

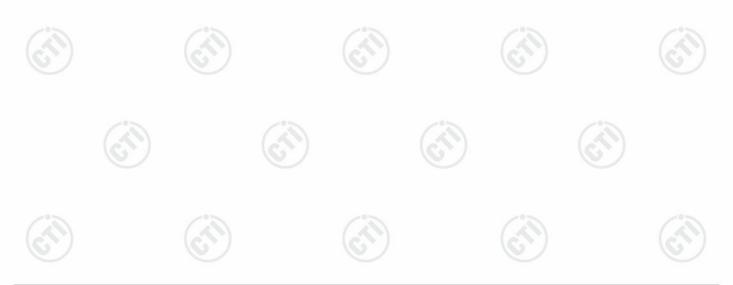
Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com

1 Contents

					i age
1 CONTENTS					2
2 VERSION					3
3 TEST SUMMARY				••••••	4
4 GENERAL INFORMATION	<u> </u>			•••••	5
4.1 CLIENT INFORMATION					-
4.2 GENERAL DESCRIPTION OF EUT					
4.3 TEST CONFIGURATION 4.4 TEST ENVIRONMENT					
4.4 TEST ENVIRONMENT					
5 TEST RESULTS AND MEASUREMEN	T DATA		•••••		13
5.1 ANTENNA REQUIREMENT					
5.2 AC POWER LINE CONDUCTED EMISSION	NS				14
5.3 MAXIMUM CONDUCTED OUTPUT POWE					
5.4 20DB EMISSION BANDWIDTH					
5.5 CARRIER FREQUENCY SEPARATION 5.6 NUMBER OF HOPPING CHANNEL					
5.6 NUMBER OF HOPPING CHANNEL					
5.8 BAND EDGE MEASUREMENTS					
5.9 CONDUCTED SPURIOUS EMISSIONS					
5.10 Pseudorandom Frequency Hoppin	G SEQUENCE				25
5.11 RADIATED SPURIOUS EMISSION & RES	STRICTED BANDS				27
6 APPENDIX BLUETOOTH CLASSIC	••••••	••••••		•••••	49
7 PHOTOGRAPHS OF TEST SETUP					
8 PHOTOGRAPHS OF EUT CONSTRUC	TIONAL DETA	ALS		••••••	

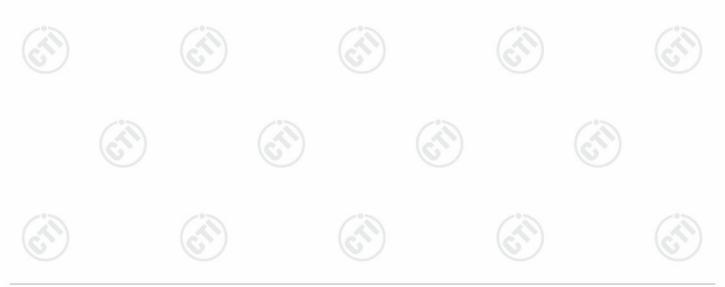
2 Version

Version No.	Date		Description	
00	Oct. 31, 2024	a	Original	13
		3 77		



Test Item	Test Requirement	Result
Antenna Requirement	47 CFR Part 15, Subpart C Section 15.203/15.247 (c)	PASS
AC Power Line Conducted Emission	47 CFR Part 15, Subpart C Section 15.207	PASS
Maximum Conducted Output Power	47 CFR Part 15, Subpart C Section 15.247 (b)(1)	PASS
20dB Emission Bandwidth	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	PASS
Carrier Frequency Separation	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	PASS
Number of Hopping Channels	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	PASS
Time of Occupancy	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	PASS
Pseudorandom Frequency Hopping Sequence	47 CFR Part 15, Subpart C Section 15.247(b)(4)	PASS
Band Edge Measurements	47 CFR Part 15, Subpart C Section 15.247(d)	PASS
Conducted Spurious Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	PASS
Radiated Spurious emissions	47 CFR Part 15, Subpart C Section 15.205/15.209	PASS
Restricted bands around fundamental frequency	47 CFR Part 15, Subpart C Section 15.205/15.209	PASS

Remark: Company Name and Address shown on Report, the sample(s) and sample Information were provided by the applicant who should be responsible for the authenticity which CTI hasn't verified.

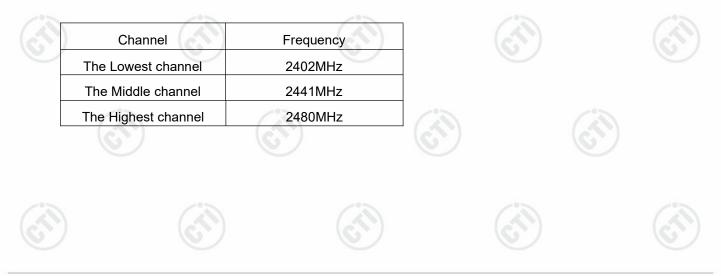

4 General Information

4.1 Client Information

Applicant:	Echelon Fitness Multimedia, LLC
Address of Applicant:	605 Chestnut Street Suite 700, Chattanooga, TN USA 37450
Manufacturer:	Guangzhou Yuandong Smart Sports Technology Co., Ltd
Address of Manufacturer:	Room 192 Kezhu Road, Huangpu District, Guangzhou
Factory:	Shandong Relax Sports Technology Co.,Ltd.
Address of Factory:	No. 101 Shantou Road, Rizhao, Shandong, China

4.2 General Description of EUT

Product Name:	Echelon Strength Cable Crossover Pro					
Model No.:	ECH-STCROSS-s-22					
Trade Mark:	Echelon					
Product Type:	Mobile Portable Fixed Location	(\mathcal{O})				
Operation Frequency:	2402MHz~2480MHz					
Modulation Technique:	Frequency Hopping Spread Spectrum(FHSS)					
Modulation Type:	GFSK, π/4DQPSK, 8DPSK					
Number of Channel:	79					
Hopping Channel Type:	Adaptive Frequency Hopping systems					
Antenna Type:	FPC Antenna					
Antenna Gain:	3.62dBi	13				
Power Supply:	Adapter: DC12V	(\mathcal{C})				
Test Voltage:	DC12V					
Sample Received Date:	Jul. 23, 2024					
Sample tested Date:	Jul. 23, 2024 to Aug. 14, 2024					

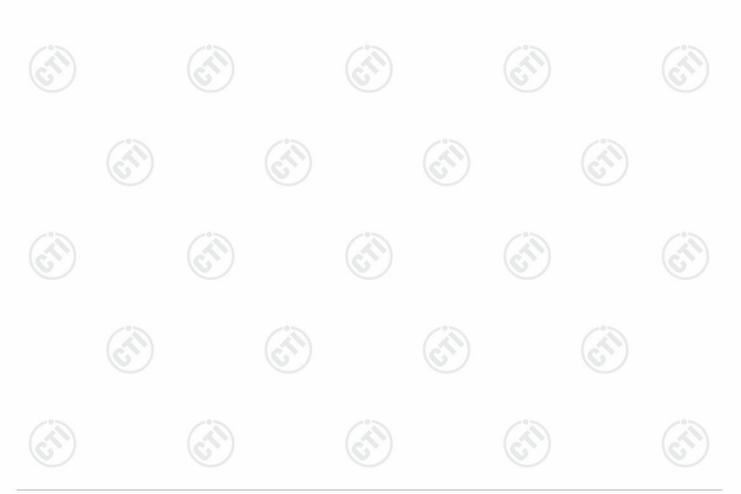


Page 6 of 52

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	20	2422MHz	40	2442MHz	60	2462MHz
1	2403MHz	21	2423MHz	41	2443MHz	61	2463MHz
2	2404MHz	22	2424MHz	42	2444MHz	62	2464MHz
3	2405MHz	23	2425MHz	43	2445MHz	63	2465MHz
4	2406MHz	24	2426MHz	44	2446MHz	64	2466MHz
5	2407MHz	25	2427MHz	45	2447MHz	65	2467MHz
6	2408MHz	26	2428MHz	46	2448MHz	66	2468MHz
7	2409MHz	27	2429MHz	47	2449MHz	67	2469MHz
8	2410MHz	28	2430MHz	48	2450MHz	68	2470MHz
9	2411MHz	29	2431MHz	49	2451MHz	69	2471MHz
10	2412MHz	30	2432MHz	50	2452MHz	70	2472MHz
11	2413MHz	31	2433MHz	51	2453MHz	71	2473MHz
12	2414MHz	32	2434MHz	52	2454MHz	72	2474MHz
13	2415MHz	33	2435MHz	53	2455MHz	73	2475MHz
14	2416MHz	34	2436MHz	54	2456MHz	74	2476MHz
15	2417MHz	35	2437MHz	55	2457MHz	75	2477MHz
16	2418MHz	36	2438MHz	56	2458MHz	76	2478MHz
17	2419MHz	37	2439MHz	57	2459MHz	77	2479MHz
18	2420MHz	38	2440MHz	58	2460MHz	78	2480MHz
19	2421MHz	39	2441MHz	59	2461MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:



4.3 Test Configuration

Software:	adb.exe	
EUT Power Grade:		parameters and cannot be changed an
Use test software to set the lo transmitting of the EUT.	owest frequency, the middle frequency a	and the highest frequency keep
Mode	Channel	Frequency(MHz)
	СНО	2402
DH1/DH3/DH5	СН39	2441
	CH78	2480
	СНО	2402
2DH1/2DH3/2DH5	СН39	2441
	CH78	2480
	СНО	2402
3DH1/3DH3/3DH5	СН39	2441
	CH78	2480

4.4 Test Environment

	(~)				(~)	
	Operating Environment	t:				
	Radiated Spurious Emi	ssions:				
	Temperature:	22~25.0 °C				
	Humidity:	50~55 % RH		(in)		6
)	Atmospheric Pressure:	1010mbar		(\mathcal{C})		6
	Conducted Emissions:	·				
	Temperature:	22~25.0 °C				
	Humidity:	50~55 % RH	23		2°2	
	Atmospheric Pressure:	1010mbar	(\mathcal{A})			
	RF Conducted:					
	Temperature:	22~25.0 °C				
	Humidity:	50~55 % RH				
1	Atmospheric Pressure:	1010mbar				
)						67

4.5 Description of Support Units

The EUT has been tested with associated equipment below.

1) support equipment

Description	Manufacturer	Model No.	Certification	Supplied by
Netbook	HP	DESKTOP-	FCC&CE	СТІ
	~	H31GDCQ	1	

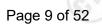
4.6 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd

Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385 No tests were sub-contracted.

FCC Designation No.: CN1164



4.7 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty	
1	Radio Frequency	7.9 x 10 ⁻⁸	
2	PE nower conducted	0.46dB (30MHz-1GHz)	
2	RF power, conducted	0.55dB (1GHz-40GHz)	
	- (IS) (IS)	3.3dB (9kHz-30MHz)	
3	Dedicted Sourieus emission test	4.3dB (30MHz-1GHz)	
3 Raula	Radiated Spurious emission test	4.5dB (1GHz-18GHz)	
		3.4dB (18GHz-40GHz)	
4	Conduction omission	3.5dB (9kHz to 150kHz)	
4	Conduction emission	3.1dB (150kHz to 30MHz)	
5	Temperature test	0.64°C	
6	Humidity test	3.8%	
7	DC power voltages	0.026%	

Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com

4.8 Equipment List

		RF te	st system		
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Communication test set	R&S	CMW500	107929	06-26-2024	06-25-2025
Signal Generator	R&S	SMBV100A	1407.6004K02- 262149-CV	09-05-2023	09-04-2024
Spectrum Analyzer	R&S	FSV40	101200	07-18-2024	07-17-2025
RF control unit(power unit)	MWRF-test	MW100-RFCB	MW220620CTI-42	06-25-2024	06-24-2025
High-low temperature test chamber	Dong Guang Qin Zhuo	LK-80GA	QZ20150611879	11-12-2023	12-10-2024
Temperature/ Humidity Indicator	biaozhi	НМ10	1804186	05-29-2024	05-28-2025
BT&WI-FI Automatic test software	MWRF-test	MTS 8310	V2.0.0.0		(
Spectrum Analyzer	R&S	FSV3044	101509	01-17-2024	01-16-2025

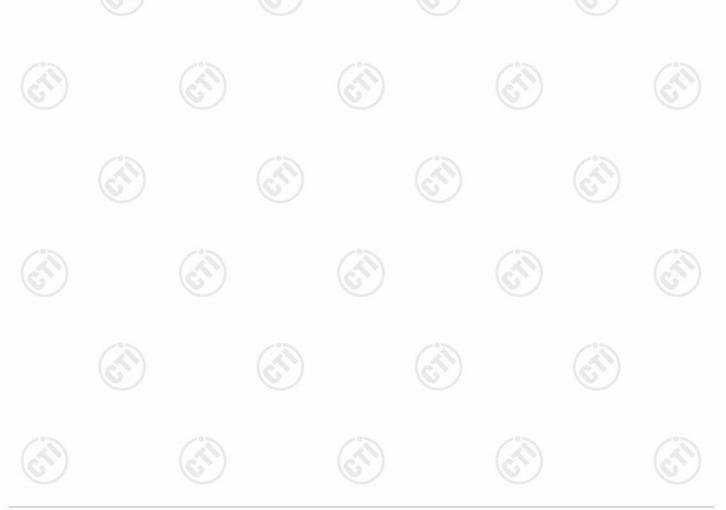
			Serial	Cal. date	Cal. Due date
Equipment	Manufacturer	Model No.	Number	(mm-dd-yyyy)	(mm-dd-yyyy
Receiver	R&S	ESCI	100435	04-18-2024	04-17-2025
Temperature/ Humidity Indicator	Defu	TH128		04-25-2024	04-24-2025
LISN	R&S	ENV216	100098	09-22-2023	09-21-2024
Barometer	changchun	DYM3	1188		
Test software	Fara	EZ-EMC	EMC-CON 3A1.1	~~	
Capacitive voltage probe	Schwarzbeck	CVP 9222C	00124	06-18-2024	06-17-2025

ISN		FESEQ	ISN T	800	30297	12-14-2023	12-13-2024
	3M Semi-ar	nechoic Cha	amber (2)	- Radiat	ed disturba	ance Test	
Equipment	Manufacturer	Mod	lel	Seri	ial No.	Cal. Date	Due Date
3M Chamber & Accessory Equipment	трк	SAC	-3)		05/22/2022	05/21/2025
Receiver	R&S	ESC	217	1009	38-003	09/22/2023	09/21/2024
Spectrum Analyzer	R&S	FSV	40	10	1200	07/18/2024	07/17/2025
TRILOG Broadband Antenna	schwarzbeck	VULB	VULB 9163		3-618	05/22/2022	05/21/2025
Loop Antenna	Schwarzbeck	FMZB 1	519B	1519	9B-076	04/16/2024	04/15/2025
Microwave Preamplifier	Tonscend	EMC051	EMC051845SE		0380	12/14/2023	12/13/2024
Horn Antenna	A.H.SYSTEMS	SAS-	574	3	374	07/02/2023	07/01/2026
Horn Antenna	ETS-LINGREN	BBHA 9	120D	9120	D-1869	04/16/2024	04/15/2025
Preamplifier	Agilent	1190	9A	1	2-1	03/22/2024	03/21/2025
Preamplifier	CD	PAP-18	40-60	604	1.6042	06/19/2024	06/18/2025
Test software	Fara	EZ-E	мс	EMEC	-3A1-Pre	-	
Cable line	Fulai(7M)	SF1	SF106		19/6A		
Cable line	Fulai(6M)	SF1	SF106		20/6A		
Cable line	Fulai(3M)	SF1	06	52 ⁻	16/6A		
Cable line	Fulai(3M)	SF1	06	52	17/6A	$\underline{\circ}$	

Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com

		3M full-anechoi	c Chamber	I	1	
Equipment Manufacturer		Manufacturer Model No.		Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)	
RSE Automatic test software	JS Tonscend	JS36-RSE	10166	(\mathbb{R})	(2	
Receiver	Keysight	N9038A	MY57290136	01-09-2024	01-08-2025	
Spectrum Analyzer	Keysight	N9020B	MY57111112	01-19-2024	01-18-2025	
Spectrum Analyzer	Keysight	N9030B	MY57140871	01-13-2024	01-12-2025	
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-28-2024	04-27-2025	
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-16-2024	04-15-2025	
Horn Antenna	ETS-LINDGREN	3117	57407	07-03-2024	07-02-2025	
Preamplifier	Tonscend	EMC051845SE	980380	12-14-2023	12-13-2024	
Preamplifier	EMCI	EMC001330	980563	03-08-2024	03-07-2025	
Preamplifier	JS Tonscend	TAP-011858	AP21B806112	07-18-2024	07-17-2025	
Communication test set	R&S	CMW500	102898	12-14-2023	12-13-2024	
Temperature/ Humidity Indicator	biaozhi	GM1360	EE1186631	04-07-2024	04-06-2025	
Fully Anechoic Chamber	TDK	FAC-3		01-09-2024	01-08-2027	
Cable line	Times	SFT205-NMSM-2.50M	394812-0001	(<u>()</u>	
Cable line	Times	SFT205-NMSM-2.50M	394812-0002			
Cable line	Times	SFT205-NMSM-2.50M	394812-0003		>	
Cable line	Times	SFT205-NMSM-2.50M	393495-0001		(ć	
Cable line	Times	EMC104-NMNM-1000	SN160710			
Cable line	Times	SFT205-NMSM-3.00M	394813-0001			
Cable line	Times	SFT205-NMNM-1.50M	381964-0001	(s)	
Cable line	Times	SFT205-NMSM-7.00M	394815-0001			
Cable line	Times	HF160-KMKM-3.00M	393493-0001		/	

CTI 华测检测 Report No.: EED32Q80705102



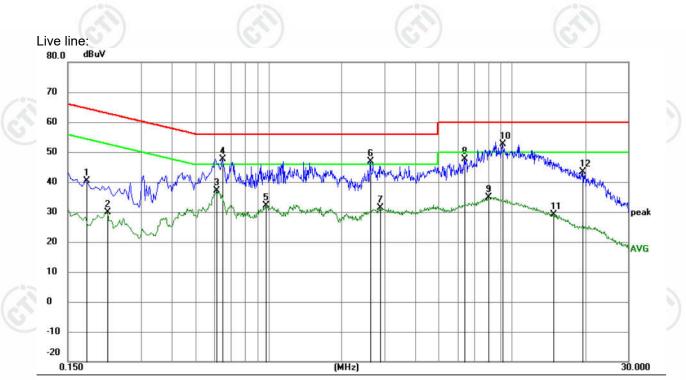
5 Test results and Measurement Data

5.1 Antenna Requirement

Standard requirement:	47 CFR Part 15C Section 15.203 /247(c)
15.203 requirement:	
responsible party shall be u antenna that uses a unique	I be designed to ensure that no antenna other than that furnished by the used with the device. The use of a permanently attached antenna or of an e coupling to the intentional radiator, the manufacturer may design the unit an be replaced by the user, but the use of a standard antenna jack or ibited.
antennas with directional g section, if transmitting ante power from the intentional	er limit specified in paragraph (b) of this section is based on the use of ains that do not exceed 6 dBi. Except as shown in paragraph (c) of this nnas of directional gain greater than 6 dBi are used, the conducted output radiator shall be reduced below the stated values in paragraphs (b)(1), ction, as appropriate, by the amount in dB that the directional gain of the
EUT Antenna:	Please see Internal photos

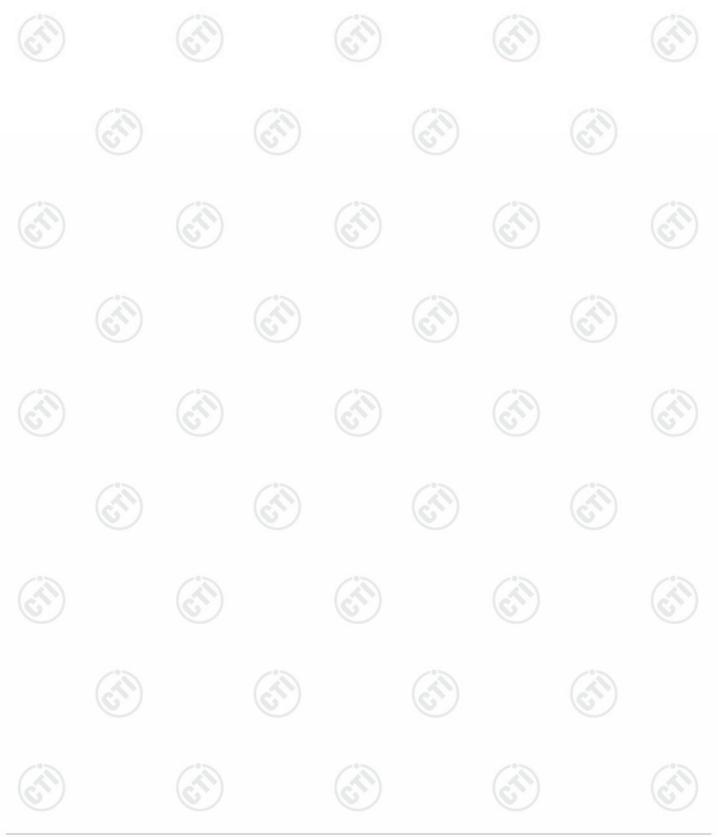
The antenna is FPC antenna. The best case gain of the antenna is 3.62dBi.

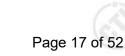
5.2 AC Power Line Conducted Emissions

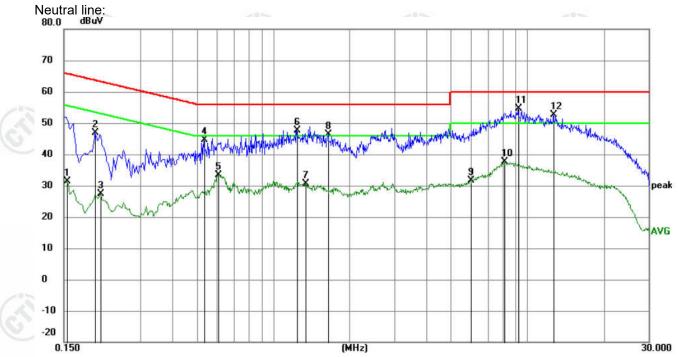

5.2	AC Power Line Cor	nducted Emissions							
	Test Requirement:	47 CFR Part 15C Section 15.	207	(67)					
	Test Method:	ANSI C63.10: 2013							
	Test Frequency Range:	150kHz to 30MHz							
201	Receiver setup:	RBW=9 kHz, VBW=30 kHz, S	weep time=auto	10					
4	Limit:	Limit (dBuV)							
2		Frequency range (MHz)	Quasi-peak	Average					
		0.15-0.5	66 to 56*	56 to 46*					
		0.5-5	56	46					
		5-30	60	50					
		* Decreases with the logarithr	A 3						
	Test Setup:	Shielding Room	AE E B Ground Reference Plane	Test Receiver					
	Test Procedure:	 The mains terminal distur room. The EUT was connected to Impedance Stabilization N impedance. The power ca connected to a second LIS reference plane in the sam 	o AC power source thro etwork) which provides bles of all other units o SN 2, which was bonde	ough a LISN 1 (Line s a 50Ω/50μH + 5Ω line f the EUT were d to the ground					
		 measured. A multiple sock power cables to a single L exceeded. 3) The tabletop EUT was placed on the horizontal ground reference plane. A placed on the horizontal ground reference plane of the EUT shall be 0.4 m vertical ground reference plane. The LISN unit under test and bonded mounted on top of the group between the closest points the EUT and associated e 	tet outlet strip was used ISN provided the rating ced upon a non-metalli nd for floor-standing ar round reference plane, th a vertical ground ref from the vertical ground plane was bonded to the 1 was placed 0.8 m fr d to a ground reference und reference plane. The s of the LISN 1 and the	d to connect multiple of the LISN was not c table 0.8m above the rangement, the EUT w erence plane. The real d reference plane. The real for LISNs his distance was EUT. All other units of					

		equipment and all of the interface cables must be changed accordi ANSI C63.10: 2013 on conducted measurement.	
	Exploratory Test Mode:	Non-hopping transmitting mode with all kind of modulation and all kind data type at the lowest, middle, high channel.	I OT
0	Final Test Mode:	Through Pre-scan, find the DH5 of data type and GFSK modulatio lowest channel is the worst case. Only the worst case is recorded in the report.	n at the
6	Test Results:	Pass	6)

Measurement Data


No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin			
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment	
1	0.1787	30.54	9.86	40.40	64.55	-24.15	QP		
2	0.2175	20.03	9.81	29.84	52.91	-23.07	AVG		10
3	0.6134	27.44	9.65	37.09	46.00	- <mark>8</mark> .91	AVG		
4	0.6450	37.86	9.77	47.63	56.00	-8.37	QP		
5	0.9780	22.30	9.76	32.06	46.00	-13.94	AVG		;
6	2.6204	37.16	9.77	46.93	56.00	-9.07	QP		
7	2.8770	21.68	9.78	31.46	46.00	-14.54	AVG		
8	6.4050	37.66	9.85	47.51	60.00	-12.49	QP		
9	8.0160	25.07	9.84	34.91	50.00	-15.09	AVG		
10 *	9.1140	42.71	9.84	52.55	60.00	-7.45	QP		
11	14.8245	19.21	9.85	29.06	50.00	-20.94	AVG		
12	19.4820	33.28	10.02	43.30	60.00	-16.70	QP		
emark:		6			6)		(C)	G




- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	0.1545	21.49	9.85	31.34	55.75	-24.41	AVG	
2	0.1995	37.13	9.87	47.00	63.63	-16.63	QP	
3	0.2085	17.50	9.84	27.34	53.26	-25.92	AVG	
4	0.5325	34.98	9.72	44.70	56.00	-11.30	QP	
5	0.6045	23.84	9.61	33.45	46.00	-12.55	AVG	
6	1.2390	37.89	9.74	47.63	56.00	-8.37	QP	
7	1.3425	20.99	9.74	30.73	46.00	-15.27	AVG	
8	1.6485	36.60	9.75	46.35	56.00	-9.65	QP	
9	5.9909	21.83	9.84	31.67	50.00	-18.33	AVG	
10	8.1105	27.78	9.84	37.62	50.00	-12.38	AVG	
11 *	9.2175	44.78	9.84	54.62	60.00	-5.38	QP	
12	12.6600	42.68	9.84	52.52	60.00	-7.48	QP	

Remark:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

5.3 Maximum Conducted Output Power

	Test Requirement:	47 CFR Part 15C Section 15.247 (b)(1)					
	Test Method:	ANSI C63.10:2013					
	Test Setup:	RF test Control Control Control Control Control Control Control Control Control Control Control Control Control Power Power Power Toble RF test System Instrument					
		Remark: Offset=Cable loss+ attenuation factor.					
	Test Procedure:	Use the following spectrum analyzer settings: Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel RBW > the 20 dB bandwidth of the emission being measured VBW ≥ RBW Sweep = auto Detector function = peak Trace = max hold Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission.					
	Limit:	21dBm					
2	Exploratory Test Mode:	Non-hopping transmitting with all kind of modulation and all kind of data type					
	Final Test Mode: Through Pre-scan, find the DH5 of data type is the worst cas modulation type, 2-DH5 of data type is the worst case of modulation type, 3-DH5 of data type is the worst case of 8DPSK type.						
	Test Results:	Refer to Appendix Bluetooth Classic					
	(S)	S S S					

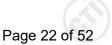


5.4 20dB Emission Bandwidth

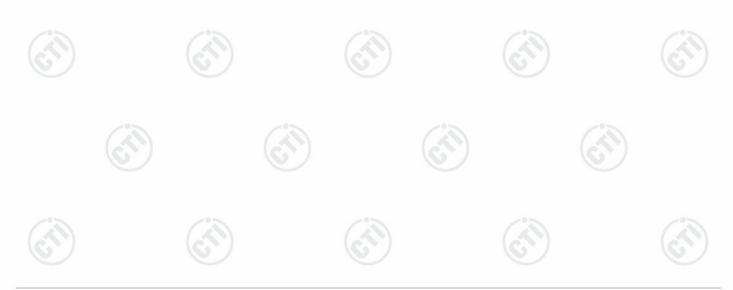
	Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)
	Test Method:	ANSI C63.10:2013
Ś	Test Setup:	Control Control Control Control Control Control Control Control Control Control Control Power Suppy Control Attenuator Table RF test System Instrument
(K)	Test Procedure:	 Remark: Offset=Cable loss+ attenuation factor. 1. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. 2. Set to the maximum power setting and enable the EUT transmit continuously. 3. Use the following spectrum analyzer settings for 20dB Bandwidth measurement. Span = approximately 2 to 5 times the 20 dB bandwidth, centered on a hopping channel; 1%≤RBW ≤5% of the 20 dB bandwidth; VBW≥3RBW; Sweep = auto; Detector function = peak; Trace = max hold. 4. Measure and record the results in the test report.
	Limit:	NA
	Exploratory Test Mode:	Non-hopping transmitting with all kind of modulation and all kind of data type
٤Ì	Final Test Mode:	Through Pre-scan, find the DH5 of data type is the worst case of GFSK modulation type, 2-DH5 of data type is the worst case of π /4DQPSK modulation type, 3-DH5 of data type is the worst case of 8DPSK modulation type.
	Test Results:	Refer to Appendix Bluetooth Classic
	G	

5.5 Carrier Frequency Separation

•.•	ounierriequonoy	oopulation
	Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)
	Test Method:	ANSI C63.10:2013
	Test Setup:	RF test Control Computer Computer Power Supply Table RF test System Instrument
		Remark: Offset=Cable loss+ attenuation factor.
	Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = wide enough to capture the peaks of two adjacent channels; RBW is set to approximately 30% of the channel spacing, adjust as necessary to best identify the center of each individual channel; VBW≥RBW; Sweep = auto; Detector function = peak; Trace = max hold. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. Record the value in report.
	Limit:	Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.
	Exploratory Test Mode:	Hopping transmitting with all kind of modulation and all kind of data type
	Final Test Mode:	Through Pre-scan, find the DH5 of data type is the worst case of GFSK modulation type, 2-DH5 of data type is the worst case of π /4DQPSK modulation type, 3-DH5 of data type is the worst case of 8DPSK modulation type.
(đ	Test Results:	Refer to Appendix Bluetooth Classic

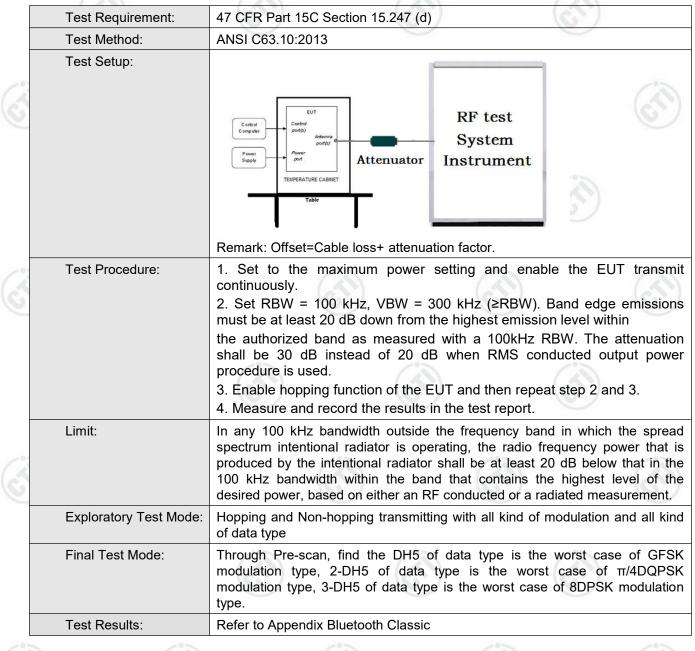

5.6 Number of Hopping Channel

(25)						
Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)					
Test Method:	ANSI C63.10:2013					
Test Setup:	Control Computer Power Supply Power TEMPERATURE CABINET Table					
Test Procedure:	Remark: Offset=Cable loss+ attenuation factor. 1. The RF output of EUT was connected to the spectrum analyzer by RF					
<u>ی</u>	 cable and attenuator. The path loss was compensated to the results for each measurement. 2. Set to the maximum power setting and enable the EUT transmicontinuously. 3. Enable the EUT hopping function. 					
	 4. Use the following spectrum analyzer settings: Span = the frequency band of operation; set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller; VBW≥RBW; Sweep= auto; Detector function = peak; Trace = max hold. 					
3	5. The number of hopping frequency used is defined as the number of total channel.6. Record the measurement data in report.					
Limit:	Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.					
Test Mode:	Hopping transmitting with all kind of modulation					
Test Results:	Refer to Appendix Bluetooth Classic					
Test Mode:	total channel. 6. Record the measurement data in report. Frequency hopping systems in the 2400-2483.5 MHz band shall use a least 15 channels. Hopping transmitting with all kind of modulation					
Test Results.						



5.7 Time of Occupancy

	Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)
	Test Method:	ANSI C63.10:2013
	Test Setup:	Control Control Computer Power Suppy TemPERATURE CABNET Table
		Remark: Offset=Cable loss+ attenuation factor.
	Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel; RBW shall be ≤ channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel; VBW≥RBW; Sweep = as necessary to capture the entire dwell time per hopping channel; Detector function = peak; Trace = max hold. Measure and record the results in the test report.
<u>े</u>	Limit:	The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.
	Test Mode:	Hopping transmitting with all kind of modulation and all kind of data type.
	Test Results:	Refer to Appendix Bluetooth Classic
	C.	



5.8 **Band edge Measurements**

5.9 Conducted Spurious Emissions

· · · · · · · · · · · · · · · · · · ·	47 CFR Part 15C Section 15.247 (d)
	ANSI C63.10:2013
Test Setup:	Control Power Power Power TemPERATURE CABINET Table
	Remark: Offset=Cable loss+ attenuation factor.
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Set RBW = 100 kHz, VBW = 300kHz, scan up through 10th harmonic. All harmonics / spurs must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. Measure and record the results in the test report. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Exploratory Test Mode:	Non-hopping transmitting with all kind of modulation and all kind of data type
Final Test Mode:	Through Pre-scan, find the DH5 of data type is the worst case of GFSK modulation type, 2-DH5 of data type is the worst case of π /4DQPSK modulation type, 3-DH5 of data type is the worst case of 8DPSK modulation type.
	Limit: Exploratory Test Mode:

Page 25 of 52

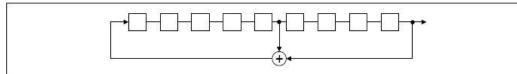
5.10 Pseudorandom Frequency Hopping Sequence

Test Requirement:

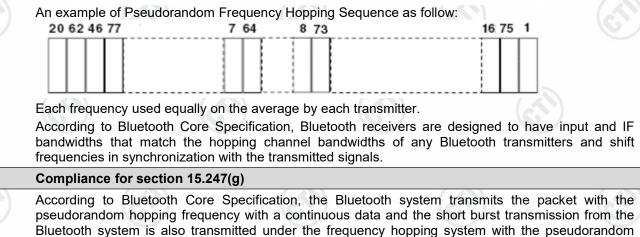
47 CFR Part 15C Section 15.247 (a)(1), (h) requirement:

The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmitter be presented with a continuous data (or information) stream. In addition, a system employing short transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmissions over the minimum number of hopping channels specified in this section.


The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hopsets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

Compliance for section 15.247(a)(1)

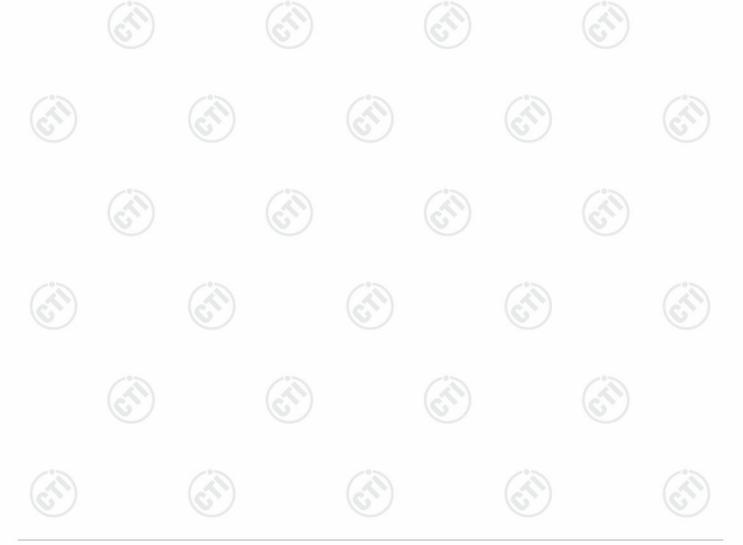

According to Bluetooth Core Specification, the pseudorandom sequence may be generated in a ninestage shift register whose 5th and 9th stage

outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

- Number of shift register stages: 9
- Length of pseudo-random sequence: 29 -1 = 511 bits
- · Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

Report No. : EED32Q80705102


Page 26 of 52

hopping frequency system.

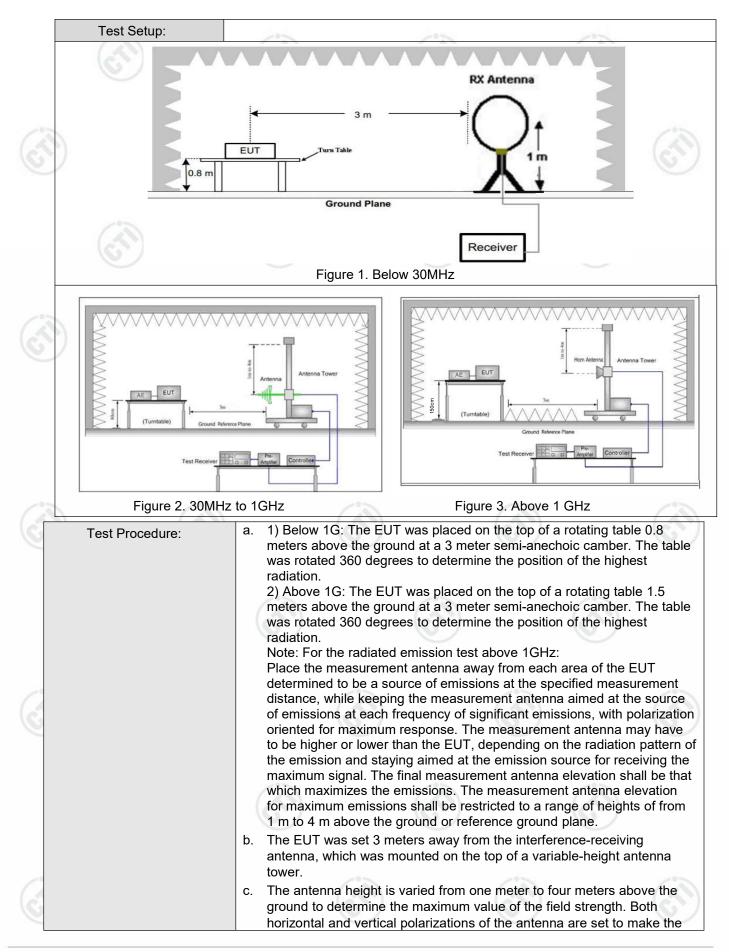
Compliance for section 15.247(h)

According to Bluetooth Core specification, the Bluetooth system incorporates with an adaptive system to detect other user within the spectrum band so that it individually and independently to avoid hopping on the occupied channels.

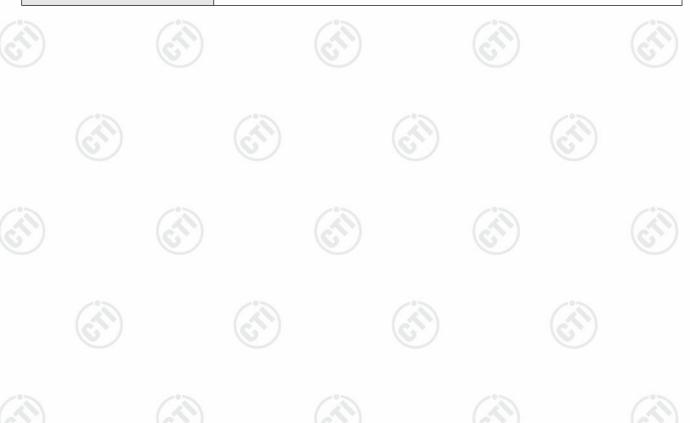
According to the Bluetooth Core specification, the Bluetooth system is designed not have the ability to coordinated with other FHSS System in an effort to avoid the simultaneous occupancy of individual hopping frequencies by multiple transmitter.

5.11 Radiated Spurious Emission & Restricted bands

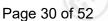
	Test Requirement:	47 CFR Part 15C Secti	on 1	5.209 and 15	.205	G)	
	Test Method:	ANSI C63.10: 2013		\smile		\bigcirc	e	
	Test Site:	Measurement Distance	e: 3m	n (Semi-Anech	noic Cham	ber)		
	Receiver Setup:	Frequency		Detector	RBW	VBW	Remark	
		0.009MHz-0.090MH	lz	Peak	10kHz	30kHz	Peak	
-		0.009MHz-0.090MH	z	Average	10kHz	30kHz	Average	
		0.090MHz-0.110MH	z	Quasi-peak	10kHz	: 30kHz	Quasi-peak	
		0.110MHz-0.490MH	z	Peak	10kHz	30kHz	Peak	
		0.110MHz-0.490MH	z	Average	10kHz	30kHz	Average	
		0.490MHz -30MHz	<u>.</u>	Quasi-peak	10kHz	30kHz	Quasi-peak	
		30MHz-1GHz		Peak	100 kH	z 300kHz	Peak	
		Above 1GHz		Peak	1MHz	3MHz	Peak	
		Above 1GHz		Peak	1MHz	10kHz	Average	
	Limit:	Frequency		eld strength crovolt/meter)	Limit (dBuV/m)	Remark	Measuremen distance (m)	
		0.009MHz-0.490MHz	2	400/F(kHz)	-	-	300	
		0.490MHz-1.705MHz	24	1000/F(kHz)	-	-73	30	
		1.705MHz-30MHz		30	-	(G)	30	
		30MHz-88MHz		100	40.0	Quasi-peak	3	
		88MHz-216MHz		150	43.5	Quasi-peak	3	
		216MHz-960MHz		200	46.0	Quasi-peak	3	
		960MHz-1GHz) 	500	54.0	Quasi-peak	3	
-		Above 1GHz	/	500	54.0	Average	3	
		Note: 15.35(b), Unless emissions is 20df applicable to the peak emission lev	3 ab equi	ove the maxin pment under t	num permi est. This p	tted average	emission limit	



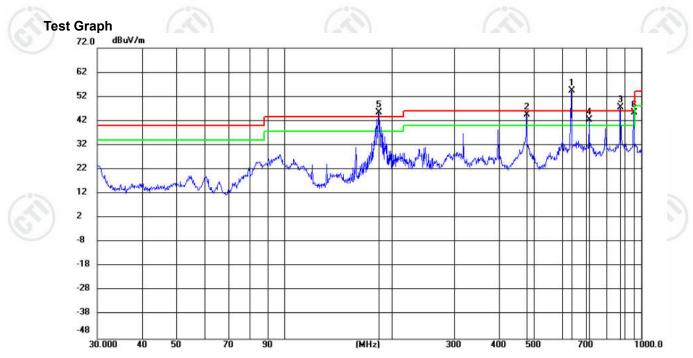
Page 28 of 52



Report No. : EED32Q80705102


		measurement.
		d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
C		e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
S)		f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
		 Test the EUT in the lowest channel (2402MHz), the middle channel (2441MHz), the Highest channel (2480MHz)
		h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
a		i. Repeat above procedures until all frequencies measured was complete.
Q	Exploratory Test Mode:	Non-hopping transmitting mode with all kind of modulation and all kind of data type
	Final Test Mode:	Through Pre-scan, find the DH5 of data type and GFSK modulation is the worst case.
		Pretest the EUT at Transmitting mode, For below 1GHz part, through pre- scan, the worst case is the lowest channel.
		Only the worst case is recorded in the report.
	Test Results:	Pass

Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com

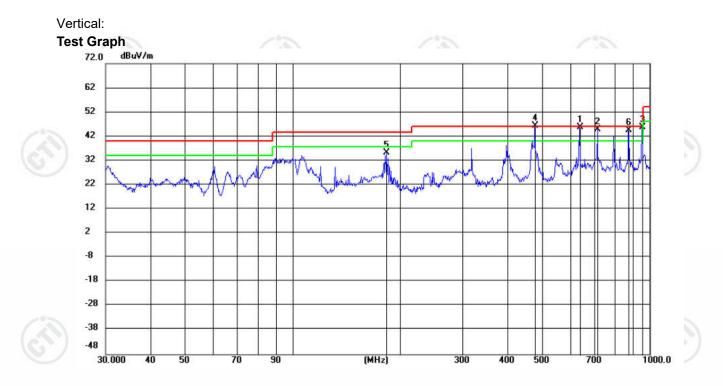


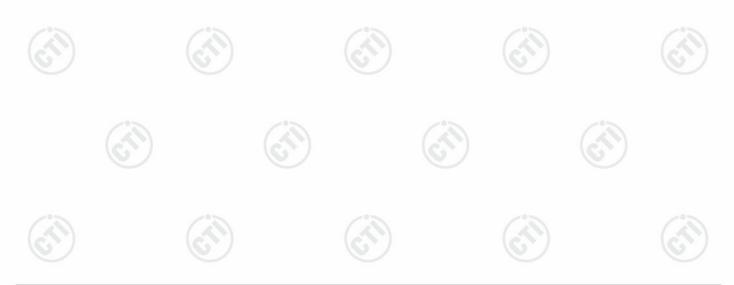
Radiated Spurious Emission below 1GHz:

During the test, the Radiates Emission from 30MHz to 1GHz was performed in all modes, only the worst case lowest channel of DH5 for GFSK was recorded in the report.

Horizontal:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	*	636.4687	30.61	23.77	54.38	46.00	8.38	QP	100	300	
2	I.	477.4204	24.21	20.40	44.61	46.00	-1.39	QP	200	60	
3	Х	875.2469	20.39	27.02	47.41	46.00	1.41	QP	200	28	
4		716.0540	18.09	24.47	42.56	46.00	-3.44	QP	100	311	
5	Х	183.8762	33.30	12.06	45.36	43.50	1.86	QP	100	152	
6	!	954.7683	17.78	27.73	45.51	46.00	-0.49	QP	200	316	


Note:Since the product was certified according to class A when it was certified 47 CFR Part 15 Subpart B, the data frequencies of the above fail were not generated by the wireless module, and these frequencies did not belong to 47 CFR Part 15 Subpart C section 15.205, so the evaluation could not be carried out, and the test passed.



Page 31 of 52

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	1	636.4687	21.91	23.77	45.68	46.00	-0.32	QP	100	7	
2	1	716.0540	20.47	24.47	44.94	46.00	-1.06	QP	100	7	
3	1	954.7683	17.98	27.73	45.71	46.00	-0.29	QP	100	61	
4	*	477.3367	25.81	20.40	46.21	46.00	0.21	QP	100	7	
5		183.8440	23.24	12.06	35.30	43.50	-8.20	QP	200	213	
6	!	875.2469	17.51	27.02	44.53	46.00	-1.47	QP	100	221	

Note:Since the product was certified according to class A when it was certified 47 CFR Part 15 Subpart B, the data frequencies of the above fail were not generated by the wireless module, and these frequencies did not belong to 47 CFR Part 15 Subpart C section 15.205, so the evaluation could not be carried out, and the test passed.

Radiated Spurious Emission above 1GHz:

_											
	Mode	:		GFSK Transm	itting		Channel:		2402 MHz	2	
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
-	1	1432.2432	8.11	40.02	48.13	74.00	25.87	Pass	Н	PK	
4	2	1997.2997	8.99	42.58	51.57	74.00	22.43	Pass	Н	PK	
2	3	3802.0535	-17.32	54.13	36.81	74.00	37.19	Pass	Н	PK	
	4	4782.1188	-13.50	54.60	41.10	74.00	32.90	Pass	Н	PK	
	5	6601.2401	-8.73	52.31	43.58	74.00	30.42	Pass	Н	PK	
	6	9607.4405	-1.87	48.81	46.94	74.00	27.06	Pass	Н	PK	
	7	1352.4352	7.98	41.23	49.21	74.00	24.79	Pass	V	PK	
	8	1750.275	8.49	39.69	48.18	74.00	25.82	Pass	V	PK	
	9	3960.064	-16.65	58.81	42.16	74.00	31.84	Pass	V	PK	
	10	4951.1301	-13.37	51.95	38.58	74.00	35.42	Pass	V	PK	
2	11	7205.2804	-7.82	59.04	51.22	74.00	22.78	Pass	V	PK	
3	12	9607.4405	-1.87	47.68	45.81	74.00	28.19	Pass	V	PK	
	1							//			

I	Mode	:		GFSK Transm	itting		Channel:		2441 MHz	2
	NO	Freq. [MHz]	Factor [dB]	r Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	1591.0591	7.99	38.10	46.09	74.00	27.91	Pass	н	PK
	2	1995.0995	8.99	42.85	51.84	74.00	22.16	Pass	н	PK
6	3	4118.0745	-15.62	2 55.36	39.74	74.00	34.26	Pass	Н	PK
K	4	6602.2401	-8.71	53.19	44.48	74.00	29.52	Pass	Н	PK
2	5	10340.4894	-1.47	47.29	45.82	74.00	28.18	Pass	Н	PK
	6	14110.7407	7.41	38.93	46.34	74.00	27.66	Pass	Н	PK
	7	1651.6652	8.27	37.39	45.66	74.00	28.34	Pass	V	PK
	8	1991.2991	8.99	37.81	46.80	74.00	27.20	Pass	V	PK
	9	3459.0306	-18.11	I 63.06	44.95	74.00	29.05	Pass	V	PK
	10	6599.2399	-8.74	52.72	43.98	74.00	30.02	Pass	V	PK
	11	9489.4326	-0.55	43.38	42.83	74.00	31.17	Pass	V	PK
	12	12171.6114	0.66	43.82	44.48	74.00	29.52	Pass	V	PK
0			105		105		205			-05

CTI 华测 检测

Report No. : EED32Q80705102

Page 33 of 52

	Mode	:	GI	SK Transmit	ting		Channel:		2480 MHz	Z
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	1432.0432	8.11	39.08	47.19	74.00	26.81	Pass	Н	PK
19	2	1994.8995	8.99	42.75	51.74	74.00	22.26	Pass	Н	PK
6	3	3580.0387	-17.74	55.13	37.39	74.00	36.61	Pass	Н	PK
1 al	4	4783.1189	-13.49	54.86	41.37	74.00	32.63	Pass	Н	PK
	5	6643.2429	-8.30	53.25	44.95	74.00	29.05	Pass	Н	PK
	6	9919.4613	-1.45	47.15	45.70	74.00	28.30	Pass	Н	PK
	7	1192.8193	7.93	40.04	47.97	74.00	26.03	Pass	V	PK
	8	1750.275	8.49	38.86	47.35	74.00	26.65	Pass	V	PK
	9	3720.048	-17.53	58.43	40.90	74.00	33.10	Pass	V	PK
	10	5279.1519	-12.00	53.76	41.76	74.00	32.24	Pass	V	PK
	11	6600.24	-8.74	52.52	43.78	74.00	30.22	Pass	V	PK
Cà	12	9920.4614	-1.45	46.18	44.73	74.00	29.27	Pass	V	PK
6	7		S		(C))	(C))		67

lode										
			π/4DQPSK Tra	nsmitting	_	Channel:		2402 MHz		
10	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
1	1352.6353	7.98	38.34	46.32	74.00	27.68	Pass	Н	PK	
2	1990.6991	8.99	40.99	49.98	74.00	24.02	Pass	Н	PK	
3	3478.0319	-18.07	58.73	40.66	74.00	33.34	Pass	Н	PK	
4	4777.1185	-13.51	54.84	41.33	74.00	32.67	Pass	Н	PK	
5	7205.2804	-7.82	53.27	45.45	74.00	28.55	Pass	Н	PK	
6	11015.5344	0.25	43.70	43.95	74.00	30.05	Pass	Н	PK	
7	1434.0434	8.10	37.73	45.83	74.00	28.17	Pass	V	PK	
8	1988.8989	8.99	37.23	46.22	74.00	27.78	Pass	V	PK	
9	3962.0641	-16.64	58.65	42.01	74.00	31.99	Pass	V	PK	
10	4804.1203	-13.44	58.67	45.23	74.00	28.77	Pass	V	PK	
11	7206.2804	-7.81	61.56	53.75	74.00	20.25	Pass	V	PK	
12	10900.5267	0.46	43.66	44.12	74.00	29.88	Pass	V	PK	
1	1 2 3 4 5 6 7 7 8 8 9 9 1 0	Image: Model [MHz] [MHz] 1 1352.6353 2 1990.6991 3 3478.0319 4 4777.1185 5 7205.2804 6 11015.5344 7 1434.0434 8 1988.8989 9 3962.0641 10 4804.1203 11 7206.2804	Image:	IO IMHz] [dB] [dBµV] 1 1352.6353 7.98 38.34 2 1990.6991 8.99 40.99 3 3478.0319 -18.07 58.73 4 4777.1185 -13.51 54.84 5 7205.2804 -7.82 53.27 6 11015.5344 0.25 43.70 7 1434.0434 8.10 37.73 8 1988.8989 8.99 37.23 9 3962.0641 -16.64 58.65 10 4804.1203 -13.44 58.67 11 7206.2804 -7.81 61.56	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	IOI.Hq. [MHz]I.Hq. [dB]I.Hq. [dBµV]I.Hq. [dBµV]Margin [dB]Result11352.63537.9838.3446.3274.0027.68Pass21990.69918.9940.9949.9874.0024.02Pass33478.0319-18.0758.7340.6674.0033.34Pass44777.1185-13.5154.8441.3374.0032.67Pass57205.2804-7.8253.2745.4574.0028.55Pass611015.53440.2543.7043.9574.0030.05Pass71434.04348.1037.7345.8374.0028.17Pass81988.89898.9937.2346.2274.0027.78Pass93962.0641-16.6458.6542.0174.0031.99Pass104804.1203-13.4458.6745.2374.0028.77Pass117206.2804-7.8161.5653.7574.0020.25Pass	IOIMHz][dB][dBµV][dBµV/m][dBµV/m][dBµV/m]Margin [dB]ResultPolarity11352.63537.9838.3446.3274.0027.68PassH21990.69918.9940.9949.9874.0024.02PassH33478.0319-18.0758.7340.6674.0033.34PassH44777.1185-13.5154.8441.3374.0032.67PassH57205.2804-7.8253.2745.4574.0028.55PassH611015.53440.2543.7043.9574.0030.05PassH71434.04348.1037.7345.8374.0028.17PassV81988.89898.9937.2346.2274.0027.78PassV93962.0641-16.6458.6542.0174.0031.99PassV104804.1203-13.4458.6745.2374.0028.77PassV117206.2804-7.8161.5653.7574.0020.25PassV	

CTI华测检测

Report No. : EED32Q80705102

Page 34 of 52

	Mode	:	π/-	4DQPSK Tra	nsmitting		Channel:		2441 MHz	<u>:</u>
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	1750.275	8.49	38.83	47.32	74.00	26.68	Pass	Н	PK
19	2	2091.7092	9.49	41.59	51.08	74.00	22.92	Pass	Н	PK
6	3	3480.032	-18.06	59.51	41.45	74.00	32.55	Pass	Н	PK
V	4	4781.1187	-13.50	54.33	40.83	74.00	33.17	Pass	Н	PK
	5	6596.2397	-8.77	53.28	44.51	74.00	29.49	Pass	Н	PK
	6	10816.5211	-0.40	45.00	44.60	74.00	29.40	Pass	Н	PK
	7	1499.4499	7.85	38.36	46.21	74.00	27.79	Pass	V	PK
	8	2119.712	9.59	38.83	48.42	74.00	25.58	Pass	V	PK
	9	3960.064	-16.65	59.23	42.58	74.00	31.42	Pass	V	PK
	10	6600.24	-8.74	52.25	43.51	74.00	30.49	Pass	V	PK
	11	9318.4212	-2.72	45.36	42.64	74.00	31.36	Pass	V	PK
(2	12	13328.6886	2.95	41.75	44.70	74.00	29.30	Pass	V	PK
6	7		(C)		0		6)	· · ·	67

	Mode	:		π/4DQPSK Tra	ansmitting		Channel:		2480 MHz	2
	NO	Freq. [MHz]	Facto [dB]	r Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	1432.2432	8.11	40.09	48.20	74.00	25.80	Pass	н	PK
	2	1993.2993	8.99	43.40	52.39	74.00	21.61	Pass	Н	PK
Ī	3	4120.0747	-15.61	55.19	39.58	74.00	34.42	Pass	Н	PK
ii)	4	5995.1997	-10.95	53.27	42.32	74.00	31.68	Pass	Н	PK
4	5	8094.3396	-2.83	45.12	42.29	74.00	31.71	Pass	н	PK
2	6	11097.5398	0.25	43.70	43.95	74.00	30.05	Pass	н	PK
	7	1485.2485	7.90	38.22	46.12	74.00	27.88	Pass	V	PK
	8	2119.912	9.59	40.06	49.65	74.00	24.35	Pass	V	PK
	9	3421.0281	-18.20	63.26	45.06	74.00	28.94	Pass	V	PK
Ī	10	5281.1521	-12.00	53.62	41.62	74.00	32.38	Pass	V	PK
Ī	11	6602.2401	-8.71	53.01	44.30	74.00	29.70	Pass	V	PK
Ī	12	9920.4614	-1.45	46.34	44.89	74.00	29.11	Pass	V	PK

CTI华测检测

Report No. : EED32Q80705102

Page 35 of 52

	Mode:			8DPSK Transmitting			Channel:		2402 MHz	
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	1511.8512	7.87	38.93	46.80	74.00	27.20	Pass	Н	PK
19	2	1998.4998	8.99	39.76	48.75	74.00	25.25	Pass	Н	PK
	3	3807.0538	-17.28	53.57	36.29	74.00	37.71	Pass	Н	PK
V	4	5309.1539	-11.91	50.77	38.86	74.00	35.14	Pass	Н	PK
	5	7205.2804	-7.82	52.73	44.91	74.00	29.09	Pass	Н	PK
	6	11036.5358	0.25	43.59	43.84	74.00	30.16	Pass	Н	PK
	7	1511.8512	7.87	38.39	46.26	74.00	27.74	Pass	V	PK
	8	1989.499	8.98	37.98	46.96	74.00	27.04	Pass	V	PK
	9	3603.0402	-17.66	57.50	39.84	74.00	34.16	Pass	V	PK
	10	4804.1203	-13.44	57.85	44.41	74.00	29.59	Pass	V	PK
C	11	7206.2804	-7.81	60.11	52.30	74.00	21.70	Pass	V	PK
	12	9852.4568	-2.55	45.04	42.49	74.00	31.51	Pass	V	PK
G	7		67		0)	6.)		6)

	Mode:			8DPSK Transm	itting	Channel:		2441 MHz		
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	1432.2432	8.11	39.10	47.21	74.00	26.79	Pass	Н	PK
	2	1996.6997	8.99	42.32	51.31	74.00	22.69	Pass	Н	PK
	3	3661.0441	-17.62	53.94	36.32	74.00	37.68	Pass	Н	PK
6	4	6102.2068	-10.26	49.48	39.22	74.00	34.78	Pass	Н	PK
4	5	8749.3833	-3.04	46.29	43.25	74.00	30.75	Pass	Н	PK
2	6	12895.6597	1.99	42.21	44.20	74.00	29.80	Pass	Н	PK
	7	1432.0432	8.11	39.08	47.19	74.00	26.81	Pass	V	PK
	8	1988.8989	8.99	37.49	46.48	74.00	27.52	Pass	V	PK
	9	3460.0307	-18.10	62.88	44.78	74.00	29.22	Pass	V	PK
Ī	10	4948.1299	-13.37	53.30	39.93	74.00	34.07	Pass	V	PK
Ī	11	7833.3222	-3.96	45.97	42.01	74.00	31.99	Pass	V	PK
Ī	12	11631.5754	0.63	43.18	43.81	74.00	30.19	Pass	V	PK

Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com

CTI 华测检测 Benert No : EED32080705103

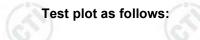
Page 36 of 52

Mode:			8DPSK Transmitting			Channel:		2480 MHz	
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1432.0432	8.11	39.08	47.19	74.00	26.81	Pass	н	PK
2	1995.6996	8.99	39.31	48.30	74.00	25.70	Pass	н	PK
3	4142.0761	-15.63	54.80	39.17	74.00	34.83	Pass	н	PK
4	6666.2444	-8.06	54.43	46.37	74.00	27.63	Pass	н	PK
5	9242.4162	-3.39	48.46	45.07	74.00	28.93	Pass	н	PK
6	12804.6536	1.90	42.23	44.13	74.00	29.87	Pass	н	PK
7	1431.8432	8.11	38.07	46.18	74.00	27.82	Pass	V	PK
8	1859.2859	8.76	37.15	45.91	74.00	28.09	Pass	V	PK
9	3460.0307	-18.10	63.04	44.94	74.00	29.06	Pass	V	PK
10	4778.1185	-13.50	55.41	41.91	74.00	32.09	Pass	V	PK
11	7387.2925	-6.60	46.71	40.11	74.00	33.89	Pass	V	PK
12	10841.5228	-0.14	44.19	44.05	74.00	29.95	Pass	V	PK
· /		10.7	1	16.7	1	102			1021

Remark:

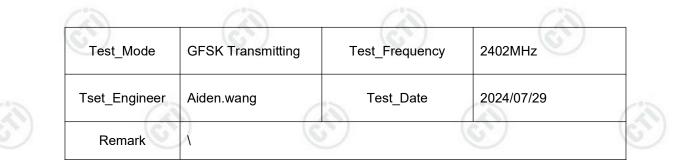
1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

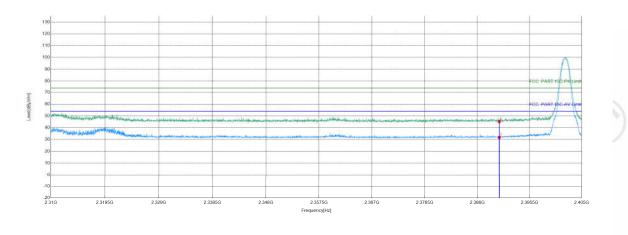
Final Test Level =Receiver Reading + Antenna Factor + Cable Factor – Preamplifier Factor

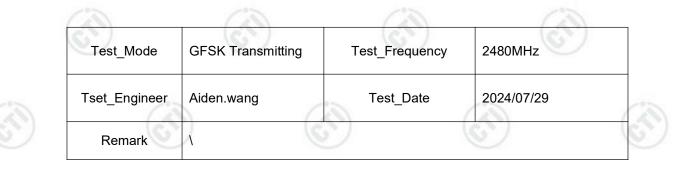

2) Scan from 9kHz to 25GHz, the disturbance above 10GHz and below 30MHz was very low. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak measurements were shown in the report.

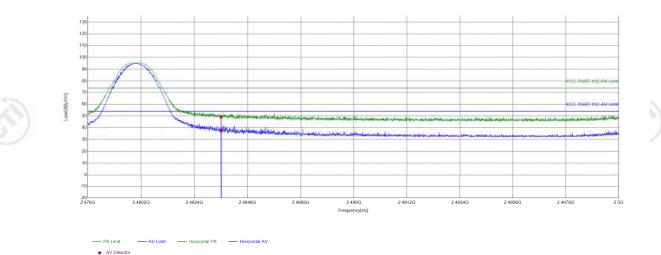
Γ

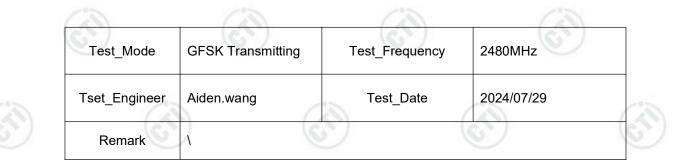
1	Test_Mode	GFSK Transmittir	ng Test_Freque	ency 2402MHz	20
	Tset_Engine	er Aiden.wang	Test_Date	e 2024/07/29	5
	Remark	1	(°)		
Gra	aph	(⁵)	61)	67)	(
	130				
	110				Δ.
Leve[dBj,Mm]	80 70 60				FCC PART 155 PH time
Level	50 40 30	lanan perinten perinten ander solar ander and	991	an a	and the second second
	20				
	-10 -20 231G 23195G	2.329G 2.3385G	2348G 23575G 2367G	2.3765G 2.386G	2.3955G 2.4050

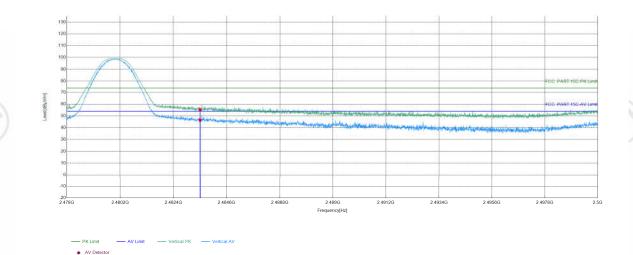


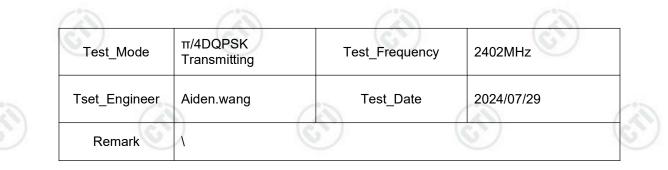

	Suspecte	d List					_			
Ċ	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
G	1	2390	9.96	35.06	45.02	74.00	28.98	PASS	Horizontal	PK
	2	2390	9.96	21.78	31.74	54.00	22.26	PASS	Horizontal	AV

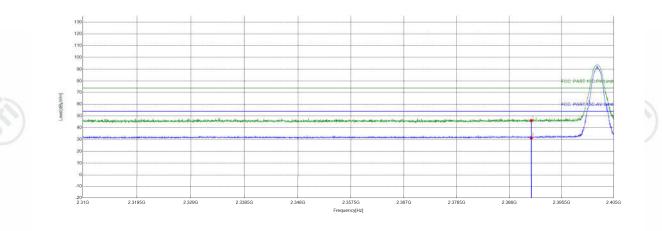

PK Limit — AV Limit — Vertical PK — Vertical AV PK Detector AV Detector


2	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	2390	9.96	35.27	45.23	74.00	28.77	PASS	Vertical	PK
	2	2390	9.96	21.80	31.76	54.00	22.24	PASS	Vertical	AV


2	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	2483.5	10.38	38.70	49.08	74.00	24.92	PASS	Horizontal	PK
	2	2483.5	10.38	26.87	37.25	54.00	16.75	PASS	Horizontal	AV

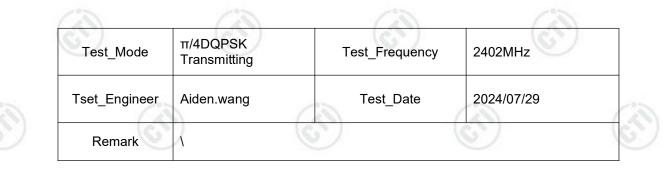


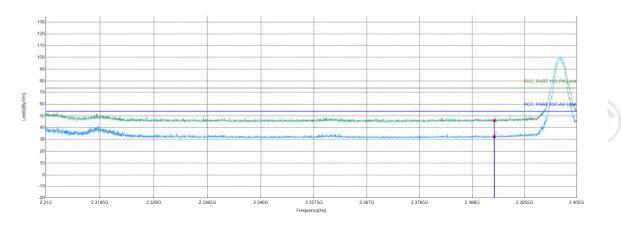


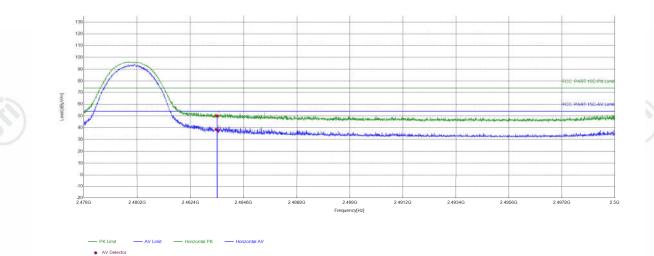

1	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	2483.5	10.38	44.86	55.24	74.00	18.76	PASS	Vertical	PK
	2	2483.5	10.38	35.98	46.36	54.00	7.64	PASS	Vertical	AV

tal PK PK Limit AV Limit * AV Dete

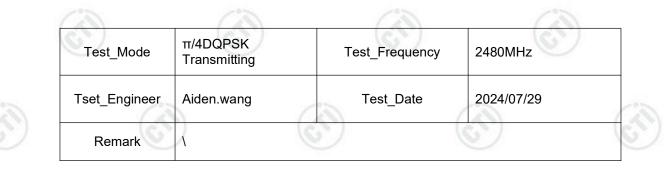
Suspecte NO	d List Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2390	9.96	36.08	46.04	74.00	27.96	PASS	Horizontal	PK
2	2390	9.96	21.53	31.49	54.00	22.51	PASS	Horizontal	AV
(c	<u>()</u>		(\sim)		25))		(\sim)	



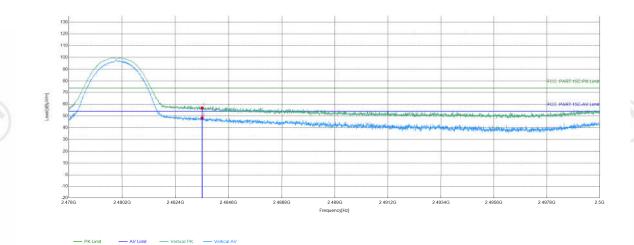

Hotline:400-6788-333


0	Suspecte NO	d List Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	2390	9.96	36.20	46.16	74.00	27.84	PASS	Vertical	PK
	2	2390	9.96	22.36	32.32	54.00	21.68	PASS	Vertical	AV
	(¢	<u>()</u>		(\sim)		12))		(\sim)	

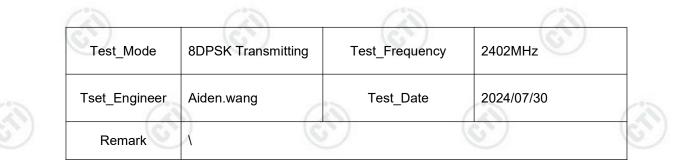
Test_Mode	π/4DQPSK Transmitting	Test_Frequency	2480MHz	
Tset_Engineer	Aiden.wang	Test_Date	2024/07/29	
Remark	Λ		\mathbf{C}	\odot

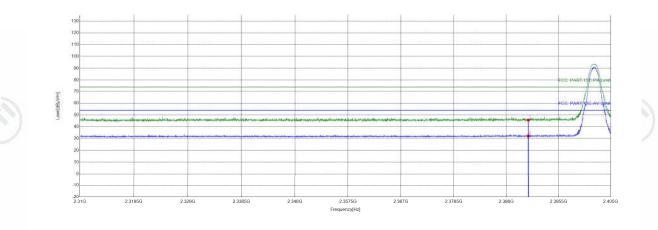


1 2483.5 10.38 39.65 50.03 74.00 23.97 PASS		
	Horizontal	PK
2 2483.5 10.38 27.83 38.21 54.00 15.79 PASS	Horizontal	AV

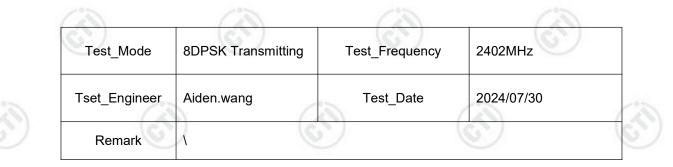


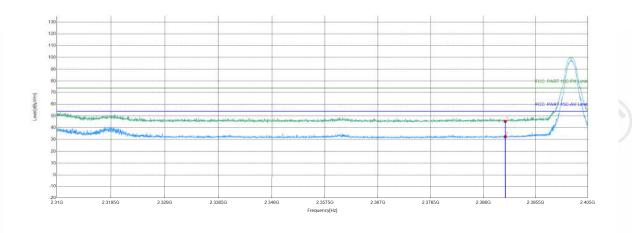
* AV De




NC	C	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1		2483.5	10.38	46.44	56.82	74.00	17.18	PASS	Vertical	PK
2		2483.5	10.38	37.82	48.20	54.00	5.80	PASS	Vertical	AV

S	Suspecte NO	d List Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	2390	9.96	35.72	45.68	74.00	28.32	PASS	Horizontal	PK
	2	2390	9.96	22.20	32.16	54.00	21.84	PASS	Horizontal	AV
	(c	<u>(</u>)		(\mathcal{A})		(2))		(\checkmark)	

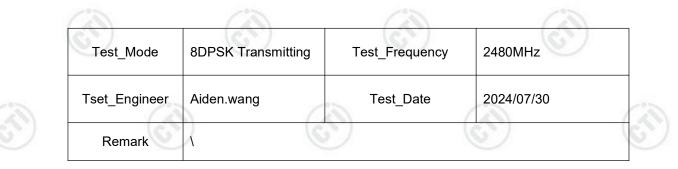


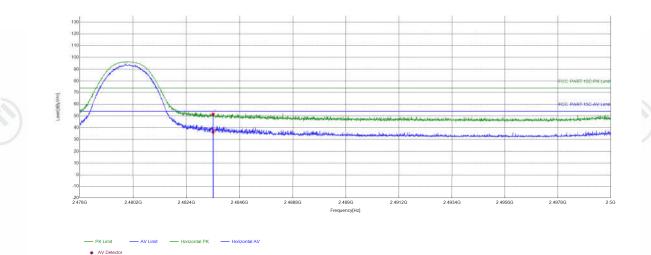


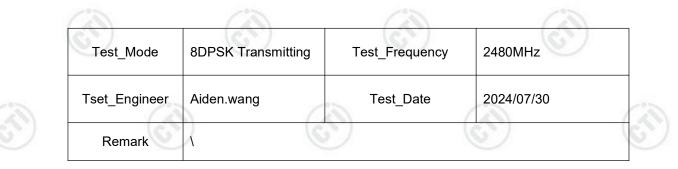
PK Limit AV Limit * AV Det

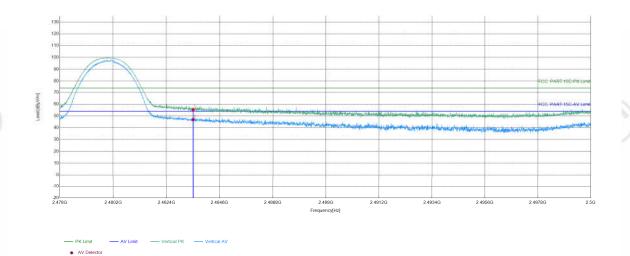
3	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	2390	9.96	35.49	45.45	74.00	28.55	PASS	Vertical	PK
	2	2390	9.96	22.48	32.44	54.00	21.56	PASS	Vertical	AV

Hotline:400-6788-333








NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2483.5	10.38	41.14	51.52	74.00	22.48	PASS	Horizontal	PK
2	2483.5	10.38	26.00	36.38	54.00	17.62	PASS	Horizontal	AV
2	2483.5	10.38	26.00	36.38	54.00	17.62	PASS	Horizontal	

Suspected List

2	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
	1	2483.5	10.38	44.98	55.36	74.00	18.64	PASS	Vertical	PK	
	2	2483.5	10.38	36.54	46.92	54.00	7.08	PASS	Vertical	AV	
	(1				

Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor-Antenna Factor-Cable Factor

Page 49 of 52

6 Appendix Bluetooth Classic

Refer to Appendix: Bluetooth Classic of EED32Q80705102

8 PHOTOGRAPHS OF EUT Constructional Details

Refer to Report No.EED32Q80705101 for EUT external and internal photos.

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.

*** End of Report ***