CERTIFICATE OF CALIBRATION

ISSUED BY UL INTERNATIONAL (UK) LTD

DATE OF ISSUE: 11/Oct/2021 CERTIFICATE NUMBER: 14030223JD01E

UL INTERNATIONAL (UK) LTD UNIT 1-3 HORIZON KINGSLAND PARK, WADE ROAD BASINGSTOKE, HAMPSHIRE RG24 8AH, UK

TEL: +44 (0) 1256 312100 FAX: +44 (0) 1256 312001

Email: LST.UK.Calibration@ul.com

(UL)

Page 1 of 6

APPROVED SIGNATORY

....

Naseer Mirza

Customer:

UL LLC 12 Laboratory Dr. RTP, NC 27709 USA

Equipment Details:

Description: Dipole Validation Kit Date of Receipt: 04/Oct/2021

Manufacturer: Speag

Type/Model Number: D2100V2

Serial Number: 1043

Calibration Date: 05/Oct/2021

Calibrated By: Masood Khan

Test Engineer

Signature:

This certificate is issued in accordance with the laboratory accreditation requirements of the United Kingdom Accreditation Service. It provides traceability of measurement to the SI system of units and/or to units of measurement realised at the National Physical Laboratory or other recognised national metrology institutes. This certificate may not be reproduced other than in full, except with the prior written approval of the issuing laboratory.

All Calibration have been conducted in the closed laboratory facility: Lab Temperature (22±3) °C and humidity < 70%

Use of the UKAS mark demonstrates that compliance with the requirements of BS/EN/ISO/IEC 17025:2017 has been independently assessed.

UKAS Accredited Calibration Laboratory No. 5772 Page 2 of 6

NUMBER : 14030223JD01E

CERTIFICATE

The calibration methods and procedures used were as detailed in:

- 1. **IEC 62209-1:2016**: Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)
- 2. **IEC 62209-2:2010:** Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)
- 3. **IEEE 1528: 2013:** IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communication Devices: Measurement Techniques
- 4. FCC KDB Publication Number: "KDB865664 D01 SAR Measurement 100 MHz to 6 GHz"
- 5. DASY 6 System Handbook
- 6. Dipole Calibration Procedure V1.2: Calibration performed as per internal procedure

The measuring equipment used to perform the calibration, documented in this certificate has been calibrated in accordance with the manufacturers' recommendations, and is traceable to recognized national standards.

UL No.	Instrument	Manufacturer	Type No.	Serial No.	Date Last Calibrated	Cal. Interval (Months)
PRE0135115	Data Acquisition Electronics	SPEAG	DAE4	1438	12 Apr 2021	12
PRE0178314	Probe	SPEAG	EX3DV4	3995	16 Mar 2021	12
PRE0134264	Dipole	SPEAG	D2100V2	1020	07 Oct 2020	12
PRE0151451	Power Monitoring Kit	Art-Fi	ART 100850-01	0001	Cal as part of System	-
PRE0151441	Power Sensor	Rhode & Schwarz	NRP8S	102481	22 Mar 2021	12
M2028	Vector Network Analyser	Keysight Technologies	E5071C	MY46521873	20 Jul 2021	12
M2029	Calibration Kit	Keysight Technologies	N4691B	MY46181255	02 Aug 2021	12
PRE0134063	Signal Generator	HP	8648C	3537A01598	03 Mar 2021	12
PRE0135028	Signal Generator	R&S	SME 06	831377/005	29 Mar 2021	12

UKAS Accredited Calibration Laboratory No. 5772

CERTIFICATE NUMBER: 14030223JD01E

Page 3 of 6

SAR System Specification

Robot System Positioner: Stäubli Unimation Corp. Robot Model: TX60L				
Robot Serial Number:	F17/5ENYG1/A/01			
DASY Version:	cDASY16.0.0.116			
Phantom:	Flat section of SAM Twin Phantom			
Distance Dipole Centre:	10 mm (with spacer)			
Frequency:	2100 MHz			

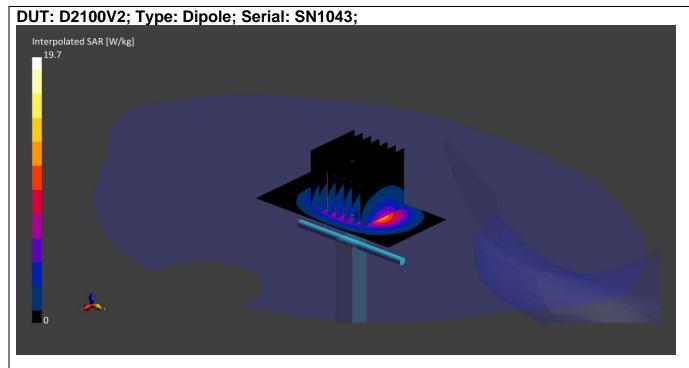
Dielectric Property Measurements – Head Simulating Liquid (HSL)

Simulant Liquid	Frequency	Room	Temp	Liquic	l Temp	Parameters	Target	Measured	Uncertainty
Simulant Liquid	(MHz)	Start	End	Start	End	i arameters	Value	Value	(%)
Head	2100	21.6 °C	20.9 °C	21.2 °C	20.5 °C	εr	39.82	39.93	± 5%
пеаа	2100	21.0 C	20.9 C	21.2 C	20.5 C	σ	1.49	1.49	± 5%

SAR Results – Head Simulating Liquid (HSL)

Simulant Liquid	SAR Measured	250 mW input Power	Normalised to 1.00 W	Uncertainty (%)
Head	SAR averaged over 1g	10.30 W/Kg	41.01 W/Kg	+16.80 / -16.43%
пеаи	SAR averaged over 10g	5.25 W/Kg	20.90 W/Kg	+16.72 / -16.42%

Antenna Parameters – Head Simulating Liquid (HSL)


Simulant Liquid	Parameter	Measured Level	Uncertainty (%)
Llood	Impedance	49.71 -4.03j Ω	± 3.01
Head	Return Loss	27.50	± 2.97

UKAS Accredited Calibration Laboratory No. 5772

CERTIFICATE NUMBER: 14030223JD01E

Page 4 of 6

DASY Validation Scan for Head Stimulating Liquid (HSL)

Communication System: CW UID: 0; Frequency: 2100.0 MHz; Duty Cycle: 1;

Medium: HSL; Site65_04Oct2021_122256_Head - 1900 2100 5%; Medium parameters used: f

= 2100.0 MHz; σ = 1.49 S/m; ϵ_r = 39.9; ρ = 1000 kg/m3; $\Delta \epsilon_r$ = 0.28 %; $\Delta \sigma$ = 0.03 %; No

correction

Phantom section: Flat; **DASY 6 Configuration:**

- Laboratory Name: Site65;

- Probe: EX3DV4 - SN7496; ConvF(8.32, 8.32, 8.32); Calibrated: 16 Mar 2021

- Sensor-Surface: 1.4 mm; VMS + 6p

- Electronics: DAE4 - SN1438; Calibrated: 12 Apr 2021 - Phantom: Twin-SAM V5.0 (30deg probe tilt); Serial: 1818

- Measurement SW: cDASY16.0.0.116

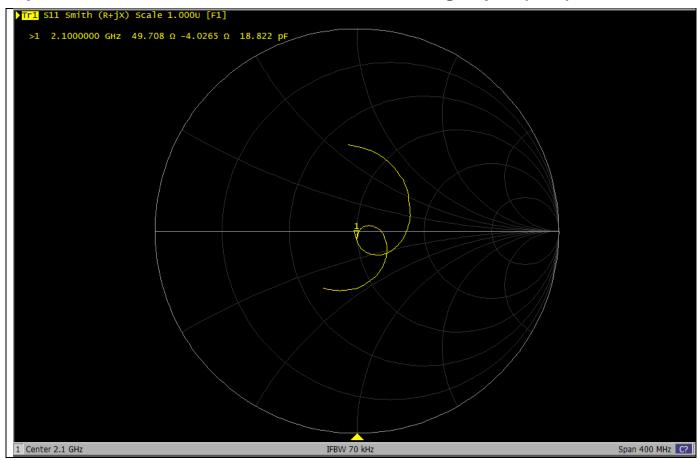
Area Scan (40x80):Interpolated grid: dx=10 mm, dy=10 mm

Zoom Scan1(30x30x30):Measurement grid: dx=5 mm, dy=5 mm, dz=1.5 mm; Grading Ratio:

1.5; Reference Value = 14.740 V/m; Power Drift = -0.07 dB

Minimum horizontal 3dB distance: 9.8 mm;

Vertical M2/M1 Ratio: 81.4 %;

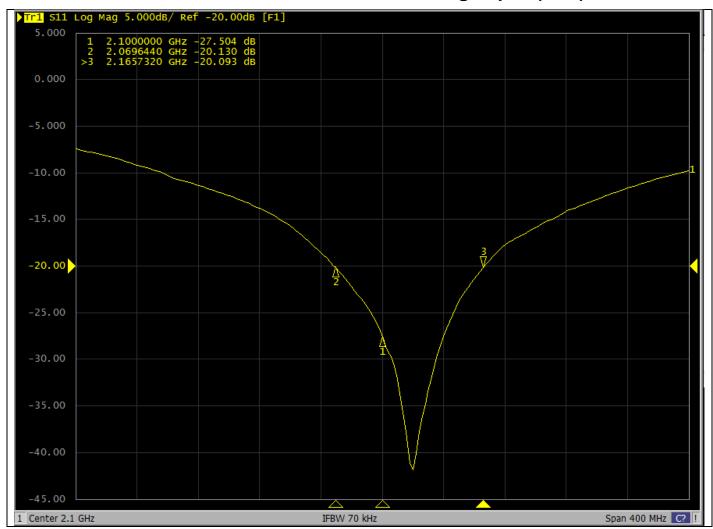

SAR(1 g) = 10.300 W/kg; SAR(10 g) = 5.250 W/kg

CERTIFICATE NUMBER: 14030223JD01E

UKAS Accredited Calibration Laboratory No. 5772

Page 5 of 6

Impedance Measurement Plot for Head Stimulating Liquid (HSL)



UKAS Accredited Calibration Laboratory No. 5772

CERTIFICATE NUMBER: 14030223JD01E

Page 6 of 6

Return Loss Measurement Plot for Head Stimulating Liquid (HSL)

Calibration Certificate Label:

UL INTERNATIONAL (UK) LTD Tel: +44 (0) 1256312100

Certificate Number: 14030223JD01E

Instrument ID: 1043

Calibration Date: 05/Oct/2021

Calibration Due Date:

UL INTERNATIONAL (UK) LTD Tel: +44 (0) 1256312100

Certificate Number: 14030223JD01E

Instrument ID: 1043

Calibration Date: 05/Oct/2021

Calibration Due Date:

UL INTERNATIONAL (UK) LTD Tel: +44 (0) 1256312100

Certificate Number: 14030223JD01E

Instrument ID: 1043

Calibration Date: 05/Oct/2021

Calibration Due Date:

CERTIFICATE OF CALIBRATION

ISSUED BY UL INTERNATIONAL (UK) LTD

DATE OF ISSUE: 11/Oct/2021 CERTIFICATE NUMBER: 14030223JD01A

UL INTERNATIONAL (UK) LTD UNIT 1-3 HORIZON KINGSLAND PARK, WADE ROAD BASINGSTOKE, HAMPSHIRE RG24 8AH, UK

TEL: +44 (0) 1256 312100 FAX: +44 (0) 1256 312001

Email: LST.UK.Calibration@ul.com

Page 1 of 6

APPROVED SIGNATORY

Naseer Mirza

Customer:

UL LLC 12 Laboratory Dr. RTP, NC 27709 USA

Equipment Details:

Description: Dipole Validation Kit Date of Receipt: 04/Oct/2021

Manufacturer: Speag

Type/Model Number: D750V3

Serial Number: 1139

Calibration Date: 06/Oct/2021

Calibrated By: Masood Khan

Test Engineer

Signature:

This certificate is issued in accordance with the laboratory accreditation requirements of the United Kingdom Accreditation Service. It provides traceability of measurement to the SI system of units and/or to units of measurement realised at the National Physical Laboratory or other recognised national metrology institutes. This certificate may not be reproduced other than in full, except with the prior written approval of the issuing laboratory.

All Calibration have been conducted in the closed laboratory facility: Lab Temperature (22±3) °C and humidity < 70%

Use of the UKAS mark demonstrates that compliance with the requirements of BS/EN/ISO/IEC 17025:2017 has been independently assessed.

UKAS Accredited Calibration Laboratory No. 5772

CERTIFICATE NUMBER: 14030223JD01A

Page 2 of 6

The calibration methods and procedures used were as detailed in:

- 1. **IEC 62209-1:2016**: Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)
- 2. **IEC 62209-2:2010:** Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)
- 3. **IEEE 1528: 2013:** IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communication Devices: Measurement Techniques
- 4. FCC KDB Publication Number: "KDB865664 D01 SAR Measurement 100 MHz to 6 GHz"
- 5. DASY 6 System Handbook
- 6. Dipole Calibration Procedure V1.2: Calibration performed as per internal procedure

The measuring equipment used to perform the calibration, documented in this certificate has been calibrated in accordance with the manufacturers' recommendations, and is traceable to recognized national standards.

UL No.	Instrument	Manufacturer	Type No.	Serial No.	Date Last Calibrated	Cal. Interval (Months)
PRE0135115	Data Acquisition Electronics	SPEAG	DAE4	1438	12 Apr 2021	12
PRE0178314	Probe	SPEAG	EX3DV4	3995	16 Mar 2021	12
PRE0135601	Dipole	SPEAG	D750V3	SN1147	06 Oct 2021	12
PRE0151451	Power Monitoring Kit	Art-Fi	ART 100850-01	0001	Cal as part of System	-
PRE0151441	Power Sensor	Rhode & Schwarz	NRP8S	102481	22 Mar 2021	12
M2028	Vector Network Analyser	Keysight Technologies	E5071C	MY46521873	20 Jul 2021	12
M2029	Calibration Kit	Keysight Technologies	N4691B	MY46181255	02 Aug 2021	12
PRE0134063	Signal Generator	НР	8648C	3537A01598	03 Mar 2021	12
PRE0135028	Signal Generator	R&S	SME 06	831377/005	29 Mar 2021	12

UKAS Accredited Calibration Laboratory No. 5772

CERTIFICATE NUMBER: 14030223JD01A

Page 3 of 6

SAR System Specification

Robot System Positioner: Stäubli Unimation Corp. Robot Model: TX60L				
Robot Serial Number:	F17/5ENYG1/A/01			
DASY Version:	cDASY16.0.0.116			
Phantom:	Flat section of SAM Twin Phantom			
Distance Dipole Centre:	15 mm (with spacer)			
Frequency:	750 MHz			

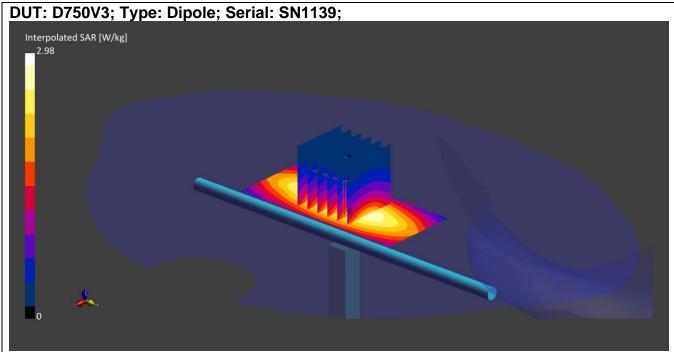
Dielectric Property Measurements – Head Simulating Liquid (HSL)

Simulant Liquid	Frequency	Room	Temp	Liquid	I Temp	Parameters	Target	Measured	Uncertainty
Simulant Liquid	(MHz)	Start	End	Start	End	Faiailleleis	Value	Value	(%)
Hood	750	20.9 °C	21 0 ℃	21.8 ℃	21.3 ℃	εr	41.94	42.71	± 5%
Head	750 20.9 °C	20.9 6 21.0 6		21.3 C	σ	0.89	0.91	± 5%	

SAR Results – Head Simulating Liquid (HSL)

Simulant Liquid	SAR Measured	250 mW input Power	Normalised to 1.00 W	Uncertainty (%)
Head	SAR averaged over 1g	2.04 W/Kg	8.12 W/Kg	+16.80 / -16.43%
пеац	SAR averaged over 10g	1.36 W/Kg	5.41 W/Kg	+16.72 / -16.42%

Antenna Parameters – Head Simulating Liquid (HSL)


Simulant Liquid	Parameter	Measured Level	Uncertainty (%)
Llood	Impedance	46.64 2.23j Ω	± 3.01
Head	Return Loss	27.53	± 2.97

UKAS Accredited Calibration Laboratory No. 5772

CERTIFICATE NUMBER: 14030223JD01A

Page 4 of 6

DASY Validation Scan for Head Stimulating Liquid (HSL)

Communication System: CW UID: 0; Frequency: 750.0 MHz; Duty Cycle: 1;

Medium: HSL; Site65_04Oct2021_115853_Head - 750 900 1750 2450 5250 5600 5750 5%; Medium parameters used: f = 750.0 MHz; σ = 0.905 S/m; ϵ_r = 42.7; ρ = 1000 kg/m3; $\Delta\epsilon_r$ = 1.84

%; $\Delta \sigma$ = 1.27 %; No correction

Phantom section: Flat; DASY 6 Configuration:

- Laboratory Name: Site65;

- Probe: EX3DV4 - SN7496; ConvF(10.34, 10.34, 10.34); Calibrated: 16 Mar 2021

- Sensor-Surface: 1.4 mm; VMS + 6p

- Electronics: DAE4 - SN1438; Calibrated: 12 Apr 2021

- Phantom: Twin-SAM V8.0 (30deg probe tilt); Serial: 1945

- Measurement SW: cDASY16.0.0.116

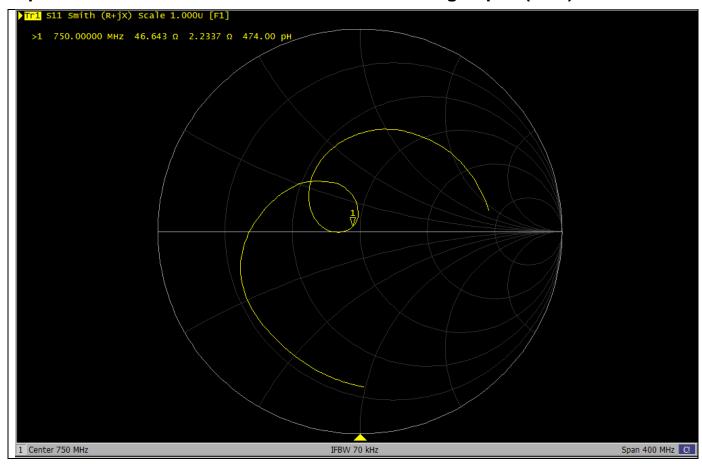
Area Scan (40x90):Interpolated grid: dx=10 mm, dy=15 mm

Zoom Scan1(30x30x30):Measurement grid: dx=6 mm, dy=6 mm, dz=1.5 mm; Grading Ratio:

1.5; Reference Value = 2.350 V/m; Power Drift = 0.01 dB

Minimum horizontal 3dB distance: 17.2 mm;

Vertical M2/M1 Ratio: 89.5 %;

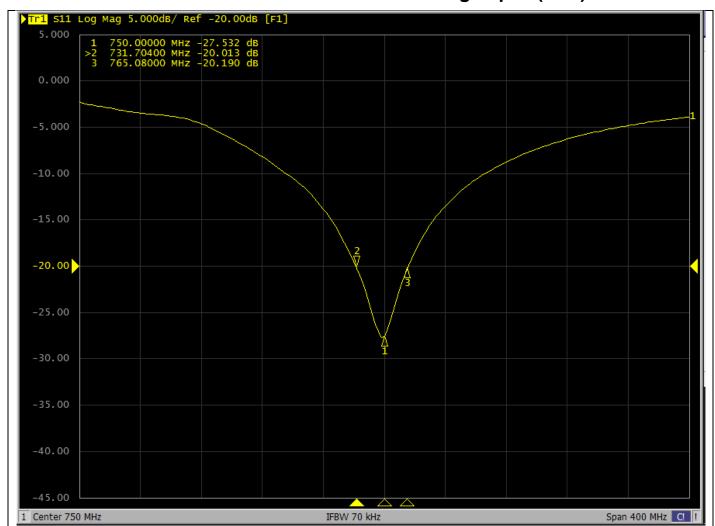

SAR(1 g) = 2.040 W/kg; SAR(10 g) = 1.360 W/kg

CERTIFICATE NUMBER: 14030223JD01A

UKAS Accredited Calibration Laboratory No. 5772

Page 5 of 6

Impedance Measurement Plot for Head Stimulating Liquid (HSL)



CERTIFICATE NUMBER: 14030223JD01A

Page 6 of 6

UKAS Accredited Calibration Laboratory No. 5772

Return Loss Measurement Plot for Head Stimulating Liquid (HSL)

Calibration Certificate Label:

UL INTERNATIONAL (UK) LTD Tel: +44 (0) 1256312100

Certificate Number: 14030223JD01A

Instrument ID: 1139

Calibration Date: 06/Oct/2021

Calibration Due Date:

UL INTERNATIONAL (UK) LTD Tel: +44 (0) 1256312100

Certificate Number: 14030223JD01A

Instrument ID: 1139

Calibration Date: 06/Oct/2021

Calibration Due Date:

UL INTERNATIONAL (UK) LTD Tel: +44 (0) 1256312100

Certificate Number: 14030223JD01A

Instrument ID: 1139

Calibration Date: 06/Oct/2021

Calibration Due Date:

CERTIFICATE OF CALIBRATION

ISSUED BY UL INTERNATIONAL (UK) LTD

DATE OF ISSUE: 11/Oct/2021 CERTIFICATE NUMBER: 14030223JD01B

Page 1 of 6

UL INTERNATIONAL (UK) LTD UNIT 1-3 HORIZON KINGSLAND PARK, WADE ROAD BASINGSTOKE, HAMPSHIRE RG24 8AH, UK

TEL: +44 (0) 1256 312100 FAX: +44 (0) 1256 312001

Email: LST.UK.Calibration@ul.com

APPROVED SIGNATORY

Naseer Mirza

Customer:

UL LLC 12 Laboratory Dr. RTP, NC 27709 USA

Equipment Details:

Description: Dipole Validation Kit Date of Receipt: 04/Oct/2021

Manufacturer: Speag

Type/Model Number: D900V2

Serial Number: 1d180

Calibration Date: 06/Oct/2021

Calibrated By: Masood Khan

Test Engineer

Signature:

This certificate is issued in accordance with the laboratory accreditation requirements of the United Kingdom Accreditation Service. It provides traceability of measurement to the SI system of units and/or to units of measurement realised at the National Physical Laboratory or other recognised national metrology institutes. This certificate may not be reproduced other than in full, except with the prior written approval of the issuing laboratory.

All Calibration have been conducted in the closed laboratory facility: Lab Temperature (22±3) °C and humidity < 70%

Use of the UKAS mark demonstrates that compliance with the requirements of BS/EN/ISO/IEC 17025:2017 has been independently assessed.

CERTIFICATE NUMBER: 14030223JD01B

UKAS Accredited Calibration Laboratory No. 5772

Page 2 of 6

The calibration methods and procedures used were as detailed in:

- 1. **IEC 62209-1:2016**: Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)
- 2. **IEC 62209-2:2010:** Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)
- 3. **IEEE 1528: 2013:** IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communication Devices: Measurement Techniques
- 4. FCC KDB Publication Number: "KDB865664 D01 SAR Measurement 100 MHz to 6 GHz"
- 5. DASY 6 System Handbook
- 6. Dipole Calibration Procedure V1.2: Calibration performed as per internal procedure

The measuring equipment used to perform the calibration, documented in this certificate has been calibrated in accordance with the manufacturers' recommendations, and is traceable to recognized national standards.

UL No.	Instrument	Manufacturer	Type No.	Serial No.	Date Last Calibrated	Cal. Interval (Months)
PRE0135115	Data Acquisition Electronics	SPEAG	DAE4	1438	12 Apr 2021	12
PRE0178314	Probe	SPEAG	EX3DV4	3995	16 Mar 2021	12
PRE0134199	Dipole	SPEAG	D900V2	SN035	15 Feb 2021	12
PRE0151451	Power Monitoring Kit	Art-Fi	ART 100850-01	0001	Cal as part of System	-
PRE0151441	Power Sensor	Rhode & Schwarz	NRP8S	102481	22 Mar 2021	12
M2028	Vector Network Analyser	Keysight Technologies	E5071C	MY46521873	20 Jul 2021	12
M2029	Calibration Kit	Keysight Technologies	N4691B	MY46181255	02 Aug 2021	12
PRE0134063	Signal Generator	HP	8648C	3537A01598	03 Mar 2021	12
PRE0135028	Signal Generator	R&S	SME 06	831377/005	29 Mar 2021	12

UKAS Accredited Calibration Laboratory No. 5772

CERTIFICATE NUMBER: 14030223JD01B

Page 3 of 6

SAR System Specification

Robot System Positioner: Stäubli Unimation Corp. Robot Model: TX60L				
Robot Serial Number:	F17/5ENYG1/A/01			
DASY Version:	cDASY16.0.0.116			
Phantom:	Flat section of SAM Twin Phantom			
Distance Dipole Centre:	15 mm (with spacer)			
Frequency:	900 MHz			

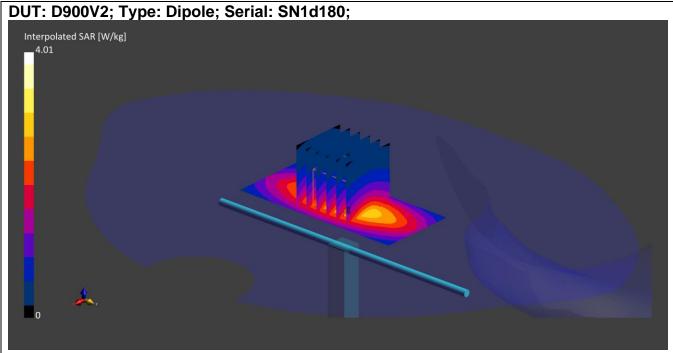
Dielectric Property Measurements – Head Simulating Liquid (HSL)

Similiant Liquid		Room	Temp	np Liquid Temp Parame		Parameters	Target	Measured	Uncertainty
Simulant Liquid	(MHz)	Start	End	Start	End	i arameters	Value	Value	(%)
Head	000	21.1 ℃	20.9 °C	21.8 ℃	21.2 °C	εr	41.50	42.32	± 5%
пеаа	900	21.1 6	20.9 C	21.0 C	21.2 C	σ	0.97	0.96	± 5%

SAR Results – Head Simulating Liquid (HSL)

Simulant Liquid	SAR Measured	250 mW input Power	Normalised to 1.00 W	Uncertainty (%)
Head	SAR averaged over 1g	2.67 W/Kg	10.63 W/Kg	+16.80 / -16.43%
пеац	SAR averaged over 10g	1.75 W/Kg	6.97 W/Kg	+16.72 / -16.42%

Antenna Parameters – Head Simulating Liquid (HSL)


Simulant Liquid	Parameter	Measured Level	Uncertainty (%)
Head	Impedance	47.97 -0.564j Ω	± 3.01
	Return Loss	33.79	± 3.34

UKAS Accredited Calibration Laboratory No. 5772

CERTIFICATE NUMBER: 14030223JD01B

Page 4 of 6

DASY Validation Scan for Head Stimulating Liquid (HSL)

Communication System: CW UID: 0; Frequency: 900.0 MHz; Duty Cycle: 1;

Medium: HSL; Site65_04Oct2021_115853_Head - 750 900 1750 2450 5250 5600 5750 5%; Medium parameters used: f = 900.0 MHz; σ = 0.96 S/m; ϵ_r = 42.3; ρ = 1000 kg/m3; $\Delta\epsilon_r$ = 1.97

%; $\Delta \sigma$ = -1.06 %; No correction

Phantom section: Flat; DASY 6 Configuration:

- Laboratory Name: Site65:

- Probe: EX3DV4 - SN7496; ConvF(9.7, 9.7, 9.7); Calibrated: 16 Mar 2021

- Sensor-Surface: 1.4 mm; VMS + 6p

- Electronics: DAE4 - SN1438; Calibrated: 12 Apr 2021

- Phantom: Twin-SAM V8.0 (30deg probe tilt); Serial: 1945

- Measurement SW: cDASY16.0.0.116

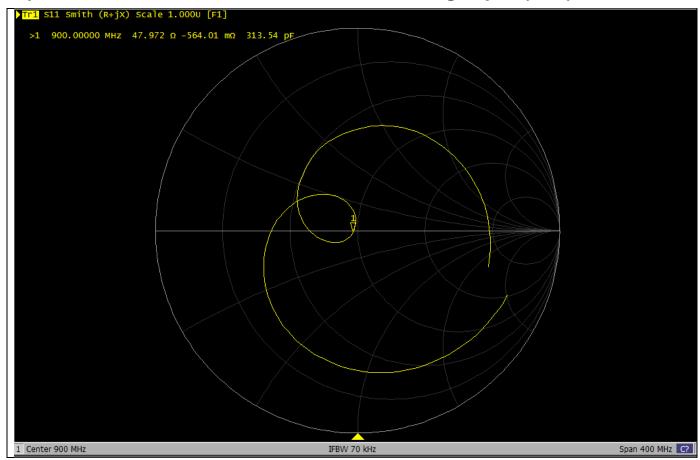
Area Scan (40x90):Interpolated grid: dx=10 mm, dy=15 mm

Zoom Scan1(30x30x30):Measurement grid: dx=6 mm, dy=6 mm, dz=1.5 mm; Grading Ratio:

1.5; Reference Value = 3.110 V/m; Power Drift = -0.02 dB

Minimum horizontal 3dB distance: 18.0 mm;

Vertical M2/M1 Ratio: 88.7 %;

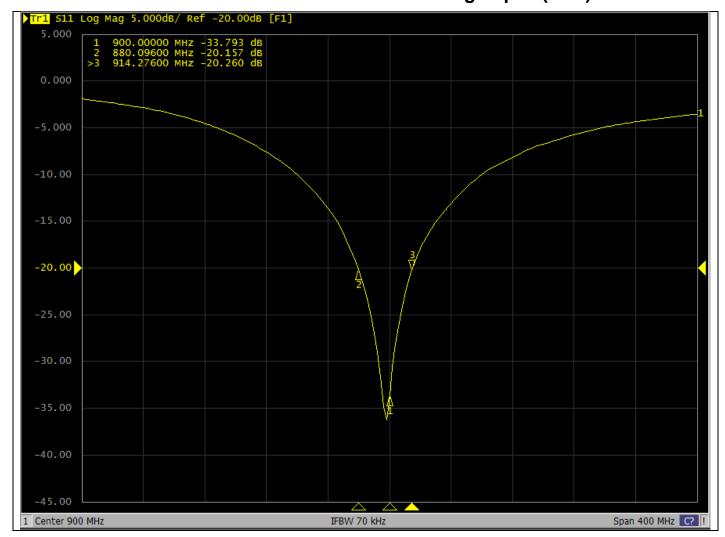

SAR(1 g) = 2.670 W/kg; SAR(10 g) = 1.750 W/kg

CERTIFICATE NUMBER: 14030223JD01B

UKAS Accredited Calibration Laboratory No. 5772

Page 5 of 6

Impedance Measurement Plot for Head Stimulating Liquid (HSL)



CERTIFICATE NUMBER: 14030223JD01B

Page 6 of 6

UKAS Accredited Calibration Laboratory No. 5772

Return Loss Measurement Plot for Head Stimulating Liquid (HSL)

Calibration Certificate Label:

UL INTERNATIONAL (UK) LTD Tel: +44 (0) 1256312100

Certificate Number: 14030223JD01B

Instrument ID: 1d180

Calibration Date: 06/Oct/2021

Calibration Due Date:

UL INTERNATIONAL (UK) LTD Tel: +44 (0) 1256312100

Certificate Number: 14030223JD01B

Instrument ID: 1d180

Calibration Date: 06/Oct/2021

Calibration Due Date:

UL INTERNATIONAL (UK) LTD Tel: +44 (0) 1256312100

Certificate Number: 14030223JD01B

Instrument ID: 1d180

Calibration Date: 06/Oct/2021

Calibration Due Date:

CERTIFICATE OF CALIBRATION

ISSUED BY UL INTERNATIONAL (UK) LTD

DATE OF ISSUE: 11/Oct/2021 CERTIFICATE NUMBER: 14030223JD01D

5//2

UL INTERNATIONAL (UK) LTD UNIT 1-3 HORIZON KINGSLAND PARK, WADE ROAD BASINGSTOKE, HAMPSHIRE RG24 8AH, UK

TEL: +44 (0) 1256 312100 FAX: +44 (0) 1256 312001

Email: LST.UK.Calibration@ul.com

Page 1 of 6

APPROVED SIGNATORY

1 = -

Naseer Mirza

Customer:

UL LLC 12 Laboratory Dr. RTP, NC 27709 USA

Equipment Details:

Description: Dipole Validation Kit Date of Receipt: 04/Oct/2021

Manufacturer: Speag

Type/Model Number: D1900V2

Serial Number: 5d202

Calibration Date: 06/Oct/2021

Calibrated By: Masood Khan

Test Engineer

Signature:

This certificate is issued in accordance with the laboratory accreditation requirements of the United Kingdom Accreditation Service. It provides traceability of measurement to the SI system of units and/or to units of measurement realised at the National Physical Laboratory or other recognised national metrology institutes. This certificate may not be reproduced other than in full, except with the prior written approval of the issuing laboratory.

All Calibration have been conducted in the closed laboratory facility: Lab Temperature (22±3) °C and humidity < 70%

Use of the UKAS mark demonstrates that compliance with the requirements of BS/EN/ISO/IEC 17025:2017 has been independently assessed.

CERTIFICATE NUMBER: 14030223JD01D

UKAS Accredited Calibration Laboratory No. 5772

Page 2 of 6

The calibration methods and procedures used were as detailed in:

- 1. **IEC 62209-1:2016**: Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)
- 2. **IEC 62209-2:2010:** Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)
- 3. **IEEE 1528: 2013:** IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communication Devices: Measurement Techniques
- 4. FCC KDB Publication Number: "KDB865664 D01 SAR Measurement 100 MHz to 6 GHz"
- 5. DASY 6 System Handbook
- 6. Dipole Calibration Procedure V1.2: Calibration performed as per internal procedure

The measuring equipment used to perform the calibration, documented in this certificate has been calibrated in accordance with the manufacturers' recommendations, and is traceable to recognized national standards.

UL No.	Instrument	Manufacturer	Type No.	Serial No.	Date Last Calibrated	Cal. Interval (Months)
PRE0135115	Data Acquisition Electronics	SPEAG	DAE4	1438	12 Apr 2021	12
PRE0178314	Probe	SPEAG	EX3DV4	3995	16 Mar 2021	12
PRE0134198	Dipole	SPEAG	D1900V2	537	16 Feb 2021	12
PRE0151451	Power Monitoring Kit	Art-Fi	ART 100850-01	0001	Cal as part of System	-
PRE0151441	Power Sensor	Rhode & Schwarz	NRP8S	102481	22 Mar 2021	12
M2028	Vector Network Analyser	Keysight Technologies	E5071C	MY46521873	20 Jul 2021	12
M2029	Calibration Kit	Keysight Technologies	N4691B	MY46181255	02 Aug 2021	12
PRE0134063	Signal Generator	HP	8648C	3537A01598	03 Mar 2021	12
PRE0135028	Signal Generator	R&S	SME 06	831377/005	29 Mar 2021	12

UKAS Accredited Calibration Laboratory No. 5772

CERTIFICATE NUMBER: 14030223JD01D

Page 3 of 6

SAR System Specification

Robot System Positioner:	Stäubli Unimation Corp. Robot Model: TX60L		
Robot Serial Number:	F17/5ENYG1/A/01		
DASY Version:	cDASY16.0.0.116		
Phantom:	Flat section of SAM Twin Phantom		
Distance Dipole Centre:	10 mm (with spacer)		
Frequency:	1900 MHz		

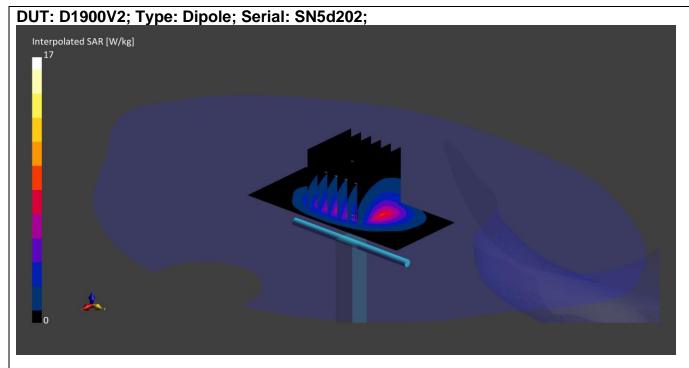
Dielectric Property Measurements – Head Simulating Liquid (HSL)

Simulant Liquid	Frequency	Room	Temp	Liquid	l Temp	Parameters	Target	Measured	Uncertainty
Simulant Liquid	(MHz)	Start	End	Start	End	i arameters	Value	Value	(%)
Hood	1900	21.4 °C	20.8 °C	21 4 ℃	20.9 °C	εr	40.00	40.17	± 5%
Head	1900	21.4 C	20.6 C	21.4 C	20.9 C	٥	1.40	1.37	± 5%

SAR Results – Head Simulating Liquid (HSL)

Simulant Liquid	SAR Measured	250 mW input Power	Normalised to 1.00 W	Uncertainty (%)
Head	SAR averaged over 1g	9.51 W/Kg	37.86 W/Kg	+16.80 / -16.43%
пеац	SAR averaged over 10g	5.09 W/Kg	20.26 W/Kg	+16.72 / -16.42%

Antenna Parameters – Head Simulating Liquid (HSL)


Simulant Liquid	Parameter	Measured Level	Uncertainty (%)
Head	Impedance	51.95 -4.40j Ω	± 3.01
пеаи	Return Loss	26.34	± 2.97

UKAS Accredited Calibration Laboratory No. 5772

CERTIFICATE NUMBER: 14030223JD01D

Page 4 of 6

DASY Validation Scan for Head Stimulating Liquid (HSL)

Communication System: CW UID: 0; Frequency: 1900.0 MHz; Duty Cycle: 1;

Medium: HSL; Site65_04Oct2021_122256_Head - 1900 2100 5%; Medium parameters used: f

= 1900.0 MHz; σ = 1.37 S/m; ε_r = 40.2; ρ = 1000 kg/m3; $\Delta \varepsilon_r$ = 0.44 %; $\Delta \sigma$ = -1.83 %; No

correction

Phantom section: Flat; **DASY 6 Configuration:** - Laboratory Name: Site65;

- Probe: EX3DV4 - SN7496; ConvF(8.4, 8.4, 8.4); Calibrated: 16 Mar 2021

- Sensor-Surface: 1.4 mm; VMS + 6p

- Electronics: DAE4 - SN1438; Calibrated: 12 Apr 2021 - Phantom: Twin-SAM V5.0 (30deg probe tilt); Serial: 1818

- Measurement SW: cDASY16.0.0.116

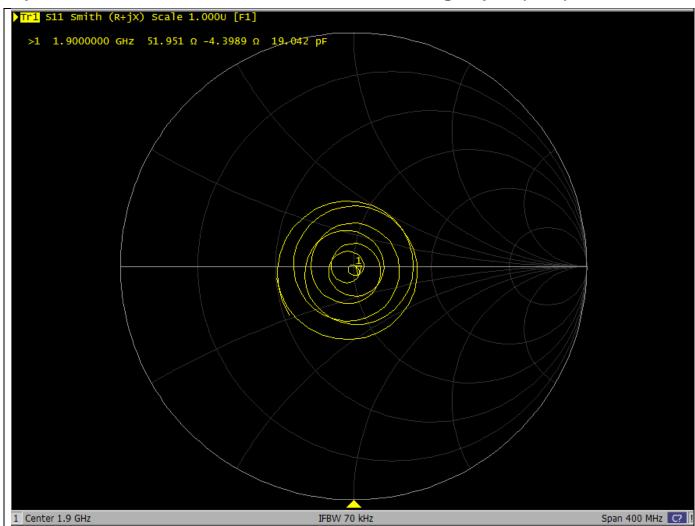
Area Scan (40x90):Interpolated grid: dx=10 mm, dy=15 mm

Zoom Scan1(30x30x30):Measurement grid: dx=6 mm, dy=6 mm, dz=1.5 mm; Grading Ratio:

1.5; Reference Value = 13.320 V/m; Power Drift = -0.03 dB

Minimum horizontal 3dB distance: 9.9 mm;

Vertical M2/M1 Ratio: 85.2 %;

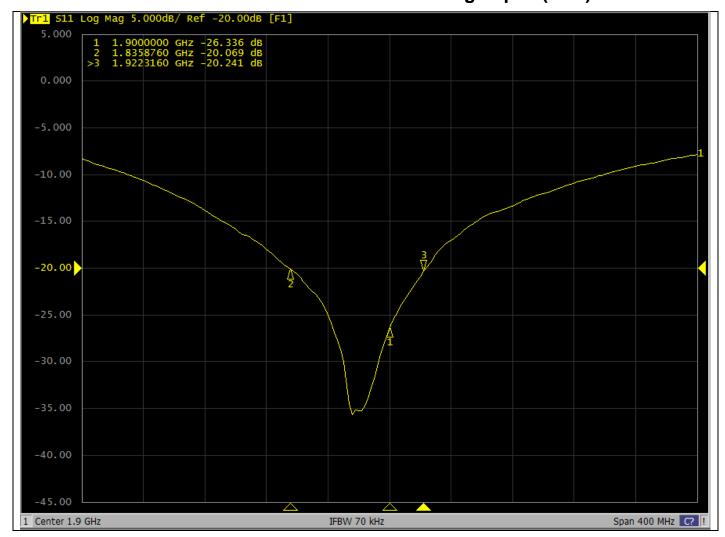

SAR(1 g) = 9.510 W/kg; SAR(10 g) = 5.090 W/kg

CERTIFICATE NUMBER: 14030223JD01D

UKAS Accredited Calibration Laboratory No. 5772

Page 5 of 6

Impedance Measurement Plot for Head Stimulating Liquid (HSL)



CERTIFICATE NUMBER: 14030223JD01D

Page 6 of 6

UKAS Accredited Calibration Laboratory No. 5772

Return Loss Measurement Plot for Head Stimulating Liquid (HSL)

Calibration Certificate Label:

UL INTERNATIONAL (UK) LTD Tel: +44 (0) 1256312100

Certificate Number: 14030223JD01D

Instrument ID: 5d202

Calibration Date: 06/Oct/2021

Calibration Due Date:

UL INTERNATIONAL (UK) LTD Tel: +44 (0) 1256312100

Certificate Number: 14030223JD01D

Instrument ID: 5d202

Calibration Date: 06/Oct/2021

Calibration Due Date:

UL INTERNATIONAL (UK) LTD Tel: +44 (0) 1256312100

Certificate Number: 14030223JD01D

Instrument ID: 5d202

Calibration Date: 06/Oct/2021

Calibration Due Date:

CERTIFICATE OF CALIBRATION

ISSUED BY UL INTERNATIONAL (UK) LTD

DATE OF ISSUE: 14/Oct/2021 CERTIFICATE NUMBER: 14030223JD01C

Page 1 of 6

UL INTERNATIONAL (UK) LTD UNIT 1-3 HORIZON KINGSLAND PARK, WADE ROAD BASINGSTOKE, HAMPSHIRE RG24 8AH, UK

TEL: +44 (0) 1256 312100 FAX: +44 (0) 1256 312001

Email: LST.UK.Calibration@ul.com

APPROVED SIGNATORY

Naseer Mirza

Customer:

UL LLC 12 Laboratory Dr. RTP, NC 27709 USA

Equipment Details:

Description: Dipole Validation Kit Date of Receipt: 04/Oct/2021

Manufacturer: Speag

Type/Model Number: D1750V2

Serial Number: 1136

Calibration Date: 12/Oct/2021

Calibrated By: Masood Khan

Test Engineer

Signature:

This certificate is issued in accordance with the laboratory accreditation requirements of the United Kingdom Accreditation Service. It provides traceability of measurement to the SI system of units and/or to units of measurement realised at the National Physical Laboratory or other recognised national metrology institutes. This certificate may not be reproduced other than in full, except with the prior written approval of the issuing laboratory.

All Calibration have been conducted in the closed laboratory facility: Lab Temperature (22±3) °C and humidity < 70%

Use of the UKAS mark demonstrates that compliance with the requirements of BS/EN/ISO/IEC 17025:2017 has been independently assessed.

UKAS Accredited Calibration Laboratory No. 5772

CERTIFICATE NUMBER: 14030223JD01C

Page 2 of 6

The calibration methods and procedures used were as detailed in:

- 1. **IEC 62209-1:2016**: Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)
- 2. **IEC 62209-2:2010:** Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)
- 3. **IEEE 1528: 2013:** IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communication Devices: Measurement Techniques
- 4. FCC KDB Publication Number: "KDB865664 D01 SAR Measurement 100 MHz to 6 GHz"
- 5. DASY 6 System Handbook
- 6. Dipole Calibration Procedure V1.2: Calibration performed as per internal procedure

The measuring equipment used to perform the calibration, documented in this certificate has been calibrated in accordance with the manufacturers' recommendations, and is traceable to recognized national standards.

UL No.	Instrument	Manufacturer	Type No.	Serial No.	Date Last Calibrated	Cal. Interval (Months)
PRE0135115	Data Acquisition Electronics	SPEAG	DAE4	1438	12 Apr 2021	12
PRE0178314	Probe	SPEAG	EX3DV4	3995	16 Mar 2021	12
PRE0178321	Dipole	SPEAG	D1800V2	SN2d218	09 Mar 2021	12
PRE0151451	Power Monitoring Kit	Art-Fi	ART 100850-01	0001	Cal as part of System	-
PRE0151441	Power Sensor	Rhode & Schwarz	NRP8S	102481	22 Mar 2021	12
M2028	Vector Network Analyser	Keysight Technologies	E5071C	MY46521873	20 Jul 2021	12
M2029	Calibration Kit	Keysight Technologies	N4691B	MY46181255	02 Aug 2021	12
PRE0134063	Signal Generator	НР	8648C	3537A01598	03 Mar 2021	12
PRE0135028	Signal Generator	R&S	SME 06	831377/005	29 Mar 2021	12

UKAS Accredited Calibration Laboratory No. 5772

CERTIFICATE NUMBER: 14030223JD01C

Page 3 of 6

SAR System Specification

Robot System Positioner: Stäubli Unimation Corp. Robot Model: TX60L			
Robot Serial Number:	F17/5ENYG1/A/01		
DASY Version:	cDASY16.0.0.116		
Phantom:	Flat section of SAM Twin Phantom		
Distance Dipole Centre:	10 mm (with spacer)		
Frequency:	1750 MHz		

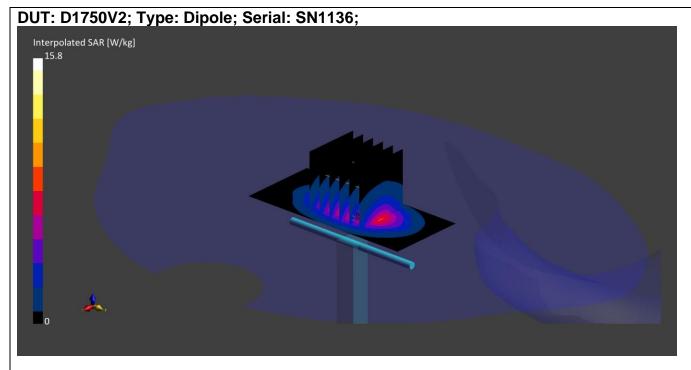
Dielectric Property Measurements – Head Simulating Liquid (HSL)

Simulant Liquid	Frequency	Parameters		Target	Measured	Uncertainty			
Official Elquid	(MHz)	Start	End	Start	End	1 didiliciois	Value	Value	(%)
Head	1750	21.2 ℃	20.6 °C	21.5 ℃	21.0 °C	εr	40.08	40.89	± 5%
пеаа	1750	21.2 C	20.6 C	21.5 C	21.0 C	σ	1.37	1.32	± 5%

SAR Results – Head Simulating Liquid (HSL)

Simulant Liquid	SAR Measured	250 mW input Power	Normalised to 1.00 W	Uncertainty (%)
Head	SAR averaged over 1g	8.65 W/Kg	34.44 W/Kg	+16.80 / -16.43%
пеац	SAR averaged over 10g	4.68 W/Kg	18.63 W/Kg	+16.72 / -16.42%

Antenna Parameters – Head Simulating Liquid (HSL)


Simulant Liquid	Parameter	Measured Level	Uncertainty (%)
Head	Impedance	50.78 0.15j Ω	± 3.01
	Return Loss	42.08	± 3.34

UKAS Accredited Calibration Laboratory No. 5772

CERTIFICATE NUMBER: 14030223JD01C

Page 4 of 6

DASY Validation Scan for Head Stimulating Liquid (HSL)

Communication System: CW UID: 0; Frequency: 1750.0 MHz; Duty Cycle: 1;

Medium: HSL; Site65_11Oct2021_131452_Head - 1800 1900 5GHz 5%; Medium parameters used: f = 1750.0 MHz; σ = 1.32 S/m; ϵ_r = 40.9; ρ = 1000 kg/m3; $\Delta\epsilon_r$ = 2.03 %; $\Delta\sigma$ = -3.37 %; No

correction

Phantom section: Flat; DASY 6 Configuration: - Laboratory Name: Site65;

- Probe: EX3DV4 - SN7496; ConvF(8.7, 8.7, 8.7); Calibrated: 16 Mar 2021

- Sensor-Surface: 1.4 mm; VMS + 6p

Electronics: DAE4 - SN1438; Calibrated: 12 Apr 2021Phantom: Twin-SAM V8.0 (30deg probe tilt); Serial: 1945

- Measurement SW: cDASY16.0.0.116

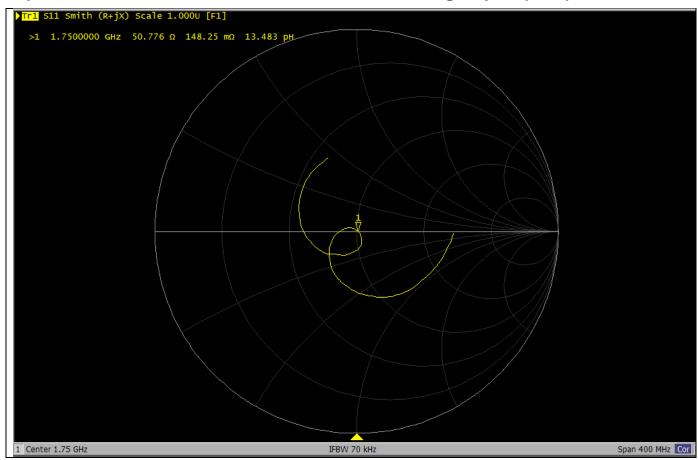
Area Scan (40x90):Interpolated grid: dx=10 mm, dy=15 mm

Zoom Scan1(30x30x30):Measurement grid: dx=6 mm, dy=6 mm, dz=1.5 mm; Grading Ratio:

1.5; Reference Value = 10.660 V/m; Power Drift = 0.00 dB

Minimum horizontal 3dB distance: 9.6 mm;

Vertical M2/M1 Ratio: 83.1 %;

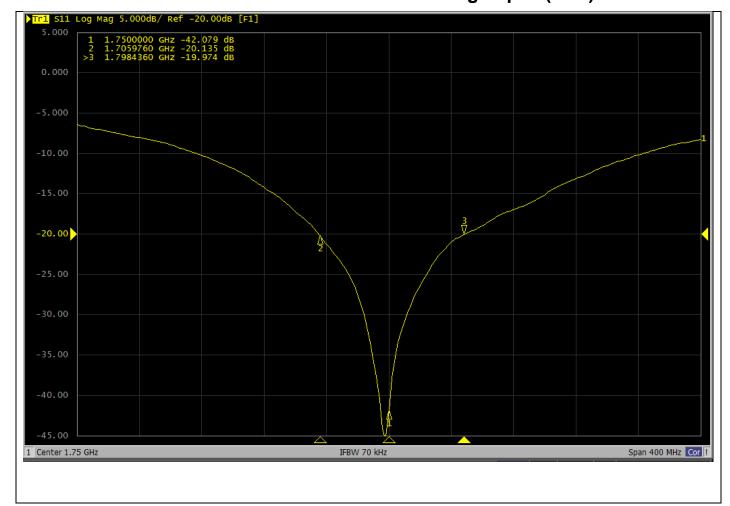

SAR(1 g) = 8.650 W/kg; SAR(10 g) = 4.680 W/kg

CERTIFICATE NUMBER: 14030223JD01C

UKAS Accredited Calibration Laboratory No. 5772

Page 5 of 6

Impedance Measurement Plot for Head Stimulating Liquid (HSL)


UKAS Accredited Calibration Laboratory No. 5772

Page 6 of 6

CERTIFICATE NUMBER :

14030223JD01C

Return Loss Measurement Plot for Head Stimulating Liquid (HSL)

Calibration Certificate Label:

UL INTERNATIONAL (UK) LTD Tel: +44 (0) 1256312100

Certificate Number: 14030223JD01C

Instrument ID: 1136

Calibration Date: 12/Oct/2021

Calibration Due Date:

UL INTERNATIONAL (UK) LTD Tel: +44 (0) 1256312100

Certificate Number: 14030223JD01C

Instrument ID: 1136

Calibration Date: 12/Oct/2021

Calibration Due Date:

UL INTERNATIONAL (UK) LTD Tel: +44 (0) 1256312100

Certificate Number: 14030223JD01C

Instrument ID: 1136

Calibration Date: 12/Oct/2021

Calibration Due Date:

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client UL USA Certificate No: D2300V2-1050_Nov21

CALIBRATION CERTIFICATE

Object **D2300V2 - SN:1050**

Calibration procedure(s) QA CAL-05.v11

Calibration Procedure for SAR Validation Sources between 0.7-3 GHz

Calibration date: November 09, 2021

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^{\circ}$ C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	09-Apr-21 (No. 217-03291/03292)	Apr-22
Power sensor NRP-Z91	SN: 103244	09-Apr-21 (No. 217-03291)	Apr-22
Power sensor NRP-Z91	SN: 103245	09-Apr-21 (No. 217-03292)	Apr-22
Reference 20 dB Attenuator	SN: BH9394 (20k)	09-Apr-21 (No. 217-03343)	Apr-22
Type-N mismatch combination	SN: 310982 / 06327	09-Apr-21 (No. 217-03344)	Apr-22
Reference Probe EX3DV4	SN: 7349	28-Dec-20 (No. EX3-7349_Dec20)	Dec-21
DAE4	SN: 601	01-Nov-21 (No. DAE4-601_Nov21)	Nov-22
	¥		
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB39512475	30-Oct-14 (in house check Oct-20)	In house check: Oct-22
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-20)	In house check: Oct-22
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-20)	In house check: Oct-22
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-20)	In house check: Oct-22
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-20)	In house check: Oct-22
	Name	Function	Signature
Calibrated by:	Michael Weber	Laboratory Technician	Mbler
		V	
Approved by:	Niels Kuster	Quality Manager	1.18
		/	

Issued: November 11, 2021

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D2300V2-1050_Nov21

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

c) DASY System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom.
- Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D2300V2-1050_Nov21

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy , $dz = 5 mm$	
Frequency	2300 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.5	1.67 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.7 ± 6 %	1.71 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	CAST C	2535

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	12.4 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	49.2 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.06 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.1 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.9	1.81 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	51.6 ± 6 %	1.83 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C	eres.	2035

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	11.8 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	46.7 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.73 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	22.8 W/kg ± 16.5 % (k=2)

Certificate No: D2300V2-1050_Nov21

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	46.3 Ω - 3.1 jΩ
Return Loss	- 26.0 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	44.2 Ω - 0.8 jΩ
Return Loss	- 24.1 dB

General Antenna Parameters and Design

11.07.10	Electrical Delay (one direction)	1.157 ns
----------	----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG

Certificate No: D2300V2-1050_Nov21

Date: 09.11.2021

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2300 MHz; Type: D2300V2; Serial: D2300V2 - SN: 1050

Communication System: UID 0 - CW; Frequency: 2300 MHz

Medium parameters used: f = 2300 MHz; $\sigma = 1.71 \text{ S/m}$; $\varepsilon_r = 39.7$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

• Probe: EX3DV4 - SN7349; ConvF(7.98, 7.98, 7.98) @ 2300 MHz; Calibrated: 28.12.2020

• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 01.11.2021

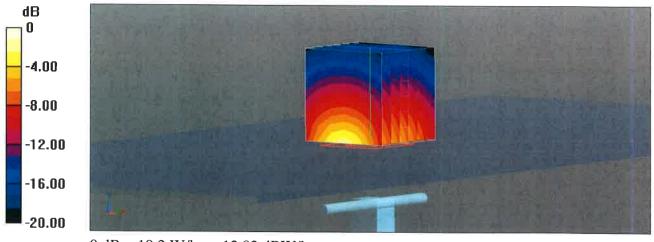
Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001

• DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

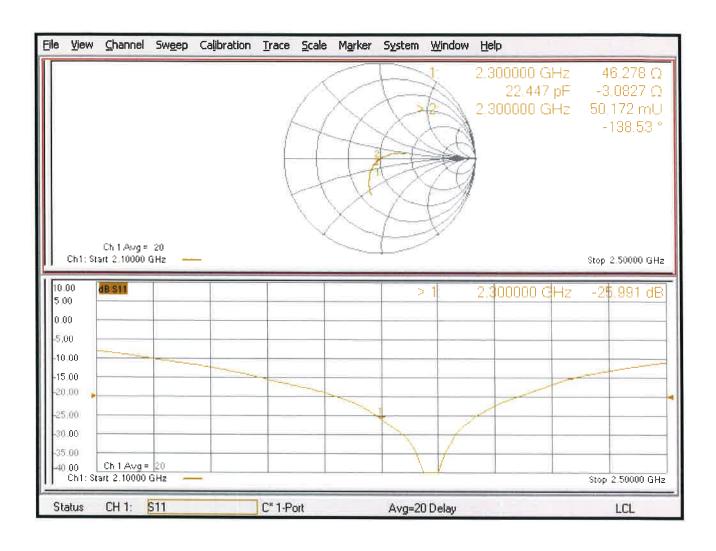
Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 116.7 V/m; Power Drift = 0.02 dB


Peak SAR (extrapolated) = 22.4 W/kg

SAR(1 g) = 12.4 W/kg; SAR(10 g) = 6.06 W/kg

Smallest distance from peaks to all points 3 dB below = 9 mm


Ratio of SAR at M2 to SAR at M1 = 56.1%

Maximum value of SAR (measured) = 19.2 W/kg

0 dB = 19.2 W/kg = 12.83 dBW/kg

Impedance Measurement Plot for Head TSL

Date: 09.11.2021

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2300 MHz; Type: D2300V2; Serial: D2300V2 - SN:1050

Communication System: UID 0 - CW; Frequency: 2300 MHz

Medium parameters used: f = 2300 MHz; $\sigma = 1.83$ S/m; $\varepsilon_r = 51.6$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

• Probe: EX3DV4 - SN7349; ConvF(8.13, 8.13, 8.13) @ 2300 MHz; Calibrated: 28.12.2020

• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 01.11.2021

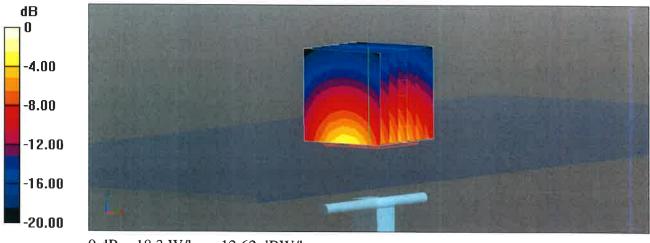
• Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002

• DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

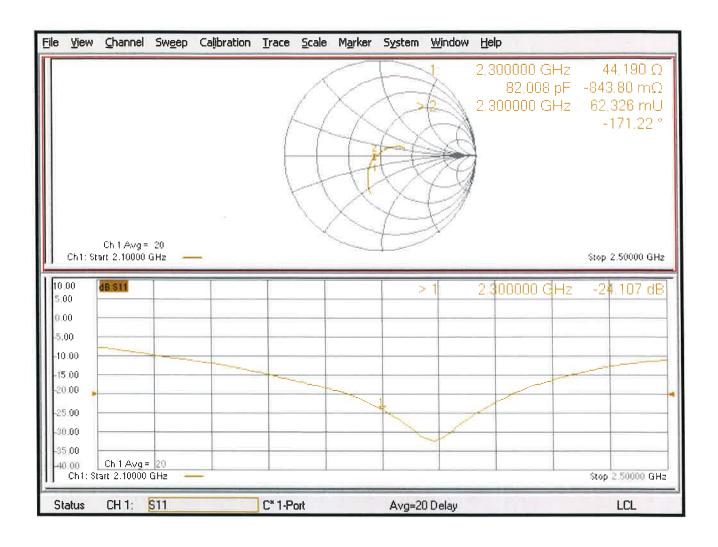
Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 107.7 V/m; Power Drift = -0.07 dB


Peak SAR (extrapolated) = 21.6 W/kg

SAR(1 g) = 11.8 W/kg; SAR(10 g) = 5.73 W/kg

Smallest distance from peaks to all points 3 dB below = 9 mm


Ratio of SAR at M2 to SAR at M1 = 55.8%

Maximum value of SAR (measured) = 18.3 W/kg

0 dB = 18.3 W/kg = 12.62 dBW/kg

Impedance Measurement Plot for Body TSL

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client UL USA Certificate No: D2600V2-1104_Nov21

CALIBRATION CERTIFICATE

Object **D2600V2 - SN:1104**

Calibration procedure(s) QA CAL-05.v11

Calibration Procedure for SAR Validation Sources between 0.7-3 GHz

Calibration date: November 09, 2021

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	09-Apr-21 (No. 217-03291/03292)	Apr-22
Power sensor NRP-Z91	SN: 103244	09-Apr-21 (No. 217-03291)	Apr-22
Power sensor NRP-Z91	SN: 103245	09-Apr-21 (No. 217-03292)	Apr-22
Reference 20 dB Attenuator	SN: BH9394 (20k)	09-Apr-21 (No. 217-03343)	Apr-22
Type-N mismatch combination	SN: 310982 / 06327	09-Apr-21 (No. 217-03344)	Apr-22
Reference Probe EX3DV4	SN: 7349	28-Dec-20 (No. EX3-7349_Dec20)	Dec-21
DAE4	SN: 601	01-Nov-21 (No. DAE4-601_Nov21)	Nov-22
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB39512475	30-Oct-14 (in house check Oct-20)	In house check: Oct-22
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-20)	In house check: Oct-22
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-20)	In house check: Oct-22
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-20)	In house check: Oct-22
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-20)	In house check: Oct-22
	Name	Function	Signature
Calibrated by:	Michael Weber	Laboratory Technician	1166-
			VIII
Approved by:	Niels Kuster	Quality Manager	1.18

Issued: November 11, 2021

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D2600V2-1104_Nov21

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

c) DASY System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom.
- Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D2600V2-1104_Nov21

Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy , $dz = 5 mm$	
Frequency	2600 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.0	1.96 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.6 ± 6 %	2.04 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	*#************************************	5,55

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	14.8 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	58.0 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.60 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	26.1 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.5	2.16 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	50.7 ± 6 %	2.19 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C	200	

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.8 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	54.4 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	6.17 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	24.5 W/kg ± 16.5 % (k=2)

Certificate No: D2600V2-1104_Nov21 Page 3 of 8

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	47.2 Ω - 7.6 jΩ
Return Loss	- 21.6 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	45.0 Ω - 6.5 jΩ
Return Loss	- 21.3 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.151 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
	OI EAG

Certificate No: D2600V2-1104_Nov21

DASY5 Validation Report for Head TSL

Date: 09.11.2021

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN: 1104

Communication System: UID 0 - CW; Frequency: 2600 MHz

Medium parameters used: f = 2600 MHz; $\sigma = 2.04 \text{ S/m}$; $\varepsilon_r = 38.6$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

• Probe: EX3DV4 - SN7349; ConvF(7.84, 7.84, 7.84) @ 2600 MHz; Calibrated: 28.12.2020

• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 01.11.2021

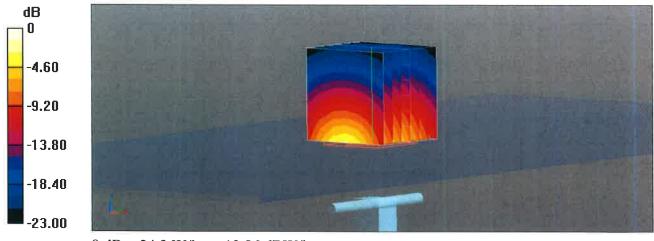
• Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001

• DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

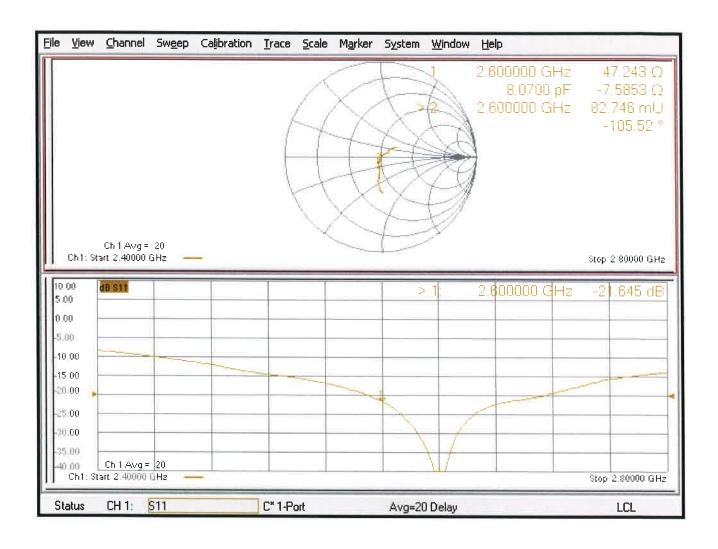
Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 120.2 V/m; Power Drift = 0.02 dB


Peak SAR (extrapolated) = 28.9 W/kg

SAR(1 g) = 14.8 W/kg; SAR(10 g) = 6.6 W/kg

Smallest distance from peaks to all points 3 dB below = 8.5 mm


Ratio of SAR at M2 to SAR at M1 = 51.2%

Maximum value of SAR (measured) = 24.3 W/kg

0 dB = 24.3 W/kg = 13.86 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 09.11.2021

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN: 1104

Communication System: UID 0 - CW; Frequency: 2600 MHz

Medium parameters used: f = 2600 MHz; $\sigma = 2.19 \text{ S/m}$; $\varepsilon_r = 50.7$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

• Probe: EX3DV4 - SN7349; ConvF(7.91, 7.91, 7.91) @ 2600 MHz; Calibrated: 28.12.2020

• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 01.11.2021

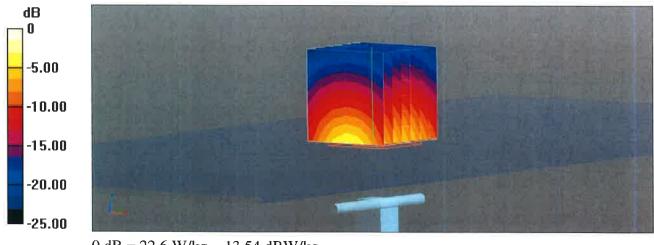
Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002

• DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

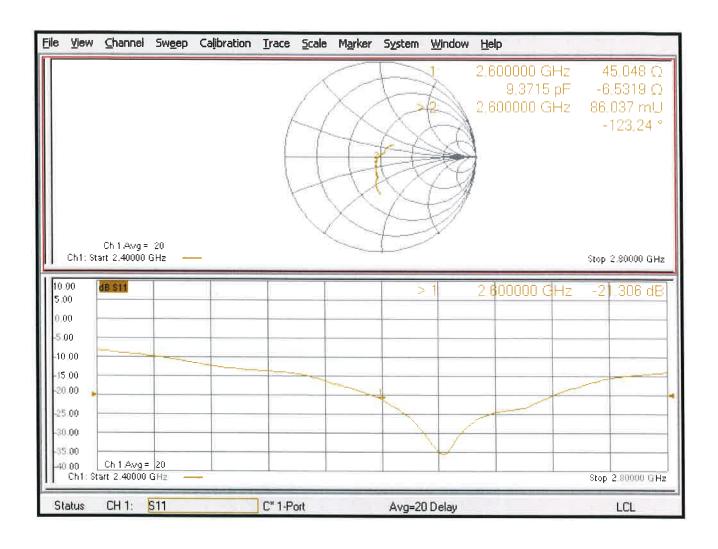
Reference Value = 110.1 V/m; Power Drift = -0.07 dB


Peak SAR (extrapolated) = 26.9 W/kg

SAR(1 g) = 13.8 W/kg; SAR(10 g) = 6.17 W/kg

Smallest distance from peaks to all points 3 dB below = 8.5 mm

Ratio of SAR at M2 to SAR at M1 = 52%


Maximum value of SAR (measured) = 22.6 W/kg

0 dB = 22.6 W/kg = 13.54 dBW/kg

Certificate No: D2600V2-1104_Nov21

Impedance Measurement Plot for Body TSL

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client UL USA

Accreditation No.: SCS 0108

Certificate No: D3500V2-1135_Mar22

CALIBRATION CERTIFICATE

Object D3500V2 - SN:1135

Calibration procedure(s) QA CAL-22.v6

Calibration Procedure for SAR Validation Sources between 3-10 GHz

Calibration date: March 02, 2022

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).

The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	09-Apr-21 (No. 217-03291/03292)	Apr-22
Power sensor NRP-Z91	SN: 103244	09-Apr-21 (No. 217-03291)	Apr-22
Power sensor NRP-Z91	SN: 103245	09-Apr-21 (No. 217-03292)	Apr-22
Reference 20 dB Attenuator	SN: BH9394 (20k)	09-Apr-21 (No. 217-03343)	Apr-22
Type-N mismatch combination	SN: 310982 / 06327	09-Apr-21 (No. 217-03344)	Apr-22
Reference Probe EX3DV4	SN: 3503	31-Dec-21 (No. EX3-3503_Dec21)	Dec-22
DAE4	SN: 601	01-Nov-21 (No. DAE4-601_Nov21)	Nov-22
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB39512475	30-Oct-14 (in house check Oct-20)	In house check: Oct-22
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-20)	In house check: Oct-22
Power sensor HP 8481A	SN: MY41093315	07-Oct-15 (in house check Oct-20)	In house check: Oct-22
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-20)	In house check: Oct-22
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-20)	In house check: Oct-22
	Name	Function	Signature
Calibrated by:	Michael Weber	Laboratory Technician	MINESET
Approved by:	Sven Kühn	Deputy Manager	

Issued: March 3, 2022

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D3500V2-1135_Mar22 Page 1 of 6

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORM x,v,z

N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

c) DASY System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom.
- Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D3500V2-1135_Mar22 Page 2 of 6

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy = 4 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	3500 MHz ± 1 MHz	

Head TSL parametersThe following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	37.9	2.91 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	37.4 ± 6 %	2.93 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	none.	

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	6.66 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	66.3 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.50 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.9 W/kg ± 19.5 % (k=2)

Certificate No: D3500V2-1135_Mar22

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	51.4 Ω - 4.0 jΩ
Return Loss	- 27.6 dB

General Antenna Parameters and Design

	T
Electrical Delay (one direction)	1.136 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

	Manufactured by	SPEAG
--	-----------------	-------

Certificate No: D3500V2-1135_Mar22

DASY5 Validation Report for Head TSL

Date: 02.03.2022

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 3500 MHz; Type: D3500V2; Serial: D3500V2 - SN: 1135

Communication System: UID 0 - CW; Frequency: 3500 MHz

Medium parameters used: f = 3500 MHz; $\sigma = 2.93 \text{ S/m}$; $\varepsilon_r = 37.4$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN3503; ConvF(7.91, 7.91, 7.91) @ 3500 MHz; Calibrated: 31.12.2021

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 01.11.2021

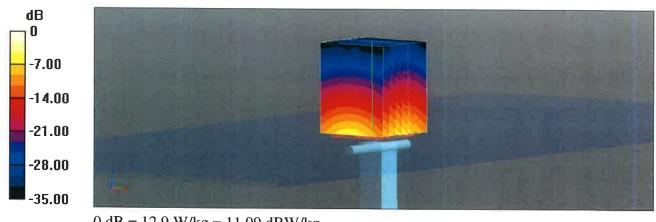
Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001

DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration for Head Tissue/Pin=100 mW, d=10mm, f=3500MHz/Zoom Scan,

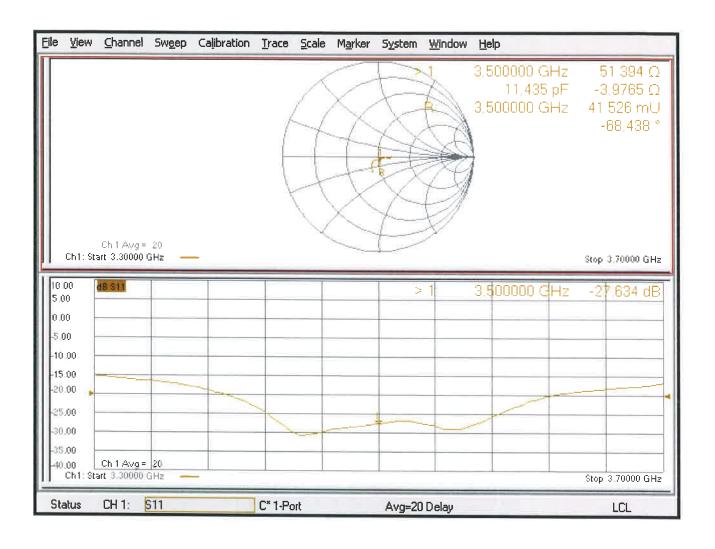
dist=1.4mm (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 69.65 V/m; Power Drift = -0.02 dB


Peak SAR (extrapolated) = 17.9 W/kg

SAR(1 g) = 6.66 W/kg; SAR(10 g) = 2.50 W/kg

Smallest distance from peaks to all points 3 dB below = 8.6 mm


Ratio of SAR at M2 to SAR at M1 = 75.3%

Maximum value of SAR (measured) = 12.9 W/kg

0 dB = 12.9 W/kg = 11.09 dBW/kg

Impedance Measurement Plot for Head TSL

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
S wiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

UL USA

Accreditation No.: SCS 0108

Certificate No: D3700V2-1110_Mar22

CALIBRATION CERTIFICATE

Object D3700V2 - SN:1110

Calibration procedure(s) QA CAL-22.v6

Calibration Procedure for SAR Validation Sources between 3-10 GHz

Calibration date: March 02, 2022

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

09-Apr-21 (N 45 09-Apr-21 (N 394 (20k) 09-Apr-21 (N 82 / 06327 09-Apr-21 (N 31-Dec-21 (N	No. 217-03291/03292) No. 217-03291) No. 217-03292) No. 217-03343) No. 217-03344) No. EX3-3503_Dec21) No. DAE4-601_Nov21)	Apr-22 Apr-22 Apr-22 Apr-22 Apr-22 Dec-22 Nov-22
45 09-Apr-21 (N 394 (20k) 09-Apr-21 (N 82 / 06327 09-Apr-21 (N 31-Dec-21 (N 01-Nov-21 (N	No. 217-03292) No. 217-03343) No. 217-03344) No. EX3-3503_Dec21) No. DAE4-601_Nov21)	Apr-22 Apr-22 Apr-22 Dec-22 Nov-22
394 (20k) 09-Apr-21 (N 82 / 06327 09-Apr-21 (N 31-Dec-21 (N 01-Nov-21 (N	No. 217-03343) No. 217-03344) No. EX3-3503_Dec21) No. DAE4-601_Nov21)	Apr-22 Apr-22 Dec-22 Nov-22
82 / 06327 09-Apr-21 (N 31-Dec-21 (N 01-Nov-21 (N	No. 217-03344) No. EX3-3503_Dec21) No. DAE4-601_Nov21)	Apr-22 Dec-22 Nov-22
31-Dec-21 (f 01-Nov-21 (f	No. EX3-3503_Dec21) No. DAE4-601_Nov21)	Dec-22 Nov-22
01-Nov-21 (N	No. DAE4-601_Nov21)	Nov-22
,	_ ,	
Check Date	(in house)	
	(iii riouse)	Scheduled Check
9512475 30-Oct-14 (ir	n house check Oct-20)	In house check: Oct-22
7292783 07-Oct-15 (ir	n house check Oct-20)	In house check: Oct-22
1093315 07-Oct-15 (ir	n house check Oct-20)	In house check: Oct-22
72 15-Jun-15 (ir	n house check Oct-20)	In house check: Oct-22
1080477 31-Mar-14 (i	in house check Oct-20)	In house check: Oct-22
	Function	Signature
Veber	Laboratory Technician	MINEGET
ın	Deputy Manager	
	1093315 07-Oct-15 (i 72 15-Jun-15 (i 1080477 31-Mar-14 (i	1093315 07-Oct-15 (in house check Oct-20) 15-Jun-15 (in house check Oct-20) 1080477 31-Mar-14 (in house check Oct-20) Function Veber Laboratory Technician

Issued: March 3, 2022

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D3700V2-1110_Mar22

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF N/A sensitivity in TSL / NORM x,y,z

not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

c) DASY System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom.
- Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D3700V2-1110_Mar22

Page 2 of 6

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy = 4 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	3700 MHz ± 1 MHz	

Head TSL parametersThe following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	37.7	3.12 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	37.1 ± 6 %	3.09 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	6.93 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	69.2 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.50 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.9 W/kg ± 19.5 % (k=2)

Certificate No: D3700V2-1110_Mar22 Page 3 of 6

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	$42.7 \Omega + 0.3 j\Omega$
Return Loss	- 22.0 dB

General Antenna Parameters and Design

	Y .
Electrical Delay (one direction)	1.138 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
-----------------	-------

Certificate No: D3700V2-1110_Mar22

DASY5 Validation Report for Head TSL

Date: 02.03.2022

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 3700 MHz; Type: D3700V2; Serial: D3700V2 - SN:1110

Communication System: UID 0 - CW; Frequency: 3700 MHz

Medium parameters used: f = 3700 MHz; $\sigma = 3.09 \text{ S/m}$; $\varepsilon_r = 37.1$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

• Probe: EX3DV4 - SN3503; ConvF(7.73, 7.73, 7.73) @ 3700 MHz; Calibrated: 31.12.2021

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 01.11.2021

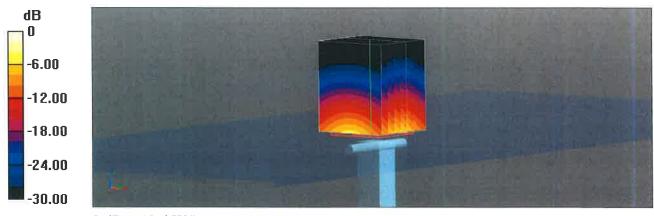
• Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001

DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration for Head Tissue/Pin=100 mW, d=10mm, f=3700MHz/Zoom Scan,

dist=1.4mm (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

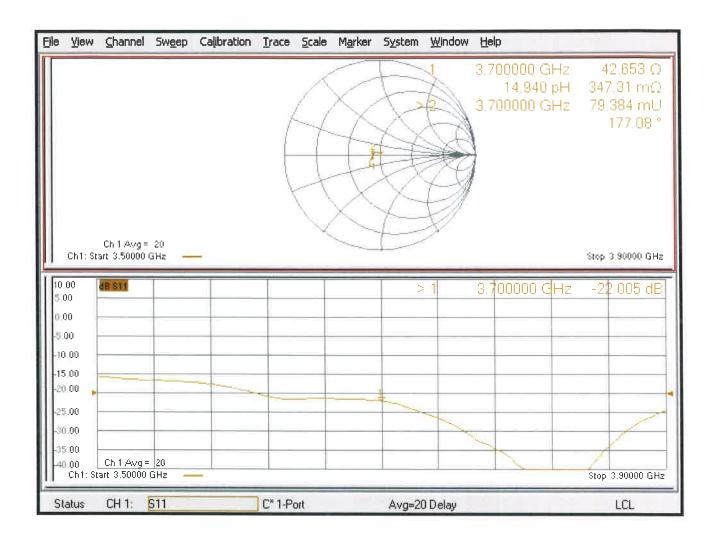
Reference Value = 71.27 V/m; Power Drift = 0.05 dB


Peak SAR (extrapolated) = 19.5 W/kg

SAR(1 g) = 6.93 W/kg; SAR(10 g) = 2.5 W/kg

Smallest distance from peaks to all points 3 dB below = 8 mm

Ratio of SAR at M2 to SAR at M1 = 73.7%


Maximum value of SAR (measured) = 13.6 W/kg

0 dB = 13.6 W/kg = 11.34 dBW/kg

Certificate No: D3700V2-1110_Mar22

Impedance Measurement Plot for Head TSL

