	15.31	34.39	49.70	74.00	24.30	PASS	Vertical	PK				
	2	2390	15.31	24.51	39.82	54.00	14.18	PASS	Vertical	AV				

Page 29 of 41



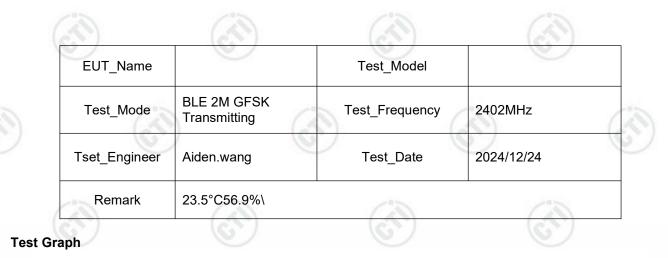

Suspecte	Suspected List													
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark					
1	2483.5	15.16	33.94	49.10	74.00	24.90	PASS	Horizontal	PK					
2	2483.5	15.16	24.31	39.47	54.00	14.53	PASS	Horizontal	AV					

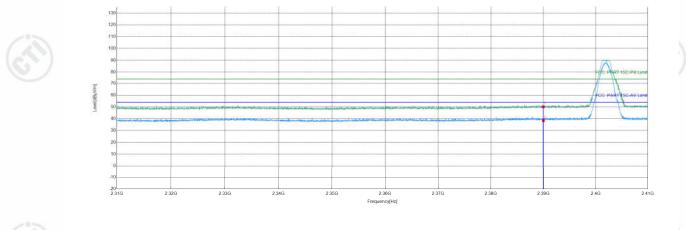
Page 30 of 41



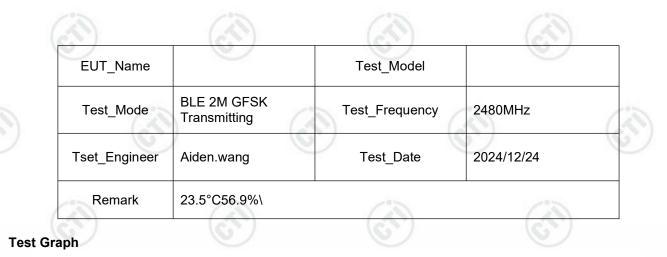
Suspecte	Suspected List												
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark				
1	2483.5	15.16	34.91	50.07	74.00	23.93	PASS	Vertical	PK				
2	2483.5	15.16	23.72	38.88	54.00	15.12	PASS	Vertical	AV				

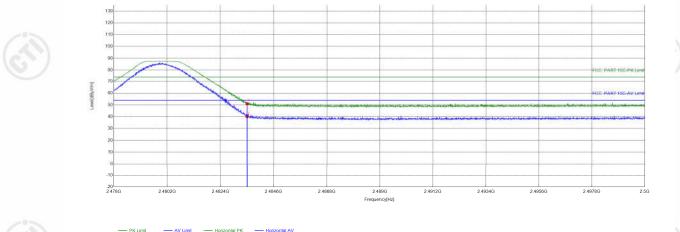
Page 31 of 41


PK Limit — AV Limit — Horizontal PK — Horizontal AV
 PK Detector
 AV Detector

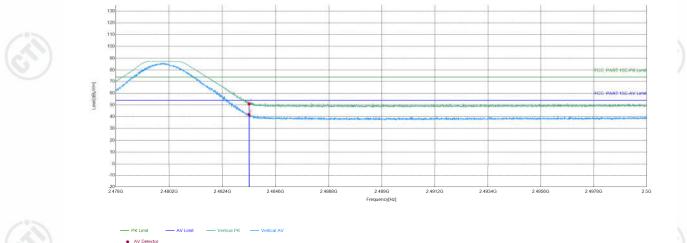

Suspecte	Suspected List													
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark					
1	2390	15.31	34.63	49.94	74.00	24.06	PASS	Horizontal	PK					
2	2390	15.31	34.63	49.94	54.00	4.06	PASS	Horizontal	PK					

Page 32 of 41


PK Limit		Vertical AV
* PK Detector	 AV Detector 	


Suspec	Suspected List									
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
1	2390	15.31	34.82	50.13	74.00	23.87	PASS	Vertical	PK	
2	2390	15.31	23.20	38.51	54.00	15.49	PASS	Vertical	AV	

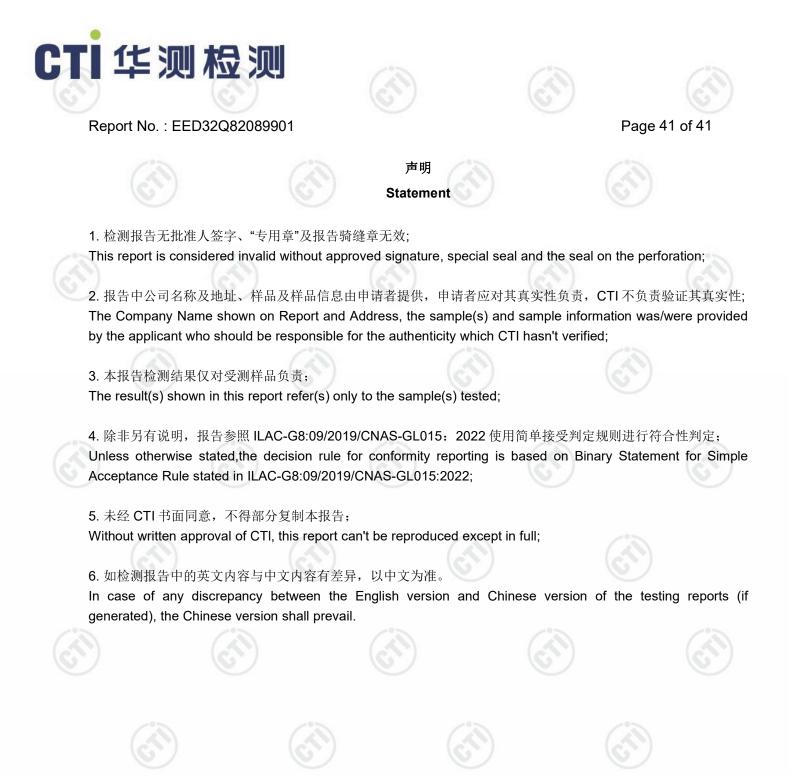
Page 33 of 41


Suspected List										
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
1	2483.5	15.16	35.88	51.04	74.00	22.96	PASS	Horizontal	PK	
2	2483.5	15.16	24.92	40.08	54.00	13.92	PASS	Horizontal	AV	

Page 34 of 41

Suspected List

NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2483.5	15.16	35.73	50.89	74.00	23.11	PASS	Vertical	PK
2	2483.5	15.16	26.66	41.82	54.00	12.18	PASS	Vertical	AV


Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows: Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor-Antenna Factor-Cable Factor

Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com

*** 报告结束 ***

End of Report ***

