Supplemental "Transmit Simultaneously" Test Report Report No.: RF171204E07-4 FCC ID: Q87-03331 Test Model: WHW01 Series Model: VLP01, A01 Received Date: Dec. 04, 2017 Test Date: Dec. 09, 2017 to Jan. 23, 2018 **Issued Date:** Feb. 06, 2018 Applicant: Linksys LLC Address: 121 Theory Drive, Irvine, CA 92617, USA Issued By: Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch Hsin Chu Laboratory Lab Address: E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300, Taiwan R.O.C. Test Location: E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300, Taiwan R.O.C. FCC Registration / 723255 / TW2022 **Designation Number:** This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific mention, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification. This report should not be used by the client to claim product certification, approval, or endorsement by TAF or any government agencies. Report No.: RF171204E07-4 Page No. 1 / 33 Report Format Version: 6.1.2 ## **Table of Contents** | R | Release Control Record | | | | | | | |---|--|---|--|--|--|--|--| | 1 | | Certificate of Conformity | 4 | | | | | | 2 | | Summary of Test Results | | | | | | | | 2.1
2.2 | Measurement Uncertainty Modification Record | 5 | | | | | | 3 | (| General Information | 6 | | | | | | | 3.1
3.1.1
3.2
3.2.1 | Description of Support Units | 9
.11
.11 | | | | | | 4 | • | Test Types and Results | 12 | | | | | | | 4.1.3
4.1.4
4.1.5
4.1.6
4.1.7
4.2.1
4.2.2
4.2.3
4.2.4
4.2.5
4.2.6
4.2.7
4.2.8
4.2.1
4.3.3
4.3.1
4.3.3
4.3.4
4.3.5
4.3.6 | Test Instruments Test Procedures Deviation from Test Standard Test Setup EUT Operating Conditions Test Results Conducted Emission Measurement Limits of Conducted Emission Measurement Test Instruments Test Procedures Deviation from Test Standard Test Setup EUT Operating Conditions Test Results (Mode 1) Test Results (Mode 2) Test Results (Mode 3) 0 Test Results (Mode 4) Conducted Out of Band Emission Measurement Limits of Conducted Out of Band Emission Measurement Limits of Conducted Out of Band Emission Measurement Test Setup Test Instruments Test Procedures Deviation from Test Standard EUT Operating Conditions | 12
13
15
15
16
17
18
20
20
21
21
21
22
24
26
28
30
30
30
30
30
30
30
30
30
30
30
30
30 | | | | | | F | | Test Results Pictures of Test Arrangements | | | | | | | 5 | | · · | | | | | | | Α | ppen | dix – Information on the Testing Laboratories | 33 | | | | | ### **Release Control Record** | Issue No. | Description | Date Issued | |---------------|-------------------|---------------| | RF171204E07-4 | Original release. | Feb. 06, 2018 | Report No.: RF171204E07-4 Page No. 3 / 33 Report Format Version: 6.1.2 ### 1 Certificate of Conformity Product: Velop Brand: Linksys Test Model: WHW01 Series Model: VLP01, A01 Sample Status: ENGINEERING SAMPLE Applicant: Linksys LLC Test Date: Dec. 09, 2017 to Jan. 23, 2018 **Standards:** 47 CFR FCC Part 15, Subpart C (Section 15.247) 47 CFR FCC Part 15, Subpart E (Section 15.407) ANSI C63.10: 2013 The above equipment has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report. Wendy Wu / \$pecialist **Approved by:** , **Date:** Feb. 06, 2018 May/Chen / Manager ## 2 Summary of Test Results | 47 CFR FCC Part 15, Subpart C, E (SECTION 15.247, 15.407) | | | | | | | |--|---|---------|---|--|--|--| | FCC
Clause | Test Item | Remarks | | | | | | 15.207
15.407(b)(6) | AC Power Conducted
Emission | PASS | Meet the requirement of limit. Minimum passing margin is -3.03dB at 0.49862MHz. | | | | | 15.205 / 15.209 /
15.247(d)
15.407(b)
(1/2/3/4(i/ii)/6) | Radiated Emissions and Band
Edge Measurement | PASS | Meet the requirement of limit. Minimum passing margin is -2.9dB at 17475.00MHz. | | | | ### 2.1 Measurement Uncertainty Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2: | Measurement | Frequency | Expanded Uncertainty (k=2) (±) | |------------------------------------|----------------|--------------------------------| | Conducted Emissions at mains ports | 150kHz ~ 30MHz | 1.84 dB | | Radiated Emissions up to 1 GHz | 30MHz ~ 1GHz | 5.53 dB | | | 1GHz ~ 6GHz | 5.08 dB | | Radiated Emissions above 1 GHz | 6GHz ~ 18GHz | 4.98 dB | | | 18GHz ~ 40GHz | 5.19 dB | ### 2.2 Modification Record There were no modifications required for compliance. Report No.: RF171204E07-4 Page No. 5 / 33 Report Format Version: 6.1.2 ### 3 General Information 3.1 General Description of EUT | Product Velop Brand | 3.1 General Description of EUI | | | | | | |--|--|---------------------------------|---|----|--|--| | Test Model WHW01 Series Model VLP01, A01 Status of EUT ENGINEERING SAMPLE Driver version 1.3.186486 Power Supply Rating 12Vdc from power adapter Modulation Type CCK, DQPSK, DBPSK for DSSS 64QAM, 16QAM, QPSK, BPSK for OFDM BT-EDR GFSK, π/4-DQPSK, 8DPSK BT-LE GFSK MCAN DSSS, OFDM BT-LE
DTS Up to 3Mbps 802.11sc; up to 54Mbps 802.11sc; up to 54Mbps 802.11sc; up to 54Mbps 802.11sc; up to 54Mbps 802.11sc; up to 3Mbps 802.11sc; up to 54Mbps BT-EDR Up to 3Mbps BT-EDR 24GHz: 2.412 ~ 2.462Hz 5GHz: 5.18~ 5.24GHz, 5.745 ~ 5.825GHz BT-LE 2402MHz ~ 2480MHz | Product | Velop | | | | | | Series Model VLP01, A01 Status of EUT ENGINEERING SAMPLE Driver version 1.1.3.186486 Power Supply Rating 12Vdc from power adapter CKI, DQPSK, DBPSK for DSSS
64QAM, 16QAM, QPSK, BPSK for OFDM
256QAM for OFDM in 11ac mode and VHT (20/40) mode in 2.4GHz BT-EDR GFSK, π/4-DQPSK, 8DPSK BT-LE GFSK BT-LE GFSK BT-LE DTS BT-EDR FHSS BT-LE DTS B02.11s: up to 11Mbps 802.11s: up to 300Mbps 80 | | | | | | | | Status of EUT ENGINEERING SAMPLE Driver version 1.1.3.186486 Power Supply Rating 12Vdc from power adapter WLAN CCK, DQPSK, DBPSK for DSSS 64QAM, 16QAM, QPSK, BPSK for OFDM 256QAM for OFDM in 11ac mode and VHT (20/40) mode in 2.4GHz BT-EDR GFSK, π/4-DQPSK, 8DPSK BT-LE GFSK Modulation BT-EDR Technology FHSS BT-LE DTS 802.11s: up to 11Mbps 802.11s: up to 300Mbps 802.11a: 400Mbps 802.11a: up to 400Mbps 802.11a: up to 400Mbps | Test Model | WHW01 | | | | | | Driver version 1.1.3.186486 | Series Model | VLP01, A01 | | | | | | Power Supply Rating 12Vdc from power adapter | Status of EUT | ENGINEER | ING SAMPLE | | | | | McAN CCK, DQPSK, DBPSK for DSSS 64QAM, 16QAM, QPSK, BPSK for OFDM 256QAM for OFDM in 11ac mode and VHT (20/40) mode in 2.4GHz BT-EDR GFSK, m/4-DQPSK, BDPSK Modulation Technology BT-EDR FHSS BT-LE DTS B02.11b: up to 11Mbps 802.11a/g: up to 54Mbps 802.11ac: up to 300Mbps BT-EDR Up to 3Mbps BT-LE Up to 3Mbps BT-LE Up to 1Mbps BT-LE 2402MHz ~ 2.462GHz SCHz: 5.18~ 5.24GHz, 5.745~ 5.825GHz BT-LE 2402MHz ~ 2480MHz BC-LE 2.46Hz: 802.11a, 802.11g, 802.11g, 802.11g (VHT20), VHT20: 11 802.11a, (VHT40), VHT40: 7 SGHz: <th col<="" td=""><td>Driver version</td><td>1.1.3.18648</td><td>36</td></th> | <td>Driver version</td> <td>1.1.3.18648</td> <td>36</td> | Driver version | 1.1.3.18648 | 36 | | | | WLAN 64QAM, 16QAM, QPSK, BPSK for OFDM 256QAM for OFDM in 11ac mode and VHT (20/40) mode in 2.4GHz BT-EDR GFSK, π/4-DQPSK, 8DPSK BT-LE GFSK WLAN DSSS, OFDM BT-EDR FHSS BT-LE DTS 802.11b: up to 11Mbps 802.11ac: up to 54Mbps 802.11ac: up to 300Mbps 802.11ac: up to 300Mbps 802.11ac: up to 866.7Mbps BT-EDR Up to 1Mbps BT-LE Up to 1Mbps BT-LE Up to 1Mbps BT-LE 240BMLz 2.412 ~ 2.462GHz 5.745 ~ 5.825GHz SGHz: 5.18~ 5.24GHz, 5.745 ~ 5.825GHz BT-EDR 2402MHz ~ 2480MHz BT-LE 2402MHz ~ 2480MHz BT-LE 302.11n (HT40), VHT40: 7 WLAN 5GHz: 802.11g, 802.11n (HT20), VHT20: 11 802.11n (HT40), VHT40: 7 SGL: 802.11n (HT20), 802.11ac (VHT20): 9 802.11n (HT40), 802.11ac (VHT40): 4 802.11ac (VHT80): 2 BT-EDR 79 BT-LE 40 Antenna Type Refer to Note Antenna Connector Refer to Note Antenna Connector Refer to Note <t< td=""><td>Power Supply Rating</td><td>12Vdc from</td><td>power adapter</td></t<> | Power Supply Rating | 12Vdc from | power adapter | | | | | BT-EDR GFSK, π/4-DQPSK, 8DPSK | Modulation Type | WLAN | 64QAM, 16QAM, QPSK, BPSK for OFDM | | | | | WLAN DSSS, OFDM BT-EDR FHSS BT-LE DTS 802.11b: up to 11Mbps 802.11a: up to 54Mbps 802.11a: up to 300Mbps 802.11a: up to 300Mbps 802.11a: up to 866.7Mbps BT-EDR Up to 1Mbps 2.4GHz: 2.412 ~ 2.462GHz 5GHz: 5.18~ 5.24GHz, 5.745~ 5.825GHz BT-EDR 2402MHz ~ 2480MHz 2.4GHz: 802.11b, 802.11g, 802.11n (HT20), VHT20: 11 802.11a, 802.11n (HT20), VHT40: 7 5GHz: 802.11a, 802.11n (HT20), 802.11ac (VHT20): 9 802.11a (VHT80): 2 BT-EDR 79 BT-LE 40 Antenna Type Refer to Note Antenna Connector Adapter x 1 | Woodington Type | BT-EDR | GFSK, π/4-DQPSK, 8DPSK | | | | | BT-EDR | | BT-LE | GFSK | | | | | Technology | Modulation | WLAN | DSSS, OFDM | | | | | ### Transfer Rate WLAN 802.11b: up to 11Mbps | | BT-EDR | FHSS | | | | | WLAN 802.11a/g: up to 54Mbps 802.11n: up to 300Mbps 802.11n: up to 866.7Mbps BT-EDR Up to 3Mbps BT-LE Up to 1Mbps WLAN 2.4GHz: 2.412 ~ 2.462GHz 5GHz 5GHz: 5.18~ 5.24GHz, 5.745 ~ 5.825GHz BT-EDR 2402MHz ~ 2480MHz BT-LE 2402MHz ~ 2480MHz 2.4GHz: 802.11b, 802.11g, 802.11n (HT20), VHT20: 11 802.11n (HT40), VHT40: 7 SGHz: 802.11a, 802.11n (HT20), 802.11ac (VHT20): 9 802.11n (HT40), 802.11ac (VHT40): 4 802.11ac (VHT80): 2 BT-EDR 79 BT-LE 40 Antenna Type Refer to Note Antenna Connector Refer to Note Accessory Device Adapter x 1 | rechnology | BT-LE | | | | | | BT-LE | Transfer Rate | WLAN | 802.11a/g: up to 54Mbps
802.11n: up to 300Mbps | | | | | WLAN 2.4GHz: 2.412 ~ 2.462GHz 5GHz: 5.18~ 5.24GHz, 5.745 ~ 5.825GHz BT-EDR 2402MHz ~ 2480MHz BT-LE 2402MHz ~ 2480MHz 2.4GHz: 802.11g, 802.11g, 802.11n (HT20), VHT20: 11 802.11n (HT40), VHT40: 7 5GHz: 802.11n (HT20), 802.11ac (VHT20): 9 802.11a, 802.11n (HT40), 802.11ac (VHT40): 4 802.11ac (VHT80): 2 BT-EDR 79 BT-LE 40 Antenna Type Refer to Note Antenna Connector Refer to Note Accessory Device Adapter x 1 | | BT-EDR | Up to 3Mbps | | | | | Operating Frequency BT-EDR 2402MHz ~ 2480MHz | | BT-LE | · | | | | | BT-LE 2402MHz ~ 2480MHz | O | | 5GHz: 5.18~ 5.24GHz, 5.745 ~ 5.825GHz | | | | | Number of Channel WLAN Solution Solu | Operating Frequency | | 2402MHz ~ 2480MHz | | | | | Number of Channel WLAN Solution Solu | | BT-LE | | | | | | BT-LE 40 Antenna Type Refer to Note Antenna Connector Refer to Note Accessory Device Adapter x 1 | Number of Channel | | 802.11b, 802.11g, 802.11n (HT20), VHT20: 11
802.11n (HT40), VHT40: 7
5GHz:
802.11a, 802.11n (HT20), 802.11ac (VHT20): 9
802.11n (HT40), 802.11ac (VHT40): 4
802.11ac (VHT80): 2 | | | | | Antenna Type Refer to Note Antenna Connector Refer to Note Accessory Device Adapter x 1 | | BT-EDR | 79 | | | | | Antenna Connector Refer to Note Accessory Device Adapter x 1 | | BT-LE | 40 | | | | | Accessory Device Adapter x 1 | Antenna Type | Refer to Note | | | | | | · | Antenna Connector | Antenna Connector Refer to Note | | | | | | Data Cable Supplied NA | Accessory Device | | | | | | | | Data Cable Supplied | NA | | | | | #### Note: - 1. There are WLAN and Bluetooth technology used for the EUT. - 2. The EUT has below model names, which are identical to each other in all aspects except for the following table: | Brand | Model Name | Different | |---------|------------|--| | | WHW01 | For maketing request | | Linksys | I VIPOI I | For maketing request Color : Black & White | | | A01 | COIOI . DIACK & WITHE | From the above models, model: **WHW01** was selected as representative model for the test and its data was recorded in this report. 3. Simultaneously transmission condition. | Condition | | Technology | | | | | |--|-------------|------------|-----------|--|--|--| | 1 | WLAN 2.4GHz | WLAN 5GHz | Bluetooth | | | | | Note: The emission of the simultaneous operation has been evaluated and no non-compliance was found. | | | | | | | 4. The EUT must be supplied with a power adapter and following different models could be chosen as following table: | No. | Brand | Model No. | Spec. | Plug | Remark | |-----|-------|------------------|---|------------|----------------| | 1 | APD | WA-12M12R | Input: 100-240Vac, 0.5A, 50-60Hz
Output: 12V, 1A | Universal | Black & White | | | , 2 | VVA IZIVIIZIX | Output cable: Unshielded, 1.5m | o involoci | Black a Willio | | 2 | APD | WB-12G12FU | Input: 100-240Vac, 0.3A, 50-60Hz
Output: 12V, 1A | FCC | Black & White | | | | | Output cable: Unshielded, 1.5m | | | | 3 | Ktec | KSAS0121200100D5 | Input: 100-240Vac, 0.4A, 50-60Hz
Output: 12V, 1A
Output cable: Unshielded, 1.5m | Universal | Black & White | | 4 | Ktec | KSA-12W-120100VU | Input: 100-240Vac, 0.4A, 50/60Hz
Output: 12V, 1A
Output cable: Unshielded, 1.5m | FCC | Black & White | Note: From the above models, the worst radiated emission test was found in **Adapter 4**. Therefore only the test data of the modes were recorded in this report. 5. The DDR3 Memory of EUT as following table | Item | Brand | Model No. | Different | |---------------|---------|------------------|-----------------------| | Main source | Winbond | W632GU6MB-12 | For maketing request. | | Second source | Nanya | NT5CC128M16IP-DI | 2. DDR3 Memory. | Note: From the above models, the worst case was found in **Main source**. Therefore only the test data of the modes were recorded in this report. 6. The antennas provided to the EUT, please refer to the following table: | | WLAN | | | | | | | |---------------------|-----------|-----------------------|-------------------------|-------------------------|----------------|----------------|------------| | Ant No. | Brand | Model | Antenna Gain
(dBi) | Frequency rang
(GHz) | Antenna type | Connector type | | | 1 | ARISTOTLE | AP571-P11-P2 | 2.4 | 2.4~2.4835 | PCB | i pov(MHE) | | | ı | ARISTOTLE | TLE AP571-P11-P2 | 3.6 | 5.15~5.85 | РСВ | i-pex(MHF) | | | 2 | ARISTOTLE | ADICTOTIC | AP571-P22-P5 | 1.36 | 2.4~2.4835 | PCB | i pov(MHF) | | | | AP3/1-P22-P3 | 3.5 | 5.15~5.85 | РСВ | i-pex(MHF) | | | | Bluetooth | | | | | | | | Ant No. Brand Model | | Antenna Gain
(dBi) | Frequency rang
(GHz) | Antenna type | Connector type | | | | 1 | ARISTOTLE | AP571-BT-1 | 1.48 | 2.4~2.4835 | PCB | i-pex(MHF) | | Report No.: RF171204E07-4 Page No. 7 / 33 Report Format Version: 6.1.2 ### 7. The EUT incorporates a MIMO function. | 7. The EOT incorporates a MIMO function. 2.4GHz Band | | | | | | | |---|-----------------|-----------------------|-----|--|--|--| | MODULATION MODE | DATA RATE (MCS) | TX & RX CONFIGURATION | | | | | | 802.11b | 1 ~ 11Mbps | 2TX | 2RX | | | | | 802.11g | 6 ~ 54Mbps | 2TX | 2RX | | | | | 802.11n (HT20) | MCS 0~7 | 2TX | 2RX | | | | | ου2.11II (Π12U) | MCS 8~15 | 2TX | 2RX | | | | | 002 11n (UT40) | MCS 0~7 | 2TX | 2RX | | | | | 802.11n (HT40) | MCS 8~15 | 2TX | 2RX | | | | | VHT20 | MCS0~8 Nss=1 | 2TX | 2RX |
 | | | VI 120 | MCS0~8 Nss=2 | 2TX | 2RX | | | | | VHT40 | MCS0~9 Nss=1 | 2TX | 2RX | | | | | VII 140 | MCS0~9 Nss=2 | 2TX | 2RX | | | | | | 50 | GHz Band | | | | | | MODULATION MODE | DATA RATE (MCS) | TX & RX CONFIGURATION | | | | | | 802.11a | 6 ~ 54Mbps | 2TX | 2RX | | | | | 802.11n (HT20) | MCS 0~7 | 2TX | 2RX | | | | | 602.1111 (H120) | MCS 8~15 | 2TX | 2RX | | | | | 802.11n (HT40) | MCS 0~7 | 2TX | 2RX | | | | | 002.1111 (H140) | MCS 8~15 | 2TX | 2RX | | | | | 802.11ac (VHT20) | MCS0~8 Nss=1 | 2TX | 2RX | | | | | 602.11ac (VH120) | MCS0~8 Nss=2 | 2TX | 2RX | | | | | 802.11ac (VHT40) | MCS0~9 Nss=1 | 2TX | 2RX | | | | | 002.11ac (VH140) | MCS0~9 Nss=2 | 2TX | 2RX | | | | | 802.11ac (VHT80) | MCS0~9 Nss=1 | 2TX | 2RX | | | | | 002.11ac (VII100) | MCS0~9 Nss=2 | 2TX | 2RX | | | | #### Note: - 1. All of modulation mode support beamforming function except 802.11a/b/g modulation mode. - The modulation and bandwidth are similar for 802.11n mode for 20MHz (40MHz) and 802.11ac mode for 20MHz (40MHz), therefore investigated worst case to representative mode in test report. (Final test mode refer section 3.2.1) - 8. The above EUT information is declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications or user's manual. Report No.: RF171204E07-4 Page No. 8 / 33 Report Format Version: 6.1.2 ### 3.1.1 Test Mode Applicability and Tested Channel Detail | EUT
Configure | Applicable To | | | | Description | |------------------|---------------|-------|--------------|----|----------------------| | Mode | RE≥1G | RE<1G | PLC | ОВ | Description | | 1 | ı | ı | \checkmark | - | Power from Adapter 1 | | 2 | - | - | √ | - | Power from Adapter 2 | | 3 | - | - | √ | - | Power from Adapter 3 | | 4 | V | V | √ | √ | Power from Adapter 4 | Where RE≥1G: Radiated Emission above 1GHz F RE<1G: Radiated Emission below 1GHz **PLC:** Power Line Conducted Emission **OB:** Conducted Out-Band Emission Measurement NOTE: "-"means no effect. ### Radiated Emission Test (Above 1GHz): Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture). Following channel(s) was (were) selected for the final test as listed below. | MODE | AVAILABLE
CHANNEL | TESTED
CHANNEL | MODULATION
TECHNOLOGY | MODULATION
TYPE | |---|------------------------|-------------------|--------------------------|--------------------| | 802.11b
+
802.11ac (VHT20)
+
BT-EDR | 1 to 11 | 1 | DSSS | DBPSK | | | 36 to 48
149 to 165 | 165 | OFDM | BPSK | | | 0 to 78 | 78 | FHSS | GFSK | #### Radiated Emission Test (Below 1GHz): ☐ Following channel(s) was (were) selected for the final test as listed below. | MODE | AVAILABLE
CHANNEL | TESTED
CHANNEL | MODULATION
TECHNOLOGY | MODULATION
TYPE | |---|------------------------|-------------------|--------------------------|--------------------| | 802.11b
+
802.11ac (VHT20)
+
BT-EDR | 1 to 11 | 1 | DSSS | DBPSK | | | 36 to 48
149 to 165 | 165 | OFDM | BPSK | | | 0 to 78 | 78 | FHSS | GFSK | Report No.: RF171204E07-4 Page No. 9 / 33 Report Format Version: 6.1.2 ## **Power Line Conducted Emission Test:** ☐ Following channel(s) was (were) selected for the final test as listed below. | MODE | AVAILABLE
CHANNEL | TESTED
CHANNEL | MODULATION
TECHNOLOGY | MODULATION
TYPE | |----------------------------------|------------------------|-------------------|--------------------------|--------------------| | 802.11b
+
802.11ac (VHT20) | 1 to 11 | 1 | DSSS | DBPSK | | | 36 to 48
149 to 165 | 165 | OFDM | BPSK | | +
BT-EDR | 0 to 78 | 78 | FHSS | GFSK | # **Conducted Out-Band Emission Measurement:** Following channel(s) was (were) selected for the final test as listed below. | MODE | AVAILABLE
CHANNEL | TESTED
CHANNEL | MODULATION
TECHNOLOGY | MODULATION
TYPE | |----------------------------------|------------------------|-------------------|--------------------------|--------------------| | 802.11b
+
802.11ac (VHT20) | 1 to 11 | 1 | DSSS | DBPSK | | | 36 to 48
149 to 165 | 165 | OFDM | BPSK | ## **Test Condition:** | APPLICABLE TO ENVIRONMENTAL CONDITIONS | | INPUT POWER | TESTED BY | | |--|------------------------------|--------------|--------------|--| | RE≥1G | RE≥1G 23deg. C, 68%RH | | Weiwei Lo | | | RE<1G | 23deg. C, 68%RH | 120Vac, 60Hz | Frank Chuang | | | PLC | PLC 25deg. C, 75%RH | | Andy Ho | | | ОВ | 25deg. C, 65%RH | 120Vac, 60Hz | Jyunchun Lin | | Report No.: RF171204E07-4 Page No. 10 / 33 Report Format Version: 6.1.2 ### 3.2 Description of Support Units The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests. | ID | Product | Brand | Model No. | Serial No. | FCC ID | Remarks | |----|---------|-------|-----------|------------|---------|-----------------| | A. | Laptop | DELL | E6420 | B92T3R1 | FCC DoC | Provided by Lab | #### Note: ^{1.} All power cords of the above support units are non-shielded (1.8m). | ID | Descriptions | Qty. | Length (m) | Shielding
(Yes/No) | Cores (Qty.) | Remarks | |----|--------------|------|------------|-----------------------|--------------|--------------------| | 1. | DC Cable | 1 | 1.5 | No | 0 | Supplied by client | | 2. | RJ-45 Cable | 1 | 10 | No | 0 | Provided by Lab | Note: The core(s) is(are) originally attached to the cable(s). ### 3.2.1 Configuration of System under Test Report No.: RF171204E07-4 Page No. 11 / 33 Report Format Version: 6.1.2 #### 4 **Test Types and Results** #### 4.1 **Radiated Emission and Bandedge Measurement** #### **Limits of Radiated Emission and Bandedge Measurement** 4.1.1 Radiated emissions which fall in the restricted bands must comply with the radiated emission limits specified as below table | specified as below table. | | | |---------------------------|--------------------------------------|-------------------------------| | Frequencies
(MHz) | Field Strength
(microvolts/meter) | Measurement Distance (meters) | | 0.009 ~ 0.490 | 2400/F(kHz) | 300 | | 0.490 ~ 1.705 | 24000/F(kHz) | 30 | | 1.705 ~ 30.0 | 30 | 30 | | 30 ~ 88 | 100 | 3 | | 88 ~ 216 | 150 | 3 | | 216 ~ 960 | 200 | 3 | | Above 960 | 500 | 3 | #### NOTE: - 1. The lower limit shall apply at the transition frequencies. - 2. Emission level (dBuV/m) = 20 log Emission level (uV/m). - 3. For frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation. Limits of unwanted emission out of the restricted bands | Limits of unwanted emission out of the restricted bands | | | | | | | |---|------------------------------|------------------|---|---|--|--| | Applicable To | | | Limit | | | | | 789033 D02 General UNII Test Procedure | | | Field Strength at 3m | | | | | New Rules v02r01 | | PK:74 (dBμV/m) | AV:54 (dBμV/m) | | | | | Frequency Band | Applicable To | | EIRP Limit | Equivalent Field Strength at 3m | | | | 5150~5250 MHz | 15.407(b)(1) | | | PK:68.2(dBμV/m) | | | | 5250~5350 MHz | 15.407(b)(2)
15.407(b)(3) | | PK:-27 (dBm/MHz) | | | | | 5470~5725 MHz | | | | | | | | 5725~5850 MHz | \boxtimes | 15.407(b)(4)(i) | PK:-27 (dBm/MHz) ^{*1}
PK:10 (dBm/MHz) ^{*2}
PK:15.6 (dBm/MHz) ^{*3}
PK:27 (dBm/MHz) ^{*4} | PK: 68.2(dBµV/m) *1
PK:105.2 (dBµV/m) *2
PK: 110.8(dBµV/m) *3
PK:122.2 (dBµV/m) *4 | | | | | | 15.407(b)(4)(ii) | Emission limits in section 15.247(d) | | | | ^{*1} beyond 75 MHz or more above of the band edge. #### Note: The following formula is used to convert the equipment isotropic radiated power (eirp) to field strength: $$E = \frac{1000000\sqrt{30P}}{3}$$ µV/m, where P is the eirp (Watts). Report No.: RF171204E07-4 Page No. 12 / 33 Report Format Version: 6.1.2 ² below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above. from 5 MHz above or below the band edge of 15.6 dBm/MHz at 5 MHz above. increasing linearly to a level of 27 dBm/MHz at the band edge. ### 4.1.2 Test Instruments ### For below 1GHz test: | DESCRIPTION & | MODEL NO. | SERIAL NO. | CALIBRATED | CALIBRATED | |--------------------------------------|----------------------|-------------------------------|---------------|---------------| | MANUFACTURER | WIODEL NO. | SERIAL NO. | DATE | UNTIL | | Test Receiver
Agilent | N9038A | MY50010156 | July 12, 2017 | July 11, 2018 | | Loop Antenna ^(*)
TESEQ | HLA 6121 | 45745 | May 19, 2017 | May 18, 2018 | | Pre-Amplifier
Mini-Circuits | ZFL-1000VH2B | AMP-ZFL-05 | May 06, 2017 | May 05, 2018 | | Trilog Broadband Antenna SCHWARZBECK | VULB 9168 | 9168-361 | Nov. 29, 2017 | Nov. 28, 2018 | | RF Cable | 8D | 966-3-1
966-3-2
966-3-3 | Apr. 01, 2017 | Mar. 31, 2018 | | Fixed attenuator Mini-Circuits | UNAT-5+ | PAD-3m-3-01 | Oct. 03, 2017 | Oct. 02, 2018 | | Software | ADT_Radiated_V8.7.08 | NA | NA | NA | | Antenna Tower & Turn Table Max-Full | MF-7802 | MF780208406 | NA | NA | #### Note: - 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA. - 2. *The calibration interval of the above test instruments is 24 months and the calibrations are traceable to NML/ROC and NIST/USA. - 3. The test was performed in 966 Chamber No. 3. -
4. The CANADA Site Registration No. is 20331-1 - 5. Loop antenna was used for all emissions below 30 MHz. - 6. Tested Date: Jan. 23, 2018 Report No.: RF171204E07-4 Page No. 13 / 33 Report Format Version: 6.1.2 #### For other test: | DESCRIPTION & MANUFACTURER | MODEL NO. | SERIAL NO. | CALIBRATED DATE | CALIBRATED
UNTIL | |-------------------------------------|---|----------------------------|---|---| | Test Receiver
Agilent | N9038A | MY50010156 | July 12, 2017 | July 11, 2018 | | Horn_Antenna SCHWARZBECK | BBHA9120-D | 9120D-406 | Dec. 28, 2016 | Dec. 27, 2017 | | Pre-Amplifier
EMCI | EMC12630SE | 980384 | Feb. 02, 2017 | Feb. 01, 2018 | | RF Cable | EMC104-SM-SM-1200
EMC104-SM-SM-2000
EMC104-SM-SM-5000 | 160922
150317
150322 | Feb. 02, 2017
Mar. 29, 2017
Mar. 29, 2017 | Feb. 01, 2018
Mar. 28, 2018
Mar. 28, 2018 | | Spectrum Analyzer
Keysight | N9030A | MY54490679 | July 25, 2017 | July 24, 2018 | | Pre-Amplifier
EMCI | EMC184045SE | 980386 | Feb. 02, 2017 | Feb. 01, 2018 | | Horn_Antenna
SCHWARZBECK | BBHA 9170 | BBHA9170608 | Dec. 15, 2016 | Dec. 14, 2017 | | RF Cable | SUCOFLEX 102 | 36432/2
36433/2 | Jan. 15, 2017 | Jan. 14, 2018 | | Software | ADT_Radiated_V8.7.08 | NA | NA | NA | | Antenna Tower & Turn Table Max-Full | MF-7802 | MF780208406 | NA | NA | | Boresight Antenna Fixture | FBA-01 | FBA-SIP01 | NA | NA | | Spectrum Analyzer
R&S | FSv40 | 100964 | July 1, 2017 | June 30, 2018 | | Power meter
Anritsu | ML2495A | 1014008 | May 11, 2017 | May 10, 2018 | | Power sensor
Anritsu | MA2411B | 0917122 | May 11, 2017 | May 10, 2018 | #### Note: - 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA. - 2. *The calibration interval of the above test instruments is 24 months and the calibrations are traceable to NML/ROC and NIST/USA. - 3. The test was performed in 966 Chamber No. 3. - 4. The CANADA Site Registration No. is 20331-1 - 5. Loop antenna was used for all emissions below 30 MHz. - 6. Tested Date: Dec. 12, 2017 #### 4.1.3 Test Procedures #### For Radiated emission below 30MHz - a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter chamber room. The table was rotated 360 degrees to determine the position of the highest radiation. - b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. - c. Both X and Y axes of the antenna are set to make the measurement. - d. For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. - e. The test-receiver system was set to Quasi-Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. #### NOTE: 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 9kHz at frequency below 30MHz. #### For Radiated emission above 30MHz - a. The EUT was placed on the top of a rotating table 0.8 meters (for 30MHz ~ 1GHz) / 1.5 meters (for above 1GHz) above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation. - b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. - c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. - d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. - e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz. - f. The test-receiver system was set to peak and average detects function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary. #### Note: - 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection (QP) at frequency below 1GHz. - 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) at frequency above 1GHz. - 3. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is ≥ 1/T (Duty cycle < 98%) or 10Hz (Duty cycle ≥ 98%) for Average detection (AV) at frequency above 1GHz. - 4. All modes of operation were investigated and the worst-case emissions are reported. #### 4.1.4 Deviation from Test Standard No deviation. Report No.: RF171204E07-4 Page No. 15 / 33 Report Format Version: 6.1.2 ### 4.1.5 Test Setup ### For Radiated emission below 30MHz ### For Radiated emission 30MHz to 1GHz ### For Radiated emission above 1GHz For the actual test configuration, please refer to the attached file (Test Setup Photo). ### 4.1.6 EUT Operating Conditions - a. Connected the EUT with the laptop which is placed on remote site. - b. Contorlling software (WLAN: QARCT.EXE V3.0.210.0, Bluetooth: BT+LE Command.txt) has been activated to set the EUT on specific status. Report No.: RF171204E07-4 Page No. 17 / 33 Report Format Version: 6.1.2 #### 4.1.7 Test Results **Above 1GHz Data** FREQUENCY RANGE 1GHz ~ 40GHz DETECTOR FUNCTION Peak (PK) Average (AV) | | ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M | | | | | | | | | |-----|---|-------------------------------|-------------------|----------------|--------------------------|----------------------------|------------------------|--------------------------------|--| | NO. | FREQ.
(MHz) | EMISSION
LEVEL
(dBuV/m) | LIMIT
(dBuV/m) | MARGIN
(dB) | ANTENNA
HEIGHT
(m) | TABLE
ANGLE
(Degree) | RAW
VALUE
(dBuV) | CORRECTION
FACTOR
(dB/m) | | | 1 | 4824.00 | 44.0 PK | 74.0 | -30.0 | 1.39 H | 205 | 41.0 | 3.0 | | | 2 | 4824.00 | 40.7 AV | 54.0 | -13.3 | 1.39 H | 205 | 37.7 | 3.0 | | | 3 | 4960.00 | 46.0 PK | 74.0 | -28.0 | 2.54 H | 183 | 42.8 | 3.2 | | | 4 | 4960.00 | 39.1 AV | 54.0 | -14.9 | 2.54 H | 183 | 35.9 | 3.2 | | | 5 | 7440.00 | 43.8 PK | 74.0 | -30.2 | 1.68 H | 32 | 34.6 | 9.2 | | | 6 | 7440.00 | 33.3 AV | 54.0 | -20.7 | 1.68 H | 32 | 24.1 | 9.2 | | | 7 | 11650.00 | 49.3 PK | 74.0 | -24.7 | 1.70 H | 263 | 35.6 | 13.7 | | | 8 | 11650.00 | 37.7 AV | 54.0 | -16.3 | 1.70 H | 263 | 24.0 | 13.7 | | | 9 | 17475.00 | 64.2 PK | 74.0 | -9.8 | 1.64 H | 106 | 45.6 | 18.6 | | | 10 | 17475.00 | 51.1 AV | 54.0 | -2.9 | 1.64 H | 106 | 32.5 | 18.6 | | | | | ANTENNA | POLARITY | 4 & TEST DI | STANCE: V | ERTICAL A | T 3 M | | | | NO. | FREQ.
(MHz) | EMISSION
LEVEL
(dBuV/m) | LIMIT
(dBuV/m) | MARGIN
(dB) | ANTENNA
HEIGHT
(m) | TABLE
ANGLE
(Degree) | RAW
VALUE
(dBuV) | CORRECTION
FACTOR
(dB/m) | | | 1 | 4824.00 | 43.7 PK | 74.0 | -30.3 | 1.81 V | 182 | 40.7 | 3.0 | | | 2 | 4824.00 | 39.5 AV | 54.0 | -14.5 | 1.81 V | 182 | 36.5 | 3.0 | | | 3 | 4960.00 | 44.9 PK | 74.0 | -29.1 | 2.47 V | 81 | 41.7 | 3.2 | | | 4 | 4960.00 | 39.0 AV | 54.0 | -15.0 | 2.47 V | 81 | 35.8 | 3.2 | | | 5 | 7440.00 | 42.2 PK | 74.0 | -31.8 | 1.56 V | 359 | 33.0 | 9.2 | | | 6 | 7440.00 | 32.1 AV | 54.0 | -21.9 | 1.56 V | 359 | 22.9 | 9.2 | | | 7 | 11650.00 | 52.9 PK | 74.0 | -21.1 | 2.57 V | 67 | 39.2 | 13.7 | | | 8 | 11650.00 | 40.0 AV | 54.0 | -14.0 | 2.57 V | 67 | 26.3 | 13.7 | | | 9 | 17475.00 | 56.4 PK | 74.0 | -17.6 | 1.49 V | 191 | 37.8 | 18.6 | | | 10 | 17475.00 | 44.2 AV | 54.0 | -9.8 | 1.49 V | 191 | 25.6 | 18.6 | | ### **REMARKS:** - 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m) - 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB) - 3. The other emission levels were very low against the limit. - 4. Margin value = Emission Level Limit value Report No.: RF171204E07-4 Page No. 18 / 33 Report Format Version: 6.1.2 #### **Below 1GHz Data:** | FREQUENCY RANGE | 9kHz ~ 1GHz | DETECTOR
FUNCTION | Quasi-Peak (QP) | |-----------------|-------------|----------------------|-----------------| |-----------------|-------------|----------------------|-----------------| | | ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M | | | | | | | | | | | |-----|---|-------------------------------|-------------------|----------------|--------------------------|----------------------------|------------------------|--------------------------------|--|--|--| | NO. | FREQ.
(MHz) | EMISSION
LEVEL
(dBuV/m) | LIMIT
(dBuV/m) | MARGIN
(dB) | ANTENNA
HEIGHT
(m) | TABLE
ANGLE
(Degree) | RAW
VALUE
(dBuV) | CORRECTION
FACTOR
(dB/m) | | | | | 1 | 125.24 | 33.5 QP | 43.5 | -10.0 | 1.00 H | 75 | 43.2 | -9.7 | | | | | 2 | 143.09 | 33.7 QP | 43.5 | -9.8 | 3.00 H | 321 | 42.0 | -8.3 | | | | | 3 | 250.13 | 31.5 QP | 46.0 | -14.5 | 2.00 H | 214 | 41.0 | -9.5 | | | | | 4 | 356.36 | 31.3 QP | 46.0 | -14.7 | 1.50 H | 153 | 37.7 | -6.4 | | | | | 5 | 447.29 | 28.9 QP | 46.0 | -17.1 | 2.50 H | 174 | 32.6 | -3.7 | | | | | 6 | 649.84 | 30.0 QP | 46.0 | -16.0 | 1.00 H | 261 | 30.1 | -0.1 | | | | | | | ANTENNA | POLARITY | & TEST DI | STANCE: V | ERTICAL A | T 3 M | | | | | | NO. | FREQ.
(MHz) | EMISSION
LEVEL
(dBuV/m) | LIMIT
(dBuV/m) | MARGIN
(dB) | ANTENNA
HEIGHT
(m) | TABLE
ANGLE
(Degree) | RAW
VALUE
(dBuV) | CORRECTION
FACTOR
(dB/m) | | | | | 1 | 50.78 |
36.5 QP | 40.0 | -3.5 | 1.00 V | 232 | 44.8 | -8.3 | | | | | 2 | 102.09 | 35.4 QP | 43.5 | -8.1 | 1.50 V | 140 | 47.5 | -12.1 | | | | | 3 | 125.21 | 37.3 QP | 43.5 | -6.2 | 2.00 V | 129 | 47.0 | -9.7 | | | | | 4 | 249.89 | 29.0 QP | 46.0 | -17.0 | 3.00 V | 214 | 38.5 | -9.5 | | | | | 5 | 356.47 | 32.6 QP | 46.0 | -13.4 | 1.50 V | 110 | 39.0 | -6.4 | | | | | 6 | 611.09 | 30.9 QP | 46.0 | -15.1 | 1.50 V | 249 | 31.7 | -0.8 | | | | ### **REMARKS:** - 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m) - 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB) - 3. The other emission levels were very low against the limit. - 4. Margin value = Emission Level Limit value Report No.: RF171204E07-4 Page No. 19 / 33 Report Format Version: 6.1.2 ### 4.2 Conducted Emission Measurement ### 4.2.1 Limits of Conducted Emission Measurement | Fragues ou (MUz) | Conducted Limit (dBuV) | | | | | | |------------------|------------------------|---------|--|--|--|--| | Frequency (MHz) | Quasi-peak | Average | | | | | | 0.15 - 0.5 | 66 - 56 | 56 - 46 | | | | | | 0.50 - 5.0 | 56 | 46 | | | | | | 5.0 - 30.0 | 60 | 50 | | | | | Note: 1. The lower limit shall apply at the transition frequencies. 2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz. ### 4.2.2 Test Instruments | DESCRIPTION & MANUFACTURER | MODEL NO. | SERIAL NO. | CALIBRATED
DATE | CALIBRATED
UNTIL | |--|-------------------------|------------|--------------------|---------------------| | Test Receiver
R&S | ESCS 30 | 847124/029 | Nov. 01, 2017 | Oct. 31, 2018 | | Line-Impedance
Stabilization Network
(for EUT)
R&S | ESH3-Z5 | 848773/004 | Nov. 15, 2017 | Nov. 14, 2018 | | Line-Impedance
Stabilization Network
(for Peripheral)
R&S | ENV216 | 100072 | June 03, 2017 | June 02, 2018 | | 50 ohms Terminator | N/A | EMC-02 | Sep. 22, 2017 | Sep. 21, 2018 | | RF Cable | 5D-FB | COCCAB-001 | Sep. 29, 2017 | Sep. 28, 2018 | | 10 dB PAD
Mini-Circuits | HAT-10+ | CONATT-004 | June 18, 2017 | June 17, 2018 | | Software
BVADT | BVADT_Cond_
V7.3.7.4 | NA | NA | NA | #### Note: - 1. The calibration interval of the above test instruments are 12 months and the calibrations are traceable to NML/ROC and NIST/USA. - 2. The test was performed in Shielded Room No. 1. - 3 Tested Date: Dec. 12, 2017 #### 4.2.3 Test Procedures - a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50uH of coupling impedance for the measuring instrument. - b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference. - c. The frequency range from 150kHz to 30MHz was searched. Emission levels under (Limit 20dB) was not recorded. **NOTE:** The resolution bandwidth and video bandwidth of test receiver is 9kHz for quasi-peak detection (QP) and average detection (AV) at frequency 0.15MHz-30MHz. #### 4.2.4 Deviation from Test Standard No deviation. #### 4.2.5 Test Setup Note: 1.Support units were connected to second LISN. For the actual test configuration, please refer to the attached file (Test Setup Photo). ### 4.2.6 EUT Operating Conditions Same as 4.1.6. Report No.: RF171204E07-4 Page No. 21 / 33 Report Format Version: 6.1.2 ## 4.2.7 Test Results (Mode 1) | Phase Line (L) | Line (L) | Detector Function | Quasi-Peak (QP) / | |----------------|----------|-------------------|-------------------| | | (=) | | Average (AV) | | | Phase Of Power : Line (L) | | | | | | | | | | | |----|---------------------------|-------------------|-------|-------------------------|-------|-------|-------|-----------------|--------|----------------|--| | No | Frequency | Correction Factor | | Reading Value
(dBuV) | | _ | | Limit
(dBuV) | | Margin
(dB) | | | | (MHz) | (dB) | Q.P. | AV. | Q.P. | AV. | Q.P. | AV. | Q.P. | AV. | | | 1 | 0.16172 | 10.08 | 35.85 | 23.12 | 45.93 | 33.20 | 65.38 | 55.38 | -19.45 | -22.18 | | | 2 | 0.23203 | 10.08 | 32.98 | 20.53 | 43.06 | 30.61 | 62.38 | 52.38 | -19.32 | -21.77 | | | 3 | 0.30625 | 10.10 | 30.13 | 16.67 | 40.23 | 26.77 | 60.07 | 50.07 | -19.84 | -23.30 | | | 4 | 0.39609 | 10.12 | 35.07 | 26.16 | 45.19 | 36.28 | 57.93 | 47.93 | -12.74 | -11.65 | | | 5 | 0.71250 | 10.15 | 20.27 | 10.23 | 30.42 | 20.38 | 56.00 | 46.00 | -25.58 | -25.62 | | | 6 | 3.56250 | 10.32 | 24.87 | 16.49 | 35.19 | 26.81 | 56.00 | 46.00 | -20.81 | -19.19 | | ### Remarks: - 1. Q.P. and AV. are abbreviations of quasi-peak and average individually. - 2. The emission levels of other frequencies were very low against the limit. - 3. Margin value = Emission level Limit value - 4. Correction factor = Insertion loss + Cable loss - 5. Emission Level = Correction Factor + Reading Value Report No.: RF171204E07-4 Page No. 22 / 33 Report Format Version: 6.1.2 | Phase | Neutral (N) | Detector Function | Quasi-Peak (QP) /
Average (AV) | |-------|-------------|-------------------|-----------------------------------| | | | | Average (Av) | | | Phase Of Power : Neutral (N) | | | | | | | | | | |----|------------------------------|-------------------|-------|----------------------|-------|-----------------------|-------|------------|----------------|--------| | No | Frequency | Correction Factor | | Reading Value (dBuV) | | Emission Level (dBuV) | | nit
uV) | Margin
(dB) | | | | (MHz) | (dB) | Q.P. | AV. | Q.P. | AV. | Q.P. | AV. | Q.P. | AV. | | 1 | 0.15391 | 10.07 | 35.83 | 24.74 | 45.90 | 34.81 | 65.79 | 55.79 | -19.89 | -20.98 | | 2 | 0.17344 | 10.06 | 34.76 | 23.29 | 44.82 | 33.35 | 64.79 | 54.79 | -19.97 | -21.44 | | 3 | 0.20078 | 10.04 | 33.92 | 20.74 | 43.96 | 30.78 | 63.58 | 53.58 | -19.62 | -22.80 | | 4 | 0.25938 | 10.06 | 30.29 | 18.33 | 40.35 | 28.39 | 61.45 | 51.45 | -21.10 | -23.06 | | 5 | 0.28281 | 10.07 | 29.30 | 16.51 | 39.37 | 26.58 | 60.73 | 50.73 | -21.36 | -24.15 | | 6 | 0.31016 | 10.08 | 28.91 | 14.24 | 38.99 | 24.32 | 59.97 | 49.97 | -20.98 | -25.65 | | 7 | 0.39219 | 10.12 | 30.81 | 21.84 | 40.93 | 31.96 | 58.02 | 48.02 | -17.09 | -16.06 | | 8 | 0.52891 | 10.12 | 22.43 | 10.55 | 32.55 | 20.67 | 56.00 | 46.00 | -23.45 | -25.33 | ### Remarks: - 1. Q.P. and AV. are abbreviations of quasi-peak and average individually. - 2. The emission levels of other frequencies were very low against the limit. - 3. Margin value = Emission level Limit value - 4. Correction factor = Insertion loss + Cable loss - 5. Emission Level = Correction Factor + Reading Value ### 4.2.8 Test Results (Mode 2) | Phase Line (L) | Line (L) | Detector Function | Quasi-Peak (QP) / | | | |----------------|-----------|--------------------|-------------------|--|--| | Filase | Lille (L) | Detector i unction | Average (AV) | | | | | Phase Of Power : Line (L) | | | | | | | | | | | |----|---------------------------|-------------------|-------|----------------------|-------|-------|-------|-----------------|--------|----------------|--| | No | Frequency | Correction Factor | | Reading Value (dBuV) | | • | | Limit
(dBuV) | | Margin
(dB) | | | | (MHz) | (dB) | Q.P. | AV. | Q.P. | AV. | Q.P. | AV. | Q.P. | AV. | | | 1 | 0.15391 | 10.08 | 41.83 | 29.68 | 51.91 | 39.76 | 65.79 | 55.79 | -13.88 | -16.03 | | | 2 | 0.26719 | 10.09 | 31.13 | 21.91 | 41.22 | 32.00 | 61.20 | 51.20 | -19.98 | -19.20 | | | 3 | 0.29063 | 10.09 | 30.66 | 19.74 | 40.75 | 29.83 | 60.51 | 50.51 | -19.76 | -20.68 | | | 4 | 0.46641 | 10.13 | 34.68 | 29.45 | 44.81 | 39.58 | 56.58 | 46.58 | -11.77 | -7.00 | | | 5 | 3.73828 | 10.34 | 22.10 | 14.65 | 32.44 | 24.99 | 56.00 | 46.00 | -23.56 | -21.01 | | | 6 | 21.16797 | 11.61 | 23.86 | 19.52 | 35.47 | 31.13 | 60.00 | 50.00 | -24.53 | -18.87 | | #### Remarks: - 1. Q.P. and AV. are abbreviations of quasi-peak and average individually. - 2. The emission levels of other frequencies were very low against the limit. - 3. Margin value = Emission level Limit value - 4. Correction factor = Insertion loss + Cable loss - 5. Emission Level = Correction Factor + Reading Value Report No.: RF171204E07-4 Page No. 24 / 33 Report Format Version: 6.1.2 | Phase | Neutral (N) | Detector Function | Quasi-Peak (QP) /
Average (AV) | |-------|-------------|-------------------|-----------------------------------| |-------|-------------|-------------------|-----------------------------------| | | Phase Of Power : Neutral (N) | | | | | | | | | | | |----|------------------------------|-------------------|-------|----------------------|-------|-------|-------|-----------------|--------|----------------|--| | No | Frequency | Correction Factor | | Reading Value (dBuV) | | | | Limit
(dBuV) | | Margin
(dB) | | | | (MHz) | (dB) | Q.P. | AV. | Q.P. | AV. | Q.P. | AV. | Q.P. | AV. | | | 1 | 0.15391 | 10.07 | 41.06 | 29.16 | 51.13 | 39.23 | 65.79 | 55.79 | -14.66 | -16.56 | | | 2 | 0.18125 | 10.05 | 37.56 | 24.66 | 47.61 | 34.71 | 64.43 | 54.43 | -16.82 | -19.72 | | | 3 | 0.36094 | 10.10 | 29.39 | 14.23 | 39.49 | 24.33 | 58.71 | 48.71 | -19.22 | -24.38 | | | 4 | 0.45078 | 10.12 | 26.88 | 17.15 | 37.00 | 27.27 | 56.86 | 46.86 | -19.86 | -19.59 | | | 5 | 0.47813 | 10.12 | 31.16 | 20.45 | 41.28 | 30.57 | 56.37 | 46.37 | -15.09 | -15.80 | | | 6 | 3.79297 | 10.25 | 20.86 | 10.16 | 31.11 | 20.41 | 56.00 | 46.00 | -24.89 | -25.59 | | #### Remarks: - 1. Q.P. and AV. are abbreviations of quasi-peak and average individually. - 2. The emission levels of other frequencies were very low against the limit. - 3. Margin value = Emission level Limit value - 4. Correction factor = Insertion loss + Cable loss - 5. Emission Level = Correction Factor + Reading Value ### 4.2.9 Test Results (Mode 3) | Phase | Line (L) | Detector Function | Quasi-Peak (QP) /
Average (AV) | |-------|----------|-------------------
-----------------------------------| |-------|----------|-------------------|-----------------------------------| | | Phase Of Power : Line (L) | | | | | | | | | | |----|---------------------------|-------------------|----------------------|-------|-------|-------|-------|-----------|-----------|--------| | No | Frequency | Correction Factor | Reading Value (dBuV) | | _ | | | Maı
(d | gin
B) | | | | (MHz) | (dB) | Q.P. | AV. | Q.P. | AV. | Q.P. | AV. | Q.P. | AV. | | 1 | 0.15000 | 10.09 | 40.31 | 25.27 | 50.40 | 35.36 | 66.00 | 56.00 | -15.60 | -20.64 | | 2 | 0.16562 | 10.08 | 37.94 | 13.80 | 48.02 | 23.88 | 65.18 | 55.18 | -17.16 | -31.30 | | 3 | 0.18516 | 10.07 | 40.47 | 28.64 | 50.54 | 38.71 | 64.25 | 54.25 | -13.71 | -15.54 | | 4 | 0.21641 | 10.07 | 27.78 | 9.70 | 37.85 | 19.77 | 62.96 | 52.96 | -25.11 | -33.19 | | 5 | 0.38047 | 10.12 | 31.18 | 25.68 | 41.30 | 35.80 | 58.27 | 48.27 | -16.97 | -12.47 | | 6 | 8.14453 | 10.66 | 24.21 | 16.74 | 34.87 | 27.40 | 60.00 | 50.00 | -25.13 | -22.60 | ### Remarks: - 1. Q.P. and AV. are abbreviations of quasi-peak and average individually. - 2. The emission levels of other frequencies were very low against the limit. - 3. Margin value = Emission level Limit value - 4. Correction factor = Insertion loss + Cable loss - 5. Emission Level = Correction Factor + Reading Value Report No.: RF171204E07-4 Page No. 26 / 33 Report Format Version: 6.1.2 | Phase | Neutral (N) | Detector Function | Quasi-Peak (QP) / | |-------|--------------|----------------------|-------------------| | Tidoc | inedial (iv) | Detector i dilettori | Average (AV) | | | Phase Of Power : Neutral (N) | | | | | | | | | | |----|------------------------------|-------------------|----------------------|-------|-------|-------|-----------------|-------|----------------|--------| | No | Frequency | Correction Factor | Reading Value (dBuV) | | _ | | Limit
(dBuV) | | Margin
(dB) | | | | (MHz) | (dB) | Q.P. | AV. | Q.P. | AV. | Q.P. | AV. | Q.P. | AV. | | 1 | 0.15000 | 10.08 | 40.20 | 25.69 | 50.28 | 35.77 | 66.00 | 56.00 | -15.72 | -20.23 | | 2 | 0.16953 | 10.06 | 37.20 | 14.14 | 47.26 | 24.20 | 64.98 | 54.98 | -17.72 | -30.78 | | 3 | 0.18516 | 10.05 | 40.47 | 29.28 | 50.52 | 39.33 | 64.25 | 54.25 | -13.73 | -14.92 | | 4 | 0.22031 | 10.05 | 30.64 | 13.05 | 40.69 | 23.10 | 62.81 | 52.81 | -22.12 | -29.71 | | 5 | 0.36484 | 10.11 | 31.03 | 23.20 | 41.14 | 33.31 | 58.62 | 48.62 | -17.48 | -15.31 | | 6 | 8.40234 | 10.59 | 22.43 | 16.15 | 33.02 | 26.74 | 60.00 | 50.00 | -26.98 | -23.26 | ### Remarks: - 1. Q.P. and AV. are abbreviations of quasi-peak and average individually. - 2. The emission levels of other frequencies were very low against the limit. - 3. Margin value = Emission level Limit value - 4. Correction factor = Insertion loss + Cable loss - 5. Emission Level = Correction Factor + Reading Value Report No.: RF171204E07-4 Page No. 27 / 33 Report Format Version: 6.1.2 ### 4.2.10 Test Results (Mode 4) | Phase | Line (L) | Detector Function | Quasi-Peak (QP) /
Average (AV) | |-------|----------|-------------------|-----------------------------------| | | | | Average (Av) | | | Phase Of Power : Line (L) | | | | | | | | | | | |----|---------------------------|-------------------|-------|----------------------|-------|-------|-------|-----------------|--------|----------------|--| | No | Frequency | Correction Factor | | Reading Value (dBuV) | | | | Limit
(dBuV) | | Margin
(dB) | | | | (MHz) | (dB) | Q.P. | AV. | Q.P. | AV. | Q.P. | AV. | Q.P. | AV. | | | 1 | 0.49862 | 10.13 | 41.06 | 32.86 | 51.19 | 42.99 | 56.02 | 46.02 | -4.83 | -3.03 | | | 2 | 0.99766 | 10.17 | 33.02 | 21.72 | 43.19 | 31.89 | 56.00 | 46.00 | -12.81 | -14.11 | | | 3 | 1.33984 | 10.17 | 30.52 | 19.88 | 40.69 | 30.05 | 56.00 | 46.00 | -15.31 | -15.95 | | | 4 | 1.57031 | 10.17 | 30.32 | 20.41 | 40.49 | 30.58 | 56.00 | 46.00 | -15.51 | -15.42 | | | 5 | 8.85156 | 10.71 | 29.10 | 19.46 | 39.81 | 30.17 | 60.00 | 50.00 | -20.19 | -19.83 | | | 6 | 21.16775 | 11.61 | 33.26 | 24.72 | 44.87 | 36.33 | 60.00 | 50.00 | -15.13 | -13.67 | | #### Remarks: - 1. Q.P. and AV. are abbreviations of quasi-peak and average individually. - 2. The emission levels of other frequencies were very low against the limit. - 3. Margin value = Emission level Limit value - 4. Correction factor = Insertion loss + Cable loss - 5. Emission Level = Correction Factor + Reading Value Report No.: RF171204E07-4 Page No. 28 / 33 Report Format Version: 6.1.2 | Phase | Neutral (N) | Detector Function | Quasi-Peak (QP) /
Average (AV) | |-------|-------------|-------------------|-----------------------------------| | | | | Average (Av) | | | Phase Of Power : Neutral (N) | | | | | | | | | | | | |----|------------------------------|-------------------|-------|----------------------|-------|-------|-------|-------|-----------------|--------|----------------|--| | No | Frequency | Correction Factor | | Reading Value (dBuV) | | _ | | | Limit
(dBuV) | | Margin
(dB) | | | | (MHz) | (dB) | Q.P. | AV. | Q.P. | AV. | Q.P. | AV. | Q.P. | AV. | | | | 1 | 0.15391 | 10.07 | 26.94 | 18.28 | 37.01 | 28.35 | 65.79 | 55.79 | -28.78 | -27.44 | | | | 2 | 0.49494 | 10.12 | 38.73 | 27.51 | 48.85 | 37.63 | 56.08 | 46.08 | -7.23 | -8.45 | | | | 3 | 0.56016 | 10.12 | 23.99 | 11.19 | 34.11 | 21.31 | 56.00 | 46.00 | -21.89 | -24.69 | | | | 4 | 0.90000 | 10.13 | 26.72 | 14.13 | 36.85 | 24.26 | 56.00 | 46.00 | -19.15 | -21.74 | | | | 5 | 8.85938 | 10.62 | 28.06 | 17.28 | 38.68 | 27.90 | 60.00 | 50.00 | -21.32 | -22.10 | | | | 6 | 21.16969 | 11.29 | 35.28 | 24.39 | 46.57 | 35.68 | 60.00 | 50.00 | -13.43 | -14.32 | | | #### Remarks: - 1. Q.P. and AV. are abbreviations of quasi-peak and average individually. - 2. The emission levels of other frequencies were very low against the limit. - 3. Margin value = Emission level Limit value - 4. Correction factor = Insertion loss + Cable loss - 5. Emission Level = Correction Factor + Reading Value #### 4.3 Conducted Out of Band Emission Measurement #### 4.3.1 Limits of Conducted Out of Band Emission Measurement Below 30dB of the highest emission level of operating band (in 100kHz Resolution Bandwidth). #### 4.3.2 Test Setup #### 4.3.3 Test Instruments Refer to section 4.1.2 to get information of above instrument. #### 4.3.4 Test Procedures #### **MEASUREMENT PROCEDURE REF** - 1. Set the RBW = 100 kHz. - 2. Set the VBW ≥ 300 kHz. - 3. Detector = peak. - 4. Sweep time = auto couple. - 5. Trace mode = max hold. - 6. Allow trace to fully stabilize. - 7. Use the peak marker function to determine the maximum power level in any 100 kHz band segment within the fundamental EBW. ### **MEASUREMENT PROCEDURE OOBE** - 1. Set RBW = 100 kHz. - 2. Set VBW ≥ 300 kHz. - 3. Detector = peak. - 4. Sweep = auto couple. - 5. Trace Mode = max hold. - 6. Allow trace to fully stabilize. - 7. Use the peak marker function to determine the maximum amplitude level. #### 4.3.5 Deviation from Test Standard No deviation. #### 4.3.6 EUT Operating Conditions The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest channel frequencies individually. ### 4.3.7 Test Results The spectrum plots are attached on the following pages. D1 line indicates the highest level, and D2 line indicates the 30dB offset below D1. It shows compliance with the requirement. Report No.: RF171204E07-4 Page No. 30 / 33 Report Format Version: 6.1.2 ### 2.4GHz_802.11b CH1+5GHz_802.11ac (VHT20) CH165 | 5 Pictures of Test Arrangements | |---| | Please refer to the attached file (Test Setup Photo). | Report No.: RF171204E07-4 Page No. 32 / 33 Report Format Version: 6.1.2 ### Appendix - Information on the Testing Laboratories We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are accredited and approved according to ISO/IEC 17025. If you have any comments, please feel free to contact us at the following: Linko EMC/RF Lab Hsin Chu EMC/RF/Telecom Lab Tel: 886-2-26052180 Tel: 886-3-6668565 Fax: 886-2-26051924 Fax: 886-3-6668323 Hwa Ya EMC/RF/Safety Lab Tel: 886-3-3183232 Fax: 886-3-3270892 Email: service.adt@tw.bureauveritas.com Web Site: www.bureauveritas-adt.com The address and road map of all our labs can be found in our web site also. --- END --- Report No.: RF171204E07-4 Page No. 33 / 33 Report Format Version: 6.1.2