

Electromagnetic Emissions Test Report Application for Grant of Equipment Authorization pursuant to FCC Part 15, Subpart E (UNII Devices) and Industry Canada RSS 210 Issue 5 (LELEAN Devices) on the Acer Incorporated Model: Acer Travelmate C110

FCC ID: PU5MS2133

GRANTEE: Acer Incorporated

> 21F 88, Sec. 1 Hsin Tai Wu R., Hsichih Taipei Hsien 221, Taiwan, R.O.C

TEST SITE: Elliott Laboratories, Inc.

> 684 W. Maude Avenue Sunnyvale, CA 94086

REPORT DATE: June 5, 2003

FINAL TEST DATE: May 22, May 23, May 24 and May 27, 2003

guan man

AUTHORIZED SIGNATORY:

Juan Martinez Sr. EMC Engineer

Elliott Laboratories, Inc. is accredited by the A2LA, certificate number 2016-01, to perform the test(s) listed in this report. This report shall not be reproduced, except in its entirety, without the written approval of Elliott Laboratories, Inc.

DECLARATIONS OF COMPLIANCE

Equipment Name and Model:

Acer Travelmate C110

Manufacturer:

Acer Incorporated 21F 88, Sec. 1 Hsin Tai Wu Rd., Hsichih Taipei Hsien 221, Taiwan, R.O.C.

Tested to applicable standards:

RSS-210, Issue 5, November 2001 (Low Power License-Exempt Radiocommunication Devices)

FCC Part 15 Subpart E (UNII Devices)

Measurement Facility Description Filed With Department of Industry:

Departmental Acknowledgement Number: IC2845 **SV2** Dated August 12, 2001 Departmental Acknowledgement Number: IC2845 **SV4** Dated July 19, 2001

I declare that the testing was performed or supervised by me; that the test measurements were made in accordance with the above mentioned departmental standards (through the use of ANSI C63.4 as detailed in section 5.3 of RSS-210, Issue 5); and that the equipment performed in accordance with the data submitted in this report.

Signature

Name Juan Martinez

Title Sr. EMC Engineer
Company Elliott Laboratories Inc.
Address 684 W. Maude Ave

Sunnyvale, CA 94086

guan mare

USA

Date: June 5, 2003

Maintenance of compliance with the above standards is the responsibility of the manufacturer. Any modification of the product which may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

File: R51423 Page 2 of 18 Pages

TABLE OF CONTENTS

COVER PAGE	1
APPLICATION AND AGREEMENT FOR CERTIFICATION SERVICES	1
DECLARATIONS OF COMPLIANCE	2
TABLE OF CONTENTS	3
SCOPE	4
OBJECTIVE	4
SUMMARY OF RESULTS	5
MEASUREMENT UNCERTAINTIES	6
EQUIPMENT UNDER TEST (EUT) DETAILS	7
GENERAL ENCLOSURE MODIFICATIONS SUPPORT EQUIPMENT EXTERNAL I/O CABLING EUT OPERATION DURING TESTING ANTENNA REQUIREMENTS	
TEST SITE	9
GENERAL INFORMATIONCONDUCTED EMISSIONS CONSIDERATIONSRADIATED EMISSIONS CONSIDERATIONS	9
MEASUREMENT INSTRUMENTATION	10
RECEIVER SYSTEM INSTRUMENT CONTROL COMPUTER LINE IMPEDANCE STABILIZATION NETWORK (LISN) POWER METER FILTERS/ATTENUATORS ANTENNAS ANTENNA MAST AND EQUIPMENT TURNTABLE INSTRUMENT CALIBRATION	
TEST PROCEDURES	12
EUT AND CABLE PLACEMENTCONDUCTED EMISSIONSRADIATED EMISSIONSCONDUCTED EMISSIONS FROM ANTENNA PORT	12
SPECIFICATION LIMITS AND SAMPLE CALCULATIONS	14
FCC 15.407 (A) OUTPUT POWER LIMITS	
EXHIBIT 2: Test Data Log Sheets	

SCOPE

An electromagnetic emissions test has been performed on the Acer Incorporated model Acer Travelmate C110 pursuant to Subpart E of Part 15 of FCC Rules for Unlicensed National Information Infrastructure (UNII) devices and RSS-210 Issue 5 for licence-exempt local area network (LELAN) devices. Conducted and radiated emissions data has been collected, reduced, and analyzed within this report in accordance with measurement guidelines set forth in ANSI C63.4-1992 as outlined in Elliott Laboratories test procedures.

The intentional radiator above has been tested in a simulated typical installation to demonstrate compliance with the relevant FCC performance and procedural standards.

Final system data was gathered in a mode that tended to maximize emissions by varying orientation of EUT, orientation of power and I/O cabling, antenna search height, and antenna polarization.

Every practical effort was made to perform an impartial test using appropriate test equipment of known calibration. All pertinent factors have been applied to reach the determination of compliance.

The test results recorded herein are based on a single type test of the Acer Incorporated model Acer Travelmate C110 and therefore apply only to the tested sample. The sample was selected and prepared by Robert Paxman.

OBJECTIVE

The primary objective of the manufacturer is compliance with Subpart E of Part 15 of FCC Rules for the radiated and conducted emissions of intentional radiators. Certification of these devices is required as a prerequisite to marketing as defined in Part 2 the FCC Rules.

Certification is a procedure where the manufacturer or a contracted laboratory makes measurements and submits the test data and technical information to the FCC. The FCC issues a grant of equipment authorization upon successful completion of their review of the submitted documents. Once the equipment authorization has been obtained, the label indicating compliance must be attached to all identical units, which are subsequently manufactured.

File: R51423 Page 4 of 18 Pages

SUMMARY OF RESULTS

FCC Part 15	RSS 210	Description	Comments	Result
Section	Section	-	Comments	resure
Operation in th	ne 5.15 – 5.25 GH	Iz Band		T
15.407 (d)		The antenna is integral to the host device	Antenna Gain = 2.61 dBi The antenna is integral to the host system	COMPLIES
15.407(e)		Indoor operation only	Refer to user's manual in Exhibit 6	COMPLIES
15.407(a) (1)	6.2.2 q1 (i)	Bandwidth	26dB: 34.7 MHz 20dB: 22.8 MHz 99%: 17.1 MHz	N/A
15.407(a) (1)	6.2.2 q1 (i)	Output Power	15.5dBm (0.035 Watts)	COMPLIES
15.407(a) (1))	6.2.2 q1 (i)	Power Spectral Density	3.1dBm/MHz	COMPLIES
density of spuri	ious emissions in			
		Maximum Antenna Gain /Integral Antenna	Antenna Gain = 2.61 dBi The antenna is integral to the host system	COMPLIES
15.407(a) (2)	6.2.2 q1 (ii)	Bandwidth	26dB: 31.5 MHz 20dB: 26.8 MHz 99%: 17.2 MHz	N/A
15.407(a) (2)	6.2.2 q1 (ii)	Output Power	16.4dBm (0.044 Watts)	COMPLIES
15.407(a) (2))	6.2.2 q1 (ii)	Power Spectral Density	3.9dBm/MHz	COMPLIES
	ements for all ba		·	
15.407(b) (5) / 15.209	6.2.2 q1 (ii)	Spurious Emissions below 1GHz	Measured during radiated conducted emissions tests for digital device.	COMPLIES
15.407(b) (2)	6.2.2 q1 (ii)	Spurious Emissions above 1GHz	-8.81dB @ 5350 MHz	COMPLIES
	7	Receiver Spurious Emissions above 1GHz	-12.9dB @ 4924.0MHz (Note 1)	COMPLIES
	6.2.2 q(iv)(a)	Digital Modulation	Digital Modulation is used, refer to the "Theory of Operations" (Exhibit 9) for a detailed explanation.	COMPLIES
	6.2.2 q(iv)(b)	Peak Spectral Density	3.9dBm/MHz	COMPLIES
15.407(a)(6)		Peak Excursion Ratio	7.7dB	COMPLIES
	6.2.2 q(iv)(c)	Channel Selection	The device was tested on the highest, lowest and center channels available.	N/A
15.407 (c)	6.2.2 q(iv)(d)	Automatic Discontinuation of Operation in the absence of information to transmit	Operation is discontinued in the absence of information to transmit, refer to the "Theory of Operations" in Exhibit 9 for a detailed explanation.	COMPLIES
15.407 (g)	6.2.2 q(iv)(e)	Frequency Stability	Frequency stability is +/- 20 ppm, refer to the "Theory of Operations" in Exhibit 9 for a detailed analysis.	COMPLIES
	6.2.2 q(iv)(g)	User Manual information	All relevant statements have been included in the user's manuals. Refer to Exhibit 6 for details	COMPLIES
15.407 (f)	6.2.2 q(iv)(g)	RF Exposure Requirements	Refer to SAR Report in Exhibit 11	COMPLIES
15.407(b) / 15.207		AC Conducted Emissions	43.1 dBuV @ 0.211 MHz (-9.9 dB)	COMPLIES
	6.6	AC Conducted Emissions	43.1 dBuV @ 0.211 MHz (-4.9 dB)	

File: R51423 Page 5 of 18 Pages

MEASUREMENT UNCERTAINTIES

ISO Guide 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level and were calculated in accordance with NAMAS document NIS 81.

Measurement Type	Frequency Range (MHz)	Calculated Uncertainty (dB)
Conducted Emissions Radiated Emissions	0.15 to 30 30 to 1000	± 2.4 ± 3.6

File: R51423 Page 6 of 18 Pages

EQUIPMENT UNDER TEST (EUT) DETAILS

GENERAL

The Acer Incorporated model Acer Travelmate C110 is a mini PCI Card dual band (802.11a and 802.11b) transceiver that is made to be installed into Acer Laptop (Model: TravelMate C110). The Mini PCI was installed in such a laptop during testing.

The host laptop was treated as tabletop equipment during testing to simulate the end user environment. The electrical rating of the laptop is 120/240 V, 50/60 Hz, 5 Amps.

The sample was received on May 22, 2003 and tested on May 22, May 23, May 24 and May 27, 2003. The EUT and host system consisted of the following component(s):

Manufacturer/Model/Description	Serial Number	Proposed FCC ID #
Acer Travelmate C110 Laptop	-	PU5MS2133

ENCLOSURE

The EUT has no enclosure. It is designed to be installed within the enclosure of a host computer.

MODIFICATIONS

The EUT did not require modifications during testing in order to comply with the emission specifications.

SUPPORT EQUIPMENT

The following support equipment was used during emissions testing.

Manufacturer	Model	Description	Serial Number	FCC ID
Hewlett Packard	Deskjet 3820	USB Printer	CN2451B1YS	DoC

EXTERNAL I/O CABLING

The I/O cabling configuration during emissions testing was as follows:

Port	Connected To	Cable(s)		
		Description	Length(m)	
AC	120Vac outlet	3 prong	Unshielded	1.8

File: R51423 Pages

EUT OPERATION DURING TESTING

The EUT was transmitting on the channel stated in each test description at the maximum power. The transmission was continuous at 6Mb/s for 802.11a mode and at 1Mb/s in 802.11b mode. These data rates produce the highest power spectral density in their respective modes. The laptop display was position in 90 degrees configuration and tablet configuration during the radiated emission test.

ANTENNA REQUIREMENTS

As the device is intended to operate in the 5.15-5.25 GHz band an integral antenna as detailed in 15.407 (d) and RSS-210 6.2.2(q1) (i) is required. The antenna for the device is integral to the laptop. The antenna will be place inside and located on the laptop display. To further insure compliance with 15.407 (d) epoxy will be used to permanently glue the connectors to the MPCI card connector.

File: R51423 Pages

TEST SITE

GENERAL INFORMATION

Final test measurements were taken on May 22, May 23, May 24 and May 27, 2003at the Elliott Laboratories Open Area Test Site #2 & 4 located at 684 West Maude Avenue, Sunnyvale, California. The test site contains separate areas for radiated and conducted emissions testing. Pursuant to section 2.948 of the Rules, construction, calibration, and equipment data has been filed with the Federal Communications Commission. In accordance with Industry Canada rules detailed in RSS 210 Issue 5 and RSS-212, construction, calibration, and equipment data for the test sites have been filed with the Federal Communications Commission.

The FCC recommends that ambient noise at the test site be at least 6 dB below the allowable limits. Ambient levels are below this requirement with the exception of predictable local TV, radio, and mobile communications traffic. The test site contains separate areas for radiated and conducted emissions testing. Considerable engineering effort has been expended to ensure that the facilities conform to all pertinent FCC requirements.

CONDUCTED EMISSIONS CONSIDERATIONS

Conducted emissions testing is performed in conformance with ANSI C63.4-1992. Measurements are made with the EUT connected to the public power network through a nominal, standardized RF impedance, which is provided by a line impedance stabilization network, known as a LISN. A LISN is inserted in series with each current-carrying conductor in the EUT power cord.

RADIATED EMISSIONS CONSIDERATIONS

The FCC has determined that radiation measurements made in a shielded enclosure are not suitable for determining levels of radiated emissions. Radiated measurements are performed in an open field environment. The test site is maintained free of conductive objects within the CISPR defined elliptical area incorporated in ANSI C63.4 guidelines.

File: R51423 Page 9 of 18 Pages

MEASUREMENT INSTRUMENTATION

RECEIVER SYSTEM

An EMI receiver as specified in CISPR 16-1 is used for emissions measurements. The receivers used can measure over the frequency range of 9 kHz up to 2000 MHz. These receivers allow both ease of measurement and high accuracy to be achieved. The receivers have Peak, Average, and CISPR (Quasi-peak) detectors built into their design so no external adapters are necessary. The receiver automatically sets the required bandwidth for the CISPR detector used during measurements.

For measurements above the frequency range of the receivers, a spectrum analyzer is utilized because it provides visibility of the entire spectrum along with the precision and versatility required to support engineering analysis. Average measurements above 1000MHz are performed on the spectrum analyzer using the linear-average method with a resolution bandwidth of 1 MHz and a video bandwidth of 10 Hz.

INSTRUMENT CONTROL COMPUTER

The receivers utilize either a Rohde and Schwarz EZM Spectrum Monitor/Controller or contain an internal Spectrum Monitor/Controller to view and convert the receiver measurements to the field strength at an antenna or voltage developed at the LISN measurement port, which is then compared directly with the appropriate specification limit. This provides faster, more accurate readings by performing the conversions described under Sample Calculations within the Test Procedures section of this report. Results are printed in a graphic and/or tabular format, as appropriate. A personal computer is used to record all measurements made with the receivers.

The Spectrum Monitor provides a visual display of the signal being measured. In addition, the controller or a personal computer run automated data collection programs which control the receivers. This provides added accuracy since all site correction factors, such as cable loss and antenna factors are added automatically.

LINE IMPEDANCE STABILIZATION NETWORK (LISN)

Line conducted measurements utilize a fifty microhenry Line Impedance Stabilization Network as the monitoring point. The LISN used also contains a 250 uH CISPR adapter. This network provides for calibrated radio frequency noise measurements by the design of the internal low pass and high pass filters on the EUT and measurement ports, respectively.

File: R51423 Page 10 of 18 Pages

POWER METER

A power meter and **peak** power sensor are used for all direct output power measurements from transmitters as they provide a broadband indication of the power output.

FILTERS/ATTENUATORS

External filters and precision attenuators are often connected between the receiving antenna or LISN and the receiver. This eliminates saturation effects and non-linear operation due to high amplitude transient events.

ANTENNAS

A biconical antenna is used to cover the range from 30 MHz to 300 MHz and a log periodic antenna is utilized from 300 MHz to 1000 MHz. Narrowband tuned dipole antennas are used over the entire 30 to 1000 MHz range for precision measurements of field strength. Above 1000 MHz, a horn antenna is used. The antenna calibration factors are included in site factors programmed into the test receivers.

ANTENNA MAST AND FOUIPMENT TURNTABLE

The antennas used to measure the radiated electric field strength are mounted on a non-conductive antenna mast equipped with a motor-drive to vary the antenna height.

ANSI C63.4 specifies that the test height above ground for table mounted devices shall be 80 centimeters. Floor mounted equipment shall be placed on the ground plane if the device is normally used on a conductive floor or separated from the ground plane by insulating material from 3 to 12 mm if the device is normally used on a non-conductive floor. During radiated measurements, the EUT is positioned on a motorized turntable in conformance with this requirement.

INSTRUMENT CALIBRATION

All test equipment is regularly checked to ensure that performance is maintained in accordance with the manufacturer's specifications. All antennas are calibrated at regular intervals with respect to tuned half-wave dipoles. An exhibit of this report contains the list of test equipment used and calibration information.

File: R51423 Page 11 of 18 Pages

TEST PROCEDURES

EUT AND CABLE PLACEMENT

The FCC requires that interconnecting cables be connected to the available ports of the unit and that the placement of the unit and the attached cables simulate the worst case orientation that can be expected from a typical installation, so far as practicable. To this end, the position of the unit and associated cabling is varied within the guidelines of ANSI C63.4, and the worst case orientation is used for final measurements.

CONDUCTED EMISSIONS

Conducted emissions are measured at the plug end of the power cord supplied with the EUT. Excess power cord length is wrapped in a bundle between 30 and 40 centimeters in length near the center of the cord. Preliminary measurements are made to determine the highest amplitude emission relative to the specification limit for all the modes of operation. Placement of system components and varying of cable positions are performed in each mode. A final peak mode scan is then performed in the position and mode for which the highest emission was noted on all current carrying conductors of the power cord.

RADIATED EMISSIONS

Radiated emissions measurements are performed in two phases as well. A preliminary scan of emissions is conducted in which all significant EUT frequencies are identified with the system in a nominal configuration. At least two scans are performed from 30 MHz up to the frequency required by the regulation specified on page 1. One or more of these is with the antenna polarized vertically while the one or more of these is with the antenna polarized horizontally. During the preliminary scans, the EUT is rotated through 360°, the antenna height is varied and cable positions are varied to determine the highest emission relative to the limit.

A speaker is provided in the receiver to aid in discriminating between EUT and ambient emissions. Other methods used during the preliminary scan for EUT emissions involve scanning with near field magnetic loops, monitoring I/O cables with RF current clamps, and cycling power to the EUT.

Final maximization is a phase in which the highest amplitude emissions identified in the spectral search are viewed while the EUT azimuth angle is varied from 0 to 360 degrees relative to the receiving antenna. The azimuth which results in the highest emission is then maintained while varying the antenna height from one to four meters. The result is the identification of the highest amplitude for each of the highest peaks. Each recorded level is corrected in the receiver using appropriate factors for cables, connectors, antennas, and preamplifier gain. Emissions which have values close to the specification limit may also be measured with a tuned dipole antenna to determine compliance.

File: R51423 Page 12 of 18 Pages

CONDUCTED EMISSIONS FROM ANTENNA PORT

Direct measurements are performed with the antenna port of the EUT connected to either the power meter or spectrum analyzer via a suitable attenuator and/or filter. These are used to ensure that the front end of the measurement instrument is not overloaded by the fundamental transmission.

Measurement bandwidths (video and resolution) are set in accordance with FCC procedures for the type of radio being tested.

File: R51423 Page 13 of 18 Pages

SPECIFICATION LIMITS AND SAMPLE CALCULATIONS

The limits for conducted emissions from the AC power port are given in units of microvolts, the limits for radiated electric field emissions are given in units of microvolts per meter at a specified test distance and the output power limits are given in terms of Watts, milliwatts or dBm. Data is measured in the logarithmic form of decibels relative to one microvolt, or dB microvolts (dBuV). For radiated emissions, the measured data is converted to the field strength at the antenna in dB microvolts per meter (dBuV/m). The results are then converted to the linear forms of uV and uV/m for comparison to published specifications.

Where the radiated electric field strength is expressed in terms of the equivalent isotropic radiated power (eirp) the following formula is used to determine the field strength limit in terms of microvolts per meter at a distance of 3m from the equipment under test:

$$E = \frac{1000000 \text{ v } 30 \text{ P}}{3} \quad \text{microvolts per meter}$$

where P is the eirp (Watts)

For reference, converting the voltage and electric field strength specification limits from linear to decibel form is accomplished by taking the base ten logarithm, then multiplying by 20. Conversion of power specification limits from linear units (in milliwatts) to decibel form (in dBm) is accomplished by taking the base ten logarithm, then multiplying by 10.

File: R51423 Page 14 of 18 Pages

FCC 15.407 (a) OUTPUT POWER LIMITS

The table below shows the limits for output power and output power density. Where the signal bandwidth is less than 20 MHz the maximum output power is reduced to the power spectral density limit plus 10 times the log of the bandwidth (in MHz).

Operating Frequency (MHz)	Output Power	Power Spectral Density
5150 - 5250	50mW (17 dBm)	4 dBm/MHz
5250 - 5350	250 mW (24 dBm)	11 dBm/MHz
5725 – 5825	1 Watts (30 dBm)	17 dBm/MHz

For system using antennas with gains exceeding 6dBi, the output power and power spectral density limits are reduced by 1dB for every dB the antenna gain exceeds 6dBi. Fixed point-to-point applications using the 5725 – 5825 MHz band may use antennas with gains of up to 23dBi without this limitation. If the gain exceeds 23dBi then the output power limit of 1 Watt is reduced by 1dB for every dB the gain exceeds 23dBi.

RS-210 6.2.2(q1) OUTPUT POWER LIMITS

The table below shows the limits for output power and output power density. Where the signal bandwidth is less than 20 MHz the maximum output power is reduced to the power spectral density limit plus 10 times the log of the bandwidth (in MHz).

Operating Frequency (MHz)	Output Power	Power Spectral Density
5150 - 5250	200mW (23 dBm)	10 dBm/MHz
5250 - 5350	250 mW (24 dBm)	11 dBm/MHz
5725 – 5825	1 Watts (30 dBm)	17 dBm/MHz

For system using antennas with gains exceeding 6dBi, the output power and power spectral density limits are reduced by 1dB for every dB the antenna gain exceeds 6dBi. Fixed point-to-point applications using the 5725 – 5825 MHz band may use antennas with gains of up to 23dBi without this limitation. If the gain exceeds 23dBi then the output power limit of 1 Watt is reduced by 1dB for every dB the gain exceeds 23dBi.

File: R51423 Page 15 of 18 Pages

SPURIOUS RADIATED EMISSIONS LIMITS

The table below shows the limits for unwanted (spurious) emissions falling in the restricted bands detailed in Part 15.205 and Industry Canada RSS-210 Table 2.

Frequency Range (MHz)	Limit (uV/m @ 3m)	Limit (dBuV/m @ 3m)		
30 to 88	100	40		
88 to 216	150	43.5		
216 to 960	200	46.0		
Above 960	500	54.0		

The table below shows the limits for unwanted (spurious) emissions outside of the restricted bands above 1GHz.

Operating Frequency (MHz)	Frequency Limit	
5150 - 5250	-27 dBm	68.3 dBuV/m
5250 - 5350	-27 dBm (note 1)	68.3 dBuV/m
5725 – 5825	-27 dBm (note 2)	68.3 dBuV/m
	-17 dBm (note 3)	78.3 dBuV/m

Note 1:If operation is restricted to indoor use only then emissions in the band 5.15 – 5.25 GHz must meet the power spectral density limits for the intentional signals detailed in RSS 210 and FCC Subpart E for devices operating in the 5.15 – 5.25 Ghz band.

Note 2: Applies to spurious signals separated by more than 10 MHz from the allocated band.

Note 3: Applies to spurious signals within 10 MHz of the allocated band.

AC POWER PORT CONDUCTED EMISSIONS LIMITS

The table below shows the limits for emissions on the AC power line as detailed in FCC Part 15.205 and Industry Canada RSS-210 section 6.6.

Frequency Range (MHz)	Limit (uV)	Limit (dBuV)
0.450 to 30.000	250	48

File: R51423 Page 16 of 18 Pages

SAMPLE CALCULATIONS - CONDUCTED EMISSIONS

Receiver readings are compared directly to the conducted emissions specification limit (decibel form) as follows:

$$R_r - B = C$$

and

$$C - S = M$$

where:

 R_r = Receiver Reading in dBuV

B = Broadband Correction Factor*

C = Corrected Reading in dBuV

S = Specification Limit in dBuV

M = Margin to Specification in +/- dB

* Broadband Level - Per ANSI C63.4, 13 dB may be subtracted from the quasi-peak level if it is determined that the emission is broadband in nature. If the signal level in the average mode is six dB or more below the signal level in the peak mode, the emission is classified as broadband.

File: R51423 Page 17 of 18 Pages

SAMPLE CALCULATIONS - RADIATED EMISSIONS

Receiver readings are compared directly to the specification limit (decibel form). The receiver internally corrects for cable loss, preamplifier gain, and antenna factor. The calculations are in the reverse direction of the actual signal flow, thus cable loss is added and the amplifier gain is subtracted. The Antenna Factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements. A distance factor, when used for electric field measurements, is calculated by using the following formula:

$$F_d = 20*LOG_{10} (D_m/D_s)$$

where:

 F_d = Distance Factor in dB

 $D_m = Measurement Distance in meters$

 D_S = Specification Distance in meters

Measurement Distance is the distance at which the measurements were taken and Specification Distance is the distance at which the specification limits are based. The antenna factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

The margin of a given emission peak relative to the limit is calculated as follows:

$$R_c = R_r + F_d$$

and

$$M = R_C - L_S$$

where:

 R_r = Receiver Reading in dBuV/m

 F_d = Distance Factor in dB

 R_C = Corrected Reading in dBuV/m

 L_S = Specification Limit in dBuV/m

M = Margin in dB Relative to Spec

File: R51423 Page 18 of 18 Pages

EXHIBIT 1: Test Equipment Calibration Data

1 Page

File: R51423 Exhibit Page 1 of 2

Conducted and Radiated Emissions, 24-May-03 Engineer: volivas

<u>Manufacturer</u>	<u>Description</u>	Model #	Assett #	Cal interval	Last Calibrated	Cal Due
Elliott Laboratories	Biconical Antenna, 30-300 MHz	EL30.300	773	12	3/18/03	3/18/04
Filtek	High Pass Filter, 1GHz	HP12/1000-5BA	956	12	3/11/03	3/11/04
EMCO	Horn Antenna, D. Ridge 1-18GHz	3115	786	12	2/28/03	2/28/04
Solar Electronics Co	LISN	8028-50-TS-24-BNC	904	12	6/19/02	6/19/03
EMCO	Log Periodic Antenna, 0.2-2 GHz	3148	1321	12	3/31/03	3/31/04
Hewlett Packard	Microwave Preamplifier, 1-26.5GHz	8449B	785	12	1/24/03	1/24/04
Rohde& Schwarz	Pulse Limiter	ESH3 Z2	1398	12	1/10/03	1/10/04
Hewlett Packard	Spectrum Analyzer, 9KHz - 22GHz	8593EM	1319	12	11/19/02	11/19/03
Rohde & Schwarz	Test Receiver, 0.009-30 MHz	ESH3	1316	12	12/6/02	12/6/03

Radiated Emissions, 30 - 40,000 MHz, 08-Jul-03

Engineer: jmartinez

Manufacturer	<u>Description</u>	Model #	Assett #	Cal interval	Last Calibrated	Cal Due
Hewlett Packard	Microwave EMI test system (SA40, 30Hz - 40GHz), system 2	84125C	1410	12	4/2/03	4/2/04

Power Measurements, 08-Jul-03 Engineer: jmartinez

<u>Manufacturer</u>	<u>Description</u>	Model #	Assett #	Cal interval	Last Calibrated	Cal Due
Rohde & Schwarz	Power Meter, Single Channel	NRVS	1290	12	4/3/03	4/3/04
Rohde & Schwarz	Power Sensor 100uW - 10 Watts	NRV-Z53	1236	12	8/15/02	8/15/03

EXHIBIT 2: Test Data Log Sheets

ELECTROMAGNETIC EMISSIONS

TEST LOG SHEETS

AND

MEASUREMENT DATA

T51308_UNII 36 Pages T51308_Digital 8 Pages

File: R51423 Exhibit Page 2 of 2

Ellion	t	EM	C Test Data
Client:	Intel Corporation	Job Number:	J51307
Model:	ACER Laptop w/ WM3B2100A	T-Log Number:	T51308
		Account Manager:	Robert Holt
Contact:	Robert Paxman		
Emissions Spec:	FCC Part 15 B, C, & E, RSS-210	Class:	Radio
Immunity Spec:	-	Environment:	-

For The

Intel Corporation

Model

ACER Laptop w/ WM3B2100A

Date of Last Test: 5/27/2003

Ellion	t	EM	C Test Data
Client:	Intel Corporation	Job Number:	J51307
Model:	ACER Laptop w/ WM3B2100A	T-Log Number:	
		Account Manager:	Robert Holt
Contact:	Robert Paxman		
Emissions Spec:	FCC Part 15 B, C, & E, RSS-210 is	Class:	Radio
Immunity Spec:	-	Environment:	-

EUT INFORMATION

General Description

The EUT is a mini PCI Card dual band (802.11a and 802.11b) transceiver which is designed to be installed into Acer Laptop (Model: TravelMate C110). The host laptop was treated as table-top equipment during testing to simulate the end user environment. The electrical rating of the laptop is 120/240 V, 50/60 Hz, 5 Amps.

Equipment Under Test

Manufacturer	Model	Description	Serial Number	FCC ID
Acer	TravelMate C110	Laptop		PU5MS2133

Other EUT Details

The EUT is the mini PCI card installed into the host laptop.

EUT Enclosure

The EUT does not have an enclosure as it is designed to be installed within the enclosure of a host computer.

Modification History

Mod. #	Test	Date	Modification
1	-	-	None

Modifications applied are assumed to be used on subsequent tests unless otherwise stated as a further modification.

Client:	Intel Corporation		Job Number:	J51307
	ACER Laptop w/ WM3B21	00A	T-Log Number:	
	TOLIC Laptop III IIIII	0071	Account Manager:	
Contact:	Robert Paxman			
Emissions Spec:	FCC Part 15 B, C, & E, RS	SS-210 is	Class:	Radio
Immunity Spec:			Environment:	-
Manufacturer	Model	Description	Serial Number	FCC ID
Manufacturer None	Model	Description	Serial Number	FCC ID
		Description note Support Equipr Description		FCC ID
		·		FCC

Note: The Laptop ports were not connected as these are not required during the transmitter radiated emission test.

EUT Operation During Emissions Testing (Radio)

Power Cord

Unshielded

1.8

The EUT was transmitting on the channel stated in each test description at the maximum power. The transmission was continuous at 6Mb/s for 802.11a mode and at 1Mb/s in 802.11b mode. These data rates produce the highest power spectral density in their respective modes. The laptop display was position in 90 degress configuration and tablet configuration during the radiated emission test.

For receive-mode tests the device was confingred to receive only on the specified channel.

120Vac outlet

Preliminary tests demonstarted that the emissions below 1Ghz were independent of the mode (transmit versus receive) and of the channel selected. Radiated emissions in the 30 - 1000 MHz frequency range for receive and transmit modes were, therefore, covered by the digital device mode tests. these tests were perfromed with the device configured to transmit on the center channel of the 5.15 - 5.35 Ghz band (5.26 GHz).

AC Port

Elliott EMC Test					
Client: Intel Corporation	Job Number:	J51307			
Model: ACER Laptop w/ WM3B2100A	T-Log Number:	T51308			
	Account Manager:	Robert Holt			
Contact: Robert Paxman					
Spec: FCC Part 15 B, C, & E, RSS-210 issue 5	Class:	Radio			

FCC Part 15 Subpart E Tests

Test Specifics

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the

specification listed above.

Date of Test: 5/27/2003 Config. Used: 1
Test Engineer: Marissa Faustino Config Change: None
Test Location: SVOATS #4 Host Unit Voltage 120V/60Hz

General Test Configuration

The EUT was located on the turntable for radiated spurious emissions testing.

For radiated emissions testing the measurement antenna was located 3 meters from the EUT unless stated otherwise. When measuring the conducted emissions from the EUT's antenna port, the antenna port of the EUT was connected to the spectrum analyzer or power meter via a suitable attenuator to prevent overloading the measurement system. All measurements are corrected

Ambient Conditions: Temperature: 22 °C

Rel. Humidity: 47 %

Summary of Results

Run #	Test Performed	Limit	Result	Comments
1	Output Power	15.407(a) (1), (2)	Pass	16.4 dBm
2	Power Spectral Density (PSD)	15.407(a) (1), (2)	Pass	3.9dBm/MHz
3	26dB Bandwidth	15.407	Pass	> 20 MHz
3	20 dB Bandwidth	RSS 210	Pass	> 20 MHz
4	Peak Excursion Envelope	15.407(a) (6)	Pass	Peak to average excursion < 13dB
5	Antenna Conducted - Out of Band Spurious	15.407(b)	Pass	All emissions below the 27dBm/MHz limit

(F)	Elliott
Client:	Intel Corporation
NA. d.d.	AOEDI I

Client:	Intel Corporation	Job Number:	J51307
Model:	ACER Laptop w/ WM3B2100A	T-Log Number:	T51308
		Account Manager:	Robert Holt
Contact:	Robert Paxman		
Spec:	FCC Part 15 B, C, & E, RSS-210 issue 5	Class:	Radio

Modifications Made During Testing:

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

Run #1: Output Power (Peak Power Measurements)

Antenna Gain: 5 dBi

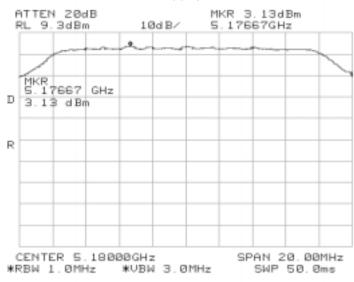
	Freq	Power		Settings				
Ch.	MHz	dBm	TCP	Data Rate	Tx Filter	TDA	DSP	dBm
36	5180	15.5	29	6 (6Mb/s)	37	226	98	17
48	5260	16.4	27	6 (6Mb/s)	35	226	98	17
64	5320	15.4	29	6 (6Mb/s)	37	226	98	17

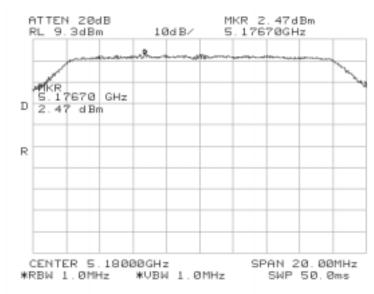
Note 1: Measured using a Rhode & Schwarz Power Meter with a peak power sensor.

Run #2: Power Spectral Density

Antenna Gain: 5 dBi

Channel	Frequency (MHz)	Power Spectral Density (dBm/MHz)	FCC Limit (dBm) note 2	Graph Reference	
36	5180	3.1	4.0	201	Note 1
52	5260	3.2	11.0	202	Note 1
64	5320	3.9	11.0	203	Note 1


Note 1: The above measurements were made using RBW = 1MHz, VBW = 3MHz Peak Detector (Method# 1 PSD).

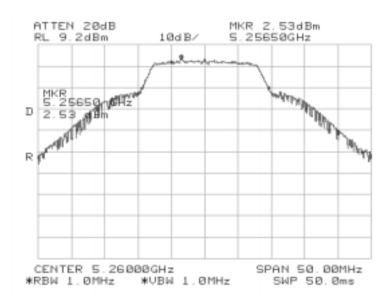

Client:	Intel Corporation	Job Number:	J51307
Model:	ACER Laptop w/ WM3B2100A	T-Log Number:	T51308
		Account Manager:	Robert Holt
Contact:	Robert Paxman		
Spec:	FCC Part 15 B, C, & E, RSS-210 issue 5	Class:	Radio

Plots Showing Power Spectral Density (RBW = 1MHz, VBW = 3 MHz, Peak Detector ON)

FCC 201

Canada PSD 201

Elliott Client Intel Corporation

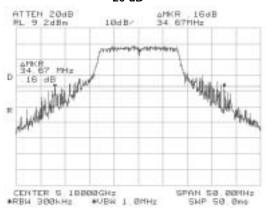

EMC Test Data

Client:	Intel Corporation	Job Number:	J51307
Model:	ACER Laptop w/ WM3B2100A	T-Log Number:	T51308
		Account Manager:	Robert Holt
Contact:	Robert Paxman		
Spec:	FCC Part 15 B. C. & F. RSS-210 issue 5	Class:	Radio

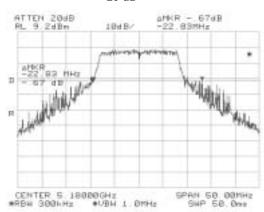
FCC 202

Canada PSD 202

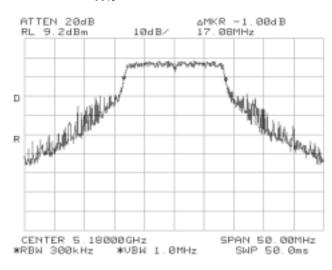
EMC Test Data Job Number: J51307 Client: Intel Corporation Model: ACER Laptop w/ WM3B2100A T-Log Number: T51308 Account Manager: Robert Holt Contact: Robert Paxman Spec: FCC Part 15 B, C, & E, RSS-210 issue 5 Class: Radio FCC 203 ATTEN 20dB RL 9.2dBm MKR 3.87dBm 10dB/ 5.31658GHz * MKR 5.3165876Hz 3.87 418m CENTER 5.32000GHz SPAN 50.00MHz SWP 50.0ms *RBW 1.0MHz *VBW 3.0MHz Canada PSD 203 ATTEN 20dB RL 9.2dBm MKR 3.03dBm 5.31692GHz 10dB/ SPAN 50.00MHz SWP 50.0ms CENTER 5.32000GHz *RBW 1.0MHz *VBW 1.0MHz



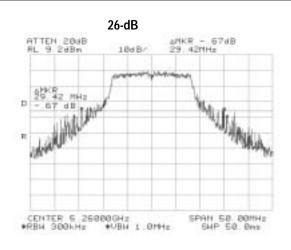
Client:	Intel Corporation	Job Number:	J51307
Model:	ACER Laptop w/ WM3B2100A	T-Log Number:	T51308
		Account Manager:	Robert Holt
Contact:	Robert Paxman		
Spec:	FCC Part 15 B, C, & E, RSS-210 issue 5	Class:	Radio

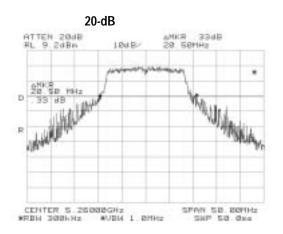

Run #3: Signal Bandwidth

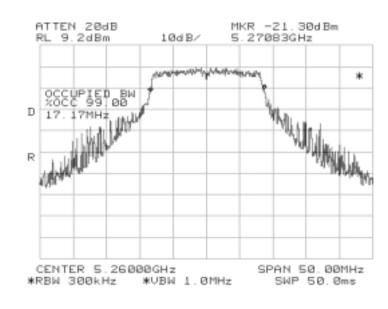
Channel	Frequency (MHz)	Resolution Bandwidth	26 dB Signal Bandwidth (MHz)	20 dB Signal Bandwidth (MHz)	Graph reference #
36	5180	300 kHz	34.7	22.8	301
52	5260	300 kHz	29.4	20.5	302
64	5320	300 kHz	31.5	26.8	303



20-dB



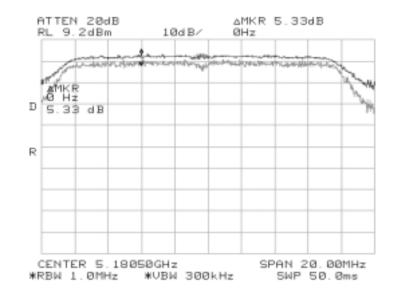

99%



Client:	Intel Corporation	Job Number:	J51307
Model:	ACER Laptop w/ WM3B2100A	T-Log Number:	T51308
		Account Manager:	Robert Holt
Contact:	Robert Paxman		
Spec:	FCC Part 15 B, C, & E, RSS-210 issue 5	Class:	Radio

99%

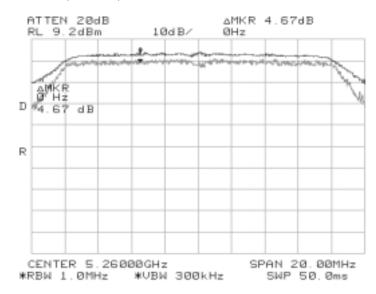
EMC Test Data Job Number: J51307 Client: Intel Corporation Model: ACER Laptop w/ WM3B2100A T-Log Number: T51308 Account Manager: Robert Holt Contact: Robert Paxman Spec: FCC Part 15 B, C, & E, RSS-210 issue 5 Class: Radio 26-dB 20-dB ATTEN 2848 RL 9.3dBm AMKR - 8388 28.75MHz 10dB-ATTEN 28dB RL 9.3dBm AMKR - 346B 31 50MHz 10dB/ SPAN 58.00MHs SMP 58.0ms CENTER 5.32000GHz *RBH 380kHz *VBH 1.0MHz CENTER 5.32888GHz #RBW 388kHz #VBW 1.8HHz SPAN 50 BBHHz SNP 50 Bes 99% ATTEN 20dB ΔMKR .17dB RL 9.3dBm 10dB/ 17. ØBMHz CENTER 5.32000GHz SPAN 50.00MHz *RBW 300kHz *VBW 1.0MHz SWP 50.0ms

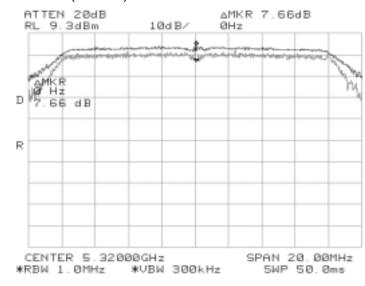

Client:	Intel Corporation	Job Number:	J51307
Model:	Model: ACER Laptop w/ WM3B2100A		T51308
		Account Manager:	Robert Holt
Contact:	Robert Paxman		
Spec:	FCC Part 15 B, C, & E, RSS-210 issue 5	Class:	Radio

Run #4: Peak Excursion Measurement

Plots Showing Peak Excursion

Trace A: RBW =1MHz VBW = 3MHz
Trace B: RBW = 1 MHz, VBW = 300kHz (Method# 3)


Peak Excursion = 5.33 dB (5180 MHz)

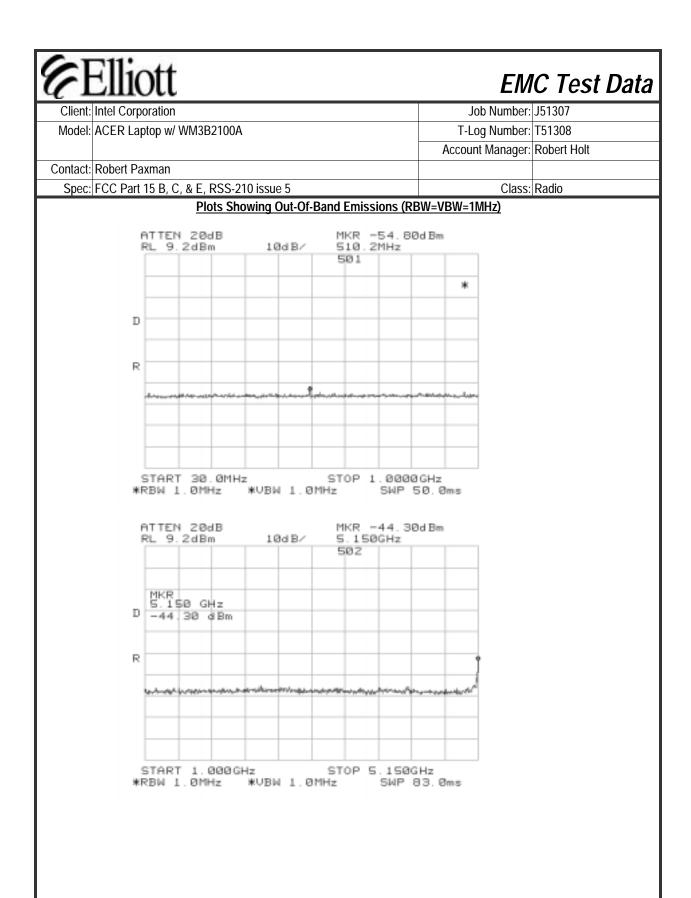


Client:	Intel Corporation	Job Number:	J51307
Model:	ACER Laptop w/ WM3B2100A	T-Log Number:	T51308
		Account Manager:	Robert Holt
Contact:	Robert Paxman		
Spec:	FCC Part 15 B, C, & E, RSS-210 issue 5	Class:	Radio

Peak Excursion = 4.67 dB (5260 MHz)

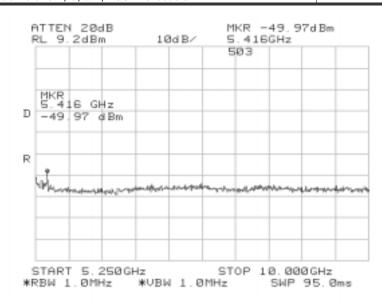
Peak Excursion = 7.7 dB (5320 MHz)

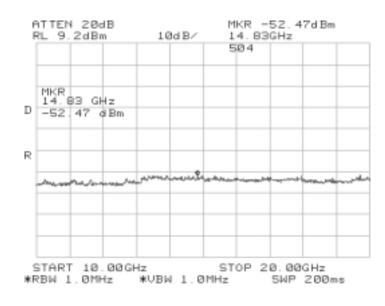
C-171	1.
6EI	liott
	11011
4	

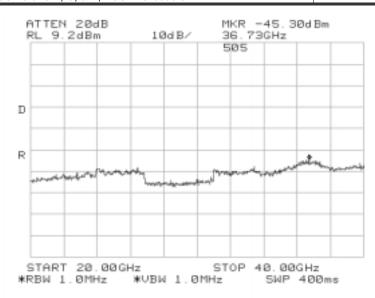

Client:	Intel Corporation	Job Number:	J51307
Model:	ACER Laptop w/ WM3B2100A	T-Log Number:	T51308
		Account Manager:	Robert Holt
Contact:	Robert Paxman		
Spec:	FCC Part 15 B, C, & E, RSS-210 issue 5	Class:	Radio

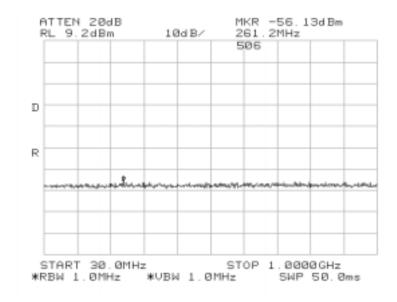
Run #5: Out Of Band Spurious Emissions - Antenna Conducted

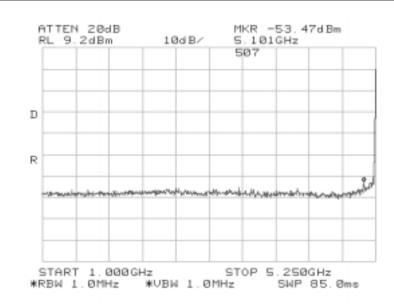
The antenna gain of the radios integral antenna is 5dBi. The EIRP limit is -27dBm/MHz for all out of band signals that do not fall in restricted bands. A limit of -21 dBm was, therefore, used for signals not in restricted bands and close to the intentional band with the assumption that the antenna gain was equal to 5 within 100 MHz of the upper and lower band edges. For signals removed from the band edge by more than 100MHz, radiated measurements were made (refer to run #6) if the signal amplitude exceeded -37dBm.

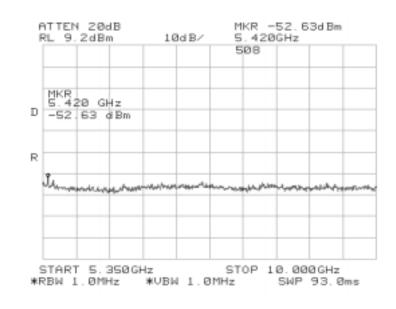

Channel	Frequency (MHz)	Frequency Range	Highest Spurious Signal	Graph reference #
		30 - 1000 MHz	Note 4	501
		1 to 5.15 GHz	-44.3dBm(5.15 GHz)	502
0,4	5400	5.25 to 10 GHz	-50.0dBm(5.42GHz)	503
36	5180	10 GHz to 20 GHz	None	504
		20 GHz to 40 GHz	None	505
	5260	30 - 1000 MHz	Note 4	506
		1 to 5.25 GHz	None	507
52		5.35 to 10 GHz	-52.6dBm(5.42GHz)	508
		10 GHz to 20 GHz	None	509
		20 GHz to 40 GHz	None	510
		30 - 1000 MHz	Note 4	511
		1 to 5.25 GHz	-53.5dBm(5.24)	512
64	5320	5.35 to 10 GHz	-46.2dBm(5.35)	513
		10 GHz to 20 GHz	None	514
		20 GHz to 40 GHz	None	515

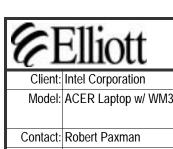

Note 1:	Signal is in a restricted band. Refer to run #6 for field strength measurements.			
Note 2:	Signal is not in restricted band. Limit is -27dBm eirp. As the signal strength is significantly lower than -27dBm no			
Note 2:	field strength measurements required.			
Note 3:	Signal is not in restricted band. Limit is -27dBm eirp. Although the signal strength is significantly lower than -27dBm			
	field strength measurements were made (refer to run #6)			
Note 4:	All spurious signals in this frequency band measured during digital device radiated emissions test.			


Client: Intel Corporation	Job Number: J51307
Model: ACER Laptop w/ WM3B2100A	T-Log Number: T51308
	Account Manager: Robert Holt
Contact: Robert Paxman	
Spec: FCC Part 15 B, C, & E, RSS-210 issue 5	Class: Radio

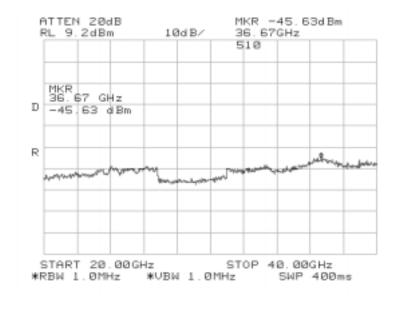


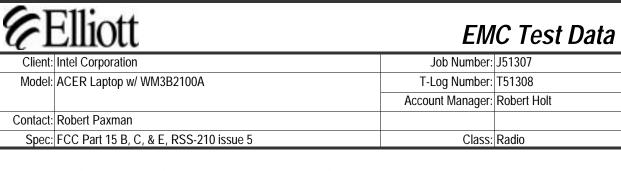

Client:	Intel Corporation	Job Number:	J51307
Model:	ACER Laptop w/ WM3B2100A	T-Log Number:	T51308
		Account Manager:	Robert Holt
Contact:	Robert Paxman		
Spec:	FCC Part 15 B. C. & E. RSS-210 issue 5	Class:	Radio

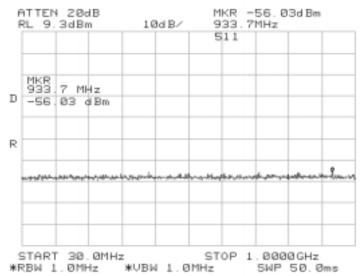


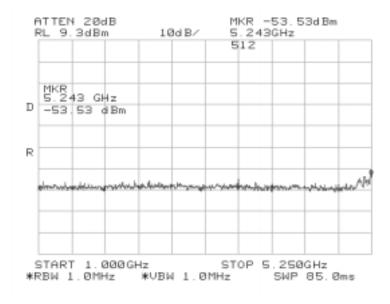


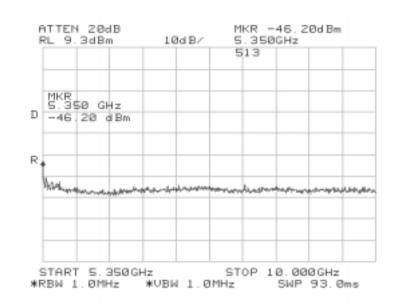
Client:	Intel Corporation	Job Number:	J51307
Model:	ACER Laptop w/ WM3B2100A	T-Log Number:	T51308
		Account Manager:	Robert Holt
Contact:	Robert Paxman		
Spec:	FCC Part 15 B. C. & E. RSS-210 issue 5	Class:	Radio

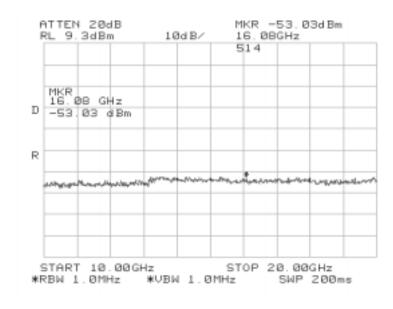


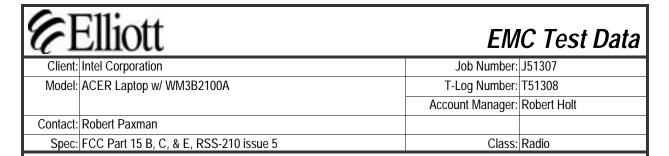


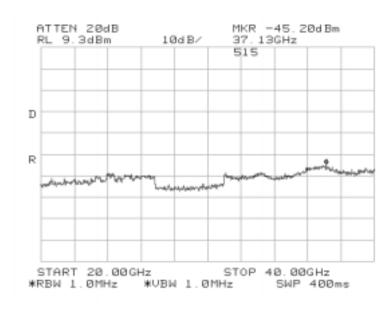



Client: Intel Corporation	Job Number: J51307
Model: ACER Laptop w/ WM3B2100A	T-Log Number: T51308
	Account Manager: Robert Holt
Contact: Robert Paxman	
Spec: FCC Part 15 B. C. & F. RSS-210 issue 5	Class: Radio









Client: Intel Corporation	Job Number: J51307
Model: ACER Laptop w/ WM3B2100A	T-Log Number: T51308
	Account Manager: Robert Holt
Contact: Robert Paxman	
Spec: FCC Part 15 B, C, & E, RSS-210 issue 5	Class: Radio

Elliott	EMC Test Data
Client: Intel Corporation	Job Number: J51307
Model: ACER Laptop w/ WM3B2100A	T-Log Number: T51308
	Proj Eng: Robert Holt
Contact: Robert Paxman	
Spec: FCC Part 15 B, C, & E, RSS-210 issue 5	Class: Radio

Radiated Emissions - UNII / LELAN Tx

Test Specifics

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the

specification listed above.

Date of Test: 5/23/2003 Config. Used: 2
Test Engineer: jmartinez Config Change: None
Test Location: SVOATS #4 EUT Voltage: 120V/60Hz

General Test Configuration

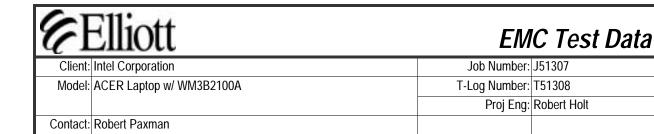
The EUT was located on the turntable for radiated spurious emissions testing.

For radiated emissions testing the measurement antenna was located 3 meters from the EUT unless stated otherwise.

Ambient Conditions: Temperature: 25°C

Rel. Humidity: 43%

Summary of Results

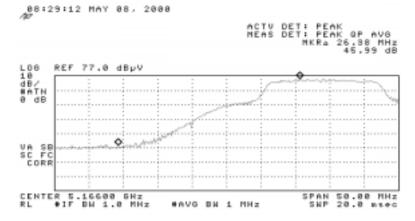

Run #	Test Performed	Limit	Result	Comments
1	RE, 1000 - 40000 MHz - Spurious Emissions	15.407(b)(6)	Pass	-8.81dB @ 5350 MHz
2	RE, 1000 - 40000 MHz - Spurious Emissions	15.407(b)(6)	Pass	-10.3dB @ 7013 MHz

Modifications Made During Testing:

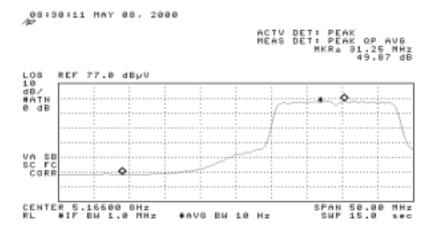
No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

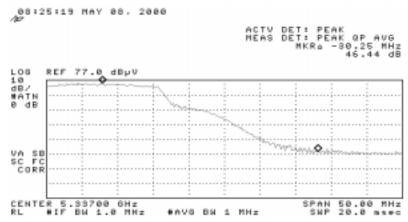


Run #1a: Bandedges (90 Degrees)

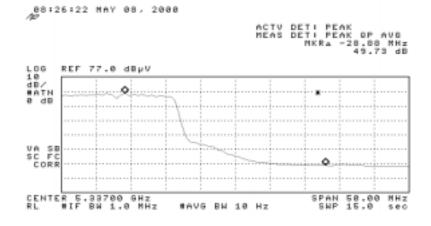

Spec: FCC Part 15 B, C, & E, RSS-210 issue 5

5180 MHz Peak Bandedge

Class: Radio



5180 MHz Avg Bandedge



Elliott	EMC Test Data			
Client: Intel Corporation	Job Number: J51307			
Model: ACER Laptop w/ WM3B2100A	T-Log Number: T51308			
	Proj Eng: Robert Holt			
Contact: Robert Paxman				
Spec: FCC Part 15 B, C, & E, RSS-210 issue 5	Class: Radio			

5320 MHz Peak Bandedge

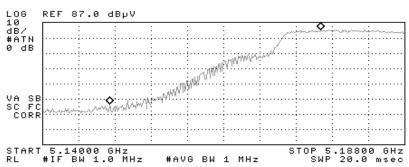
5320 MHz Avg Bandedge

	Ellic						1		C Test Dat
	: Intel Corporation							lob Number:	J51307
Model:	ACER Laptop w/ WM3B2100A							og Number:	T51308
								Proj Eng:	Robert Holt
Contact:	Robert Pa	xman							
Spec:	FCC Part	15 B. C.	& E, RSS-2	210 issue 5				Class:	Radio
Run #1b:	Radiated S	Spurious	s Emission	s, 1000 - 40	0000 MHz (90) Degrees)			
	Limit fo	r emissi	ons in restri	cted bands:	54dBuV/m	(Average)	74dBuV	/m (Peak)	
Limit	t for emissi	ons outs	ide of restri	cted bands:	EIRP < -2	7dBm/MHz	(68dl	BuV/m)	
Frequency	Level	Pol	15.209	/ 15.407	Detector	ge field strer Azimuth	Height	Comments	
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
5180.0	104.3	V	-	-	Pk	-	-	RBW = VB	
5180.0	94.4	V	-	-	Avg	-	-		Hz, VBW = 10Hz
5180.0	101.4	h	-	-	Pk	-	-	RBW = VB	
5180.0	92.0	h	-	-	Avg	-	-		Hz, VBW = 10Hz
5320.0	105.4 94.9	V	-	-	Pk	-	-	RBW = VB	W = 1 MHZ Hz, VBW = 10Hz
5320.0 5320.0	104.2	v h	-	-	Avg Pk	-	-	RBW = IN	·
5320.0	94.6	h	-	-	Avg	-	-		W = 1 WITZ Hz, VBW = 10Hz
3320.0	74.0	- 11	-	-	Avy	-	-	IKDW - IM	IIZ, VDVV – TOTIZ
Band Edge	Field Stre	enath C	alculations						
Frequency	Level	Pol		/ 15.407	Detector	Azimuth	Height	Comments	
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
5150.0	58.3	V	74.0	-15.7	Pk	-	-		
5150.0	44.5	V	54.0	-9.5	Avg	-	-	Note 1	
5150.0	55.4	h	74.0	-18.6	Pk	-	-	Note 1	
5150.0	42.2	h	54.0	-11.8	Avg	-	-	Note 1	
5350.0		V	74.0	-15.0	Pk	-	-	Note 2	
5350.0	45.2	V	54.0	-8.8	Avg	-	-	Note 2	
5350.0	57.8	h	74.0	-16.2	Pk	-	-	Note 2	
5350.0	44.9	h	54.0	-9.1	Avg	-	-	Note 2	
Note 1: Note 2:	relative me verage fiel EUT opera measurem	easurem d streng ating on nents in r	ents in run th measure highest cha run #1a (-46	#1a (-45.99 ments of the nnel availat o.44 dBc for	dBc for peake fundamentable in the 5.25	c and -49.78 (al signal level 5 - 5.35 MHz 9.73 dBc for a	dBc for ave I. band. Sigr	rage) applienal level calc	alculated using the d to the highest peak a ulated using the relativ highest peak and aver

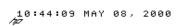
Eliott Client: Intel Corporation								ob Number:	J51307
Model:	ACER Lap	otop w/ V	VM3B2100A	<u> </u>			T-L	og Number:	T51308
		•						Proi Ena:	Robert Holt
Contact:	Robert Pa	ıxman						-, 3	
			& E, RSS-2	1Λ ίςςμα 5				Class:	Padio
	•		Emissions		000 MHz			Class.	INdulo
			ailable (Cha						
requency		Pol	15.209		Detector	Azimuth	Height	Comments	
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
10360.0		V	68.3	-17.0	Note 3	163	1.3	Note 4	
15540.0	51.7	٧	74.0	-22.3	Pk	360	1.3	Note 2	
15540.0	38.7	V	54.0	-15.3	Avg	360		Note 2	
10360.0		h	68.3	-17.3	Note 3	180		Note 4	
15540.0		h	74.0	-22.2	Pk	0		Note 2	
15540.0		h	54.0	-15.4	Avg	0		Note 2	
3453.0		V	68.3	-17.8	Note 3	304		Note 4	
6906.0		٧	68.3	-10.9	Note 3	0		Note 4	
3453.0		h	68.3	-16.3	Note 3	331		Note 4	
6906.0		h	68.3	-10.1	Note 3	120	1.0	Note 4	
			annel 48, 5.	<u> </u>	Note 2	100	1.0	M.t. 4	
10520.0		V	68.3	-23.6	Note 3	122		Note 4	
15780.0 15780.0		V	74.0	-24.0	Pk	130 130		Note 2 Note 2	
10520.0		v h	54.0 68.3	-15.9 -27.5	Avg Note 3	273		Note 4	
15780.0		h	74.0	-27.5	Pk	0		Note 2	
15780.0		h	54.0	-23.5	Avg	0		Note 2	
3506.0		V	68.3	-23.0	Note 3	360		Note 4	
7013.0		V	68.3	-15.4	Note 3	0		Note 4	
3506.0		h	68.3	-17.1	Note 3	0		Note 4	
7013.0		h	68.3	-18.3	Note 3	360		Note 4	
			ailable (Ch			000	1.0	11010 1	
10640.0			74.0	-21.4	Pk	57	1.3	Note 2	
10640.0		٧	54.0	-10.3	Avg	57		Note 2	
15960.0		V	74.0	-22.4	Pk	0		Note 2	
15960.0		٧	54.0	-15.8	Avg	0		Note 2	
10640.0	52.1	h	74.0	-22.0	Pk	335	1.3	Note 2	
10640.0		h	54.0	-12.6	Avg	335		Note 2	
15960.0		h	74.0	-22.5	Pk	360		Note 2	
15960.0		h	54.0	-16.0	Avg	360		Note 2	
3546.7		V	68.3	-19.4	Note 3	0		Note 4	
7093.3		V	68.3	-15.5	Note 3	360		Note 4	
3546.7		h	68.3	-24.9	Note 3	360		Note 4	
7093.3	52.8	h	68.3	-15.5	Note 3	362	1.0	Note 4	

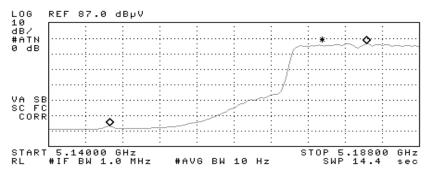
\mathbf{v}	Elliott	EM	C Test Data
Client:	Intel Corporation	Job Number:	J51307
Model:	ACER Laptop w/ WM3B2100A	T-Log Number:	T51308
		Proj Eng:	Robert Holt
Contact:	Robert Paxman		
Spec:	FCC Part 15 B, C, & E, RSS-210 issue 5	Class:	Radio
*	es for run 6b	1	
ote 1:	For emissions falling in the restricted bands detailed in 15.		apply. For all other
	emissions the limit is EIRP < -27dBm (equivalent to a field	strength at 3m of 68dBuV/m)	
ote 2:	Signal is in a restricted band		
ote 3:	Restricted Band Peak Measurements: Resolution and Vide Resolution Bw: 1MHz and Video Bw: 10 Hz. All other mea		_
ote 4:	averaging on (100 samples). Signal does not fall in a restricted band.		

	Elliott
Client:	Intel Corporation
Madali	ACED Lantan w/

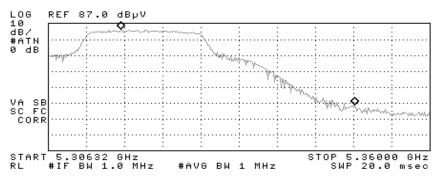

Client:	Intel Corporation	Job Number:	J51307
Model:	ACER Laptop w/ WM3B2100A	T-Log Number:	T51308
		Proj Eng:	Robert Holt
Contact:	Robert Paxman		
Spec:	FCC Part 15 B, C, & E, RSS-210 issue 5	Class:	Radio

Run #2a: Bandedge Measurements (Tablet mode)


5180 MHz Peak Bandedge



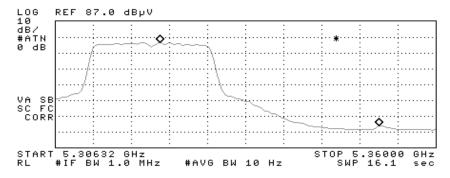
5180 MHz Avg Bandedge



Elliott	EMC Test Data
Client: Intel Corporation	Job Number: J51307
Model: ACER Laptop w/ WM3B2100A	T-Log Number: T51308
	Proj Eng: Robert Holt
Contact: Robert Paxman	
Spec: FCC Part 15 B, C, & E, RSS-210 issue 5	Class: Radio

5320 MHz Peak Bandedge

10:48:15 MAY 08, 2000


ACTV DET: PEAK MEAS DET: PEAK QP AVG MKRA -32.88 MHz 47.72 dB

5320 MHz Avg Bandedge

10:50:13 MAY 08, 2000

ACTV DET: PEAK MEAS DET: PEAK QP AVG MKRA -30.87 MHz 52.45 dB

	Ellic Intel Corpo			J	lob Number:	J51307			
	•		VM3B2100A	\			T-L	og Number:	T51308
Modeli	/ to Ert Eap	nop iii i	*************	•				•	Robert Holt
Contact	Robert Pa	vman						T TOJ LIIG.	Robert Hoit
			0 F DCC 1	10 :				Class	Dadia
Spec:	FCC Part	15 B, C,	& E, RSS-2	TO ISSUE 5				Class:	Radio
Run #2b:	Radiated S	Spurious	s Emission	s, 1000 - 40	000 MHz (Ta	ablet mode)			
	I imit fo	r emissi	ons in restri	cted bands:	54dBuV/m	n (Average)	74dBuV	/m (Peak)	1
Limi			ide of restri			7dBm/MHz		BuV/m)	
							(0.00	,	J
				<u>calculate t</u> / 15.407		ge field strer Azimuth		Comments	
Frequency MHz	Level dBµV/m	Pol v/h	Limit	Margin	Detector Pk/QP/Avg	degrees	Height meters	Comments	
5180.0	_	V/11 V	LIIIIII	iviaryiri	Pk	uegrees	Hieleis	DRW - VR	W = 1 MHz
5180.0		V			Avg		-		Hz, VBW = 10Hz
5180.0		h	_		Pk		-		W = 1 MHz
5180.0		h			Avg				Hz, VBW = 10Hz
5320.0		٧	_	-	Pk		-		W = 1 MHz
5320.0		V	_	_	Avg	_	-		Hz, VBW = 10Hz
5320.0		h	_	_	Pk	_	-		W = 1 MHz
5320.0		h	-	-	Avg	-	-		Hz, VBW = 10Hz
	<u> </u>							•	
			alculations		Data atau I	Λ = !	I I a lank	10	
Frequency MHz		Pol		/ 15.407	Detector	Azimuth	Height	Comments	
5150.0	dBμV/m 51.0	v/h	Limit 74.0	Margin -23.0	Pk/QP/Avg Pk	degrees	meters	Note 1	
5150.0		V	54.0	-23.0	Avg		-	Note 1	
5150.0		h	74.0	-24.8	Pk		-	Note 1	
5150.0		h	54.0	-18.4	Avg			Note 1	
5350.0		V	74.0	-21.9	Pk	_	-	Note 1	
5350.0		V	54.0	-15.7	Avg	_	-	Note 2	
5350.0		h	74.0	-24.9	Pk	-	-	Note 2	
5350.0		h	54.0	-18.5	Avg	-	-	Note 2	
					19 1				
	EUT opera	ating on	the lowest c	hannel avai	lable in the 5	5.15 - 5.25 M	Hz band. S	Signal level c	alculated using the
Note 1:		•						•	to the highest peak ar
··					-	al signal level		J-7 - FF5	3 p w.
								nal level calc	ulated using the relative
Note 2:		0	•				U		•
.J.U Z.	measurements in run #2a (-47.72 dBc for peak and -52.45 dBc for a field strength measurements of the fundamental signal level.							יאווכט נט נווכ	mgnost poak and aver

(F)	Ellic	ott						EM	C Test Data
	Intel Corp			J	ob Number:	J51307			
	: ACER Laptop w/ WM3B2100A							og Number:	
	TOLK Euplop W WWODZ TOOK							0	Robert Holt
Contact	Robert Pa	vman						T TOJ ETIG.	TODOT FIOR
			0 F DCC 1	10 ! Г				Class	Dadia
			& E, RSS-2		000 MII-			Class:	Radio
Run #2c: F EUT On Lo									
Frequency	Level	Pol		15.407	Detector	Azimuth	Height	Comments	
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg				
10360.0	43.2	V	68.3	-25.1	Note 3	120		Note 4	
15540.0	50.9	V	74.0	-23.1	Pk	360		Note 2	
15540.0	39.5	V	54.0	-14.5	Avg	360		Note 2	
10360.0	40.2	h	68.3	-28.1	Note 3	158		Note 4	
15540.0	51.7	h	74.0	-22.3	Pk	361		Note 2	
15540.0	38.6	h	54.0	-15.4	Avg	361		Note 2	
3453.0	46.0	V	68.3	-22.3	Note 3	360		Note 4	
6906.0	52.9	V	68.3	-15.4	Note 3	0		Note 4	
3453.0	46.8	h	68.3	-21.5	Note 3	360		Note 4	
6906.0	53.9	h	68.3	-14.4	Note 3	0	1.0	Note 4	
			annel 48, 5.	<u> </u>		1			
10520.0	44.2	V	68.3	-24.1	Note 3	140		Note 4	
15780.0	50.2	V	74.0	-23.8	Pk	0		Note 2	
15780.0	38.6	V	54.0	-15.4	Avg	0		Note 2	
10520.0	40.6	h	68.3	-27.7	Note 3	360		Note 4	
15780.0	50.6	h	74.0	-23.4	Pk	0		Note 2	
15780.0	38.0	h	54.0	-16.0	Avg	0		Note 2	
3506.0	45.8	V	68.3	-22.5	Note 3	0		Note 4	
7013.0	56.7	V	68.3	-11.6	Note 3	360		Note 4	
3506.0	47.2	h	68.3	-21.1	Note 3	0		Note 4	
7013.0	58.0	h	68.3	-10.3	Note 3	0	1.2	Note 4	
			ailable (Ch			104	1.1	N. I. O	
10640.0	52.3		74.0	-21.7	Pk	194		Note 2	
10640.0	43.0	V	54.0	-11.0	Avg	194		Note 2	
15960.0	48.9	V	74.0	-25.1	Pk	0		Note 2	
15960.0	38.4	V	54.0	-15.6	Avg	0		Note 2	
10640.0	53.3	h	74.0	-20.7	Pk	117		Note 2	
10640.0	41.4	h	54.0	-12.7	Avg	117		Note 2	
15960.0	51.0	h	74.0	-23.0	Pk	0		Note 2	
15960.0	37.4	h	54.0	-16.6	Avg	0		Note 2	
3546.7	45.3	V	68.3	-23.0	Note 3	42		Note 4	
7093.3	57.2	V	68.3	-11.1	Note 3	360		Note 4	
3546.7	53.7 50.5	h	68.3	-14.6	Note 3	0		Note 4 Note 4	
7093.3	30.3	h	68.3	-17.8	Note 3	U]	1.0	Note 4	
							,	See followi	ng page for test notes

6	Elliott	EM	C Test Data
Client:	Intel Corporation	Job Number:	J51307
Model:	ACER Laptop w/ WM3B2100A	T-Log Number:	T51308
		Proj Eng:	Robert Holt
Contact:	Robert Paxman	, ,	
Spec:	FCC Part 15 B, C, & E, RSS-210 issue 5	Class:	Radio
test note	s for run 6b		
Note 1:	For emissions falling in the restricted bands detailed in 15.205 the emissions the limit is EIRP < -27dBm (equivalent to a field strength		apply. For all other
Note 2:	Signal is in a restricted band		
Note 3:	Restricted Band Peak Measurements: Resolution and Video BW: 1 Resolution Bw: 1MHz and Video Bw: 10 Hz. All other measuremer averaging on (100 samples).		
Note 4:	Signal does not fall in a restricted band.		

Elliott	EMC Test Data
Client: Intel Corporation	Job Number: J51307
Model: ACER Laptop w/ WM3B2100A	T-Log Number: T51308
	Account Manager: Robert Holt
Contact: Robert Paxman	
Spec: FCC Part 15 B, C, & E, RSS-210 issue 5	Class: N/A

Radiated Emissions - UNII/LELAN Rx

Test Specifics

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the

specification listed above.

Date of Test: 5/27/2003 Config. Used: 1
Test Engineer: Rafael Config Change: None
Test Location: SVOATS #2 EUT Voltage: 120V/60Hz

General Test Configuration

The EUT was located on the turntable for radiated spurious emissions testing.

For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

Ambient Conditions: Temperature: 18 °C

Rel. Humidity: 73 %

Summary of Results

Run #	Test Performed	Limit	Result	Margin
1a-1c	RE, Radiated Spurious	FCC Part 15.209 /	Pass	-23.3dB @ 3453.0MHz
	Emissions	15.247(c)		

Modifications Made During Testing:

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

Elliott

EMC Test Data

Client:	Intel Corporation	Job Number:	J51307
Model:	ACER Laptop w/ WM3B2100A	T-Log Number:	T51308
	·	Account Manager:	Robert Holt
Contact:	Robert Paxman		
Spec:	FCC Part 15 B, C, & E, RSS-210 issue 5	Class:	N/A

Run #1a: Radiated Spurious Emissions, Low Channel @ 5180 MHz

80211a, Receiver Mode

Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height degrees Comments MHz dBμV/m v/h Limit Margin Pk/OP/Avg degrees meters 3453.000 50.7 v 74.0 -23.3 Pk 170 1.3 3453.000 43.9 v 54.0 -10.1 Avg 170 1.3 1368.000 46.7 v 74.0 -27.3 Pk 300 1.0 1368.000 37.3 v 54.0 -16.7 Avg 300 1.0 1070.000 45.4 v 74.0 -28.6 Pk 350 1.0 1070.000 28.9 v 54.0 -25.1 Avg 350 1.0 6907.000 53.7 v 74.0 -20.3 Pk 140 1.7 3453.000 47.7 h 74.0 -26.3 Pk 285 1.6 3453.000 47.3									
3453.000 50.7 V 74.0 -23.3 Pk 170 1.3 3453.000 43.9 V 54.0 -10.1 Avg 170 1.3 1368.000 46.7 V 74.0 -27.3 Pk 300 1.0 1368.000 37.3 V 54.0 -16.7 Avg 300 1.0 1070.000 45.4 V 74.0 -28.6 Pk 350 1.0 1070.000 28.9 V 54.0 -25.1 Avg 350 1.0 6907.000 53.7 V 74.0 -20.3 Pk 140 1.7 6907.000 43.5 V 54.0 -10.5 Avg 140 1.7 3453.000 47.7 h 74.0 -26.3 Pk 285 1.6 3453.000 38.6 h 54.0 -15.4 Avg 285 1.6 1368.000 47.3 h 74.0 -26.7 Pk 35 1.8 1070.000 41.8 h 74.	Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
3453.000 43.9 v 54.0 -10.1 Avg 170 1.3 1368.000 46.7 v 74.0 -27.3 Pk 300 1.0 1368.000 37.3 v 54.0 -16.7 Avg 300 1.0 1070.000 45.4 v 74.0 -28.6 Pk 350 1.0 1070.000 28.9 v 54.0 -25.1 Avg 350 1.0 6907.000 53.7 v 74.0 -20.3 Pk 140 1.7 6907.000 43.5 v 54.0 -10.5 Avg 140 1.7 3453.000 47.7 h 74.0 -26.3 Pk 285 1.6 3453.000 38.6 h 54.0 -15.4 Avg 285 1.6 1368.000 47.3 h 74.0 -26.7 Pk 35 1.8 1070.000 41.8 h 74.0 -32.2 Pk 210 1.4 1070.000 52.2 h 74.	MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
1368.000 46.7 V 74.0 -27.3 Pk 300 1.0 1368.000 37.3 V 54.0 -16.7 Avg 300 1.0 1070.000 45.4 V 74.0 -28.6 Pk 350 1.0 1070.000 28.9 V 54.0 -25.1 Avg 350 1.0 6907.000 53.7 V 74.0 -20.3 Pk 140 1.7 6907.000 43.5 V 54.0 -10.5 Avg 140 1.7 3453.000 47.7 h 74.0 -26.3 Pk 285 1.6 3453.000 38.6 h 54.0 -15.4 Avg 285 1.6 1368.000 47.3 h 74.0 -26.7 Pk 35 1.8 1368.000 40.1 h 54.0 -13.9 Avg 35 1.8 1070.000 27.6 h 54.0 -26.4 Avg 210 1.4 6907.000 52.2 h 74.	3453.000	50.7	V	74.0	-23.3	Pk	170	1.3	
1368.000 37.3 v 54.0 -16.7 Avg 300 1.0 1070.000 45.4 v 74.0 -28.6 Pk 350 1.0 1070.000 28.9 v 54.0 -25.1 Avg 350 1.0 6907.000 53.7 v 74.0 -20.3 Pk 140 1.7 6907.000 43.5 v 54.0 -10.5 Avg 140 1.7 3453.000 47.7 h 74.0 -26.3 Pk 285 1.6 3453.000 38.6 h 54.0 -15.4 Avg 285 1.6 1368.000 47.3 h 74.0 -26.7 Pk 35 1.8 1368.000 40.1 h 54.0 -13.9 Avg 35 1.8 1070.000 41.8 h 74.0 -32.2 Pk 210 1.4 1070.000 52.2 h 74.0 -26.4 Avg 210 1.4 6907.000 52.2 h 74.	3453.000	43.9	V	54.0	-10.1	Avg	170	1.3	
1070.000 45.4 v 74.0 -28.6 Pk 350 1.0 1070.000 28.9 v 54.0 -25.1 Avg 350 1.0 6907.000 53.7 v 74.0 -20.3 Pk 140 1.7 6907.000 43.5 v 54.0 -10.5 Avg 140 1.7 3453.000 47.7 h 74.0 -26.3 Pk 285 1.6 3453.000 38.6 h 54.0 -15.4 Avg 285 1.6 1368.000 47.3 h 74.0 -26.7 Pk 35 1.8 1368.000 40.1 h 54.0 -13.9 Avg 35 1.8 1070.000 41.8 h 74.0 -32.2 Pk 210 1.4 1070.000 27.6 h 54.0 -26.4 Avg 210 1.4 6907.000 52.2 h 74.0 -	1368.000	46.7	V	74.0	-27.3	Pk	300	1.0	
1070.000 28.9 v 54.0 -25.1 Avg 350 1.0 6907.000 53.7 v 74.0 -20.3 Pk 140 1.7 6907.000 43.5 v 54.0 -10.5 Avg 140 1.7 3453.000 47.7 h 74.0 -26.3 Pk 285 1.6 3453.000 38.6 h 54.0 -15.4 Avg 285 1.6 1368.000 47.3 h 74.0 -26.7 Pk 35 1.8 1368.000 40.1 h 54.0 -13.9 Avg 35 1.8 1070.000 41.8 h 74.0 -32.2 Pk 210 1.4 1070.000 27.6 h 54.0 -26.4 Avg 210 1.4 6907.000 52.2 h 74.0 -21.8 Pk 145 1.6	1368.000	37.3	V	54.0	-16.7	Avg	300	1.0	
6907.000 53.7 v 74.0 -20.3 Pk 140 1.7 6907.000 43.5 v 54.0 -10.5 Avg 140 1.7 3453.000 47.7 h 74.0 -26.3 Pk 285 1.6 3453.000 38.6 h 54.0 -15.4 Avg 285 1.6 1368.000 47.3 h 74.0 -26.7 Pk 35 1.8 1368.000 40.1 h 54.0 -13.9 Avg 35 1.8 1070.000 41.8 h 74.0 -32.2 Pk 210 1.4 1070.000 27.6 h 54.0 -26.4 Avg 210 1.4 6907.000 52.2 h 74.0 -21.8 Pk 145 1.6	1070.000	45.4	V	74.0	-28.6	Pk	350	1.0	
6907.000 43.5 v 54.0 -10.5 Avg 140 1.7 3453.000 47.7 h 74.0 -26.3 Pk 285 1.6 3453.000 38.6 h 54.0 -15.4 Avg 285 1.6 1368.000 47.3 h 74.0 -26.7 Pk 35 1.8 1368.000 40.1 h 54.0 -13.9 Avg 35 1.8 1070.000 41.8 h 74.0 -32.2 Pk 210 1.4 1070.000 27.6 h 54.0 -26.4 Avg 210 1.4 6907.000 52.2 h 74.0 -21.8 Pk 145 1.6	1070.000	28.9	V	54.0	-25.1	Avg	350	1.0	
3453.000 47.7 h 74.0 -26.3 Pk 285 1.6 3453.000 38.6 h 54.0 -15.4 Avg 285 1.6 1368.000 47.3 h 74.0 -26.7 Pk 35 1.8 1368.000 40.1 h 54.0 -13.9 Avg 35 1.8 1070.000 41.8 h 74.0 -32.2 Pk 210 1.4 1070.000 27.6 h 54.0 -26.4 Avg 210 1.4 6907.000 52.2 h 74.0 -21.8 Pk 145 1.6	6907.000	53.7	V	74.0	-20.3	Pk	140	1.7	
3453.000 38.6 h 54.0 -15.4 Avg 285 1.6 1368.000 47.3 h 74.0 -26.7 Pk 35 1.8 1368.000 40.1 h 54.0 -13.9 Avg 35 1.8 1070.000 41.8 h 74.0 -32.2 Pk 210 1.4 1070.000 27.6 h 54.0 -26.4 Avg 210 1.4 6907.000 52.2 h 74.0 -21.8 Pk 145 1.6	6907.000	43.5	V	54.0	-10.5	Avg	140	1.7	
1368.000 47.3 h 74.0 -26.7 Pk 35 1.8 1368.000 40.1 h 54.0 -13.9 Avg 35 1.8 1070.000 41.8 h 74.0 -32.2 Pk 210 1.4 1070.000 27.6 h 54.0 -26.4 Avg 210 1.4 6907.000 52.2 h 74.0 -21.8 Pk 145 1.6	3453.000	47.7	h	74.0	-26.3	Pk	285	1.6	
1368.000 40.1 h 54.0 -13.9 Avg 35 1.8 1070.000 41.8 h 74.0 -32.2 Pk 210 1.4 1070.000 27.6 h 54.0 -26.4 Avg 210 1.4 6907.000 52.2 h 74.0 -21.8 Pk 145 1.6	3453.000	38.6	h	54.0	-15.4	Avg	285	1.6	
1070.000 41.8 h 74.0 -32.2 Pk 210 1.4 1070.000 27.6 h 54.0 -26.4 Avg 210 1.4 6907.000 52.2 h 74.0 -21.8 Pk 145 1.6	1368.000	47.3	h	74.0	-26.7	Pk	35	1.8	
1070.000 27.6 h 54.0 -26.4 Avg 210 1.4 6907.000 52.2 h 74.0 -21.8 Pk 145 1.6	1368.000	40.1	h	54.0	-13.9	Avg	35	1.8	
6907.000 52.2 h 74.0 -21.8 Pk 145 1.6	1070.000	41.8	h	74.0	-32.2	Pk	210	1.4	
	1070.000	27.6	h	54.0	-26.4	Avg	210	1.4	
6907.000 40.5 h 54.0 -13.5 Avg 145 1.6	6907.000	52.2	h	74.0	-21.8	Pk	145	1.6	
	6907.000	40.5	h	54.0	-13.5	Avg	145	1.6	

Run #1b: Radiated Spurious Emissions, Center Channel @ 5260 MHz 80211a, Receiver Mode

OOL I TO THE	,001101 III0	uo						
Frequency	Level	Pol	15.209	15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
1368.000	46.9	٧	74.0	-27.1	Pk	10	2.2	
1368.000	39.2	V	54.0	-14.8	Avg	10	2.2	
3506.000	49.1	٧	74.0	-24.9	Pk	350	2.0	
3506.000	39.8	٧	54.0	-14.2	Avg	350	2.0	
7013.000	54.5	٧	74.0	-19.5	Pk	145	1.5	
7013.000	44.8	٧	54.0	-9.2	Avg	145	1.5	
1368.000	47.2	h	74.0	-26.8	Pk	300	2.3	
1368.000	39.9	h	54.0	-14.1	Avg	300	2.3	
3506.000	47.4	h	74.0	-26.6	Pk	345	1.9	
3506.000	38.1	h	54.0	-15.9	Avg	345	1.9	
7013.000	54.0	h	74.0	-20.0	Pk	50	1.9	
7013.000	42.7	h	54.0	-11.3	Avg	50	1.9	

Elliott EMC Test Data Job Number: J51307 Client: Intel Corporation Model: ACER Laptop w/ WM3B2100A T-Log Number: T51308 Account Manager: Robert Holt Contact: Robert Paxman Spec: FCC Part 15 B, C, & E, RSS-210 issue 5 Class: N/A Run #1c: Radiated Spurious Emissions, High Channel @ 5320 MHz 80211a, Receiver Mode Frequency Level 15.209 / 15.247 Pol Detector Azimuth Height Comments MHz dBµV/m v/h Limit Pk/QP/Avg degrees Margin meters 1368.000 74.0 -27.9 Pk 15 1.8 46.1 ٧ 1368.000 -15.7 15 1.8 38.3 54.0 Avg 48.9 3547.000 74.0 -25.1 Pk 20 1.5 3547.000 41.4 ٧ 54.0 -12.6 Avg 20 1.5 -20.1 145 1.3 7093.000 53.9 74.0 Pk ٧ 43.9 54.0 145 1.3 7093.000 -10.1 Avg 1368.000 47.9 74.0 -26.1 Pk 310 1.8 h 1368.000 54.0 -13.2 310 1.8 40.8 h Avg -25.7 Pk 3547.000 48.3 74.0 0 1.8 h 3547.000 54.0 -13.9 0 1.8 40.1 h Avg 7093.000 53.3 h 74.0 -20.7 Pk 315 1.3 7093.000 54.0 315 1.3 40.8 h -13.2 Avg

t	EMC Test Data		
Intel Corporation	Job Number:	J51307	
ACER Laptop w/ WM3B2100A	T-Log Number:	T51308	
	Account Manager:	Robert Holt	
Robert Paxman			
FCC Part 15 B, C, & E, RSS-210	Class:	Radio	
-	Environment:	-	
	Intel Corporation ACER Laptop w/ WM3B2100A Robert Paxman FCC Part 15 B, C, & E, RSS-210 -	Intel Corporation Job Number: ACER Laptop w/ WM3B2100A T-Log Number: Account Manager: Robert Paxman FCC Part 15 B, C, & E, RSS-210 Class:	

For The

Intel Corporation

Model

ACER Laptop w/ WM3B2100A

Date of Last Test: 5/27/2003

Elliot	tt	EM	C Test Data
Client:	Intel Corporation	Job Number:	J51307
Model:	ACER Laptop w/ WM3B2100A	T-Log Number:	T51308
		Account Manager:	Robert Holt
Contact:	Robert Paxman		
Emissions Spec:	FCC Part 15 B, C, & E, RSS-210 is	Class:	Radio
Immunity Spec:	-	Environment:	-

EUT INFORMATION

General Description

The EUT is a mini PCI Card dual band (802.11a and 802.11b) transceiver which is designed to be installed into Acer Laptop (Model: TravelMate C110). The host laptop was treated as table-top equipment during testing to simulate the end user environment. The electrical rating of the laptop is 120/240 V, 50/60 Hz, 5 Amps.

Equipment Under Test

Manufacturer	Model	Description	Serial Number	FCC ID
Acer				PU5MS2133

Other EUT Details

The EUT is the mini PCI card installed into the host laptop.

EUT Enclosure

The EUT does not have an enclosure as it is designed to be installed within the enclosure of a host computer.

Modification History

Mod. #	Test Date		Modification
1	1 -		None

Modifications applied are assumed to be used on subsequent tests unless otherwise stated as a further modification.

	22 50									
Elliot	t		EM	C Test Data						
Client:	Intel Corporation		Job Number:	J51307						
Model:	ACER Laptop w/ WM3B2	100A	T-Log Number:	T51308						
			Account Manager:	Robert Holt						
Contact:	Robert Paxman		-							
Emissions Spec:	FCC Part 15 B, C, & E, R	SS-210 is	Class:	Radio						
Immunity Spec:			Environment:	-						
Manufacturer	Model	Description	Serial Number	FCC ID						
	١٥	cal Support Equipme	1							
Manufacturer				FCC ID						
Hewlett Packard	Deskjet 3820	USB Printer	CN2451B1YS							
Manufacturer	Remote Support Equipment Manufacturer Model Description Serial Number FCC ID									
None		·								
	Inte	erface Cabling and P	orts							
Port	Connected To		Cable(s)							
		Description	Shielded or Unshield	ded Length(m)						

Note: Only a serial device was connected. No parrallel ports available. This test was with minimum system setup only.

120Vac outlet

AC

EUT Operation During Emissions (Digital)

3 prong

Unshielded

1.8

The transmitter was set to operate on the center channel of the 5.15 - 5.35 Ghz ban (preliminary testing demonstarted that the radiated emissions below 1Ghz were independent of operating channel). The laptop was confiugred to display a scrolling "H" patter on its diplay. Emissions below 1Ghz were measured with the laptop screen vertical as this confiugration produced the highest levels of emissions.

Elliott	EMC Test Data
Client: Intel Corporation	Job Number: J51307
Model: ACER Laptop w/ WM3B2100A	T-Log Number: T51308
	Account Manager: Robert Holt
Contact: Robert Paxman	
Spec: FCC Part 15 B, C, & E, RSS-210 issue 5	Class: Radio

Radiated Emissions

Test Specifics

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the

specification listed above.

Date of Test: 5/23/2003 Config. Used: 2
Test Engineer: volivas Config Change: none
Test Location: SVOATS #2 EUT Voltage: 230V/50Hz

General Test Configuration

The EUT and all local support equipment were located on the turntable for radiated emissions testing.

On the OATS, the measurement antenna was located 10 meters from the EUT for the measurement range 30 - 1000 MHz and 3m from the EUT for the frequency range 1 - 2 GHz.

Note, **preliminary** testing indicates that the emissions were maximized by orientation of the EUT and elevation of the measurement antenna. **Maximized** testing indicated that the emissions were maximized by orientation of the EUT, elevation of the measurement antenna, <u>and</u> manipulation of the EUT's interface cables.

Note, for testing above 1 GHz, the FCC specifies the limit as an average measurement. In addition, the FCC states that the peak reading of any emission above 1 GHz, can not exceed the average limit by more than 20 dB.

Ambient Conditions: Temperature: 14 °C

Rel. Humidity: 83 %

Summary of Results

Run #	Test Performed	Limit	Result	Margin
1	RE, 30 -1000 MHz, Preliminary	EN55022B	Eval	-4.0dB @ 673.917MHz
	Scan			
2	RE, 30 - 1000MHz, Maximized	EN55022B	Pass	-4.0dB @ 673.917MHz
	Emissions			
3	RE, 30 - 1000MHz, Maximized	FCC B	Pass	-10.8dB @ 234.135MHz
	Emissions			
4	RE, 1000 - 2000 MHz,	FCC B	Pass	-12.9dB @ 1370.0MHz
	Maximized Emissions			

Modifications Made During Testing:

No modifications were made to the EUT during testing

Elliott

EMC Test Data

-	And the second s		
Client:	Intel Corporation	Job Number:	J51307
Model:	ACER Laptop w/ WM3B2100A	T-Log Number:	T51308
		Account Manager:	Robert Holt
Contact:	Robert Paxman		
Spec:	FCC Part 15 B, C, & E, RSS-210 issue 5	Class:	Radio

Deviations From The Standard

No deviations were made from the requirements of the standard.

Run #1: Preliminary Radiated Emissions, 30-1000 MHz

Acer (5230)

Frequency	Level	Pol	EN55	022 B	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
673.917	33.0	Н	37.0	-4.0	QP	250	4.0	
234.135	32.5	V	37.0	-4.5	QP	64	1.0	
228.035	24.4	V	30.0	-5.6	QP	144	1.0	
228.024	22.3	Н	30.0	-7.7	QP	224	3.7	
223.806	21.5	Н	30.0	-8.5	QP	290	3.4	
223.806	21.2	V	30.0	-8.8	QP	202	1.0	
669.842	28.0	Н	37.0	-9.0	QP	91	1.0	Note 1
225.992	20.7	Н	30.0	-9.3	QP	292	4.0	
432.060	26.9	V	37.0	-10.1	QP	218	1.0	
912.126	25.6	V	37.0	-11.4	QP	83	1.0	
224.007	18.5	Н	30.0	-11.5	QP	274	1.0	
669.842	25.2	V	37.0	-11.8	QP	200	1.0	Note 1
217.845	17.4	Н	30.0	-12.6	QP	160	1.0	
32.002	14.0	V	30.0	-16.0	QP	320	1.0	
32.579	13.8	V	30.0	-16.2	QP	0	1.0	
588.393	19.8	Н	37.0	-17.2	QP	82	1.0	
331.857	19.4	Н	37.0	-17.6	QP	44	2.5	
584.318	19.4	Н	37.0	-17.6	QP	350	1.0	
329.820	13.4	Н	37.0	-23.6	QP	332	4.0	
-								

Note 1: Antenna brought into 3M and the measurement extrapolated to 10M by subtracting 10.5dB from the reading.

Run #2: Maximized Readings From Run #1

Frequency	Level	Pol	EN55	022 B	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
673.917	33.0	Н	37.0	-4.0	QP	250	4.0	EUT+AMBIENT
234.135	32.5	V	37.0	-4.5	QP	64	1.0	
228.035	24.4	V	30.0	-5.6	QP	144	1.0	
228.024	22.3	Η	30.0	-7.7	QP	224	3.7	
223.806	21.5	Н	30.0	-8.5	QP	290	3.4	
223.806	21.2	V	30.0	-8.8	QP	202	1.0	

C- T-1	1.
	liott
	IIOU

Client:	Intel Corporation	Job Number:	J51307
Model:	ACER Laptop w/ WM3B2100A	T-Log Number:	T51308
		Account Manager:	Robert Holt
Contact:	Robert Paxman		
Spec:	FCC Part 15 B, C, & E, RSS-210 issue 5	Class:	Radio

Run #3: Maximized Readings From Run #1 tested to FCC B limit

Measurements made at 3m per FCC requirements.

Frequency	Level	Pol	FC	СВ	Detector	Azimuth	Height	Comments			
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters				
234.135	35.2	V	46.0	-10.8	QP	360	1.0				
228.024	34.8	Н	46.0	-11.2	QP	124	1.0				
223.806	33.7	Н	46.0	-12.3	QP	305	1.0				
228.035	31.1	V	46.0	-14.9	QP	0	1.0				
673.917	30.4	Н	46.0	-15.6	QP	344	1.0	EUT+AMBIENT			
223.806	29.7	V	46.0	-16.3	QP	75	1.0				

Run #3: Maximized readings, 1000 - 2000 MHz

Measurements made at 3m per FCC requirements.

Frequency	Level	Pol	FCC (Class B	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
1370.000	41.1	Н	54.0	-12.9	Avg	150	1.8	
1370.000	40.5	V	54.0	-13.5	Avg	166	1.0	
2000.000	37.2	V	54.0	-16.8	Avg	360	1.0	
2000.000	37.1	Н	54.0	-16.9	Avg	360	1.0	
1137.500	33.5	V	54.0	-20.5	Avg	83	1.0	
1137.500	31.6	Н	54.0	-22.4	Avg	0	1.0	
2000.000	50.0	V	74.0	-24.0	Pk	360	1.0	
1370.000	49.9	Н	74.0	-24.1	Pk	150	1.8	
1370.000	49.9	V	74.0	-24.1	Pk	166	1.0	
2000.000	49.4	Н	74.0	-24.6	Pk	360	1.0	
1137.500	49.2	V	74.0	-24.8	Pk	83	1.0	
1137.500	43.9	Н	74.0	-30.1	Pk	0	1.0	

Elliott	EMC Test Data		
Client: Intel Corporation	Job Number: J51307		
Model: ACER Laptop w/ WM3B2100A	T-Log Number: T51308		
	Account Manager: Robert Holt		
Contact: Robert Paxman			
Spec: FCC Part 15 B, C, & E, RSS-210 issue 5	Class: Radio		

Conducted Emissions - Power Ports

Test Specifics

C T 11'

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the

specification listed above.

Date of Test: 5/23/2003 Config. Used: 2
Test Engineer: volivas Config Change: none

Test Location: SVOATS #2 EUT Voltage: Refer to individual run

General Test Configuration

For tabletop equipment, the EUT host system was located on a wooden table, 40 cm from a vertical coupling plane and 80cm from the LISN. A second LISN was used for all local support equipment.

Ambient Conditions: Temperature: 14 °C

Rel. Humidity: 83 %

Summary of Results

Run #	Test Performed	Limit	Result	Margin
1	CE, AC Power, 230V/50Hz	EN55022 B	Pass	-6.9dB @ 0.498MHz
2	CE, AC Power,120V/60Hz	EN55022 B	Pass	-9.9dB @ 0.211MHz

Modifications Made During Testing:

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

Client: Intel Corporation	EI								IC Test Data
Contact: Robert Paxman Spec: FCC Part 15 B, C, & E, RSS-210 issue 5 Class: Radio	Client:	Intel Corp	oration					Job Number:	J51307
Contact: Robert Paxman Spec: FCC Part 15 B, C, & E, RSS-210 issue 5 Class: Radio	Model:	ACER La	ptop w/ V	VM3B2100A	1			T-Log Number:	T51308
Spec. FCC Part 15 B, C, & E, RSS-210 issue 5								Account Manager:	Robert Holt
Run #1: AC Power Port Conducted Emissions, 0.15 - 30MHz, 230V/50Hz Frequency MHz dBμV Line Limit Margin OP/Ave Comments 0.498 39.1 Line 1 46.0 -6.9 AV 0.214 44.5 Neutral 53.0 -8.5 AV 0.281 41.2 Neutral 55.0 -9.5 AV 1.064 36.0 Neutral 60.0 -10.0 AV 0.214 42.6 Line 1 53.0 -10.4 AV 0.214 25.7 -9.5 AV 0.214 26.0 Neutral 60.0 -10.0 AV 0.214 50.7 Neutral 63.0 -12.3 QP 0.214 48.2 Line 1 63.0 -14.8 QP 0.498 41.1 Line 1 56.0 -14.9 QP 1.053 7.3 Line 1 56.0 -39.7 AV 1.053 7.5 Line 1 56.0 -40.9 QP Run#2: AC Power Port Conducted Emissions, 0.15 - 30MHz, 120V/60Hz Frequ	Contact:	Robert Pa	axman						
Run #1: AC Power Port Conducted Emissions, 0.15 - 30MHz, 230V/50Hz Frequency MHz Level dBμV AC EN55022 B Detector Detector Detector Comments 0.498 39.1 Line 1 46.0 -6.9 AV 0.214 44.5 Neutral 53.0 -8.5 AV 0.281 41.2 Neutral 50.7 -9.5 AV 1.064 36.0 Neutral 46.0 -10.0 AV 0.214 42.6 Line 1 53.0 -10.4 AV 0.214 50.7 Neutral 60.0 -10.0 AV 0.214 50.7 Neutral 63.0 -12.3 OP 0.214 50.7 Neutral 60.0 -14.8 OP 0.214 48.2 Line 1 63.0 -14.8 OP 0.498 41.1 Line 1 56.0 -19.1 OP 1.053 7.3 Line 1 56.0 -40.9 OP Run#2: AC Power				& E, RSS-2	10 issue 5			Class:	Radio
MHz	Run #1: AC	Power P				-			
0.498 39.1 Line 1 46.0 -6.9 AV	Frequency	Level	AC	EN55	022 B	Detector	Comments		
0.214	MHz	dΒμV	Line	Limit	Margin	QP/Ave			
0.281	0.498	39.1	Line 1	46.0	-6.9	AV			
1.064 36.0 Neutral 46.0 -10.0 AV	0.214	44.5	Neutral	53.0	-8.5	AV			
0.214 42.6 Line 1 53.0 -10.4 AV 0.214 50.7 Neutral 63.0 -12.3 QP 0.281 46.5 Neutral 60.7 -14.2 QP 0.214 48.2 Line 1 63.0 -14.8 QP 0.498 41.1 Line 1 56.0 -14.9 QP 1.064 36.9 Neutral 56.0 -19.1 QP 1.053 7.3 Line 1 46.0 -38.7 AV 1.053 15.1 Line 1 56.0 -40.9 QP Run #2: AC Power Port Conducted Emissions, 0.15 - 30MHz, 120V/60Hz Frequency Level AC EN55022 B Detector Comments MHz dBμV Line Limit Margin QP/Ave 0.211 43.1 Neutral 53.0 -9.9 AV 0.209 41.5 Line 1 53.2 -11.7 AV 0.211 50.6	0.281	41.2	Neutral	50.7	-9.5	AV			
0.214 50.7 Neutral 63.0 -12.3 QP 0.281 46.5 Neutral 60.7 -14.2 QP 0.214 48.2 Line 1 63.0 -14.8 QP 0.498 41.1 Line 1 56.0 -14.9 QP 1.064 36.9 Neutral 56.0 -19.1 QP 1.053 7.3 Line 1 46.0 -38.7 AV 1.053 15.1 Line 1 56.0 -40.9 QP Run #2: AC Power Port Conducted Emissions, 0.15 - 30MHz, 120V/60Hz Frequency Level AC EN55022 B Detector Comments MHz dBμV Line Limit Margin QP/Ave 0.211 43.1 Neutral 53.0 -9.9 AV 0.209 41.5 Line 1 53.2 -11.7 AV 0.211 50.6 Neutral 63.0 -12.4 QP 0.426 34.7	1.064	36.0	Neutral	46.0	-10.0	AV			
0.281 46.5 Neutral 60.7 -14.2 QP 0.214 48.2 Line 1 63.0 -14.8 QP 0.498 41.1 Line 1 56.0 -14.9 QP 1.064 36.9 Neutral 56.0 -19.1 QP 1.053 7.3 Line 1 46.0 -38.7 AV 1.053 15.1 Line 1 56.0 -40.9 QP Run #2: AC Power Port Conducted Emissions, 0.15 - 30MHz, 120V/60Hz Frequency Level AC EN55022 B Detector Comments MHz dBμV Line Limit Margin QP/Ave 0.211 43.1 Neutral 53.0 -9.9 AV 0.211 50.6 Neutral 63.0 -12.4 QP 0.426 34.7 Line 1 47.3 -12.6 AV 0.284 36.4 Line 1 50.7 -13.8 AV 0.299 48.5	0.214	42.6	Line 1	53.0	-10.4	AV			
0.281 46.5 Neutral 60.7 -14.2 QP 0.214 48.2 Line 1 63.0 -14.8 QP 0.498 41.1 Line 1 56.0 -14.9 QP 1.064 36.9 Neutral 56.0 -19.1 QP 1.053 7.3 Line 1 46.0 -38.7 AV 1.053 15.1 Line 1 56.0 -40.9 QP Run #2: AC Power Port Conducted Emissions, 0.15 - 30MHz, 120V/60Hz Frequency Level AC EN55022 B Detector Comments MHz dBμV Line Limit Margin QP/Ave QP/Ave 0.211 43.1 Neutral 53.0 -9.9 AV 0.209 41.5 Line 1 53.2 -11.7 AV 0.211 50.6 Neutral 63.0 -12.4 QP 0.426 34.7 Line 1 47.3 -12.6 AV 0.284 36.4 Line 1 50.7 -13.8 AV 0.299 48.5 Line 1 63.2 -14.7 QP 0.349 32.8	0.214	50.7	Neutral	63.0	-12.3	QP			
0.214 48.2 Line 1 63.0 -14.8 QP 0.498 41.1 Line 1 56.0 -14.9 QP 1.064 36.9 Neutral 56.0 -19.1 QP 1.053 7.3 Line 1 46.0 -38.7 AV 1.053 15.1 Line 1 56.0 -40.9 QP Run #2: AC Power Port Conducted Emissions, 0.15 - 30MHz, 120V/60Hz Frequency Level AC EN55022 B Detector Comments MHz dBμV Line Limit Margin QP/Ave QP/Ave 0.211 43.1 Neutral 53.0 -9.9 AV 0.2209 41.5 Line 1 53.2 -11.7 AV 0.211 50.6 Neutral 63.0 -12.4 QP 0.426 34.7 Line 1 47.3 -12.6 AV 0.284 36.9 Neutral 50.7 -13.8 AV 0.299 48.5 Line 1 50.7 -14.3 AV 0.284 43.8 Neut	0.281	46.5	Neutral	60.7	-14.2	QP			
0.498	0.214	48.2	Line 1	63.0		QP			
1.064 36.9 Neutral 56.0 -19.1 QP 1.053 7.3 Line 1 46.0 -38.7 AV 1.053 15.1 Line 1 56.0 -40.9 QP Run #2: AC Power Port Conducted Emissions, 0.15 - 30MHz, 120V/60Hz Frequency Level AC EN55022 B Detector Comments MHz dBμV Line Limit Margin QP/Ave 0.211 43.1 Neutral 53.0 -9.9 AV 0.209 41.5 Line 1 53.2 -11.7 AV 0.211 50.6 Neutral 63.0 -12.4 QP 0.426 34.7 Line 1 47.3 -12.6 AV 0.284 36.9 Neutral 50.7 -13.8 AV 0.284 36.4 Line 1 50.7 -14.3 AV 0.209 48.5 Line 1 63.2 -14.7 QP 0.349 32.8 Neutral 49.0 -16.2 AV 0.284 43.8 Neutral 60.7 -16.9 QP 0.426 38.1 Line 1 57.3 -19.2 QP			_						
1.053 7.3 Line 1 46.0 -38.7 AV 1.053 15.1 Line 1 56.0 -40.9 QP Run #2: AC Power Port Conducted Emissions, 0.15 - 30MHz, 120V/60Hz Frequency Level AC EN55022 B Detector Comments MHz dBμV Line Limit Margin QP/Ave QP/Ave 0.211 43.1 Neutral 53.0 -9.9 AV AV 0.209 41.5 Line 1 53.2 -11.7 AV AV 0.211 50.6 Neutral 63.0 -12.4 QP QP 0.426 34.7 Line 1 47.3 -12.6 AV AV 0.284 36.9 Neutral 50.7 -13.8 AV AV 0.294 48.5 Line 1 63.2 -14.7 QP AV 0.349 32.8 Neutral 49.0 -16.2 AV AV 0.284 43.8 Neutral 60.7 -16.9 QP QP 0.284 42.0 Line 1 60.7 -18.7 QP QP 0.426 38.1 Line 1 57.3 -19.2 QP	1.064	36.9							
Run #2: AC Power Port Conducted Emissions, 0.15 - 30MHz, 120V/60Hz Frequency Level AC EN55022 B Detector Comments									
Run #2: AC Power Port Conducted Emissions, 0.15 - 30MHz, 120V/60Hz Frequency Level AC EN55022 B Detector Comments MHz dBμV Line Limit Margin QP/Ave 0.211 43.1 Neutral 53.0 -9.9 AV 0.209 41.5 Line 1 53.2 -11.7 AV 0.211 50.6 Neutral 63.0 -12.4 QP 0.426 34.7 Line 1 47.3 -12.6 AV 0.284 36.9 Neutral 50.7 -13.8 AV 0.284 36.4 Line 1 50.7 -14.3 AV 0.209 48.5 Line 1 63.2 -14.7 QP 0.349 32.8 Neutral 49.0 -16.2 AV 0.284 43.8 Neutral 60.7 -16.9 QP 0.284 42.0 Line 1 60.7 -18.7 QP 0.426 38.1 Line									
MHz dBμV Line Limit Margin QP/Ave 0.211 43.1 Neutral 53.0 -9.9 AV 0.209 41.5 Line 1 53.2 -11.7 AV 0.211 50.6 Neutral 63.0 -12.4 QP 0.426 34.7 Line 1 47.3 -12.6 AV 0.284 36.9 Neutral 50.7 -13.8 AV 0.284 36.4 Line 1 50.7 -14.3 AV 0.209 48.5 Line 1 63.2 -14.7 QP 0.349 32.8 Neutral 49.0 -16.2 AV 0.284 43.8 Neutral 60.7 -16.9 QP 0.284 42.0 Line 1 60.7 -18.7 QP 0.426 38.1 Line 1 57.3 -19.2 QP									
0.211 43.1 Neutral 53.0 -9.9 AV 0.209 41.5 Line 1 53.2 -11.7 AV 0.211 50.6 Neutral 63.0 -12.4 QP 0.426 34.7 Line 1 47.3 -12.6 AV 0.284 36.9 Neutral 50.7 -13.8 AV 0.284 36.4 Line 1 50.7 -14.3 AV 0.209 48.5 Line 1 63.2 -14.7 QP 0.349 32.8 Neutral 49.0 -16.2 AV 0.284 43.8 Neutral 60.7 -16.9 QP 0.284 42.0 Line 1 60.7 -18.7 QP 0.426 38.1 Line 1 57.3 -19.2 QP	. ,						Commence		
0.209 41.5 Line 1 53.2 -11.7 AV 0.211 50.6 Neutral 63.0 -12.4 QP 0.426 34.7 Line 1 47.3 -12.6 AV 0.284 36.9 Neutral 50.7 -13.8 AV 0.284 36.4 Line 1 50.7 -14.3 AV 0.209 48.5 Line 1 63.2 -14.7 QP 0.349 32.8 Neutral 49.0 -16.2 AV 0.284 43.8 Neutral 60.7 -16.9 QP 0.284 42.0 Line 1 60.7 -18.7 QP 0.426 38.1 Line 1 57.3 -19.2 QP									
0.211 50.6 Neutral 63.0 -12.4 QP 0.426 34.7 Line 1 47.3 -12.6 AV 0.284 36.9 Neutral 50.7 -13.8 AV 0.284 36.4 Line 1 50.7 -14.3 AV 0.209 48.5 Line 1 63.2 -14.7 QP 0.349 32.8 Neutral 49.0 -16.2 AV 0.284 43.8 Neutral 60.7 -16.9 QP 0.284 42.0 Line 1 60.7 -18.7 QP 0.426 38.1 Line 1 57.3 -19.2 QP									
0.426 34.7 Line 1 47.3 -12.6 AV 0.284 36.9 Neutral 50.7 -13.8 AV 0.284 36.4 Line 1 50.7 -14.3 AV 0.209 48.5 Line 1 63.2 -14.7 QP 0.349 32.8 Neutral 49.0 -16.2 AV 0.284 43.8 Neutral 60.7 -16.9 QP 0.284 42.0 Line 1 60.7 -18.7 QP 0.426 38.1 Line 1 57.3 -19.2 QP									
0.284 36.9 Neutral 50.7 -13.8 AV 0.284 36.4 Line 1 50.7 -14.3 AV 0.209 48.5 Line 1 63.2 -14.7 QP 0.349 32.8 Neutral 49.0 -16.2 AV 0.284 43.8 Neutral 60.7 -16.9 QP 0.284 42.0 Line 1 60.7 -18.7 QP 0.426 38.1 Line 1 57.3 -19.2 QP									
0.284 36.4 Line 1 50.7 -14.3 AV 0.209 48.5 Line 1 63.2 -14.7 QP 0.349 32.8 Neutral 49.0 -16.2 AV 0.284 43.8 Neutral 60.7 -16.9 QP 0.284 42.0 Line 1 60.7 -18.7 QP 0.426 38.1 Line 1 57.3 -19.2 QP									
0.209 48.5 Line 1 63.2 -14.7 QP 0.349 32.8 Neutral 49.0 -16.2 AV 0.284 43.8 Neutral 60.7 -16.9 QP 0.284 42.0 Line 1 60.7 -18.7 QP 0.426 38.1 Line 1 57.3 -19.2 QP									
0.349 32.8 Neutral 49.0 -16.2 AV 0.284 43.8 Neutral 60.7 -16.9 QP 0.284 42.0 Line 1 60.7 -18.7 QP 0.426 38.1 Line 1 57.3 -19.2 QP									
0.284 43.8 Neutral 60.7 -16.9 QP 0.284 42.0 Line 1 60.7 -18.7 QP 0.426 38.1 Line 1 57.3 -19.2 QP			_						
0.284 42.0 Line 1 60.7 -18.7 QP 0.426 38.1 Line 1 57.3 -19.2 QP	-								
0.426 38.1 Line 1 57.3 -19.2 QP	-								
	-								
0.349 37.1									
	U.347	3/.1	Neutrai	59.0	-21.7	UΡ			