TEST REPORT

Applicant: Blustream PTY LTD

Address of Applicant: 26 Lionel Rd, Mount Waverley, Melbourne, Victoria, 3149,

Australia

Manufacturer/Factory: Shen Zhen Proitav Technology Co.,Ltd

Address of Floor 3-4, Building 16, Hejing Industrial Zone, Fuyong Town,

Manufacturer/Factory: Baoan District, Shenzhen, China

Equipment Under Test (EUT)

Product Name: 4K60 BYOD Presentation Switcher

Model No.: AMF41W

Trade Mark: Blustream

FCC ID: 2AY2P-AMF41W

IC: 27021-AMF41W

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

RSS-Gen Issue 5 RSS-247 Issue 2

Date of sample receipt: February 01, 2021

Date of Test: February 02, 2021-May 13, 2021

Date of report issued: May 14, 2021

Test Result: PASS *

Authorized Signature:

Robinson Luo Laboratory Manager

^{*} In the configuration tested, the EUT complied with the standards specified above.

2 Version

Version No.	Date	Description Original		
00	May 14, 2021			

Prepared By:	Tramelly	Date:		May 14, 2021	
	Project Engineer		de de		, se
Check By:	Latingon Lux	Date:		May 14, 2021	
	Reviewer				\$7

3 Contents

		Page
1		1
2	VERSION	2
3		
4	TEST SUMMARY	4
5	GENERAL INFORMATION	5
	5.1 GENERAL DESCRIPTION OF EUT	5
	5.2 TEST MODE	
	5.3 DESCRIPTION OF SUPPORT UNITS	
	5.4 DEVIATION FROM STANDARDS	
	5.5 ABNORMALITIES FROM STANDARD CONDITIONS	
	5.6 TEST FACILITY	
	5.7 TEST LOCATION	/
6	TEST INSTRUMENTS LIST	8
7	TEST RESULTS AND MEASUREMENT DATA	10
	7.1 ANTENNA REQUIREMENT	10
	7.2 CONDUCTED EMISSIONS	
	7.3 CONDUCTED PEAK OUTPUT POWER	
	7.4 CHANNEL BANDWIDTH & 99% OCCUPY BANDWIDTH	
	7.5 Power Spectral Density	
	7.6 BAND EDGES	
	7.6.1 Conducted Emission Method	
	7.6.2 Radiated Emission Method	
	7.7 Spurious Emission	
	7.7.1 Conducted Emission Method	32
	7.7.2 Radiated Emission Method	
	7.8 FREQUENCY STABILITY	
8	TEST SETUP PHOTO	51
a	FUT CONSTRUCTIONAL DETAILS	51

Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

4 Test Summary

Test Item	Section	Result
Antenna requirement	FCC part 15.203/15.247 (c) RSS-Gen Section 8.3	Pass
AC Power Line Conducted Emission	FCC part 15.207 RSS-Gen Section 8.8	Pass
Conducted Peak Output Power	FCC part 15.247 (b)(3) RSS-247 Section 5.4(d)	Pass
Channel Bandwidth & 99% OCB	FCC part 15.247 (a)(2) RSS-247 Section 5.2(a) & 6.7	Pass
Power Spectral Density	FCC part 15.247 (e) RSS-247 Section 5.2(b)	Pass
Band Edge	FCC part 15.247(d) RSS-247 Section 5.5	Pass
Spurious Emission	FCC part 15.205/15.209 RSS-Gen Section 3.3 & 8.9 & 8.10	Pass
Frequency stability	RSS-Gen Section 6.11& Section 8.11	Pass

Remark: Test according to ANSI C63.10:2013 and RSS-Gen

Pass: The EUT complies with the essential requirements in the standard.

Measurement Uncertainty

Test Item	Frequency Range	Measurement Uncertainty	Notes	
Radiated Emission	30MHz-200MHz	3.8039dB	(1)	
Radiated Emission	200MHz-1GHz	3.9679dB	(1)	
Radiated Emission	1GHz-18GHz	4.29dB	(1)	
Radiated Emission	18GHz-40GHz	3.30dB	(1)	
AC Power Line Conducted Emission	0.15MHz ~ 30MHz	3.44dB	(1)	

5 General Information

5.1 General Description of EUT

Product Name:	4K60 BYOD Presentation Switcher			
Model No.:	AMF41W			
Serial No.:	BA020210719XXXX			
Hardware version:	V0.3			
Software version:	v2.4.7			
Test sample(s) ID:	GTS202102000020-1			
Sample(s) Status	Engineer sample			
Operation Frequency:	802.11n(HT20): 2412MHz~2462MHz			
Channel numbers:	802.11n(HT20): 11			
Channel separation:	5MHz			
Modulation technology:	802.11n(HT20) : Orthogonal Frequency Division Multiplexing (OFDM)			
Antenna Type:	Integral Antenna			
	ANT 1: 2dBi			
Antenna gain:	ANT 2: 2dBi			
Power supply:	Adapter:			
	Model: NBS24J120200D5			
	Input: AC 100-240V, 50/60Hz, 0.6A			
	Output: DC 12.0V, 2.0A, 24.0W			

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2412MHz	4 8	2427MHz	7	2442MHz	10	2457MHz
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz
3	2422MHz	6	2437MHz	9	2452MHz		>

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Tool channel	Frequency (MHz)
Test channel	802.11n(HT20)
Lowest channel	2412MHz
Middle channel	2437MHz
Highest channel	2462MHz

Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

5.2 Test mode

Transmitting mode Keep the EUT in continuously transmitting mode

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Pre-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

Mode	802.11n(HT20)
Data rate	6.5Mbps

5.3 **Description of Support Units**

Manufacturer	Description	Model	Serial Number
Lenovo	Notebook PC	E40-80	N/A

5.4 Deviation from Standards

None.

5.5 Abnormalities from Standard Conditions

None.

5.6 **Test Facility**

The test facility is recognized, certified, or accredited by the following organizations:

• FCC —Registration No.: 381383

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files. Registration 381383.

• IC —Registration No.: 9079A

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 9079A

NVLAP (LAB CODE:600179-0)

Global United Technology Services Co., Ltd., is accredited by the National Voluntary Laboratory Accreditation Program (NVLAP). LAB CODE:600179-0

5.7 **Test Location**

All tests were performed at:

Global United Technology Services Co., Ltd.

Address: No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang

Road, Baoan District, Shenzhen, Guangdong, China 518102

Tel: 0755-27798480 Fax: 0755-27798960

6 Test Instruments list

Radi	iated Emission:	4 4		6	4 4	6 6
ltem	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	July. 02 2020	July. 01 2025
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A
3	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	June. 25 2020	June. 24 2021
4	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	GTS214	June. 25 2020	June. 24 2021
5	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA 9120 D	GTS208	June. 25 2020	June. 24 2021
6	Horn Antenna	ETS-LINDGREN	3160	GTS217	June. 25 2020	June. 24 2021
7	EMI Test Software	AUDIX	E3	N/A	N/A	N/A
8	Coaxial Cable	GTS	N/A	GTS213	June. 25 2020	June. 24 2021
9	Coaxial Cable	GTS	N/A	GTS211	June. 25 2020	June. 24 2021
10	Coaxial cable	GTS	N/A	GTS210	June. 25 2020	June. 24 2021
11	Coaxial Cable	GTS	N/A	GTS212	June. 25 2020	June. 24 2021
12	Amplifier(100kHz-3GHz)	HP	8347A	GTS204	June. 25 2020	June. 24 2021
13	Amplifier(2GHz-20GHz)	HP	84722A	GTS206	June. 25 2020	June. 24 2021
14	Amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	June. 25 2020	June. 24 2021
15	Band filter	Amindeon	82346	GTS219	June. 25 2020	June. 24 2021
16	Power Meter	Anritsu	ML2495A	GTS540	June. 25 2020	June. 24 2021
17	Power Sensor	Anritsu	MA2411B	GTS541	June. 25 2020	June. 24 2021
18	Wideband Radio Communication Tester	Rohde & Schwarz	CMW500	GTS575	June. 25 2020	June. 24 2021
19	Splitter	Agilent	11636B	GTS237	June. 25 2020	June. 24 2021
20	Loop Antenna	ZHINAN	ZN30900A	GTS534	June. 25 2020	June. 24 2021
21	Breitband hornantenne	SCHWARZBECK	BBHA 9170	GTS579	Oct. 18 2020	Oct. 17 2021
22	Amplifier	TDK	PA-02-02	GTS574	Oct. 18 2020	Oct. 17 2021
23	Amplifier	TDK	PA-02-03	GTS576	Oct. 18 2020	Oct. 17 2021
24	PSA Series Spectrum Analyzer	Rohde & Schwarz	FSP	GTS578	June. 25 2020	June. 24 2021

Cond	Conducted Emission								
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)			
1	Shielding Room	ZhongYu Electron	7.3(L)x3.1(W)x2.9(H)	GTS252	May.15 2019	May.14 2022			
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 25 2020	June. 24 2021			
3	Coaxial Switch	ANRITSU CORP	MP59B	GTS225	June. 25 2020	June. 24 2021			
4	ENV216 2-L-V- NETZNACHB.DE	ROHDE&SCHWARZ	ENV216	GTS226	June. 25 2020	June. 24 2021			
5	Coaxial Cable	GTS	N/A	GTS227	N/A	N/A			
6	EMI Test Software	AUDIX	E3	N/A	N/A	N/A			
7	Thermo meter	KTJ	TA328	GTS233	June. 25 2020	June. 24 2021			
8	Absorbing clamp	Elektronik- Feinmechanik	MDS21	GTS229	June. 25 2020	June. 24 2021			
9	ISN	SCHWARZBECK	NTFM 8158	GTS565	June. 25 2020	June. 24 2021			

ltem	Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	MXA Signal Analyzer	Agilent	N9020A	GTS566	June. 25 2020	June. 24 2021
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 25 2020	June. 24 2021
3	Spectrum Analyzer	Agilent	E4440A	GTS533	June. 25 2020	June. 24 2021
4	MXG vector Signal Generator	Agilent	N5182A	GTS567	June. 25 2020	June. 24 2021
5	ESG Analog Signal Generator	Agilent	E4428C	GTS568	June. 25 2020	June. 24 2021
6	USB RF Power Sensor	DARE	RPR3006W	GTS569	June. 25 2020	June. 24 2021
7	RF Switch Box	Shongyi	RFSW3003328	GTS571	June. 25 2020	June. 24 2021
8	Programmable Constant Temp & Humi Test Chamber	WEWON	WHTH-150L-40-880	GTS572	June. 25 2020	June. 24 2021

Gene	ral used equipment:	<i>2</i> 7 - 2 - 1		E .	2 3	
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	Humidity/ Temperature Indicator	KTJ	TA328	GTS243	June. 25 2020	June. 24 2021
2	Barometer	ChangChun	DYM3	GTS255	June. 25 2020	June. 24 2021

7 Test results and Measurement Data

7.1 Antenna requirement

Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

Standard requirement: RSS-Gen Section 8.3

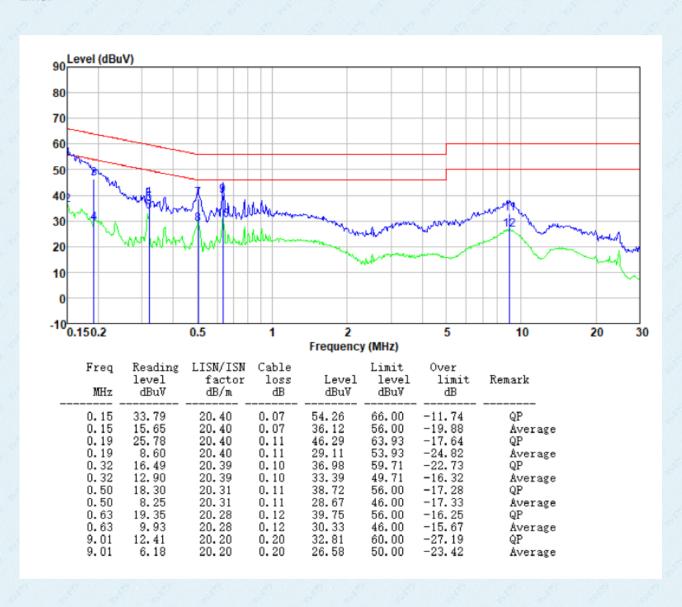
A transmitter can only be sold or operated with antennas with which it was approved.

When a measurement at the antenna connector is used to determine RF output power, the effective gain of the device's antenna shall be stated, based on measurement or on data from the antenna manufacturer. For transmitters of RF output power of 10 milliwatts or less, only the portion of the antenna gain that is in excess of 6 dBi (6 dB above isotropic gain) shall be added to the measured RF output power to demonstrate compliance with the radiated power limits specified in the applicable standard. For transmitters of output power greater than 10 milliwatts, the total antenna gain shall be added to the measured RF output power to demonstrate compliance to the specified radiated power

EUT Antenna:

The antenna is Integral antenna, the best case gain of the antenna is 2dBi, reference to the appendix II for details

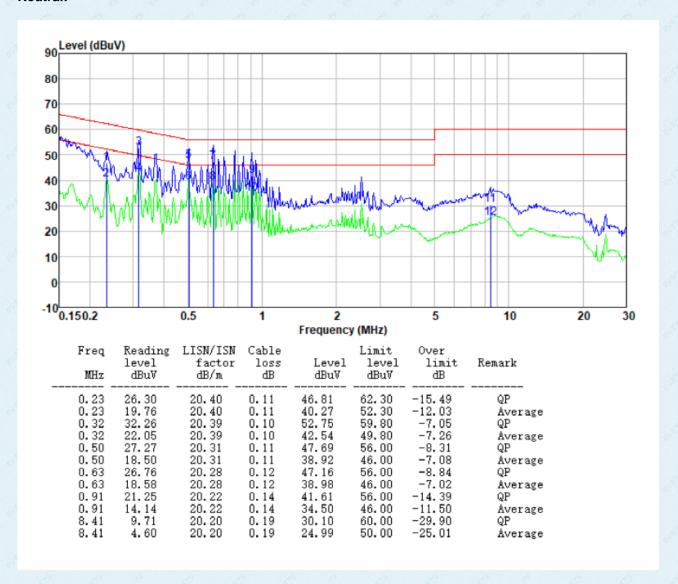
7.2 Conducted Emissions


Test Requirement:	FCC Part15 C Section 15.207		
	RSS-Gen Section 8.8		
Test Method:	ANSI C63.10:2013	8 8 7	- 8 - 8 - 8
Test Frequency Range:	150KHz to 30MHz	9 - 29 - 20 -	2 2 2 2
Receiver setup:	RBW=9KHz, VBW=30KHz, Sv	veep time=auto	20 0 1
Limit:	Fragues av range (MILT)	Limit (dBuV)
	Frequency range (MHz)	Quasi-peak	Average
	0.15-0.5	66 to 56*	56 to 46*
	0.5-5	56	46
	* Decreases with the logarithm	60	50
Test setup:	Reference Plane	i or the frequency.	
	AUX Equipment E.U.T Test table/Insulation plane	Filter — AC po	wer
Test procedure:	Remark E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m	ire connected to the m	nain nower through a
Test procedure:	E.U.T: Equipment Under Test LISN: Line Impedence Stabilization Network	network (L.I.S.N.). The dance for the measure also connected to the n/50uH coupling imperor the block diagram of the checked for maximum at the maximum emission all of the interface calloger.	his provides a ring equipment. main power through a dance with 50ohm f the test setup and a conducted ion, the relative bles must be changed
Test procedure: Test Instruments:	E.U.T. Equipment Under Test LISN Line Impedence Stabilization Network Test table height=0.8m 1. The E.U.T and simulators a line impedance stabilization 50ohm/50uH coupling impe 2. The peripheral devices are LISN that provides a 50ohm termination. (Please refer to photographs). 3. Both sides of A.C. line are of interference. In order to find positions of equipment and	network (L.I.S.N.). To dance for the measuralso connected to the n/50uH coupling imper to the block diagram of checked for maximum the maximum emiss all of the interface cal 2013 on conducted me	his provides a ring equipment. main power through a dance with 50ohm f the test setup and a conducted ion, the relative bles must be changed
	 E.U.T. Equipment Under Test LISN Line Impedence Stabilization Network Test table height=0.8m The E.U.T and simulators a line impedance stabilization 50ohm/50uH coupling impe The peripheral devices are LISN that provides a 50ohm termination. (Please refer to photographs). Both sides of A.C. line are o interference. In order to find positions of equipment and according to ANSI C63.10:2 	network (L.I.S.N.). To dance for the measuralso connected to the n/50uH coupling imperorate by the block diagram of checked for maximum the maximum emiss all of the interface cal 2013 on conducted me	his provides a ring equipment. main power through a dance with 50ohm f the test setup and a conducted ion, the relative bles must be changed
Test Instruments:	E.U.T. Equipment Under Test LISN Line Impedence Stabilization Network Test table height=0.8m 1. The E.U.T and simulators a line impedance stabilization 50ohm/50uH coupling impe 2. The peripheral devices are LISN that provides a 50ohm termination. (Please refer to photographs). 3. Both sides of A.C. line are of interference. In order to find positions of equipment and according to ANSI C63.10:2 Refer to section 6.0 for details	network (L.I.S.N.). To dance for the measuralso connected to the n/50uH coupling imperorate by the block diagram of checked for maximum the maximum emiss all of the interface cal	his provides a ring equipment. main power through a dance with 50ohm f the test setup and a conducted ion, the relative bles must be changed
Test Instruments: Test mode:	E.U.T. Equipment Under Test LISN Line Impedence Stabilization Network Test table height=0.8m 1. The E.U.T and simulators a line impedance stabilization 500hm/50uH coupling impe 2. The peripheral devices are LISN that provides a 500hm termination. (Please refer to photographs). 3. Both sides of A.C. line are of interference. In order to find positions of equipment and according to ANSI C63.10:2 Refer to section 6.0 for details Refer to section 5.2 for details	network (L.I.S.N.). To dance for the measuralso connected to the n/50uH coupling imperorate by the block diagram of checked for maximum the maximum emiss all of the interface cal	his provides a ring equipment. main power through a dance with 50ohm f the test setup and a conducted ion, the relative bles must be changed easurement.

Remark: Both high and low voltages have been tested to show only the worst low voltage test data.

Measurement data

Line:



Report No.: GTS202102000020-01

Neutral:

Report No.: GTS202102000020-01

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss
- 4. If the average limit is met when using a quasi-peak detector receiver, the EUT shall be deemed to meet both limits and measurement with the average detector receiver is unnecessary.

7.3 Conducted Peak Output Power

Test Requirement :	FCC Part15 C Section 15.247 (b)(3)
	RSS-247 Section 5.4(d)
Test Method :	KDB558074 D01 15.247 Meas Guidance v05r02
	ANSI C63.10:2013 and RSS-Gen
Limit:	30dBm
	36dBm(4W for e.i.r.p)
Test setup:	Power Meter E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test results:	Pass

Measurement Data

Report No.: GTS202102000020-01

Test CH	Peak Output	Limit(dBm)	Result	
	802.11			
	ANT 1	ANT 2		
Lowest	16.36	13.83	0 0	0 2
Middle	16.62	14.03	30.00	Pass
Highest	12.88	13.22	9 9	9 9

	e.i.r.p			
Test CH	802.11	Limit(dBm)	Result	
	ANT 1	ANT 2		
Lowest	18.36	15.83		
Middle	18.62	16.03	36.00	Pass
Highest	14.88	15.22		

MIMO:

Modulation	Test CH	Peak Output Power (dBm)		Sum Output Power (dBm)	Limit (dBm)	Result		
9	Lowest	ANT 1	16.36	10.11	40.44	10.11		0
	Lowest	ANT 2	15.83	19.11	30	Pass		
802.11n(HT20)	ANT 2	ANT 1	16.62	19.25				
002.1111(11120)		ANT 2	15.83		00	1 400		
		ANT 1	12.88	17.61	60 60			
\$ 8	Highest	ANT 2	15.83	17.01		Ø.		

Note: transmit signals are completely un*correlated*, Directional gain=10 x log $[(10^{2/10} + 10^{2/10})/2]$ =2dBi

7.4 Channel Bandwidth & 99% Occupy Bandwidth

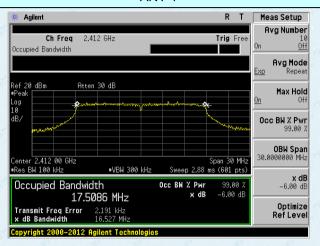
Test Requirement : Test Method :	FCC Part15 C Section 15.247 (a)(2) RSS-Gen Section 6.7 & RSS-247 Section 5.2(a) KDB558074 D01 15.247 Meas Guidance v05r02 ANSI C63.10:2013 and RSS-Gen
Limit:	>500KHz
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test results:	Pass

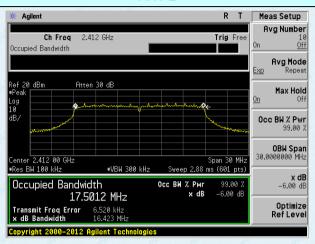
Measurement Data

	Channel Bar			
Test CH	802.11	Limit(KHz)	Result	
	ANT 1	ANT 2		
Lowest	16.527	16.423		Pass
Middle	16.076	17.014	>500	
Highest	15.933	16.671		

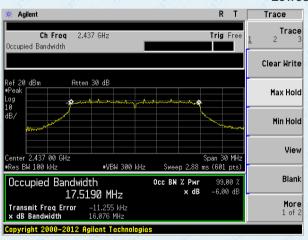
	99% Occupy E	Bandwidth (MHz)	
Test CH	802.11	Result	
	ANT 1	ANT 2	
Lowest	17.5165	17.5107	
Middle	17.5183	17.5159	Pass
Highest	17.5330	17.5334	

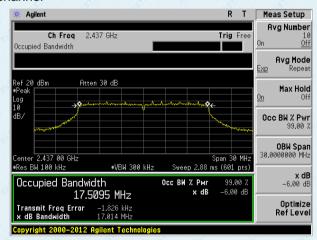
Test plot as follows:

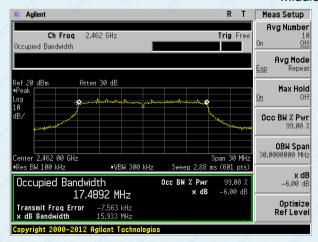

-6dB BW:

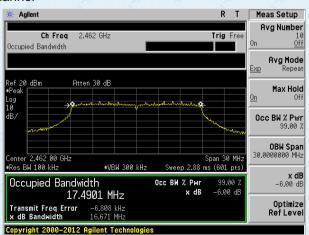

Test mode:802.11n(HT20)

ANT 1

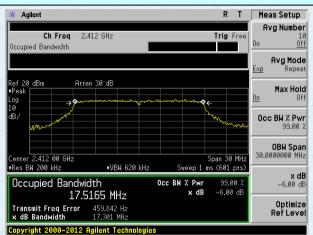

ANT 2

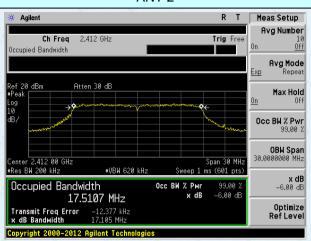

Report No.: GTS202102000020-01

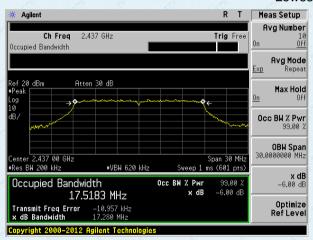


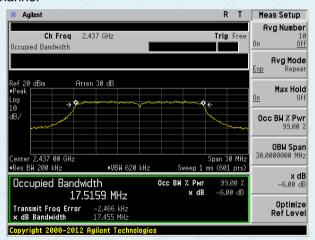

Lowest channel

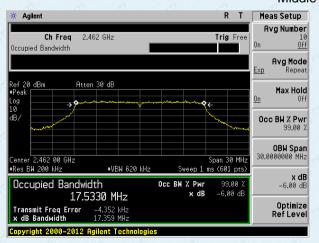
Middle channel

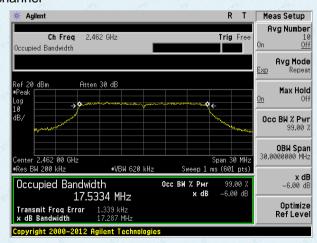



Highest channel


99% BW:


Test mode:802.11n(HT20) ANT 1 ANT 2




Lowest channel

Middle channel

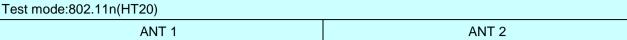
Highest channel

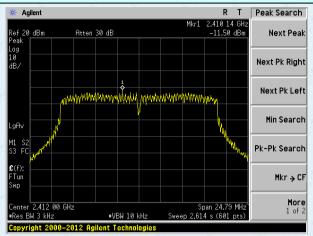
7.5 Power Spectral Density

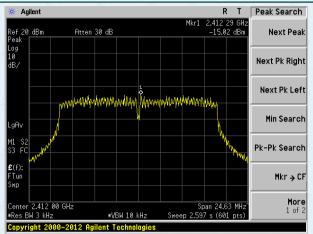
Test Requirement:	FCC Part15 C Section 15.247 (e)		*C
	RSS-247 Section 5.2(b)		
Test Method:	KDB558074 D01 15.247 Meas Guidance v05r02		\$
	ANSI C63.10:2013 and RSS-Gen	8 8	
Limit:	8dBm/3kHz	11/2	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 6.0 for details	6 6	
Test mode:	Refer to section 5.2 for details		É
Test results:	Pass	8 8	

Measurement Data

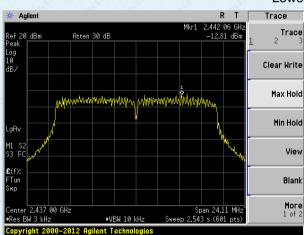
Test CH	Power Spectral D	Limit (dBm/3kHz)		
	802.11		Result	
	ANT 1	ANT 2	(dbiii/3ki iz)	
Lowest	-11.50	-15.02		9 9
Middle	-12.81	-14.25	8.00	Pass
Highest	-12.13	-15.03	9 9	

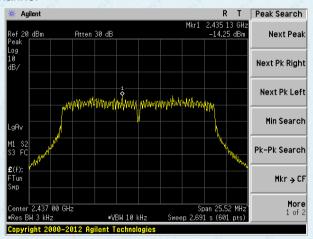

MIMO:

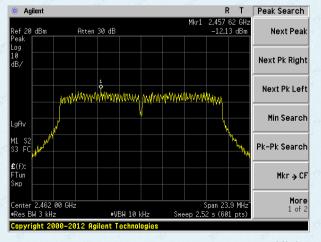

Modulation	Test CH	Power Spectral Density (dBm/3kHz)		Sum Output Power(dBm)	Limit (dBm/3kHz)	Result
		ANT 1	-11.50	0.00	9 9 9	
Lowest	Lowest	ANT 2	-15.02	-9.90		Pass
	n(HT20)	ANT 1	-12.81	10.46	8	
602.1111(H120)		ANT 2	-14.25	-10.46		
\$ B		ANT 1	-12.13	40.22		
		-15.03	-10.33	9 9 9		

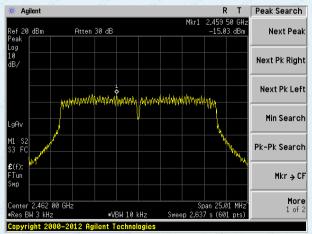


Test plot as follows:


Report No.: GTS202102000020-01






Lowest channel

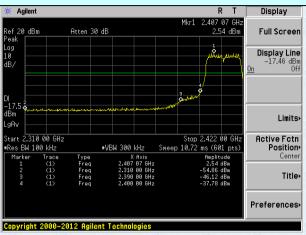
Middle channel

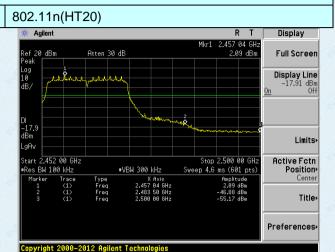
Highest channel

7.6 Band edges

7.6.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)		
	RSS-247 Section 5.5		
Test Method:	KDB558074 D01 15.247 Meas Guidance v05r02		
	ANSI C63.10:2013 & RSS-Gen		
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 6.0 for details		
Test mode:	Refer to section 5.2 for details		
Test results:	Pass		




Test plot as follows:

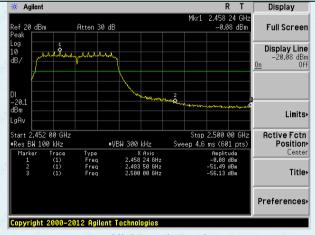
Report No.: GTS202102000020-01

ANT 1

Test mode:

Lowest channel

Highest channel


Display

ANT 2

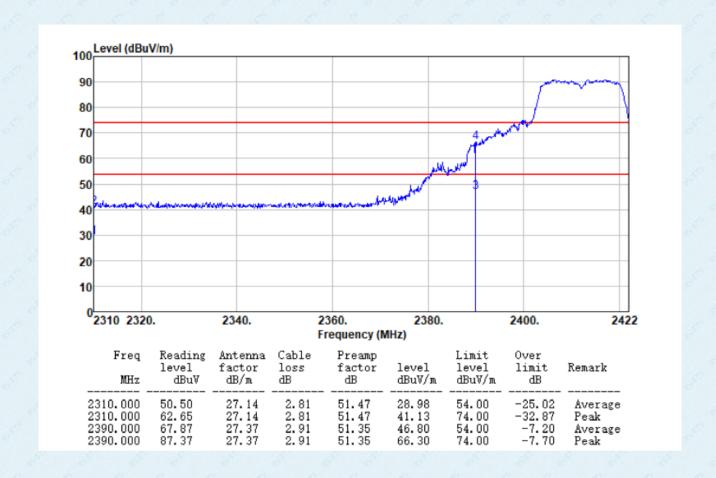
Test mode:

802.11n(HT20)

Lowest channel

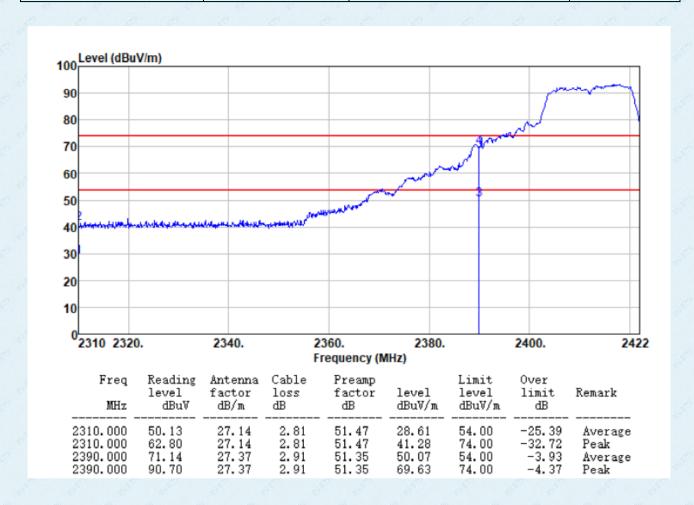
Highest channel

7.6.2 Radiated Emission Method

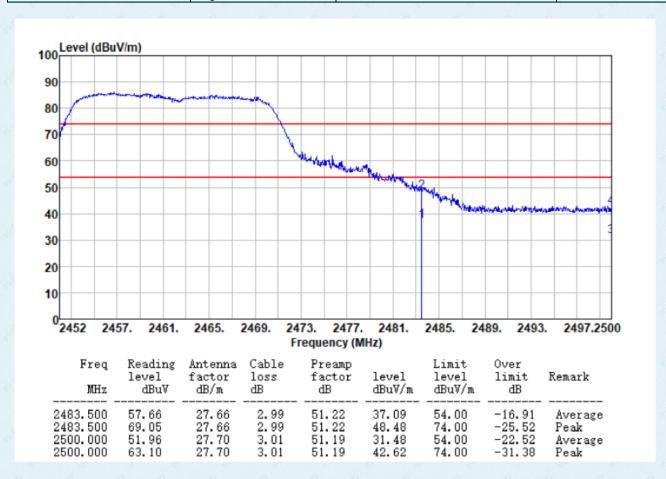

Test Requirement:	FCC Part15 C Section 15.209 and 15.205					
	RSS-247 3.3 &					
Test Method:	ANSI C63.10: 2013 & RSS-Gen					
Test Frequency Range:	All of the restrict bands were tested, only the worst band's (2310MHz to 2500MHz) data was showed.					
Test site:	Measurement Distance: 3m					
Receiver setup:	Frequency	Detector	RBW	VBW	Value	
	Above 1GHz	Peak Average	1MHz 1MHz	3MHz 3MHz	Peak	
Limit:	Frague				Average	
LIIIII.	Frequency Above 1GHz		Limit (dBuV/m @3m) 54.00		Value	
			74.00		Average Peak	
	Tum Table	EUT-	Test Antenna- < 1m 4m >- Receiver- Pre-	amplifier		
Test Procedure:	 The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. The radiation measurements are performed in X, Y, Z axis positioning. And found the Y axis positioning which it is worse case, only the test worst case mode is recorded in the report. 					
Test Instruments:	Refer to section 6.0 for details Refer to section 5.2 for details					
Test mode:		5.2 for details	5/			
Test results:	Pass					

Measurement data:

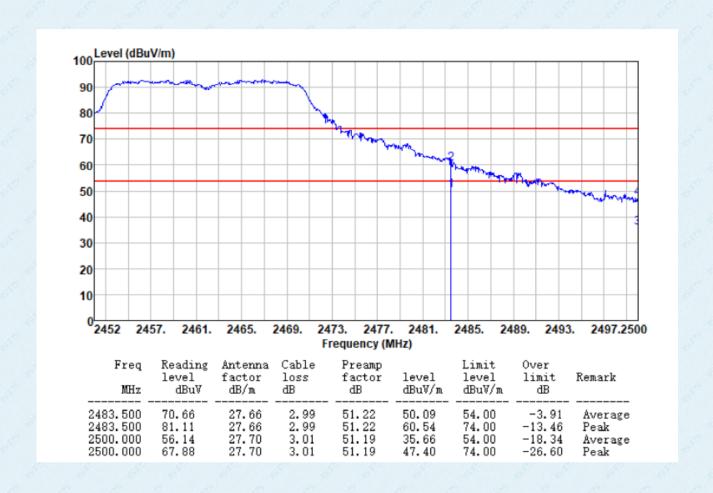
ANT 1:


Test channel:	Lowest	Polarziation:	Horizontal

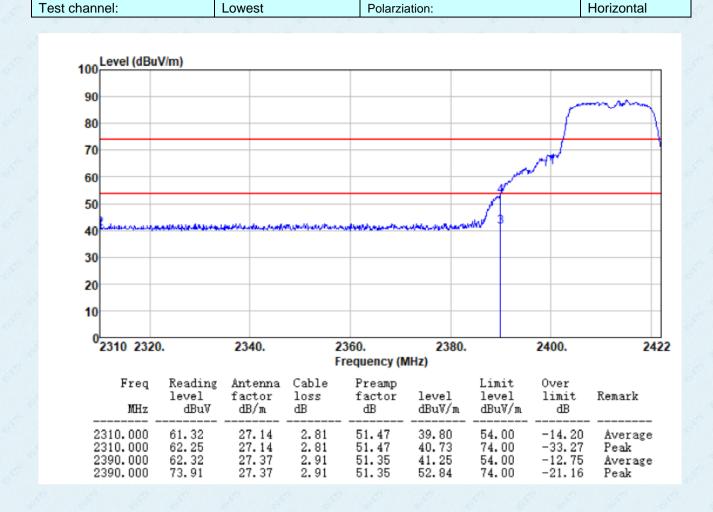
Report No.: GTS202102000020-01



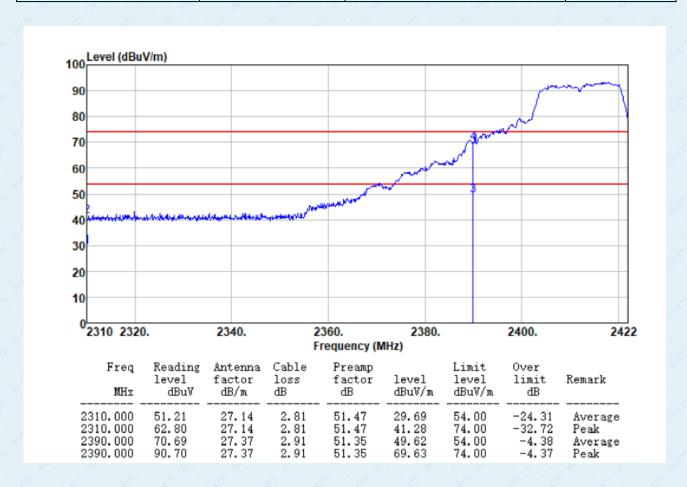
Test channel: Lowest Polarziation: Vertical

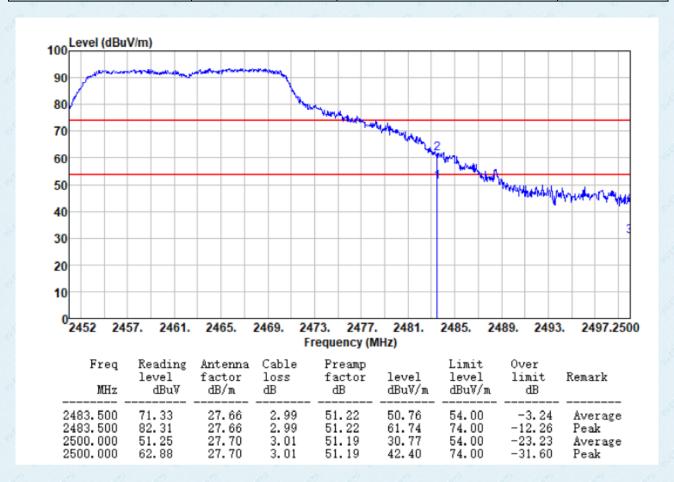


Test channel: Highest Polarziation: Horizontal

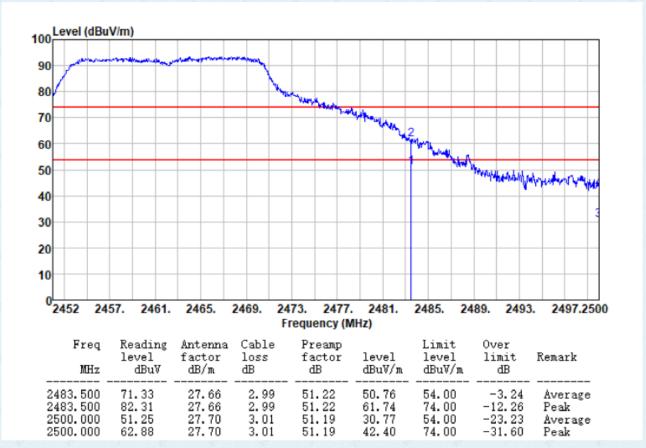


Test channel: High	est Polarziation:	Vertical
--------------------	-------------------	----------





Test channel: Lowest	Polarziation:	Vertical
----------------------	---------------	----------

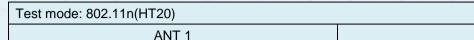


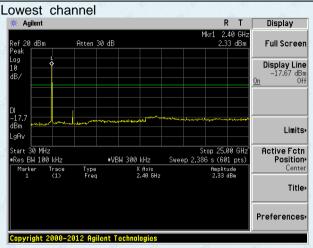
Test channel:	Highest	Polarziation:	Vertical

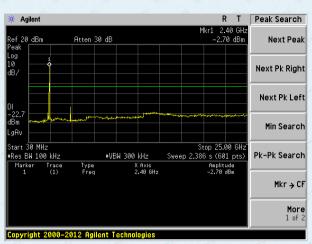
Remarks:

- Only the worst case Main Antenna test data.
- 2. The pre-test were performed on lowest, middle and highest frequencies, only the worst case's (lowest and highest frequencies) data was showed.
- 3. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.

7.7 Spurious Emission

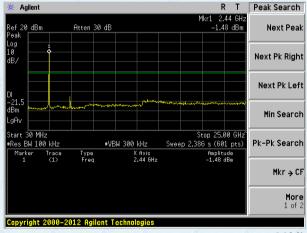

7.7.1 Conducted Emission Method

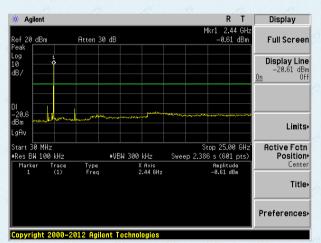

Test Requirement:	FCC Part15 C Section 15.247 (d)			
	RSS-247 Section 5.5			
Test Method:	KDB558074 D01 15.247 Meas Guidance v05r02			
	ANSI C63.10:2013 & RSS-Gen			
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.			
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane			
Test Instruments:	Refer to section 6.0 for details			
Test mode:	Refer to section 5.2 for details			
Test results:	Pass			



Test plot as follows:

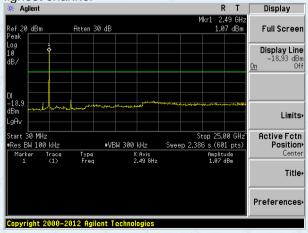
Report No.: GTS202102000020-01





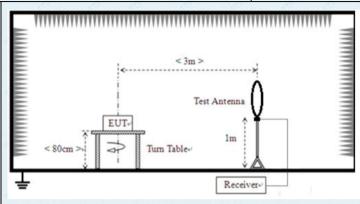
ANT 2

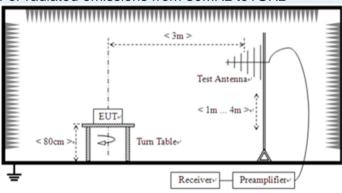
30MHz~25GHz


Middle channel

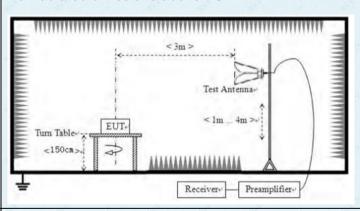
30MHz~25GHz

Highest channel


30MHz~25GHz


7.7.2 Radiated Emission Method

Test Requirement:	FCC Part15 C Section 15.209							
	RSS-247 Sec	RSS-247 Section 3.3 & RSS-Gen Section 8.9						
Test Method:	ANSI C63.10: 2013 & RSS-Gen							
Test Frequency Range:	9kHz to 25GHz							
Test site:	Measurement Distance: 3m							
Receiver setup:	Frequency		Detector	RBW	VBW	Value		
•	9KHz-150KHz		Quasi-peak	200Hz	600Hz	Quasi-peak		
	150KHz-30MHz		Quasi-peak	9KHz	30KHz	Quasi-peak		
	30MHz-1G	SHz C	Quasi-peak	120KHz	300KHz	Quasi-peak		
	11000		Peak	1MHz	3MHz	Peak		
	Above 1G	HZ	Peak	1MHz	10Hz	Average		
FCC Limit:		2			- Z	7		
	0.009-0.490	Field stren 2400/F(kHz	gth (microvolts/n	neter) Me	easurement dist	tance (meters)		
	0.490-1.705	2400/F(kHz 24000/F(kH				·		
	1.705-30.0	30	*					
	30-88	100**						
	88-216 216-960	150** 200**						
	Above 960	500						
	The emission measurement the frequency Radiated em	nts emplo by bands hission lin	oying a CISI 9-90 kHz, 1 nits in these	PR quasi-p 10-490 kH three ban	eak detection dealer detection dealer dealer dealer detection dealer desertion deserted deser	tor except fove 1000 MH		
IC Limit:	measurement the frequence Radiated em measuremen	nts emplo by bands hission lin nts emplo	oying a CISI 9-90 kHz, 1 nits in these oying an ave	PR quasi-p 10-490 kH three ban erage dete	eak detection detection between the detectio	tor except fove 1000 MH sed on		
IC Limit:	measurement the frequence Radiated em measuremen	nts emplo by bands nission lin nts emplo General f	bying a CISI 9-90 kHz, 1 nits in these bying an ave	PR quasi-p 10-490 kH e three ban erage dete mits at freque	beak detection d	tor except fove 1000 MH sed on		
IC Limit:	measurement the frequence Radiated em measuremen	nts emplo by bands nission lin nts emplo General f	bying a CISI 9-90 kHz, 1 hits in these bying an averaged line	PR quasi-p 10-490 kH three ban erage dete mits at freque Field stre	peak detection detection des are basector. Incies above 3 on the sector of the sector	tor except fove 1000 MH sed on		
IC Limit:	measurement the frequence Radiated em measuremen	nts emplo by bands nission lin nts emplo - General f	oying a CISI 9-90 kHz, 1 nits in these oying an ave ield strength lin	PR quasi-p 10-490 kH e three ban erage dete mits at freque Field stre (µV/m at	peak detection detection des are basector. Incies above 3 on the sector of the sector	tor except fove 1000 MH sed on		
IC Limit:	measurement the frequence Radiated em measuremen	nts employ bands nission line ts employ - General from (M. 30 -	bying a CISI 9-90 kHz, 1 hits in these bying an ave field strength lin uency Hz)	PR quasi-p 10-490 kH three ban erage dete mits at freque Field stre	peak detection detection des are basector. Incies above 3 on the sector of the sector	tor except fove 1000 MH sed on		
IC Limit:	measurement the frequence Radiated em measuremen	nts employ bands nission line ts employ - General frequent (M	oying a CISI 9-90 kHz, 1 nits in these oying an ave ield strength lin	PR quasi-p 10-490 kH e three ban erage dete mits at freque Field stre (µV/m at	peak detection detection des are basector. Incies above 3 on the state of the stat	tor except fove 1000 MH sed on		
IC Limit:	measurement the frequence Radiated em measuremen	rits employ bands nission line ints employ—General frequency (M. 30-88-216-10-10-10-10-10-10-10-10-10-10-10-10-10-	pying a CIS 9-90 kHz, 1 nits in these pying an ave ield strength lin uency Hz) -88	PR quasi-p 10-490 kH e three ban erage dete mits at freque Field stre (µV/m at 100 150	peak detection detection des are basector. Incies above 3 on the state of the stat	tor except fove 1000 MH sed on		
IC Limit:	measurement the frequency Radiated emmeasurement Table 5	rits employ bands nission line into employ - General final frequency (Magnetic States of the content of the con	pying a CISI 9-90 kHz, 1 nits in these pying an average and averag	PR quasi-p 10-490 kH e three ban erage dete mits at freque Field stre (µV/m at 100 150 200 500	peak detection and about a are based of the control	tor except fove 1000 MH sed on		
IC Limit:	measurement the frequence Radiated emmeasurement Table 5	rits employ bands nission line into employ - General final frequency (Magnetic States of the content of the con	pying a CIS 9-90 kHz, 1 nits in these pying an average and average ield strength line (Page 1960) (Page 1960) (Page 1960) (Page 1960) (Page 1960) (Page 1960)	PR quasi-p 10-490 kH e three ban erage dete mits at freque Field stre (µV/m at 100 150 200 500	peak detection and about a and about a are based of the control of	otor except for ve 1000 MH sed on 0 MHz		
IC Limit:	measurement the frequency Radiated emmeasurement Table 5	nts employ bands nission line of the semploy of the	oying a CISI 9-90 kHz, 1 nits in these oying an average an average an average an average an average and average an	PR quasi-p 10-490 kH e three ban erage dete mits at freque Field stre (µV/m at 100 200 500 mits at freque eld strength (I	peak detection and about a are based of the control	otor except fove 1000 MH sed on 0 MHz O MHz ement nice		
IC Limit:	Table 6	onts employ bands hission line of the semploy of th	bying a CISI 9-90 kHz, 1 nits in these bying an average of the second strength line of	PR quasi-p 10-490 kH e three ban erage dete mits at freque Field stre (µV/m at 100 150 200 500 mits at freque eld strength (I field) (F in kHz)	peak detection and about and about are based on the sector. Incies above 30 angth 3 m) Incies below 30 and 4 and	o MHz o MHz ement		
IC Limit:	Table 6 Free 9 - 4 490 -	rits employ bands nission line ints employ—General file in the	bying a CISI 9-90 kHz, 1 nits in these bying an average an average and average	PR quasi-p 10-490 kH e three ban erage dete mits at freque Field stre (µV/m at 100 150 200 500 mits at freque eld strength (Field) (Fin kHz) (Fin kHz)	ncies below 30 H- Measure distant (m) 300 30	o MHz o MHz ement nce		
IC Limit:	Table 6 Free 9 - 4 490 -	onts employ bands hission line of the semploy of th	bying a CISI 9-90 kHz, 1 nits in these bying an average an average and average	PR quasi-p 10-490 kH e three ban erage dete mits at freque Field stre (µV/m at 100 150 200 500 mits at freque eld strength (I field) (F in kHz)	ncies below 30 H- Measure distant (m. 300	o MHz o MHz ement nce		
IC Limit:	Table 6 Table 1 Table 5 Table 5	rits employ bands hission line into employ bands hission line into employ and the emission line into employ and the emission into employ and the emission into emission in	bying a CISI 9-90 kHz, 1 nits in these bying an average an average and average	PR quasi-p 10-490 kH e three ban erage dete mits at freque Field stre (µV/m at 100 150 200 500 mits at freque eld strength (I Field) (F in kHz) (F in kHz) 0.08 mages 9-90 kHz	ncies below 30 Measure distant (m) 300 30 300 300 300 300 300 300 300 300	o MHz o MHz ement nce)		



For radiated emissions from 30MHz to1GHz

For radiated emissions above 1GHz

Test Procedure:

- 1. The EUT was placed on the top of a rotating table (0.8m for below 1G and 1.5m for above 1G) above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

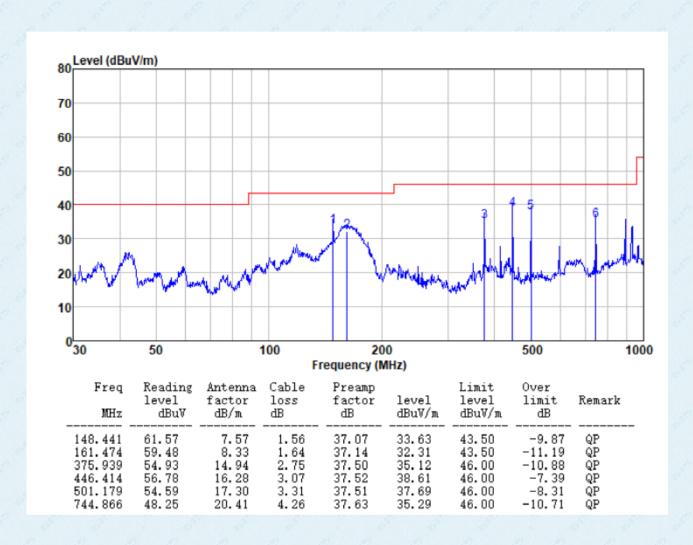
Test results:	Pass A A A A A A A A A A A A A A A A A A					
Test voltage:	AC 120V, 60Hz					
Test environment:	Temp.: 25 °C Humid.: 52% Press.: 1012mbar					
Test voltage:	AC120V 60Hz					
Test mode:	Refer to section 5.2 for details					
Test Instruments:	Refer to section 6.0 for details					
	6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.					
	The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.					
	4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.					
	Report No.: GTS202102000020-01					

Remarks:

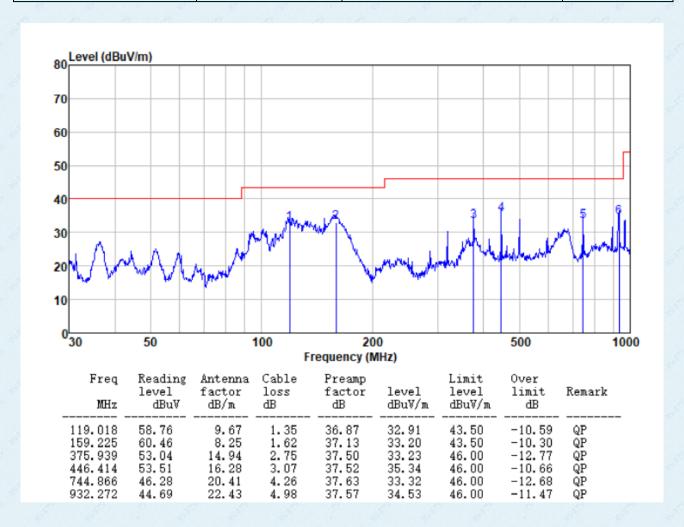
- 1. Only the worst case Main Antenna test data.
- 2. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.

Measurement data:

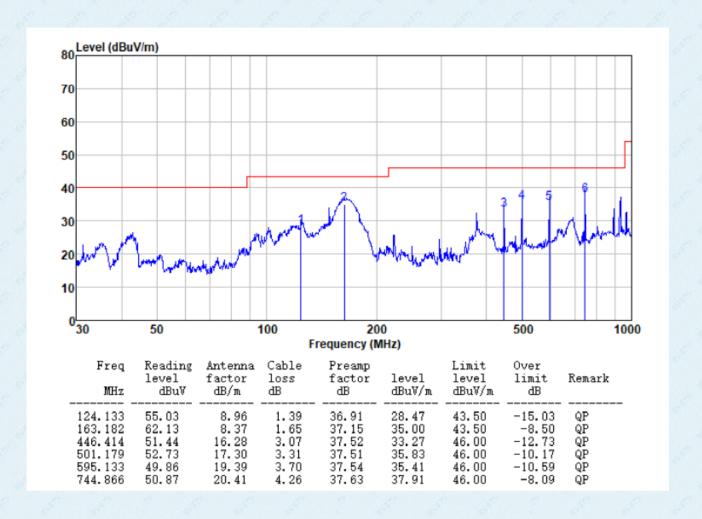
■ 9kHz~30MHz


The emission from 9 kHz to 30MHz was pre-tested and found the result was 20dB lower than the limit, and according to 15.31(o) & RSS-Gen 6.13, the test result no need to reported.

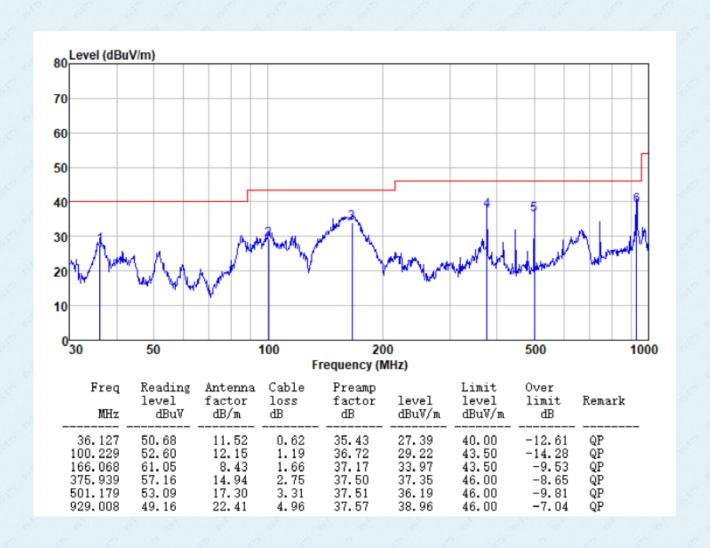
All antennas have test, only the worst case ANT 1 report.


■ Below 1GHz

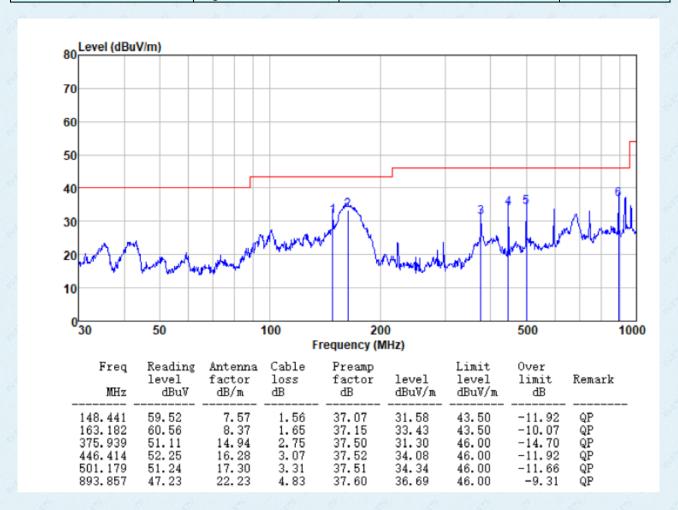
Test channel: Lowest	Polarziation:	Horizontal	
----------------------	---------------	------------	--



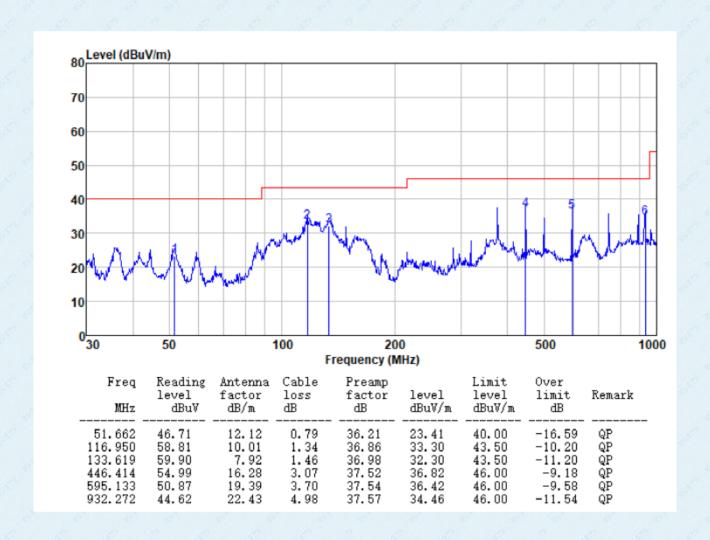
Test channel: Lowest Polarziation: Vertical



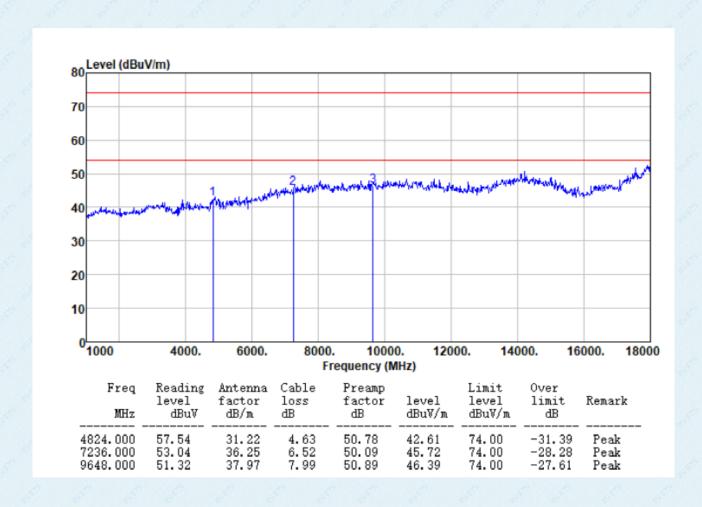
Test	t channel:	Middle	Polarziation:	Horizontal	
------	------------	--------	---------------	------------	--

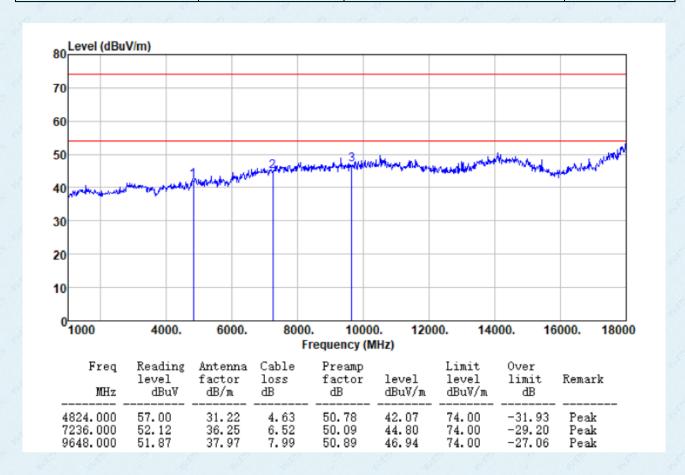


Test channel: Middle	Polarziation:	Vertical
----------------------	---------------	----------

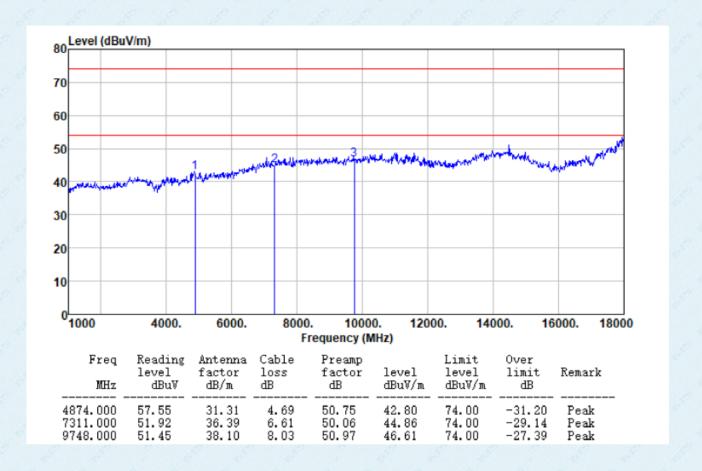


Test channel: Highest Polarziation: Horizontal

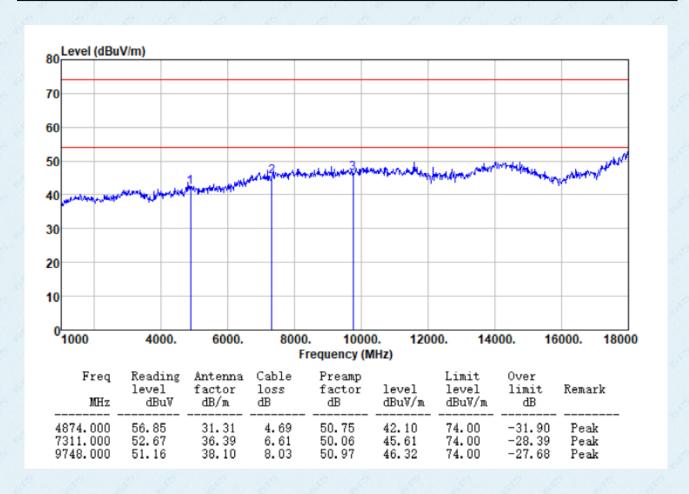

Test channel: Highest	Polarziation:	Vertical
-----------------------	---------------	----------


■ Above 1GHz

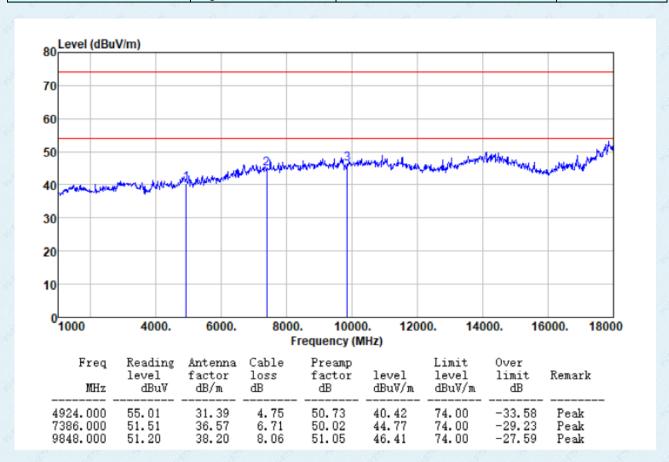
Test channel: Lowest	Polarziation:	Horizontal	ı
----------------------	---------------	------------	---



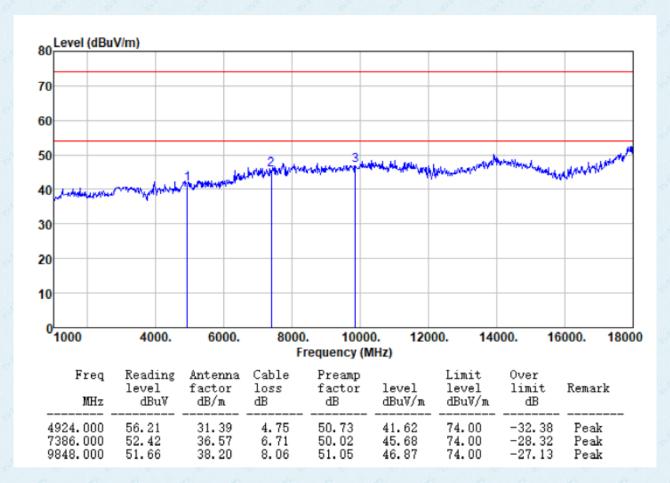
Test channel: Lowest Polarziation: Vertical


Tes	st channel:	Middle	Polarziation:	Horizontal	
-----	-------------	--------	---------------	------------	--

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960


Test channel: Middle Polarziation: Vertical

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960


Test channel: Highest Polarziation: Horizontal

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Test channel: Highest	Polarziation:	Vertical
-----------------------	---------------	----------

Remark:

- 1 Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2 "*", means this data is the too weak instrument of signal is unable to test.
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960 Page 48 of 51

7.8 Frequency stability

Test Requirement:	RSS-Gen Section 6.11& Section 8.11			
Test Method:	ANSI C63.10: 2013 & RSS-Gen			
Limit:	Manufactures of devices are responsible for ensuring such that an emission is maintained within the band conditions of normal operation as specified			
Test Procedure:	The EUT was setup to ANSI C63.10, 2013; tested to compliance to RSS-Gen requirements.	2.1055 for	é E	
Test setup:	Spectrum analyzer Att. Variab Note: Measurement setup for testing on Antenna connector	EUT EUT Ble Power Supply		
Test Instruments:	Refer to section 6.0 for details	N 65 6		
Test mode:	Refer to section 5.2 for details		4	
Test results:	Pass	2 2		

Remark: Set the EUT transmits at un-modulation mode to test frequency stability.

Measurement data:

		Frequenc	y stability vers	us Temp.		
		Pow	er Supply: AC	120V		
Temp. (°C)	Operating Frequency (MHz)	0 minute Measured Frequency (MHz)	2 minute Measured Frequency (MHz)	5 minute Measured Frequency (MHz)	10 minute Measured Frequency (MHz)	Pass /Fail
8	2412	2412.0021	2412.0093	2412.0069	2412.0045	Pass
-30	2437	2437.0023	2437.0097	2437.0121	2437.0048	Pass
	2462	2462.0026	2462.0100	2462.0125	2462.0051	Pass
	2412	2412.0023	2412.0096	2412.0120	2412.0047	Pass
-20	2437	2437.0030	2437.0104	2437.0128	2437.0055	Pass
	2462	2462.0027	2462.0101	2462.0125	2462.0051	Pass
	2412	2412.0031	2412.0103	2412.0128	2412.0055	Pass
-10	2437	2437.0033	2437.0106	2437.0130	2437.0057	Pass
	2462	2462.0026	2462.0100	2462.0125	2462.0051	Pass
	2412	2412.0023	2412.0095	2412.0119	2412.0047	Pass
0	2437	2437.0023	2437.0097	2437.0121	2437.0048	Pass
	2462	2462.0025	2462.0099	2462.0123	2462.0049	Pass
6	2412	2412.0024	2412.0096	2412.0120	2412.0048	Pass
10	2437	2437.0027	2437.0100	2437.0125	2437.0051	Pass
	2462	2462.0026	2462.0100	2462.0125	2462.0051	Pass
	2412	2412.0023	2412.0096	2412.0120	2412.0047	Pass
20	2437	2437.0029	2437.0102	2437.0127	2437.0054	Pass
	2462	2462.0022	2462.0096	2462.0120	2462.0046	Pass
6	2412	2412.0019	2412.0092	2412.0116	2412.0043	Pass
30	2437	2437.0022	2437.0096	2437.0120	2437.0047	Pass
	2462	2462.0027	2462.0101	2462.0126	2462.0052	Pass
	2412	2412.0028	2412.0100	2412.0124	2412.0052	Pass
40	2437	2437.0017	2437.0090	2437.0114	2437.0041	Pass
	2462	2462.0017	2462.0091	2462.0116	2462.0042	Pass
6	2412	2412.0017	2412.0089	2412.0113	2412.0041	Pass
50	2437	2437.0017	2437.0090	2437.0114	2437.0041	Pass
	2462	2462.0017	2462.0091	2462.0115	2462.0041	Pass

		Frequenc	cy stability versu	s Voltage		
		T	emperature: 25°	С		
Deve	Onesation	0 minute	2 minute	5 minute	10 minute	6
Power Supply (VAC)	Operating Frequency (MHz)	Measured Frequency (MHz)	Measured Frequency (MHz)	Measured Frequency (MHz)	Measured Frequency (MHz)	Pass /Fail
e e	2412	2412.0024	2412.0096	2412.0072	2412.0048	Pass
100	2437	2437.0021	2437.0094	2437.0070	2437.0045	Pass
	2462	2462.0023	2462.0097	2462.0072	2462.0048	Pass
<i>a a</i>	2412	2412.0023	2412.0096	2412.0072	2412.0048	Pass
120	2437	2437.0020	2437.0094	2437.0069	2437.0045	Pass
	2462	2462.0022	2462.0096	2462.0071	2462.0046	Pass
7	2412	2412.0021	2412.0094	2412.0069	2412.0045	Pass
132	2437	2437.0020	2437.0093	2437.0068	2437.0044	Pass
	2462	2462.0022	2462.0096	2462.0071	2462.0047	Pass

8 Test Setup Photo

Reference to the appendix I for details.

9 EUT Constructional Details

Reference to the appendix II for details.

