Test Laboratory: Sporton International Inc. SAR Testing Lab Date/Time: 06/16/04 20:17:44

Body_802.11b Ch6_Keypad Down With Touch_20040616_Black Housing

DUT: EW-7317Ug; Type: USB Downgo

Communication System: 802.11b; Frequency: 2437 MHz; Duty Cycle: 1:1

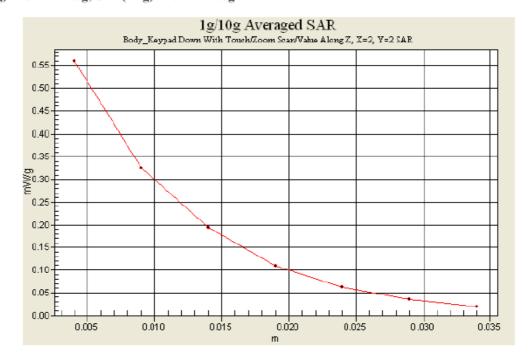
Medium: MSL_2450 Medium parameters used: f = 2437 MHz; $\sigma = 1.98$ mho/m; $\epsilon_r = 51.6$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 SN1788; ConvF(4.5, 4.5, 4.5); Calibrated: 8/29/2003
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 11/21/2003
- Phantom: SAM 12; Type: QD 000 P40 C; Serial: TP-1150
- Measurement SW: DASY4, V4.2 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 112

Ch6/Area Scan (51x81x1): Measurement grid: dx=15mm, dy=15mm


Reference Value = 15.4 V/m; Power Drift = -0.2 dB Maximum value of SAR (interpolated) = 0.641 mW/g

Ch6/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 15.4 V/m; Power Drift = -0.2 dB Maximum value of SAR (measured) = 0.559 mW/g

Peak SAR (extrapolated) = 0.973 W/kg

SAR(1 g) = 0.520 mW/g; SAR(10 g) = 0.269 mW/g

Appendix C – Calibration Data

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Client

Auden > Sporton Int. Inc.

Object(s)	D2450V2 - SI	V:736	
Calibration procedure(s)	QA CAL-05 v	2 ocedure for dipole validation kits	
	assets for a fair solar solar	occupie for dipolo validation will	
Calibration date:	August 27, 20	003	
Condition of the calibrated item	In Tolerance	according to the specific calibration	on document)
7025 international standard.		E used in the calibration procedures and conformity or the calibration procedures and conformity or facility: environment temperature 22 +/- 2 degree	
Calibration Equipment used (M&T			,
Model Type	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
F generator R&S SML-03	100698	27-Mar-2002 (R&S, No. 20-92389)	In house check: Mar-05
ower sensor HP 8481A	MY41092317	18-Oct-02 (Agilent, No. 20021018)	Oct-04
	US37292783	30-Oct-02 (METAS, No. 252-0236)	Oct-03
ower meter EPM E442	GB37480704	30-Oct-02 (METAS, No. 252-0236) 18-Oct-01 (Agilent, No. 24BR1033101)	Oct-03
ower meter EPM E442		30-Oct-02 (METAS, No. 252-0236) 18-Oct-01 (Agilent, No. 24BR1033101)	Oct-03 In house check: Oct 03
ower meter EPM E442	GB37480704		
ower meter EPM E442 letwork Analyzer HP 8753E	GB37480704 US37390585 Name	18-Oct-01 (Agilent, No. 24BR1033101)	In house check: Oct 03
ower meter EPM E442 etwork Analyzer HP 8753E	GB37480704 US37390585 Name	18-Oct-01 (Agilient, No. 24BR1033101) Function	In house check: Oct 03
ower meter EPM E442 letwork Analyzer HP 8753E Calibrated by:	GB37480704 US37390585 Name	18-Oct-01 (Agilient, No. 24BR1033101) Function	In house check: Oct 03
Power sensor HP 8481A Power meter EPM E442 tetwork Analyzer HP 8753E Calibrated by:	GB37480704 US37390585 Name	18-Oct-01 (Agilent, No. 24BR1033101) Function Technician	In house check: Oct 03
Power meter EPM E442 letwork Analyzer HP 8753E calibrated by:	GB37480704 US37390585 Name Judith Mueller Katja Pokovic	18-Oct-01 (Agillent, No. 24BR1033101) Function Technician Laboratory Director	Signature Advisor Logist 28, 2003

Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 1 245 9700, Fax +41 1 245 9779 info@speag.com, http://www.speag.com

DASY

Dipole Validation Kit

Type: D2450V2

Serial: 736

Manufactured: August 26, 2003

Calibrated: August 27, 2003

1. Measurement Conditions

The measurements were performed in the flat section of the SAM twin phantom filled with head simulating solution of the following electrical parameters at 2450 MHz:

Relative Dielectricity 38.2 \pm 5% Conductivity 1.89 mho/m \pm 5%

The DASY4 System with a dosimetric E-field probe ES3DV2 (SN:3013, Conversion factor 4.8 at 2450 MHz) was used for the measurements.

The dipole was mounted on the small tripod so that the dipole feedpoint was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 10mm from dipole center to the solution surface. Lossless spacer was used during measurements for accurate distance positioning.

The coarse grid with a grid spacing of 15mm was aligned with the dipole. The 7x7x7 fine cube was chosen for cube integration.

The dipole input power (forward power) was $250mW \pm 3$ %. The results are normalized to 1W input power.

2. SAR Measurement with DASY4 System

Standard SAR-measurements were performed according to the measurement conditions described in section 1. The results (see figure supplied) have been normalized to a dipole input power of 1W (forward power). The resulting averaged SAR-values measured with the dosimetric probe ES3DV2 SN:3013 and applying the <u>advanced extrapolation</u> are:

averaged over 1 cm³ (1 g) of tissue: 55.6 mW/g \pm 16.8 % (k=2)¹

averaged over 10 cm³ (10 g) of tissue: 25.0 mW/g \pm 16.2 % (k=2)¹

¹ validation uncertainty

3. Dipole Impedance and Return Loss

The impedance was measured at the SMA-connector with a network analyzer and numerically transformed to the dipole feedpoint. The transformation parameters from the SMA-connector to the dipole feedpoint are:

Electrical delay: 1.158 ns (one direction)

Transmission factor: 0.983 (voltage transmission, one direction)

The dipole was positioned at the flat phantom sections according to section 1 and the distance spacer was in place during impedance measurements.

Feedpoint impedance at 2450 MHz: $Re\{Z\} = 52.5 \Omega$

Im $\{Z\} = 3.6 \Omega$

Return Loss at 2450 MHz -27.5 dB

4. Measurement Conditions

The measurements were performed in the flat section of the SAM twin phantom filled with body simulating solution of the following electrical parameters at 2450 MHz:

Relative Dielectricity 50.8 \pm 5% Conductivity 2.03 mho/m \pm 5%

The DASY4 System with a dosimetric E-field probe ES3DV2 (SN:3013, Conversion factor 4.2 at 2450 MHz) was used for the measurements.

The dipole was mounted on the small tripod so that the dipole feedpoint was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 10mm from dipole center to the solution surface. Lossless spacer was used during measurements for accurate distance positioning.

The coarse grid with a grid spacing of 15mm was aligned with the dipole. The 7x7x7 fine cube was chosen for cube integration.

The dipole input power (forward power) was $250mW \pm 3$ %. The results are normalized to 1W input power.

5. SAR Measurement with DASY4 System

Standard SAR-measurements were performed according to the measurement conditions described in section 4. The results (see figure supplied) have been normalized to a dipole input power of 1W (forward power). The resulting averaged SAR-values measured with the dosimetric probe ES3DV2 SN:3013 and applying the advanced extrapolation are:

averaged over 1 cm3 (1 g) of tissue:

56.0 mW/g \pm 16.8 % (k=2)²

averaged over 10 cm3 (10 g) of tissue:

25.8 mW/g \pm 16.2 % (k=2)²

6. Dipole Impedance and Return Loss

The dipole was positioned at the flat phantom sections according to section 4 and the distance spacer was in place during impedance measurements.

Feedpoint impedance at 2450 MHz:

 $Re{Z} = 48.7 \Omega$

Im $\{Z\} = 4.8 \Omega$

Return Loss at 2450 MHz

-25.8 dB

7. Handling

Do not apply excessive force to the dipole arms, because they might bend. Bending of the dipole arms stresses the soldered connections near the feedpoint leading to a damage of the dipole.

8. Design

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

Small end caps have been added to the dipole arms in order to improve matching when loaded according to the position as explained in Sections land 4. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

9. Power Test

After long term use with 40W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

² validation uncertainty

Page 1 of 1

Date/Time: 08/27/03 15:43:04

Test Laboratory: SPEAG, Zurich, Switzerland File Name: SN736 SN3013 M2450 270803.da4

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN736

Program: Dipole Calibration

Communication System: CW-2450; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: Muscle 2450 MHz ($\sigma = 2.03$ mho/m, $\epsilon_r = 50.75$, $\rho = 1000$ kg/m³)

Phantom section: Flat Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

- Probe: ES3DV2 SN3013; ConvF(4.2, 4.2, 4.2); Calibrated: 1/19/2003
- · Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 SN411; Calibrated: 1/16/2003
- Phantom: SAM with CRP TP1006; Type: SAM 4.0; Serial: TP:1006
- Measurement SW: DASY4, V4.1 Build 47; Postprocessing SW: SEMCAD, V1.6 Build 115

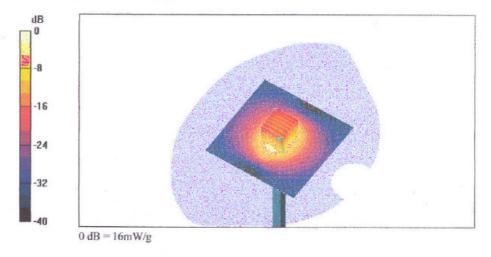
Pin = 250 mW; d = 10 mm/Area Scan (81x81x1): Measurement grid: dx=15mm, dy=15mm.

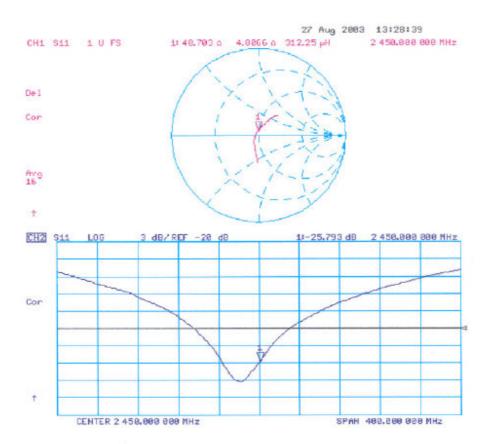
Reference Value = 91 V/m

Power Drift = -0.02 dB

Maximum value of SAR = 15.7 mW/g

Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,


dz=5mm


Peak SAR (extrapolated) = 27.8 W/kg

SAR(1 g) = 14 mW/g; SAR(10 g) = 6.46 mW/gReference Value = 91 V/m

Power Drift = -0.02 dB

Maximum value of SAR = 16 mW/g

Page 1 of 1

Date/Time: 08/27/03 11:42:12

Test Laboratory: SPEAG, Zurich, Switzerland File Name: SN736_SN3013_HSL2450_270803.da4

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN736

Program: Dipole Calibration

Communication System: CW-2450; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: HSL 2450 MHz ($\sigma = 1.89 \text{ mho/m}$, $\epsilon_r = 38.19$, $\rho = 1000 \text{ kg/m}^3$)

Phantom section: Flat Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

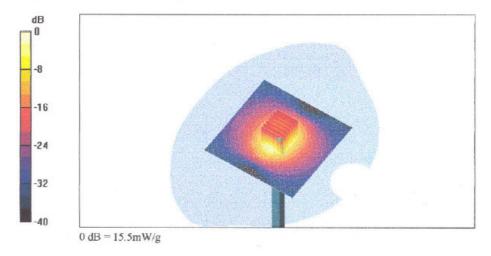
- Probe: ES3DV2 SN3013; ConvF(4.8, 4.8, 4.8); Calibrated: 1/19/2003
- · Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 SN411; Calibrated: 1/16/2003
- Phantom: SAM with CRP TP1006; Type: SAM 4.0; Serial: TP:1006
- Measurement SW: DASY4, V4.1 Build 47; Postprocessing SW: SEMCAD, V1.6 Build 115

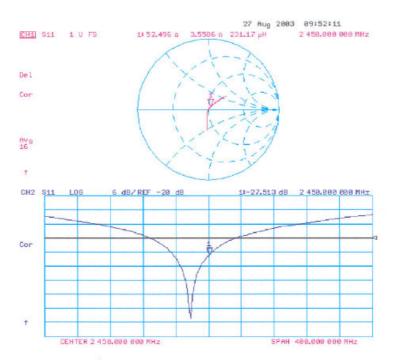
Pin = 250 mW; d = 10 mm/Area Scan (81x81x1): Measurement grid: dx=15mm, dy=15mm

Reference Value = 91.5 V/m

Power Drift = -0.04 dB

Maximum value of SAR = 15.3 mW/g


Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,


Peak SAR (extrapolated) = 30.2 W/kg

SAR(1 g) = 13.9 mW/g; SAR(10 g) = 6.25 mW/gReference Value = 91.5 V/m

Power Drift = -0.04 dB

Maximum value of SAR = 15.5 mW/g

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Client

Auden > Sporton Int. Inc.

Object(s)	ET3DV6 - SN:	1788	
Calibration procedure(s)	QA CAL-01 v2 Calibration pro	2 ocedure for dosimetric E-field prob	es
Calibration date:	August 29, 20	03,	
Condition of the calibrated item	In Tolerance (according to the specific calibration	n document)
This calibration statement document 17025 international standard.	ts traceability of M&TE	used in the calibration procedures and conformity of	f the procedures with the ISO/IEC
		ry facility: environment temperature 22 +/- 2 degree	s Celsius and humidity < 75%.
		ry facility: environment temperature 22 +/- 2 degree	s Celsius and humidity < 75%.
Calibration Equipment used (M&TE		ry facility: environment temperature 22 +/- 2 degrees Cal Date (Calibrated by, Certificate No.)	s Celsius and humidity < 75%. Scheduled Calibration
Calibration Equipment used (M&TE Model Type RF generator HP 8884C	critical for calibration) ID# US3642U01700		
Calibration Equipment used (M&TE Model Type RF generator HP 8684C Power sensor E4412A	critical for calibration) ID # US3842U01700 MY41495277	Cal Date (Calibrated by, Certificate No.) 4-Aug-99 (SPEAG, in house check Aug-02) 2-Apr-03 (METAS, No 252-0250)	Scheduled Calibration In house check: Aug-05 Apr-04
Calibration Equipment used (M&TE Model Type RF generator HP 8684C Power sensor E4412A Power sensor HP 8481A	critical for calibration) ID # US3842U01700 MY41495277 MY41092160	Cal Date (Calibrated by, Certificate No.) 4-Aug-99 (SPEAG, in house check Aug-02) 2-Apr-03 (METAS, No 252-0250) 18-Sep-02 (Agilent, No. 20020918)	Scheduled Calibration In house check: Aug-05 Apr-04 Sep-03
Calibration Equipment used (M&TE Model Type RF generator HP 8684C Power sensor E4412A Power sensor HP 8481A Power meter EPM E4419B	ID # US3842U01700 MY41495277 MY41092160 GB41293874	Cal Date (Calibrated by, Certificate No.) 4-Aug-99 (SPEAG, in house check Aug-02) 2-Apr-03 (METAS, No 252-0250) 18-Sep-02 (Agilent, No. 20020918) 2-Apr-03 (METAS, No 252-0250)	Scheduled Calibration In house check: Aug-05 Apr-04 Sep-03 Apr-04
All calibrations have been conducted Calibration Equipment used (M&TE Model Type RF generator HP 8684C Power sensor E4412A Power sensor HP 8481A Power meter EPM E4419B Network Analyzer HP 8753E Fluke Process Calibrator Type 702	critical for calibration) ID # US3842U01700 MY41495277 MY41092160	Cal Date (Calibrated by, Certificate No.) 4-Aug-99 (SPEAG, in house check Aug-02) 2-Apr-03 (METAS, No 252-0250) 18-Sep-02 (Agilent, No. 20020918)	Scheduled Calibration In house check: Aug-05 Apr-04 Sep-03
Calibration Equipment used (M&TE Model Type RF generator HP 8684C Power sensor E4412A Power sensor HP 8481A Power meter EPM E4419B Network Analyzer HP 8753E	critical for calibration) ID # US3842U01700 MY41495277 MY41092180 GB41293874 US37390585	Cal Date (Calibrated by, Certificate No.) 4-Aug-99 (SPEAG, in house check Aug-02) 2-Apr-03 (METAS, No 252-0250) 18-Sep-02 (Agilent, No. 20020918) 2-Apr-03 (METAS, No 252-0250) 18-Oct-01 (Agilent, No. 24BR1033101)	Scheduled Calibration In house check: Aug-05 Apr-04 Sep-03 Apr-04 In house check: Oct 03 Sep-03
Calibration Equipment used (M&TE Model Type RF generator HP 8684C Power sensor E4412A Power sensor HP 8481A Power meter EPM E4419B Network Analyzer HP 8753E Fluke Process Calibrator Type 702	critical for calibration) ID # US3642U01700 MY41495277 MY41092180 GB41293874 US37390585 SN: 6295803	Cal Date (Calibrated by, Certificate No.) 4-Aug-99 (SPEAG, in house check Aug-02) 2-Apr-03 (METAS, No 252-0250) 18-Sep-02 (Agilent, No. 20020918) 2-Apr-03 (METAS, No 252-0250) 18-Oct-01 (Agilent, No. 24BR1033101) 3-Sep-01 (ELCAL, No.2360)	Scheduled Calibration In house check: Aug-05 Apr-04 Sep-03 Apr-04 In house check: Oct 03
Calibration Equipment used (M&TE Model Type RF generator HP 8684C Power sensor E4412A Power sensor HP 8481A Power meter EPM E4419B Network Analyzer HP 8753E	critical for calibration) ID # US3642U01700 MY41495277 MY41092180 GB41293874 US37390585 SN: 6295803	Cal Date (Calibrated by, Certificate No.) 4-Aug-99 (SPEAG, in house check Aug-02) 2-Apr-03 (METAS, No 252-0250) 18-Sep-02 (Agilent, No. 20020918) 2-Apr-03 (METAS, No 252-0250) 18-Oct-01 (Agilent, No. 24BR1033101) 3-Sep-01 (ELCAL, No.2360)	Scheduled Calibration In house check: Aug-05 Apr-04 Sep-03 Apr-04 In house check: Oct 03 Sep-03
Calibration Equipment used (M&TE Model Type RF generator HP 8684C Power sensor E4412A Power sensor HP 8481A Power meter EPM E4419B Network Analyzer HP 8753E Fluke Process Calibrator Type 702 Calibrated by:	critical for calibration) ID # US3842U01700 MY41495277 MY41092180 GB41293874 US37390585 SN: 6295803 Name Nino Vetterii	Cal Date (Calibrated by, Certificate No.) 4-Aug-99 (SPEAG, in house check Aug-02) 2-Apr-03 (METAS, No 252-0250) 18-Sep-02 (Aglient, No. 20020918) 2-Apr-03 (METAS, No 252-0250) 18-Oct-01 (Aglient, No. 24BR1033101) 3-Sep-01 (ELCAL, No.2360) Function Technician	Scheduled Calibration In house check: Aug-05 Apr-04 Sep-03 Apr-04 In house check: Oct 03 Sep-03

880-KP0301061-A

Page 1 (1)

Schmid & Partner Engineering AG

speag

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 1 245 9700, Fax +41 1 245 9779 info@speag.com, http://www.speag.com

Probe ET3DV6

SN:1788

Manufactured: Last calibration:

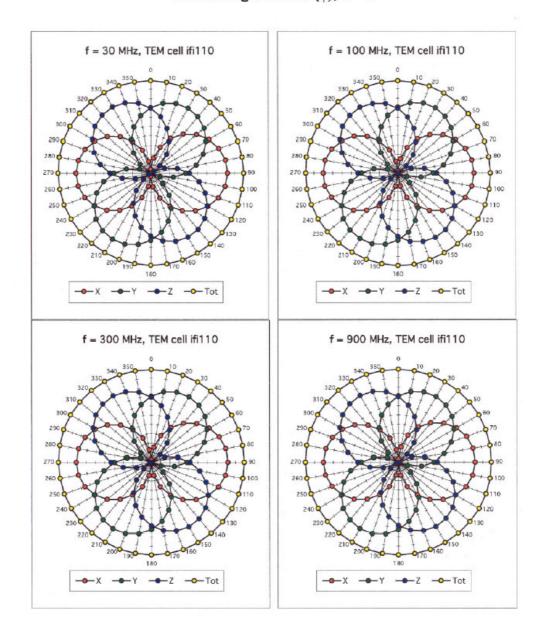
May 28, 2003 August 29, 2003

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

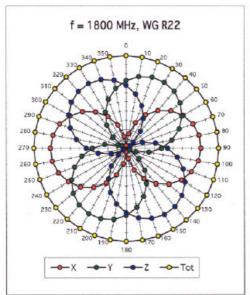
ET3DV6 SN:1788 August 29, 2003

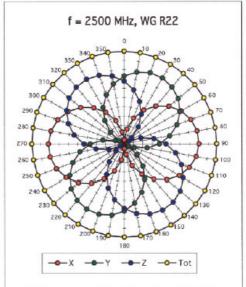
DASY - Parameters of Probe: ET3DV6 SN:1788


Sensiti	ivity in Free	Space		Diode C	ompressio	n	
	NormX		1.68 µV/(V/m) ²		DCP X	95	m\
	NormY		1.62 μV/(V/m) ²		DCP Y	95	m\
	NormZ		1.71 μV/(V/m) ²		DCP Z	95	m\
Sensitiv	vity in Tissue	e Simula	ating Liquid				
Head	90	0 MHz	ε _r = 41.5 ±	5% σ	= 0.97 ± 5%	mho/m	
Valid for fe	=800-1000 MHz v	with Head T	issue Simulating Liquid acco	ording to EN 5036	S1, P1528-200	x	
	ConvF X		6.6 ± 9.5% (k=2)		Boundary et	fect:	
	ConvF Y		6.6 ± 9.5% (k=2)		Alpha	0.34	
	ConvF Z		6.6 ± 9.5% (k=2)		Depth	2.48	
Head	180	0 MHz	ϵ_r = 40.0 ±	5% σ	= 1.40 ± 5%	mho/m	
Valid for fe	=1710-1910 MHz	with Head	Tissue Simulating Liquid acc	cording to EN 503	861, P1528-20	ox	
	ConvF X		$5.3 \pm 9.5\% (k=2)$		Boundary et	fect:	
	ConvF Y		$5.3 \pm 9.5\% (k=2)$		Alpha	0.43	
	ConvF Z		5.3 ± 9.5% (k=2)		Depth	2.80	
Bound	ary Effect						
Head	90	00 MHz	Typical SAR gradier	nt: 5 % per mm			
	Probe Tip to	Boundary			1 mm	2 mm	
	SAR _{be} [%]	Without	Correction Algorithm		8.7	5.0	
	SAR _{be} [%]	With Co	rrection Algorithm		0.3	0.5	
Head	180	00 MHz	Typical SAR gradier	nt: 10 % per mm			
	Probe Tip to	Boundary			1 mm	2 mm	
	SAR _{be} [%]	Without	Correction Algorithm		12.8	8.9	
	SAR _{be} [%]	With Co	rrection Algorithm		0.3	0.1	
Senso	r Offset						
	Probe Tip to	Sensor Ce	enter	2.7		mm	
	Optical Surfa	ce Detecti	on	1.6 ± 0.2		mm	

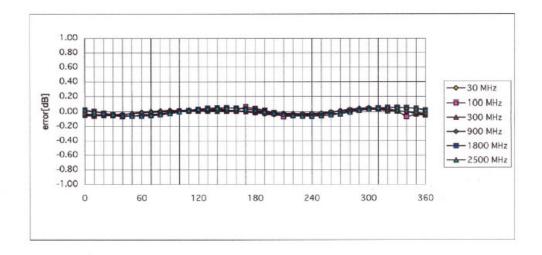
Page 2 of 10

ET3DV6 SN:1788 August 29, 2003


Receiving Pattern (ϕ), θ = 0°



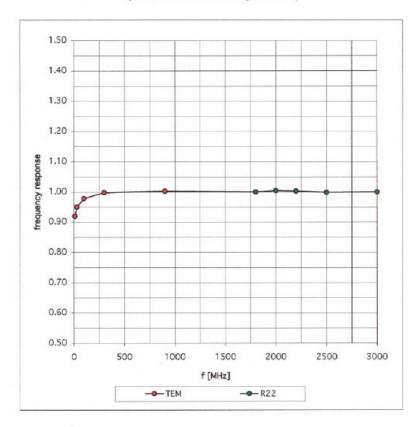
Page 3 of 10


ET3DV6 SN:1788

August 29, 2003

Isotropy Error (ϕ), $\theta = 0^{\circ}$

Page 4 of 10

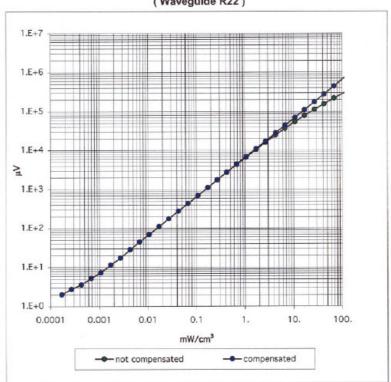


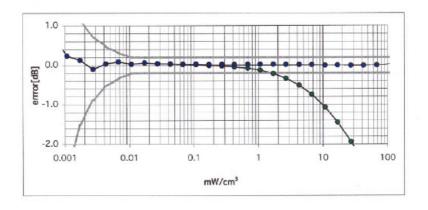
ET3DV6 SN:1788

August 29, 2003

Frequency Response of E-Field

(TEM-Cell:ifi110, Waveguide R22)

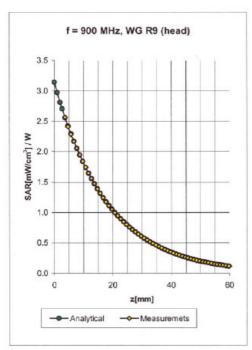


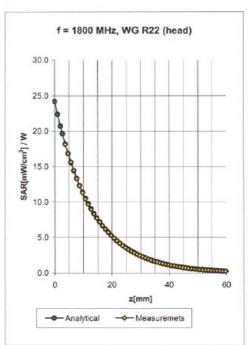

ET3DV6 SN:1788

August 29, 2003

Dynamic Range f(SAR_{brain})

(Waveguide R22)



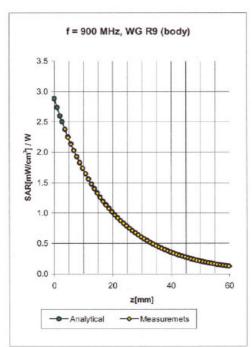

Page 6 of 10

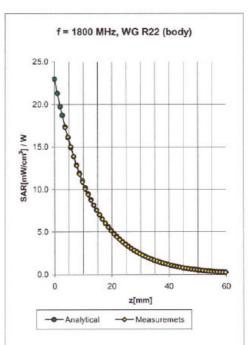
ET3DV6 SN:1788

August 29, 2003

Conversion Factor Assessment

Head	900 MHz		$\epsilon_r = 41.5 \pm 5\%$	σ = 0.97 ± 5% n	nho/m
Valid for f	=800-1000 MHz with He	ad Tissue	e Simulating Liquid according to	EN 50361, P1528-200	х
	ConvF X	6.6	± 9.5% (k=2)	Boundary effe	ect:
	ConvF Y	6.6	± 9.5% (k=2)	Alpha	0.34
	ConvF Z	6.6	±9.5% (k=2)	Depth	2.48
Head	1800 MHz		ϵ_r = 40.0 ± 5%	σ= 1.40 ± 5% n	nho/m
Valid for f	=1710-1910 MHz with H	ead Tiss	ue Simulating Liquid according t	to EN 50361, P1528-20	ox
	ConvF X	5.3	± 9.5% (k=2)	Boundary effe	ect
	ConvF Y	5.3	± 9.5% (k=2)	Alpha	0.43
	ConvF Z	5.3	± 9.5% (k=2)	Depth	2.80


Page 7 of 10



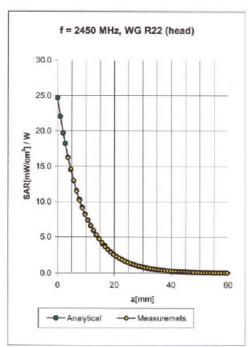
ET3DV6 SN:1788

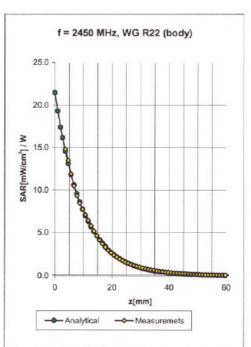
August 29, 2003

Conversion Factor Assessment

Body	900 MHz	ž	ε, = 55.0 ± 5%	$\sigma = 1.05 \pm 5\%$ m	nho/m
Valid for f	=800-1000 MHz with Bo	ody Tissue S	mulating Liquid according to	OET 65 Suppl. C	
	ConvF X	6.5 ±	9.5% (k=2)	Boundary effe	ct:
	ConvF Y	6.5 ±	9.5% (k=2)	Alpha	0.31
	ConvF Z	6.5 ±	9.5% (k=2)	Depth	2.92
Body	1800 MHz	z	ε_r = 53.3 ± 5%	σ = 1.52 ± 5% m	nho/m
Valid for f	=1710-1910 MHz with I	Body Tissue	Simulating Liquid according	to OET 65 Suppl. C	
	ConvF X	5.0 ±	9.5% (k=2)	Boundary effe	ct:
	ConvF Y	5.0 ±	9.5% (k=2)	Alpha	0.51
	ConvF Z	5.0 ±	9.5% (k=2)	Depth	2.78

Page 8 of 10




ET3DV6 SN:1788

August 29, 2003

Test Report No : 0452620-01-1-2-01

Conversion Factor Assessment

Head	2450 MHz	ε_r = 39.2 ± 5%	$\sigma = 1.80 \pm 5\% \text{ mho/m}$

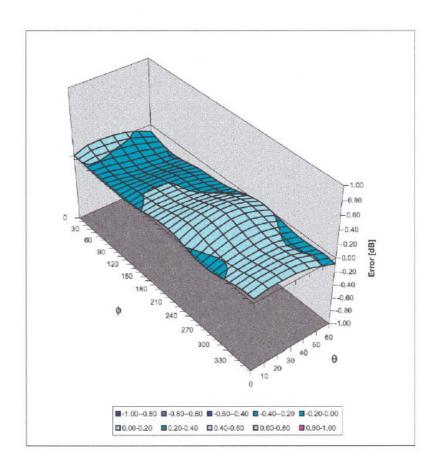
Valid for f=2400-2500 MHz with Head Tissue Simulating Liquid according to EN 50361, P1528-200X

ConvF X	4.7 ± 8.9% (k=2)	Boundary effe	ect:
ConvF Y	4.7 ± 8.9% (k=2)	Alpha	0.99
ConvF Z	4.7 ± 8.9% (k=2)	Depth	1.81

Body	2450 MHz	$\varepsilon_{r} = 52.7 \pm 5\%$	$\sigma = 1.95 \pm 5\%$ mho/m

Valid for f=2400-2500 MHz with Body Tissue Simulating Liquid according to OET 65 Suppl. C

CONVE X	4.5 ±8.9% (K=2)	Boundary effe	ect:
ConvF Y	4.5 $\pm 8.9\%$ (k=2)	Alpha	1.01
ConvF Z	$4.5 \pm 8.9\% (k=2)$	Depth	1.74


Page 9 of 10

ET3DV6 SN:1788

August 29, 2003

Deviation from Isotropy in HSL

Error (θ,ϕ) , f = 900 MHz

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Client Sporton (Auden)

CALIBRATION CERTIFICATE Object(s) DAE3 - SD 000 D03 AA - SN:577 QA CAL-06.v4 Calibration procedure(s) Calibration procedure for the data acquisition unit (DAE) 21.11.2003 Calibration date: In Tolerance (according to the specific calibration document) Condition of the calibrated item This calibration statement documents traceability of M&TE used in the calibration procedures and conformity of the procedures with the ISO/IEC 17025 international standard. All calibrations have been conducted in the closed laboratory facility, environment temperature 22 +/- 2 degrees Celsius and humidity < 75%. Calibration Equipment used (M&TE critical for calibration) Model Type Scheduled Calibration Fluke Process Calibrator Type 702 SN: 6295803 8-Sep-03 Sep-05 Name Function Calibrated by: Philipp Storchenegger Technician Approved by: Fin Bomholt **R&D Director** Date issued 21.11.2003 This calibration certificate is issued as an intermediate solution until the accreditation process (based on ISO/IEC 17025 International Standard) for Calibration Laboratory of Schmid & Partner Engineering AG is completed.

FCC SAR Test Report No : 0452620-01-1-2-01

DAE3 SN: 577

DATE: 21.11.2003

1. Cal Lab. Incoming Inspection & Pre Test

Modification Status	Note Status here → → → →	BC
Visual Inspection	Note anomalies	None
Pre Test	Indication	Yes/No
Probe Touch	Function	Yes
Probe Collision	Function	Yes
Probe Touch&Collision	Function	Yes

2. DC Voltage Measurement

A/D - Converter Resolution nominal

 $\begin{array}{lll} \mbox{High Range:} & \mbox{1LSB} = & \mbox{6.1}\mu\mbox{V} \,, & \mbox{full range} = & \mbox{400 mV} \\ \mbox{Low Range:} & \mbox{1LSB} = & \mbox{61nV} \,, & \mbox{full range} = & \mbox{4 mV} \end{array}$

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	X	Y	Z
High Range	404.434	403.889	404.352
Low Range	3.94303	3.94784	3.9501
Connector Angle to be used	in DASY System	127 °	

High Range	Input	Reading in µV	% Error	
Channel X + Input	200mV	200000.6	0.00	
	20mV	20000.9	0.00	
Channel X - Input	20mV	-19992.7	-0.04	
Channel Y + Input	200mV	200000.6	0.00	
	20mV	19999.1	0.00	
Channel Y - Input	20mV	-19994.7	-0.03	
Channel Z + Input	200mV	199999.8	0.00	
	20mV	19998.1	-0.01	
Channel Z - Input	20mV	-19999.2	0.00	

Low Range	Input	Reading in µV	% Error
Channel X + Input	2mV	1999.94	0.00
	0.2mV	199.08	-0.46
Channel X - Input	0.2mV	-200.24	0.12
Channel Y + Input	2mV	1999.98	0.00
	0.2mV	199.50	-0.25
Channel Y - Input	0.2mV	-200.80	0.40
Channel Z + Input	2mV	1999.98	0.00
	0.2mV	199.11	-0.44
Channel Z - Input	0.2mV	-201.12	0.56

Page 2 of 4

DAE3 SN: 577

DATE: 21.11.2003

3. Common mode sensitivity

DASY measurement parameters:

Auto Zero Time: 3 sec,

Measuring time: 3 sec

High/Low Range

in μV	Common mode Input Voltage	High Range Reading	Low Range Reading
Channel X	200mV	12.00	11.9
	- 200mV	-10.76	-12.44
Channel Y	200mV	-8.55	-8.51
	- 200mV	7.58	6.67
Channel Z	200mV	-0.86	-0.58
	- 200mV	-0.85	-0.77

4. Channel separation

DASY measurement parameters:

Auto Zero Time: 3 sec,

Measuring time:

3 sec

High Range

in μV	Input Voltage	Channel X	Channel Y	Channel Z
Channel X	200mV	-	1.96	0.28
Channel Y	200mV	0.66	-	3.59
Channel Z	200mV	-0.89	-0.11	-

5.1 AD-Converter Values with Input Voltage set to 2.0 VDC

in Zero Low	Low Range Max - Min	Max.	Min
Channel X	17	16137	16120
Channel Y	27	16767	16740
Channel Z	8	15103	15077

5.2 AD-Converter Values with inputs shorted

in LSB	Low Range	High Range
Channel X	16134	15955
Channel Y	16740	15960
Channel Z	15093	16252

6. Input Offset Measurement

DAE3 SN: 577

DATE: 21.11.2003

Test Report No : 0452620-01-1-2-01

DASY measurement parameters:

Auto Zero Time: 3 sec, Number of measurements: Measuring time: 3 sec

100, Low Range

Input 10MΩ

in μV	Average	min. Offset	max. Offset	Std. Deviation
Channel X	-0.64	-1.84	0.71	0.49
Channel Y	-1.77	-3.93	0.94	0.58
Channel Z	-2.21	-3.14	-0.81	0.34

Input shorted

riput shorted				
in μV	Average	min. Offset	max. Offset	Std. Deviation
Channel X	0.12	-1.34	1.45	0.69
Channel Y	-0.69	-1.39	0.30	0.26
Channel Z	-0.94	-1.58	-0.30	0.23

7. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

8. Input Resistance

In MOhm	Calibrating	Measuring
Channel X	0.2000	197.1
Channel Y	0.1999	200.3
Channel Z	0.2001	198.3

9. Low Battery Alarm Voltage

in V	Alarm Level
Supply (+ Vcc)	7.58
Supply (- Vcc)	-7.65

10. Power Consumption

in mA	Switched off	Stand by	Transmitting
Supply (+ Vcc)	0.00	5.65	13.7
Supply (- Vcc)	-0.01	-7.69	-8.97