FCC 47 CFR PART 15 SUBPART C: 2014 AND ANSI C63.10: 2013 **TEST REPORT** For ### **Z-Wave Smart Gateway** Model: ZA1002US-5 Brand: **VISION** #### Issued for Vision Automobile Electronics Industrial Co., Ltd. No. 78, Gongye 3rd Rd., Technology Industrial Park, Tainan City 70955, Taiwan (R.O.C.) #### Issued by **Compliance Certification Services Inc.** Tainan Lab. No.8, Jiucengling, Xinhua Dist., Tainan City 712, Taiwan (R.O.C.) > TEL: 886-6-580-2201 FAX: 886-6-580-2202 Date of Issue: December 09, 2015 Note: This report shall not be reproduced except in full, without the written approval of Compliance Certification Services Inc. Ltd. This document may be altered or revised by Compliance Certification Services Inc. personnel only, and shall be noted in the revision section of the document ### **REVISION HISTORY** | Rev. | Issue Date | Revisions | Effect Page | Revised By | |------|-------------------|---------------|-------------|-------------| | 00 | December 09, 2015 | Initial Issue | ALL | Sunny Chang | | | | | | | | | | | | | ## TABLE OF CONTENTS. Report No.: T151026N04-RP1-2 | 1. TEST REPORT CERTIFICATION | 4 | |---|-----| | 2. EUT DESCRIPTION | 5 | | 3. DESCRIPTION OF TEST MODES | 6 | | 4. TEST METHODOLOGY | 7 | | 5. FACILITIES AND ACCREDITATIONS | 7 | | 5.1 FACILITIES | 7 | | 5.2 EQUIPMENT | 7 | | 5.3 LABORATORY ACCREDITATIONS LISTINGS | | | 5.4 TABLE OF ACCREDITATIONS AND LISTINGS | 8 | | 6. CALIBRATION AND UNCERTAINTY | 9 | | 6.1 MEASURING INSTRUMENT CALIBRATION | 9 | | 6.2 MEASUREMENT UNCERTAINTY | 9 | | 7. SETUP OF EQUIPMENT UNDER TEST | 10 | | 7.1 SETUP CONFIGURATION OF EUT | 10 | | 7.2 SUPPORT EQUIPMENT | | | 7.3 EUT OPERATING CONDITION | 12 | | 8. APPLICABLE LIMITS AND TEST RESULTS | 13 | | 8.1 6DB BANDWIDTH | 13 | | 8.2 MAXIMUM PEAK OUTPUT POWER | 24 | | 8.3 DUTY CYCLE | | | 8.4 POWER SPECTRAL DENSITY | | | 8.5 CONDUCTED SPURIOUS EMISSION | | | 8.6 RADIATED EMISSIONS | | | 8.6.2 WORST-CASE RADIATED EMISSION BELOW 1 GHZ | | | 8.6.3 TRANSMITTER RADIATED EMISSION ABOVE 1 GHZ | | | 8.6.4 RESTRICTED BAND EDGES | | | 8.7 POWERLINE CONDUCTED EMISSIONS | 109 | | 9. ANTENNA REQUIREMENT | 113 | | 9.1 STANDARD APPLICABLE | 113 | | 9.2 ANTENNA CONNECTED CONSTRUCTION | | | APPENDIX II PHOTOGRAPHS OF EU | Δ1 | ### 1. TEST REPORT CERTIFICATION Applicant : Vision Automobile Electronics Industrial Co., Ltd. No. 78, Gongye 3rd Rd., Technology Industrial Park, Tainan City 70955, Taiwan (R.O.C.) Manufacturer : Vision Automobile Electronics Industrial Co., Ltd. No. 78, Gongye 3rd Rd., Technology Industrial Park, Tainan City 70955, Taiwan (R.O.C.) **Equipment Under Test**: Z-Wave Smart Gateway Model : ZA1002US-5 Brand : **VISION** Date of Test : December 01, 2015 ~ December 03, 2015 | APPLICABLE STANDARD | | | |--|-------------------------|--| | STANDARD | TEST RESULT | | | FCC Part 15 Subpart C: 2014 AND
ANSI C63.10: 2013 | No non-compliance noted | | Approved by: Reviewed by: Jeter Wu Assistant Manager **Eric Huang** Assistant Section Manager ### 2. EUT DESCRIPTION | Product Name | | |---------------------|--| | Product Name | Z-Wave Smart Gateway | | Model | ZA1002US-5 | | Brand | VISION | | Received Date | October 26, 2015 | | Frequency Range | IEEE 802.11b/g, 802.11n HT20 (DTS Band):2412MHz~2462MHz
IEEE 802.11n HT40 (DTS Band):2422MHz~2452MHz | | Transmit Power | IEEE 802.11b Mode: 1.62dBm (DTS Band) (1.4521mW) IEEE 802.11g Mode: 10.28dBm (DTS Band) (10.666mW) IEEE 802.11n HT20 Mode: 8.73dBm (DTS Band) (7.4645mW) IEEE 802.11n HT40 Mode: 10.86dBm (DTS Band) (12.19mW) | | Channel Spacing | IEEE 802.11b/g, 802.11n HT20/HT40: 5MHz | | Channel Number | IEEE 802.11b/g, 802.11n HT20:11 Channels
IEEE 802.11n HT40 :7 Channels | | Transmit Data Rate | IEEE 802.11b: 11, 5.5, 2, 1 Mbps
IEEE 802.11g: 54, 48, 36, 24, 18, 12, 9, 6 Mbps
IEEE 802.11n (HT20): Up to 300 Mbps
IEEE 802.11n (HT40): Up to 300 Mbps | | | IEEE 802.11b: DSSS (CCK, DQPSK, DBPSK) | | Type of Modulation | IEEE 802.11g: OFDM (64QAM, 16QAM, QPSK, BPSK) | | | IEEE 802.11n HT20/HT40 : OFDM (64QAM, 16QAM, QPSK, BPSK) | | Frequency Selection | By software / firmware | | Antenna Type | Antenna (1TX1RX) Type: PCB Mode: AVA88 Gain: 5.3 dBi | | Temperature Range | -15°C ~ +60°C | #### **Power Adapter:** | No. | Manufacturer | Model No. | Power Input | Power Output | |-----|-----------------------|---------------|--------------------------|--------------| | 1 | I.T.E.POWER
SUPPLY | HORIZON-794mu | 100-240Vac~50/60Hz, 0.5A | 12Vdc, 1A | #### **REMARK:** - 1. The sample **(ZA1002US-5)** selected for test was engineering sample that approximated to production product and was provided by manufacturer. - 2. This submittal(s) (test report) is intended for FCC ID: <u>KFR-ZA1002US-5</u> filling to comply with Section 15.207,15.209 and 15.247 of the FCC Part 15, Subpart C Rules. - 3. For more details, please refer to the User's manual of the EUT. #### 3. DESCRIPTION OF TEST MODES The EUT is a 11n router. It has two transmitter chains and two receive chains (1x1 configurations). The 1x1 configuration is implemented with two outside chains (Chain 0). The RF chipset is manufactured by ATHEROS The antenna peak gain 5.3dBi (highest gain) were chosen for full testing. #### IEEE 802.11 b ,802.11g ,802.11n HT20 mode (DTS Band) The EUT had been tested under operating condition. There are three channels have been tested as following: | Channel | Frequency (MHz) | |---------|-----------------| | Low | 2412 | | Middle | 2437 | | High | 2462 | IEEE 802.11b mode: 1Mbps long data rate (worst case) were chosen for full testing. IEEE 802.11g mode: 6Mbps data rate (worst case) were chosen for full testing. IEEE 802.11n HT20 mode: 6.5Mbps data rate (worst case) were chosen for full testing. #### IEEE 802.11n HT40 mode (DTS Band) The EUT had been tested under operating condition. There are three channels have been tested as following: | Channel | Frequency (MHz) | |---------|-----------------| | Low | 2422 | | Middle | 2437 | | High | 2452 | IEEE 802.11n HT40 mode: 13Mbps data rate (worst case) were chosen for full testing. The worst-case data rates are determined according to the description above, based on the investigations by measuring the PSD, peak power and average power across all the data rates, bandwidths, modulations and spatial stream modes. #### 4. TEST METHODOLOGY The tests documented in this report were performed in accordance with ANSI C63.10 and FCC CFR 47 15.207, 15.209 and 15.247. #### 5. FACILITIES AND ACCREDITATIONS #### **5.1 FACILITIES** All measurement facilities used to collect the measurement data are located at No.8, Jiucengling, Xinhua Dist., Tainan City 712, Taiwan (R.O.C.) The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.10 and CISPR Publication 22. #### **5.2 EQUIPMENT** Radiated emissions are measured with one or more of the following types of linearly polarized antennas: tuned dipole, bi-conical, log periodic, bi-log, and/or ridged waveguide, horn. Spectrum analyzers with pre-selectors and quasi-peak detectors are used to perform radiated measurements. Conducted emissions are measured with Line Impedance Stabilization Networks and EMI Test Receivers. Calibrated wideband preamplifiers, coaxial cables, and coaxial attenuators are also used for making measurements. All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods." #### 5.3 LABORATORY ACCREDITATIONS LISTINGS The test facilities used to perform radiated and conducted emissions tests are accredited by Taiwan Accreditation Foundation for the specific scope of accreditation under Lab Code: 1109 to perform Electromagnetic Interference tests according to FCC PART 15 AND CISPR 22 requirements. No part of this report may be used to claim or imply product endorsement by TAF or any agency of the Government. In addition, the test facilities are listed with Federal Communications Commission (registration no: TW-1037 and 455173). #### 5.4 TABLE OF ACCREDITATIONS AND LISTINGS Our laboratories are accredited and approved by the following accreditation body according to ISO/IEC 17025. **Taiwan** TAF The measuring facility of laboratories has been authorized or registered by the following approval agencies. Canada Industry Canada **Germany** TUV NORD Taiwan BSMI **USA** FCC Copies of granted accreditation certificates are available for downloading from our web site, http://www.ccsrf.com ### 6. CALIBRATION AND UNCERTAINTY #### **6.1 MEASURING INSTRUMENT CALIBRATION** The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards. #### **6.2 MEASUREMENT UNCERTAINTY** Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus: | Parameter | Uncertainty | |--|-------------| | Radiated Emission, 30 to 200 MHz
Test Site : OATS-6 | ±3.21dB | | Radiated Emission, 200 to 1000 MHz
Test Site : OATS-6 | ±3.09dB | | Radiated Emission, 1 to 8 GHz | ± 2.65dB | | Radiated Emission, 8 to 18 GHz | ± 2.66dB | | Radiated Emission, 18 to 26.5 GHz | ± 2.65dB | | Radiated Emission, 26 to 40 GHz | ± 3.03dB | | Power Line Conducted Emission | ±1.91dB | | Band Width | 136.49kHz | | Peak Output Power MU | ±1.34dB | | Band Edge MU | ±0.30dBuV | | Channel Separation MU | 361.69Hz | | Duty Cycle MU | 0.064ms | | Frequency Stability MU | 0.223kHz | Uncertainty figures are valid to a confidence level of 95%, K=2 FCC: KFR-ZA1002US-5 ### 7.
SETUP OF EQUIPMENT UNDER TEST ### 7.1 SETUP CONFIGURATION OF EUT For RF test Report No.: T151026N04-RP1-2 #### For EMI test ### 7.2 SUPPORT EQUIPMENT #### RF test | No. | Product | Manufacturer | Model No. | Certify No. | Signal cable | |-----|----------|--------------|-----------|-------------|--------------------------| | 1. | Notebook | ASUS | X54C | DOC | Power cable, unshd, 1.6m | | No. | Signal cable description | | | |-----|--------------------------|------------------------|--| | Α | Power | Unshielded, 1.5m, 1pcs | | | В | LAN | Unshielded, 10m, 1pcs | | #### **EMI test** | No. | Product | Manufacturer | Model No. | Certify No. | Signal cable | |-----|----------|--------------|-----------|-------------|--------------------------| | 1 | Notebook | ASUS | X54C | DOC | Power cable, unshd, 1.6m | | No. | Signal cable description | | | |-----|--------------------------|------------------------|--| | Α | Power | Unshielded, 1.5m, 1pcs | | | В | LAN | Unshielded, 10m, 1pcs | | #### **REMARK:** - 1. All the above equipment/cables were placed in worse case positions to maximize emission signals during emission test. - 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use. #### 7.3 EUT OPERATING CONDITION #### RF Setup - 1. Set up all computers like the setup diagram. - 2. The Test Program for "artgui.exe" software was used for testing - 3. "Home" -> "Load Cards", DUT"IP Address" set "192.168.1.2", and push button "Load Card"button. - 4. "Tests" -> "ContTx" #### TX Mode: - ⇒ Tx Mode:CCK 、OFDM、 HT MixMode (Bandwidth: 20、40) - ⇒ **Tx Data Rate: 1Mbps long** (IEEE 802.11b mode ,chain 0 TX) 6Mbps (IEEE 802.11g mode ,chain 0 TX) **6.5Mbps** (IEEE 802.11n HT20 mode ,chain 0) **13Mbps** (IEEE 802.11n HT40 mode, chain 0) #### Power control mode Target Power: IEEE 802.11b Channel Low (2412MHz) =1.5 IEEE 802.11b Channel Middle (2437MHz) = 2.5 IEEE 802.11b Channel High (2462MHz) = 3.5 Target Power: IEEE 802.11g Channel Low (2412MHz) = 4.0 IEEE 802.11g Channel Middle (2437MHz) = 5.0 IEEE 802.11g Channel High (2462MHz) = 4.0 Target Power: IEEE 802.11 n HT20 Channel Low (2412MHz) = 3.0 IEEE 802.11 n HT20 Channel Middle (2437MHz) =4.0 IEEE 802.11 n HT20 Channel High (2462MHz) = 4.0 Target Power: IEEE 802.11 n HT40 Channel Low (2422MHz) = 4.0 IEEE 802.11 n HT40 Channel Middle (2437MHz) = 4.0 IEEE 802.11 n HT40 Channel High (2452MHz) = 4.0 **RX Mode:** Start RX #### 8. APPLICABLE LIMITS AND TEST RESULTS #### 8.1 6DB BANDWIDTH #### **LIMIT** § 15.247(a) (2) For direct sequence systems, the minimum 6dB bandwidth shall be at least 500kHz #### TEST EQUIPMENTS | Name of Equipment | Manufacturer | Model | Serial Number | Calibration Due | |-----------------------|--------------|--------|---------------|-----------------| | EXA Spectrum Analyzer | KEYSIGHT | N9010A | MY54430216 | JAN. 23, 2016 | #### **TEST SETUP** #### **TEST PROCEDURE** - 1. Set resolution bandwidth (RBW) = 1-5 % of the emission bandwidth (EBW). - 2. Set the video bandwidth (VBW) \geq 3 x RBW. - 3. Detector = Peak. - 4. Trace mode = max hold. - 5. Sweep = auto couple. - 6. Allow the trace to stabilize. - 7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission. Compare the resultant bandwidth with the RBW setting of the analyzer. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is 1-5 %. #### **TEST RESULTS** No non-compliance noted. | Model Name | ZA1002US-5 | Test By | Ted Huang | |-----------------|-------------|-----------|------------| | Temp & Humidity | 28.6°C, 57% | Test Date | 2015/12/03 | #### **IEEE 802.11b mode** | Channel | Channel
Frequency
(MHz) | 6dB Bandwidth
(MHz) | Minimum Limit
(kHz) | Pass / Fail | |---------|-------------------------------|------------------------|------------------------|-------------| | Low | 2412 | 10.12 | 500 | PASS | | Middle | 2437 | 10.12 | 500 | PASS | | High | 2462 | 10.11 | 500 | PASS | #### NOTE: - 1. At finial test to get the worst-case emission at 1Mbps long. - 2. The cable assembly insertion loss of 11.1dB (including 10 dB pad and 1.1 dB cable) was entered as an offset in the spectrum analyzer to allow for direct reading of power. #### **IEEE 802.11g mode** | Channel | Channel
Frequency
(MHz) | 6dB Bandwidth
(MHz) | Minimum Limit
(kHz) | Pass / Fail | |---------|-------------------------------|------------------------|------------------------|-------------| | Low | 2412 | 16.59 | 500 | PASS | | Middle | 2437 | 16.60 | 500 | PASS | | High | 2462 | 16.58 | 500 | PASS | #### NOTE: - 1. At finial test to get the worst-case emission at 6Mbps. - 2. The cable assembly insertion loss of 11.1dB (including 10 dB pad and 1.1 dB cable) was entered as an offset in the spectrum analyzer to allow for direct reading of power. #### IEEE 802.11n HT20 mode | Channel | Channel
Frequency
(MHz) | 6dB Bandwidth
(MHz)
Chain 0 | Minimum Limit
(kHz) | Pass / Fail | |---------|-------------------------------|-----------------------------------|------------------------|-------------| | Low | 2412 | 17.82 | 500 | PASS | | Middle | 2437 | 17.81 | 500 | PASS | | High | 2462 | 17.83 | 500 | PASS | #### NOTE: - 1. At finial test to get the worst-case emission at 6.5Mbps. - 2. The cable assembly insertion loss of 11.1dB (including 10 dB pad and 1.1 dB cable) was entered as an offset in the spectrum analyzer to allow for direct reading of power. #### IEEE 802.11n HT40 mode | Channel | Channel
Frequency
(MHz) | 6dB Bandwidth
(MHz)
Chain 0 | Minimum Limit
(kHz) | Pass / Fail | |---------|-------------------------------|-----------------------------------|------------------------|-------------| | Low | 2422 | 36.60 | 500 | PASS | | Middle | 2437 | 36.62 | 500 | PASS | | High | 2452 | 36.60 | 500 | PASS | #### NOTE: - 1. At finial test to get the worst-case emission at 13Mbps. - 2. The cable assembly insertion loss of 11.1dB (including 10 dB pad and 1.1 dB cable) was entered as an offset in the spectrum analyzer to allow for direct reading of power. #### 6dB BANDWIDTH (802.11b MODE) ### 6dB BANDWIDTH (802.11g MODE) #### 6dB BANDWIDTH (802.11n HT20 MODE) Chain 0 #### 6dB BANDWIDTH (802.11n HT40 MODE) Chain 0 #### **8.2 MAXIMUM PEAK OUTPUT POWER** #### <u>LIMIT</u> § 15.247(b) The maximum peak output power of the intentional radiator shall not exceed the following : § 15.247(b) (3) For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands : 1 watt. § 15.247(b) (4) Except as shown in paragraphs (c) of this section , if transmitting antennas of directional gain greater than 6 dBi are used the peak output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1) or (b)(2), and (b)(3) of this section , as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi. #### **TEST EQUIPMENTS** | Name of Equipment | Manufacturer | Model | Serial Number | Calibration Due | |-----------------------|--------------|--------|---------------|-----------------| | EXA Spectrum Analyzer | KEYSIGHT | N9010A | MY54430216 | JAN. 23, 2016 | #### **TEST SETUP** FCC : KFR-ZA1002US-5 #### **TEST PROCEDURE** The tests were performed in accordance with KDB 558074 5.2.1.2 and 5.2.2.1. Report No.: T151026N04-RP1-2 #### 5.2.1.2 Measurement Procedure PK2: - 1. Set the RBW = 1 MHz. - 2. Set the VBW ≥ 3 RBW - 3. Set the span \geq 1.5 x DTS bandwidth. - 4. Detector = peak. - 5. Sweep time = auto couple. - Trace mode = max hold. - 7. Allow trace to fully stabilize. - 8. Use the instrument's band/channel power measurement function with the band limits set equal to the DTS bandwidth edges (for some instruments, this may require a manual override to select peak detector). If the instrument does not have a band power function, - 9. Sum the spectrum levels (in linear power units) at intervals equal to the RBW extending across the DTS bandwidth. # 5.2.2.1 Measurement Procedure AVG1(power averaging over the EBW with slow sweep speed): - 1.Set the analyzer span to 5-30% greater than the EBW. - 2.Set the RBW = 1 MHz. - 3.Set the VBW \ge 3 MHz. - 4.Detector = power average (RMS). - 5.Ensure that the number of measurement points in the sweep $\geq 2 \times (\text{span/RBW})$. - 6.Manually set the sweep time to: $\geq 10 \text{ x}$ (number of measurement points in sweep) x (transmission symbol period). - 7. Perform the measurement over a single sweep. - 8.Use the spectrum analyzer's integrated band power measurement function with band limits set equal to the EBW band edges to determine the maximum conducted output power of the EUTover the EBW. Note: If the analyzer does not have a band power function, sum the spectral levels (in linear power units) at 1 MHz intervals extending across the entire EBW. #### **TEST RESULTS** No non-compliance noted. | Model Name | ZA1002US-5 | Test By | Ted Huang | |-----------------|-------------|-----------|------------| | Temp & Humidity | 28.6°C, 57% | Test Date | 2015/12/03 | #### **IEEE 802.11b mode** | Channel | Channel
Frequency
(MHz) | Peak Power
(dBm) | Peak Power Limit
(dBm) | Pass /
Fail | |---------|-------------------------------|---------------------|---------------------------|----------------| | Low | 2412 | 0.95 | 30.00 | PASS | | Middle | 2437 | 0.91 | 30.00 | PASS | | High | 2462 | 1.62 | 30.00 | PASS | NOTE: - 1. At finial test to get the worst-case emission at 1Mbps long. - 2. The cable assembly insertion loss of 11.1dB (including 10 dB pad and 1.1 dB cable) was entered as an offset in the spectrum analyzer to allow for direct reading of power. **IEEE 802.11g mode** | Channel | Channel
Frequency
(MHz) | Peak Power
(dBm) | Peak Power Limit
(dBm) | Pass /
Fail | |---------
-------------------------------|---------------------|---------------------------|----------------| | Low | 2412 | 9.48 | 30.00 | PASS | | Middle | 2437 | 9.81 | 30.00 | PASS | | High | 2462 | 10.28 | 30.00 | PASS | NOTE: - 1.At finial test to get the worst-case emission at 6Mbps. - 2. The cable assembly insertion loss of 11.1dB (including 10 dB pad and 1.1 dB cable) was entered as an offset in the spectrum analyzer to allow for direct reading of power. #### IEEE 802.11n HT20 mode | Channel | Channel
Frequency
(MHz) | Peak Power
(dBm)
Chain 0 | Peak Power Limit
(dBm) | Pass /
Fail | |---------|-------------------------------|--------------------------------|---------------------------|----------------| | Low | 2412 | 8.20 | 29.58 | PASS | | Middle | 2437 | 8.12 | 29.58 | PASS | | High | 2462 | 8.73 | 29.58 | PASS | **NOTE**: 1. At finial test to get the worst-case emission at 6.5Mbps. 2. The cable assembly insertion loss of 11.1dB (including 10 dB pad and 1.1 dB cable) was entered as an offset in the spectrum analyzer to allow for direct reading of power. #### IEEE 802.11n HT40 mode | Channel | Channel
Frequency
(MHz) | Peak Power
(dBm)
Chain 0 | Peak Power Limit
(dBm) | Pass /
Fail | |---------|-------------------------------|--------------------------------|---------------------------|----------------| | Low | 2422 | 9.86 | 29.58 | PASS | | Middle | 2437 | 9.94 | 29.58 | PASS | | High | 2452 | 10.86 | 29.58 | PASS | **NOTE**: 1. At finial test to get the worst-case emission at 13Mbps. 2. The cable assembly insertion loss of 11.1dB (including 10 dB pad and 1.1 dB cable) was entered as an offset in the spectrum analyzer to allow for direct reading of power. Report No.: T151026N04-RP1-2 **Average Power Data** ### **IEEE 802.11b mode** | Channel | Channel
Frequency
(MHz) | Average Power
(dBm) | |---------|-------------------------------|------------------------| | Low | 2412 | -2.04 | | Middle | 2437 | -2.18 | | High | 2462 | -1.41 | **IEEE 802.11g mode** | Channel | Channel
Frequency
(MHz) | Average Power (dBm) | |---------|-------------------------------|---------------------| | Low | 2412 | 1.33 | | Middle | 2437 | 1.18 | | High | 2462 | 1.84 | ### IEEE 802.11n HT20 mode | Channel | Channel
Frequency
(MHz) | Average Power (dBm) | |---------|-------------------------------|---------------------| | | | Chain 0 | | Low | 2412 | 0.14 | | Middle | 2437 | -0.01 | | High | 2462 | 0.65 | ### IEEE 802.11n HT40 mode | Channel | Channel
Frequency
(MHz) | Average Power (dBm) | |---------|-------------------------------|---------------------| | | | Chain 0 | | Low | 2422 | 1.30 | | Middle | 2437 | 1.19 | | High | 2452 | 2.08 | #### MAXIMUM PEAK OUTPUT POWER (802.11b MODE) #### **MAXIMUM PEAK OUTPUT POWER (802.11g MODE)** ### MAXIMUM PEAK OUTPUT POWER (802.11n HT20 MODE) Chain 0 ### MAXIMUM PEAK OUTPUT POWER (802.11n HT40 MODE) Chain 0 #### **AVERAGE POWER (802.11b MODE)** #### **AVERAGE POWER (802.11g MODE)** ## AVERAGE POWER (802.11n HT20 MODE) Chain 0 ### AVERAGE POWER (802.11n HT40 MODE) Chain 0 #### **8.3 DUTY CYCLE** #### LIMIT Nil (No dedicated limit specified in the Rules) ### **TEST EQUIPMENT** | Name of Equipment | Manufacturer | Model | Serial Number | Calibration Due | |-----------------------|--------------|--------|---------------|-----------------| | EXA Spectrum Analyzer | KEYSIGHT | N9010A | MY54430216 | JAN. 23, 2016 | Remark: Each piece of equipment is scheduled for calibration once a year. #### **TEST SETUP** #### **TEST PROCEDURE** - 1. Place the EUT on the table and set it in transmitting mode. - 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer. - 3. The zero-span mode on a spectrum analyzer or EMI receiver if the response time and spacing between bins on the sweep are sufficient to permit accurate measurements of the on and off times of the transmitted signal. Set the center frequency of the instrument to the center frequency of the transmission. Set RBW ≥ OBW if possible; otherwise, set RBW to the largest available value. Set VBW ≥ RBW. Set detector = peak or average. The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T and the number of sweep points across duration T exceeds 100. (For example, if VBW and/or RBW are limited to 3 MHz, then the zero-span method of measuring duty cycle shall not be used if T ≤ 16.7 microseconds.) # **TEST RESULTS** No non-compliance noted. | Model Name | Model Name ZA1002US-5 | | Ted Huang | |-----------------|-----------------------|-----------|------------| | Temp & Humidity | 28.6°C, 57% | Test Date | 2015/12/03 | # **TEST DATA** | | us | Times | Ton | Total Ton time(ms) | |------|------------|-------|------------|--------------------| | Ton1 | 100000.000 | 1 | 100000.000 | 100.000 | | Ton2 | | 0 | 0.000 | | | Ton3 | | 0 | 0.000 | | | Тр | | | | 100.000 | | Ton | 100.000 | |--------------|---------| | Tp(Ton+Toff) | 100.000 | | Duty Cycle | 1.000 | | Duty Factor | 0.000 | 100 % FCC : KFR-ZA1002US-5 ### **TEST PLOT** # **Duty Cycle (IEEE 802.11b MODE)** Report No.: T151026N04-RP1-2 # **Duty Cycle (IEEE 802.11g MODE)** # Duty Cycle (802.11n HT20 MODE) # Duty Cycle (802.11n HT40 MODE) #### **8.4 POWER SPECTRAL DENSITY** ## <u>LIMIT</u> § 15.247(e) For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. # **TEST EQUIPMENTS** | Name of Equipment | Manufacturer | Model | Serial Number | Calibration Due | |-----------------------|--------------|--------|---------------|-----------------| | EXA Spectrum Analyzer | KEYSIGHT | N9010A | MY54430216 | JAN. 23, 2016 | #### **TEST SETUP** #### **TEST PROCEDURE** The tests were performed in accordance with KDB 558074 5.3.1. #### 5.3.1 Measurement Procedure PKPSD: - 1. Set analyzer center frequency to DTS channel center frequency. - 2. Set the span to 1.5 times the DTS bandwidth. - 3. Set the RBW to: $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$. - 4. Set the VBW ≥ 3 RBW. - 5. Detector = peak. - 6. Sweep time = auto couple. - 7. Trace mode = max hold. - 8. Allow trace to fully stabilize. - 9. Use the peak marker function to determine the maximum amplitude level within the RBW. - 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat. #### **TEST RESULTS** No non-compliance noted. | Model Name | ZA1002US-5 | Test By | Ted Huang | |-----------------|-------------|-----------|------------| | Temp & Humidity | 28.6°C, 57% | Test Date | 2015/12/03 | #### **IEEE 802.11b mode** | Channel | Frequency
(MHz) | PPSD
(dBm) | Limit
(dBm) | Margin
(dB) | Pass / Fail | |---------|--------------------|---------------|----------------|----------------|-------------| | Low | 2412 | -11.21 | 8.00 | -19.21 | PASS | | Middle | 2437 | -11.19 | 8.00 | -19.19 | PASS | | High | 2462 | -10.53 | 8.00 | -18.53 | PASS | - **NOTE**: 1. At finial test to get the worst-case emission at 1long Mbps long. - 2. The cable assembly insertion loss of 11.1dB (including 10 dB pad and 1.1 dB cable) was Entered as an offset in the spectrum analyzer to allow for direct reading of power. #### **IEEE 802.11g mode** | Channel | Frequency
(MHz) | PPSD
(dBm) | Limit
(dBm) | Margin
(dB) | Pass / Fail | |---------|--------------------|---------------|----------------|----------------|-------------| | Low | 2412 | -12.01 | 8.00 | -20.01 | PASS | | Middle | 2437 | -12.09 | 8.00 | -20.09 | PASS | | High | 2462 | -10.96 | 8.00 | -18.96 | PASS | NOTE: - 1. At finial test to get the worst-case emission at 6Mbps long. - 2. The cable assembly insertion loss of 11.1dB (including 10 dB pad and 1.1 dB cable) was Entered as an offset in the spectrum analyzer to allow for direct reading of power. #### IEEE 802.11n HT20 mode | Channel | Frequency
(MHz) | PPSD
Chain0
(dBm) | Limit
(dBm) | Margin
(dB) | Pass / Fail | |---------|--------------------|-------------------------|----------------|----------------|-------------| | Low | 2412 | -13.37 | 7.58 | -20.94 | PASS | | Middle | 2437 | -13.77 | 7.58 | -21.34 | PASS | | High | 2462 | -12.89 | 7.58 | -20.47 | PASS | - 1. At finial test to get the worst-case emission at 6.5Mbps long. - 2. The cable assembly insertion loss of 11.1dB (including 10 dB pad and 1.1 dB cable) was Entered as an offset in the spectrum analyzer to allow for direct reading of power. #### IEEE 802.11n HT40 mode | Channel | Frequency
(MHz) | PPSD
Chain0
(dBm) | Limit
(dBm) | Margin
(dB) | Pass / Fail | |---------|--------------------|-------------------------|----------------|----------------|-------------| | Low | 2422 | -15.07 | 7.58 | -22.65 | PASS | | Middle | 2437 | -15.20 | 7.58 | -22.78 | PASS | | High | 2452 | -14.14 | 7.58 | -21.72 | PASS | - 1. At finial test to get the worst-case emission at 13Mbps long. - 2. The cable assembly insertion loss of 11.1dB (including 10 dB pad and 1.1 dB cable) was Entered as an offset in the spectrum analyzer to allow for direct reading of power. # **POWER SPECTRAL DENSITY (IEEE 802.11b MODE)** # POWER SPECTRAL DENSITY (IEEE 802.11g MODE) # POWER SPECTRAL DENSITY (802.11n HT20 MODE) # POWER SPECTRAL DENSITY (802.11n HT40 MODE) FCC: KFR-ZA1002US-5 # **8.5 CONDUCTED SPURIOUS EMISSION** # **LIMITS** § 15.247(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the and that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in § 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined
in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a) (see § 15.205(c)). Report No.: T151026N04-RP1-2 #### **TEST EQUIPMENT** | Name of Equipment | Manufacturer | Model | Serial Number | Calibration Due | |-----------------------|--------------|--------|---------------|-----------------| | EXA Spectrum Analyzer | KEYSIGHT | N9010A | MY54430216 | JAN. 23, 2016 | **Remark:** Each piece of equipment is scheduled for calibration once a year. #### **TEST SETUP** #### TEST PROCEDURE The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz. The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in the 2.4 GHz band. #### **TEST RESULTS** No non-compliance noted. | Model Name | lodel Name ZA1002US-5 | | Ted Huang | |-----------------|-----------------------|-----------|------------| | Temp & Humidity | 28.6°C, 57% | Test Date | 2015/12/03 | FCC: KFR-ZA1002US-5 # OUT-OF-BAND SPURIOUS EMISSIONS-CONDUCTED MEASUREMENT (IEEE 802.11b MODE) Report No.: T151026N04-RP1-2 FCC: KFR-ZA1002US-5 # OUT-OF-BAND SPURIOUS EMISSIONS-CONDUCTED MEASUREMENT (802.11g MODE) Report No.: T151026N04-RP1-2 # OUT-OF-BAND SPURIOUS EMISSIONS-CONDUCTED MEASUREMENT (802.11n HT20 MODE) # OUT-OF-BAND SPURIOUS EMISSIONS-CONDUCTED MEASUREMENT (802.11n HT40 MODE) FCC: KFR-ZA1002US-5 ## **8.6 RADIATED EMISSIONS** # 8.6.1 TRANSMITTER RADIATED SUPURIOUS EMSSIONS ## LIMITS § 15.205 (a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below: Report No.: T151026N04-RP1-2 | MHz | MHz | MHz | GHz | |-------------------------------|--------------------------|-----------------|------------------| | 0.090 - 0.110 | 16.42 - 16.423 | 399.9 - 410 | 4.5 - 5.15 | | ¹ 0.495 - 0.505 | 16.69475 - 16.69525 | 608 - 614 | 5.35 - 5.46 | | 2.1735 - 2.1905 | 16.80425 - 16.80475 | 960 - 1240 | 7.25 - 7.75 | | 4.125 - 4.128 | 25.5 - 25.67 | 1300 - 1427 | 8.025 - 8.5 | | 4.17725 - 4.17775 | 37.5 - 38.25 | 1435 - 1626.5 | 9.0 - 9.2 | | 4.20725 - 4.20775 | 73 - 74.6 | 1645.5 - 1646.5 | 9.3 - 9.5 | | 6.215 - 6.218 | 74.8 - 75.2 | 1660 -1710 | 10.6 -12.7 | | 6.26775 - 6.26825 | 108 -121.94 | 1718.8 - 1722.2 | 13.25 -13.4 | | 6.31175 - 6.31225 | 123 - 138 | 2200 - 2300 | 14.47 – 14.5 | | 8.291 - 8.294 | 149.9 - 150.05 | 2310 - 2390 | 15.35 -16.2 | | 8.362 - 8.366 | 156.52475 -
156.52525 | 2483.5 - 2500 | 17.7 - 21.4 | | 8.37625 - 8.38675 | 156.7 - 156.9 | 2655 - 2900 | 22.01 - 23.12 | | 8.41425 - 8.41475 | 162.0125 - 167.17 | 3260 - 3267 | 23.6 - 24.0 | | 12.29 - 12.293 | 167.72 - 173.2 | 3332 - 3339 | 31.2 - 31.8 | | 12.51975 - 12.52025 240 - 285 | | 3345.8 - 3338 | 36.43 - 36.5 | | 12.57675 - 12.57725 | 322 -335.4 | 3600 - 4400 | (²) | | 13.36 - 13.41 | | | | ¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz. § 15.205 (b) Except as provided in paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown is Section 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements. ² Above 38.6 § 15.209 (a) Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table : | Frequency
(MHz) | Field Strength (microvolts/meter) | Measurement Distance (meters) | |--------------------|-----------------------------------|-------------------------------| | 30 - 88 | 100 ** | 3 | | 88 - 216 | 150 ** | 3 | | 216 - 960 | 200 ** | 3 | | Above 960 | 500 | 3 | ^{**} Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz, However, operation within these frequency bands is permitted under other sections of this Part, e-g, Sections 15.231 and 15.241. ^{§ 15.209 (}b) In the emission table above, the tighter limit applies at the band edges. TEST EQUIPMENTS The following test equipments are utilized in making the measurements contained in this report. | | Chamb | per Room # 966 | | | |------------------------------------|--------------------------|--------------------|---------------|-----------------| | Name of Equipment | Manufacturer | Model | Serial Number | Calibration Due | | HUBER+SUHNER | Cable | SUCOFLEX
104PEA | SN25737 /4PEA | JAN. 14, 2016 | | Antenna (天線) | Sunol sciences | JB1 | A021306 | AUG. 02, 2016 | | LOOP ANTENNA | EMCO | 6502 | 8905-2356 | JUN. 10, 2016 | | Pre-Amplifier | HP | 8447F | 2443A01671 | JAN. 14, 2016 | | Pre-Amplifier | EMCI | EMC 012645 | 980098 | DEC. 04, 2016 | | Horn Antenna | Com-Power | AH-118 | 071032 | JAN. 09, 2016 | | 3116 Double Ridge
Antenna (40G) | ETS-LINDGREN | 3116 | 00078900 | MAR. 04, 2016 | | Turn Table | Yo Chen | 001 | | N.C.R. | | Antenna Tower | AR | TP1000A | 309874 | N.C.R. | | Controller | UC | UC300 | | N.C.R. | | RF Swicth | E-INSTRUMENT
TELH LTD | ERS-180A | EC1204141 | N.C.R | | EXA Spectrum Analyzer | KEYSIGHT | N9010A | MY54430216 | JAN. 23, 2016 | | Test S/W | | e-3 (5 | .04303e) | | # **TEST SETUP** The diagram below shows the test setup that is utilized to make the measurements for emission from 30 to 1GHz. Antenna Elevation Variable The diagram below shows the test setup that is utilized to make the measurements for emission above 1GHz. # **TEST PROCEDURE** a. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 10 meter chamber test site. The table was rotated 360 degrees to determine the position of the highest radiation. - b. White measuring the radiated emission below 1GHz, the EUT was set 3/10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. White measuring the radiated emission above 1GHz, the EUT was set 3 meters away from the interference-receiving antenna - c. The antenna is a broadband antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarization of the antenna are set to make the measurement. - d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the table was turned from 0 degrees to 360 degrees to find the maximum reading. - e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. - f. If the emission level of the EUT in peak mode was 10 dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10 dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. - g. The tests were performed in accordance with KDB 558074 5.4. ## NOTE: - 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 KHz for Peak detection (PK) and Quasi-peak detection (QP) at frequency below 1GHz. - 2. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 1 MHz for Peak detection and frequency above 1GHz. - 3. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 10 Hz for Average detection (AV) at frequency above 1GHz. - 4. No emission is found between lowest internal used/generated frequency to 30MHz (9kHz~30MHz) ## **TEST RESULTS** No non-compliance noted. # 8.6.2 WORST-CASE RADIATED EMISSION BELOW 1 GHz | Model No. | ZA1002US-5 | Test Mode | Normal Operation | | |--------------------------|--------------|-------------------------|------------------|--| | Environmental Conditions | 127 4 58% RH | Resolution
Bandwidth | 120 kHz | | | Antenna Pole | Vertical | Antenna Distance | 10m | | | Detector Function: | Quasi-peak. | Tested By | Ted Huang | | | Test Site | OATS 5 | Tested Data | 2015/11/06 | | (The chart below shows the highest readings taken from the final data.) | | Freq- | Meter Reading | Antenna | Cable | Emission | Limits | Margin | Detector | |-----|--------|---------------|---------|-------|--------------|----------|--------|----------| | No. | Uency | at 3 m Level | Factor | Loss | at 3 m Level | Lillits | Wargin | Mode | | | (MHz) | (dBµV) | (dB/m) | (dB) | (dBµV/m) | (dBµV/m) | (dB) | PK/QP | | 1 | 49.40 | 12.68 | 8.92 | 2.02 | 23.62 | 40.00 | -16.38 | QP | | 2 | 66.37 | 17.42 | 8.10 | 2.21 | 27.73 | 40.00 | -12.27 | QP | | 3 | 117.30 | 7.52 | 13.55 | 3.06 | 24.13 | 43.50 | -19.37 | QP | | 4 | 124.68 | 4.55 | 13.95 | 3.12 | 21.62 | 43.50 | -21.88 | QP | | 5 | 168.45 | 2.55 | 12.24 | 3.39 | 18.18 | 43.50 | -25.32 | QP | | 6 | 196.48 | 1.48 | 13.19 | 3.55 | 18.22 | 43.50 | -25.28 | QP | Note: 1. QP= Quasi-peak Reading. 2. The other emission levels were very low against the limit | Model No. | ZA1002US-5 | Test Mode | Normal Operation | | |--------------------------|--------------|-------------------------|------------------|--| | Environmental Conditions | 1// 4 58% RH | Resolution
Bandwidth | 120 kHz | | | Antenna Pole | Horizontal | Antenna Distance | 10m | | | Detector Function | Quasi-peak. | Tested By | Ted Huang | | | Test Site | OATS 5 | Tested Data | 2015/11/06 | | (The chart below shows the highest readings taken from the final data.) | | Freq- | Meter Reading | Antenna | Cable | Emission | Limits | Margin | Detector | | |-----|--------|---------------|---------
-------------|----------|----------|--------|----------|--| | No. | Uency | at 3 m Level | Factor | Factor Loss | | Lillits | Wargin | Mode | | | | (MHz) | (dBµV) | (dB/m) | (dB) | (dBµV/m) | (dBµV/m) | (dB) | PK/QP | | | 1 | 54.84 | 11.36 | 8.09 | 2.05 | 21.50 | 40.00 | -18.50 | QP | | | 2 | 66.37 | 20.68 | 8.10 | 2.21 | 30.99 | 40.00 | -9.01 | QP | | | 3 | 119.72 | 15.48 | 14.00 | 3.10 | 32.57 | 43.50 | -10.93 | QP | | | 4 | 134.68 | 6.39 | 13.73 | 3.13 | 23.25 | 43.50 | -20.25 | QP | | | 5 | 192.48 | 4.66 | 12.79 | 3.54 | 21.00 | 43.50 | -22.50 | QP | | | 6 | 220.35 | 2.68 | 13.04 | 3.72 | 19.44 | 46.00 | -26.56 | QP | | Note: 1. QP= Quasi-peak Reading. The other emission levels were very low against the limit # 8.6.3 TRANSMITTER RADIATED EMISSION ABOVE 1 GHz | Product Name | Enterprise Access Point | Test Date | 2015/12/03 | |---------------------|--------------------------|----------------|------------| | Model | ZA1002US-5 | Test By | Ted Huang | | Test Mode | IEEE 802.11b TX (CH Low) | TEMP& Humidity | 28.6 , 57% | | | TX / IEEE 802.11b mode / CH Low | | | | Measur | Measurement Distance at 3m | | | | Horizontal polarity | | |---|---------------------------------|---------|--------|------------|---------|----------------------------|----------|----------|--------|---------------------|--| | | Freq. | Reading | AF | Cable Loss | Pre-amp | Filter | Level | Limit | Margin | Mark | | | | (MHz) | (dBµV) | (dB/m) | (dB) | (dB) | (dB) | (dBµV/m) | (dBµV/m) | (dB) | (P/Q/A) | | | | 1935.98 | 60.58 | 30.03 | 2.29 | 48.17 | 0.30 | 45.03 | 74.00 | -28.97 | Р | | | | 1935.98 | 56.77 | 30.03 | 2.29 | 48.17 | 0.30 | 41.22 | 54.00 | -12.78 | Α | | | | 3215.95 | 54.19 | 30.69 | 3.03 | 47.27 | 0.30 | 40.93 | 74.00 | -33.07 | Р | | | | 3215.95 | 46.18 | 30.69 | 3.03 | 47.27 | 0.30 | 32.92 | 54.00 | -21.08 | Α | | | * | 4824.04 | 63.39 | 33.87 | 3.78 | 48.29 | 0.40 | 53.15 | 74.00 | -20.85 | Р | | | * | 4824.04 | 59.13 | 33.87 | 3.78 | 48.29 | 0.40 | 48.88 | 54.00 | -5.12 | Α | | | | N/A | | | | | | | | | Р | | | | N/A | | | | | | | | | Α | | | | TX / IEEE 802.11b mode / CH Low | | | | Measu | Measurement Distance at 3m Vertical polari | | | | larity | |---|---------------------------------|---------|--------|------------|---------|--|----------|----------|--------|---------| | | Freq. | Reading | AF | Cable Loss | Pre-amp | Filter | Level | Limit | Margin | Mark | | | (MHz) | (dBµV) | (dB/m) | (dB) | (dB) | (dB) | (dBµV/m) | (dBµV/m) | (dB) | (P/Q/A) | | * | 1584.12 | 57.93 | 27.42 | 2.06 | 48.65 | 0.30 | 39.06 | 74.00 | -34.94 | Р | | * | 1584.12 | 52.15 | 27.42 | 2.06 | 48.65 | 0.30 | 33.28 | 54.00 | -20.72 | Α | | | 3215.89 | 54.47 | 30.69 | 3.03 | 47.27 | 0.30 | 41.21 | 74.00 | -32.79 | Р | | | 3215.89 | 45.43 | 30.69 | 3.03 | 47.27 | 0.30 | 32.17 | 54.00 | -21.83 | Α | | * | 4824.03 | 60.58 | 33.87 | 3.78 | 48.29 | 0.40 | 50.34 | 74.00 | -23.66 | Р | | * | 4824.03 | 56.75 | 33.87 | 3.78 | 48.29 | 0.40 | 46.50 | 54.00 | -7.50 | Α | | | N/A | | | | | | | | | Р | | | N/A | | | | | | | | | Α | - 1. AF: Antenna Factor, Cable: Cable Loss, Pre-Amp: Preamplifier gain, Filter: 2.4GHz~2.5GHz Filter Insertion Loss - Spectrum analyzer setting P(Peak): RBW=1MHz, VBW=1MHz, A(Average): RBW=1MHz, VBW=10Hz - The result basic equation calculation is as follow: Level = Reading + AF + Cable - Preamp + Filter, Margin = Level-Limit - 4. The other emission levels were 20dB below the limit - 5. The test limit distance is 3M limit. FCC: KFR-ZA1002US-5 | Product Name | Enterprise Access Point | Test Date | 2015/12/03 | |---------------------|-----------------------------|----------------|------------| | Model | ZA1002US-5 | Test By | Ted Huang | | Test Mode | IEEE 802.11b TX (CH Middle) | TEMP& Humidity | 28.6 , 57% | Report No.: T151026N04-RP1-2 | | TX / IEEE 802.11b mode / CH Middle | | | | Measur | Measurement Distance at 3m Horizontal polarity | | | | olarity | |---|------------------------------------|---------|--------|------------|---------|--|----------|----------|--------|---------| | | Freq. | Reading | AF | Cable Loss | Pre-amp | Filter | Level | Limit | Margin | Mark | | | (MHz) | (dBµV) | (dB/m) | (dB) | (dB) | (dB) | (dBµV/m) | (dBµV/m) | (dB) | (P/Q/A) | | | 1935.97 | 60.80 | 30.03 | 2.29 | 48.17 | 0.30 | 45.24 | 74.00 | -28.76 | Р | | | 1935.97 | 56.46 | 30.03 | 2.29 | 48.17 | 0.30 | 40.91 | 54.00 | -13.09 | Α | | | 3249.33 | 55.48 | 30.70 | 3.04 | 47.30 | 0.30 | 42.22 | 74.00 | -31.78 | Р | | | 3249.33 | 46.74 | 30.70 | 3.04 | 47.30 | 0.30 | 33.48 | 54.00 | -20.52 | Α | | * | 4874.04 | 63.62 | 34.02 | 3.80 | 48.29 | 0.40 | 53.54 | 74.00 | -20.46 | Р | | * | 4874.04 | 59.24 | 34.02 | 3.80 | 48.29 | 0.40 | 49.16 | 54.00 | -4.84 | Α | | | N/A | | | | | | | | | Р | | | N/A | | | | | | | | | Α | | | TX / IEE | E 802.11b | mode / | CH Middle | Measurement Distance at 3m Vertical polarity | | | | | | |---|----------|-----------|--------|------------|--|--------|----------|----------|--------|---------| | | Freq. | Reading | AF | Cable Loss | Pre-amp | Filter | Level | Limit | Margin | Mark | | | (MHz) | (dBµV) | (dB/m) | (dB) | (dB) | (dB) | (dBµV/m) | (dBµV/m) | (dB) | (P/Q/A) | | * | 1583.95 | 56.78 | 27.42 | 2.06 | 48.65 | 0.30 | 37.91 | 74.00 | -36.09 | Р | | * | 1583.95 | 50.65 | 27.42 | 2.06 | 48.65 | 0.30 | 31.78 | 54.00 | -22.22 | Α | | | 3249.34 | 54.04 | 30.70 | 3.04 | 47.30 | 0.30 | 40.79 | 74.00 | -33.21 | Р | | | 3249.34 | 45.64 | 30.70 | 3.04 | 47.30 | 0.30 | 32.38 | 54.00 | -21.62 | Α | | * | 4873.97 | 60.45 | 34.02 | 3.80 | 48.29 | 0.40 | 50.38 | 74.00 | -23.62 | Р | | * | 4873.97 | 56.83 | 34.02 | 3.80 | 48.29 | 0.40 | 46.75 | 54.00 | -7.25 | Α | | | N/A | | | | | | | | | Р | | | N/A | | | | | | | | | Α | ## REMARK: I - AF: Antenna Factor, Cable: Cable Loss, Pre-Amp: Preamplifier gain, Filter: 2.4GHz~2.5GHz Filter Insertion Loss - Spectrum analyzer setting P(Peak): RBW=1MHz, VBW=1MHz, A(Average): RBW=1MHz, VBW=10Hz - The result basic equation calculation is as follow: $\label{eq:Level} \textit{Level} = \textit{Reading} + \overset{\cdot}{\textit{AF}} + \textit{Cable} - \textit{Preamp} + \textit{Filter} \;, \; \textit{Margin} = \textit{Level-Limit} \\ \textit{The other emission levels were 20dB below the limit}$ - 4. - The test limit distance is 3M limit. | Product Name | Enterprise Access Point | Test Date | 2015/12/03 | | | |---------------------|---------------------------|---------------------------|------------|--|--| | Model | ZA1002US-5 | Test By | Ted Huang | | | | Test Mode | IEEE 802.11b TX (CH High) | TEMP& Humidity | 28.6 , 57% | | | | | TX / IEI | EE 802.11 | b mod | e / CH High | Measur | ement | Distance | at 3m | Horizontal p | olarity | |---|----------|-----------|--------|-------------|---------|--------|----------|----------|--------------|---------| | | Freq. | Reading | AF | Cable Loss | Pre-amp | Filter | Level | Limit | Margin | Mark | | | (MHz) | (dBµV) | (dB/m) | (dB) | (dB) | (dB) | (dBµV/m) | (dBµV/m) | (dB) | (P/Q/A) | | | 1935.98 | 60.73 | 30.03 | 2.29 | 48.17 | 0.30 | 45.18 | 74.00 | -28.82 | Р | | | 1935.98 | 57.40 | 30.03 | 2.29 | 48.17 | 0.30 | 41.85 | 54.00 | -12.15 | Α | | | 3282.62 | 55.26 | 30.71 | 3.06 | 47.33 | 0.30 | 42.01 | 74.00 | -31.99 | Р | | | 3282.62 | 47.13 | 30.71 | 3.06 | 47.33 | 0.30 | 33.88 | 54.00 | -20.12 | Α | | * | 4924.00 | 64.52 | 34.17 | 3.82 | 48.30 | 0.40 | 54.61 | 74.00 | -19.39 | Р | | * | 4924.00 | 59.33 | 34.17 | 3.82 | 48.30 | 0.40 | 49.42 | 54.00 | -4.58 | Α | | | N/A | | | | | | | | | Р | | | N/A | | | | | | | | | Α | | | TX / IEE | EE 802.11 | b mode | e / CH High | Measu | rement | Distance | at 3m | Vertical po | olarity | |---|----------|-----------|--------|-------------|---------|--------|----------|----------|-------------|---------| | | Freq. | Reading | AF | Cable Loss | Pre-amp | Filter | Level | Limit | Margin | Mark | | | (MHz) | (dBµV) | (dB/m) | (dB) | (dB) | (dB) | (dBµV/m) | (dBµV/m) | (dB) | (P/Q/A) | | * | 1583.99 | 57.41 | 27.42 | 2.06 | 48.65 | 0.30 | 38.54 | 74.00 | -35.46 | Р | | * | 1583.99 | 51.48 | 27.42 | 2.06 | 48.65 | 0.30 | 32.61 | 54.00 | -21.39 | Α | | | 3282.69 | 54.38 | 30.71 | 3.06 | 47.33 | 0.30 | 41.12 | 74.00 | -32.88 | Р | | | 3282.69 | 47.09 | 30.71 | 3.06 | 47.33 | 0.30 | 33.84 | 54.00 | -20.16 | Α | | * | 4924.00 | 60.75 | 34.17 | 3.82 | 48.30 | 0.40 | 50.84 | 74.00 | -23.16 | Р | | * | 4924.00 | 56.08 | 34.17 | 3.82 | 48.30 | 0.40 | 46.18 | 54.00 | -7.82 | Α | | | N/A | | | | | | | | | Р | | | N/A | | | | | | | | | Α | - AF: Antenna Factor, Cable: Cable Loss, Pre-Amp: Preamplifier gain, Filter: 2.4GHz~2.5GHz Filter Insertion Loss - Spectrum analyzer setting P(Peak): RBW=1MHz, VBW=1MHz, A(Average): RBW=1MHz, VBW=10Hz - The result basic equation calculation is as follow: $\label{eq:Level} \textit{Level} = \textit{Reading} + \overset{\cdot}{\textit{AF}} + \textit{Cable} - \textit{Preamp} + \textit{Filter} \;, \; \textit{Margin} = \textit{Level-Limit} \\ \textit{The other emission levels were 20dB below the limit}$ - 4. - The test limit distance is 3M limit. | Product Name | Enterprise Access Point | Test Date | 2015/12/03 | | |---------------------|--------------------------|----------------|------------|--| | Model | ZA1002US-5 | Test By | Ted Huang | | | Test Mode | IEEE 802.11g TX (CH Low) | TEMP& Humidity | 28.6 , 57% | | | | TX / IE | EE 802.1 | lg mod | e / CH Low | Measur | ement | Distance | at 3m | Horizontal p | olarity | |---|---------|----------|--------|------------|---------|--------|----------|----------|--------------|---------| | | Freq. | Reading | AF | Cable Loss | Pre-amp | Filter | Level | Limit | Margin | Mark | | | (MHz) | (dBµV) | (dB/m) | (dB) | (dB) | (dB) | (dBµV/m) | (dBµV/m) | (dB) | (P/Q/A) | | | 1936.02 | 60.82 | 30.03 | 2.29 | 48.17 | 0.30 | 45.27 | 74.00 | -28.73 | Р | | Ī | 1936.02 | 56.93 | 30.03 | 2.29 |
48.17 | 0.30 | 41.38 | 54.00 | -12.62 | Α | | Ī | 3215.95 | 54.81 | 30.69 | 3.03 | 47.27 | 0.30 | 41.55 | 74.00 | -32.45 | Р | | Ī | 3215.95 | 46.31 | 30.69 | 3.03 | 47.27 | 0.30 | 33.05 | 54.00 | -20.95 | Α | | * | 4825.60 | 71.20 | 33.88 | 3.78 | 48.29 | 0.40 | 60.96 | 74.00 | -13.04 | Р | | * | 4825.60 | 60.11 | 33.88 | 3.78 | 48.29 | 0.40 | 49.87 | 54.00 | -4.13 | Α | | | N/A | | | | | | | | | Р | | ĺ | N/A | | | | | | | | | Α | | | TX / IEI | EE 802.11 | g mod | e / CH Low | Measu | remen | t Distance | at 3m | Vertical polarity | | | |---|----------|-----------|--------|------------|---------|--------|------------|----------|-------------------|---------|--| | | Freq. | Reading | AF | Cable Loss | Pre-amp | Filter | Level | Limit | Margin | Mark | | | | (MHz) | (dBµV) | (dB/m) | (dB) | (dB) | (dB) | (dBµV/m) | (dBµV/m) | (dB) | (P/Q/A) | | | * | 1584.22 | 57.62 | 27.42 | 2.06 | 48.65 | 0.30 | 38.75 | 74.00 | -35.25 | Р | | | * | 1584.22 | 52.16 | 27.42 | 2.06 | 48.65 | 0.30 | 33.29 | 54.00 | -20.71 | Α | | | | 3215.95 | 54.72 | 30.69 | 3.03 | 47.27 | 0.30 | 41.46 | 74.00 | -32.54 | Р | | | | 3215.95 | 45.49 | 30.69 | 3.03 | 47.27 | 0.30 | 32.23 | 54.00 | -21.77 | Α | | | * | 4823.20 | 66.49 | 33.87 | 3.78 | 48.29 | 0.40 | 56.25 | 74.00 | -17.75 | Р | | | * | 4823.20 | 56.10 | 33.87 | 3.78 | 48.29 | 0.40 | 45.86 | 54.00 | -8.14 | Α | | | | N/A | | | | | | | | | Р | | | | N/A | | | | | | | | | Α | | - 1. AF: Antenna Factor, Cable: Cable Loss, Pre-Amp: Preamplifier gain, Filter: 2.4GHz~2.5GHz Filter Insertion Loss - Spectrum analyzer setting P(Peak): RBW=1MHz, VBW=1MHz, A(Average): RBW=1MHz, VBW=10Hz - The result basic equation calculation is as follow: $\label{eq:Level} \textit{Level} = \textit{Reading} + \overset{\cdot}{\textit{AF}} + \textit{Cable} - \textit{Preamp} + \textit{Filter} \;, \; \textit{Margin} = \textit{Level-Limit} \\ \textit{The other emission levels were 20dB below the limit}$ - 4. - The test limit distance is 3M limit. | Product Name | Enterprise Access Point | Test Date | 2015/12/03 | | | |---------------------|-----------------------------|----------------|------------|--|--| | Model | ZA1002US-5 | Test By | Ted Huang | | | | Test Mode | IEEE 802.11g TX (CH Middle) | TEMP& Humidity | 28.6 , 57% | | | | | TX / IEE | 802.11g | mode / | CH Middle | Measur | ement | Distance a | at 3m I | Horizontal p | olarity | |---|----------|---------|--------|------------|---------|--------|------------|----------|--------------|---------| | | Freq. | Reading | AF | Cable Loss | Pre-amp | Filter | Level | Limit | Margin | Mark | | | (MHz) | (dBµV) | (dB/m) | (dB) | (dB) | (dB) | (dBµV/m) | (dBµV/m) | (dB) | (P/Q/A) | | | 1936.02 | 60.44 | 30.03 | 2.29 | 48.17 | 0.30 | 44.89 | 74.00 | -29.11 | Р | | | 1936.02 | 56.76 | 30.03 | 2.29 | 48.17 | 0.30 | 41.20 | 54.00 | -12.80 | Α | | | 3249.29 | 55.16 | 30.70 | 3.04 | 47.30 | 0.30 | 41.91 | 74.00 | -32.09 | Р | | | 3249.29 | 45.94 | 30.70 | 3.04 | 47.30 | 0.30 | 32.68 | 54.00 | -21.32 | Α | | * | 4873.93 | 71.26 | 34.02 | 3.80 | 48.29 | 0.40 | 61.18 | 74.00 | -12.82 | Р | | * | 4873.93 | 60.33 | 34.02 | 3.80 | 48.29 | 0.40 | 50.25 | 54.00 | -3.75 | Α | | | N/A | | | | | | | | | Р | | | N/A | | | | | | | | | Α | | | TX / IEE | E 802.11g | g mode / | CH Middle | Measu | remen | t Distance | at 3m | /ertical po | larity | |---|----------|-----------|----------|------------|---------|--------|------------|----------|-------------|---------| | | Freq. | Reading | AF | Cable Loss | Pre-amp | Filter | Level | Limit | Margin | Mark | | | (MHz) | (dBµV) | (dB/m) | (dB) | (dB) | (dB) | (dBµV/m) | (dBµV/m) | (dB) | (P/Q/A) | | * | 1584.02 | 56.39 | 27.42 | 2.06 | 48.65 | 0.30 | 37.52 | 74.00 | -36.48 | Р | | * | 1584.02 | 48.97 | 27.42 | 2.06 | 48.65 | 0.30 | 30.10 | 54.00 | -23.90 | Α | | | 3249.18 | 54.97 | 30.70 | 3.04 | 47.30 | 0.30 | 41.71 | 74.00 | -32.29 | Р | | | 3249.18 | 46.38 | 30.70 | 3.04 | 47.30 | 0.30 | 33.12 | 54.00 | -20.88 | Α | | * | 4874.68 | 65.84 | 34.02 | 3.80 | 48.29 | 0.40 | 55.77 | 74.00 | -18.23 | Р | | * | 4874.68 | 55.83 | 34.02 | 3.80 | 48.29 | 0.40 | 45.76 | 54.00 | -8.24 | Α | | | N/A | | | | | | | | | Р | | | N/A | | | | | | | | | Α | - 1. AF: Antenna Factor, Cable: Cable Loss, Pre-Amp: Preamplifier gain, Filter: 2.4GHz~2.5GHz Filter Insertion Loss - Spectrum analyzer setting P(Peak): RBW=1MHz, VBW=1MHz, A(Average): RBW=1MHz, VBW=10Hz - The result basic equation calculation is as follow: $\label{eq:Level} \textit{Level} = \textit{Reading} + \overset{\cdot}{\textit{AF}} + \textit{Cable} - \textit{Preamp} + \textit{Filter} \;, \; \textit{Margin} = \textit{Level-Limit} \\ \textit{The other emission levels were 20dB below the limit}$ - 4. - The test limit distance is 3M limit. | Product Name | Enterprise Access Point | Test Date | 2015/12/03 | | |---------------------|---------------------------|----------------|------------|--| | Model | ZA1002US-5 | Test By | Ted Huang | | | Test Mode | IEEE 802.11g TX (CH High) | TEMP& Humidity | 28.6 , 57% | | | | TX / IEI | EE 802.11 | g mode | e / CH High | Measur | ement | Horizontal p | olarity | | | |---|----------|-----------|--------|-------------|---------|--------|--------------|----------|--------|---------| | | Freq. | Reading | AF | Cable Loss | Pre-amp | Filter | Level | Limit | Margin | Mark | | | (MHz) | (dBµV) | (dB/m) | (dB) | (dB) | (dB) | (dBµV/m) | (dBµV/m) | (dB) | (P/Q/A) | | | 1935.98 | 59.87 | 30.03 | 2.29 | 48.17 | 0.30 | 44.31 | 74.00 | -29.69 | Р | | | 1935.98 | 56.17 | 30.03 | 2.29 | 48.17 | 0.30 | 40.62 | 54.00 | -13.38 | Α | | Ī | 3282.69 | 54.63 | 30.71 | 3.06 | 47.33 | 0.30 | 41.37 | 74.00 | -32.63 | Р | | | 3282.69 | 46.58 | 30.71 | 3.06 | 47.33 | 0.30 | 33.33 | 54.00 | -20.67 | Α | | * | 4924.22 | 71.52 | 34.17 | 3.82 | 48.30 | 0.40 | 61.61 | 74.00 | -12.39 | Р | | * | 4924.22 | 61.28 | 34.17 | 3.82 | 48.30 | 0.40 | 51.37 | 54.00 | -2.63 | Α | | | N/A | | | | | | | | | Р | | I | N/A | | | | | | | | | Α | | | TX / IE | EE 802.11 | g mode | / CH High | Measu | rement | Distance | at 3m | Vertical polarity | | | |---|---------|-----------|--------|------------|---------|--------|----------|----------|-------------------|---------|--| | | Freq. | Reading | AF | Cable Loss | Pre-amp | Filter | Level | Limit | Margin | Mark | | | | (MHz) | (dBµV) | (dB/m) | (dB) | (dB) | (dB) | (dBµV/m) | (dBµV/m) | (dB) | (P/Q/A) | | | * | 1583.94 | 57.59 | 27.42 | 2.06 | 48.65 | 0.30 | 38.72 | 74.00 | -35.28 | Р | | | * | 1583.94 | 51.82 | 27.42 | 2.06 | 48.65 | 0.30 | 32.95 | 54.00 | -21.05 | Α | | | | 3282.63 | 55.22 | 30.71 | 3.06 | 47.33 | 0.30 | 41.97 | 74.00 | -32.03 | Р | | | | 3282.63 | 45.78 | 30.71 | 3.06 | 47.33 | 0.30 | 32.52 | 54.00 | -21.48 | Α | | | * | 4923.68 | 66.25 | 34.17 | 3.82 | 48.30 | 0.40 | 56.34 | 74.00 | -17.66 | Р | | | * | 4923.68 | 56.34 | 34.17 | 3.82 | 48.30 | 0.40 | 46.43 | 54.00 | -7.57 | Α | | | | N/A | | | | | | | | | Р | | | | N/A | | | | | | | | | Α | | - AF: Antenna Factor, Cable: Cable Loss, Pre-Amp: Preamplifier gain, Filter: 2.4GHz~2.5GHz Filter Insertion Loss - Spectrum analyzer setting P(Peak): RBW=1MHz, VBW=1MHz, A(Average): RBW=1MHz, VBW=10Hz - The result basic equation calculation is as follow: Level = Reading + AF + Cable - Preamp + Filter, Margin = Level-Limit - The other emission levels were 20dB below the limit - The test limit distance is 3M limit. | Product Name | Enterprise Access Point | Test Date | 2015/12/03 | | | |---------------------|-------------------------------|----------------|------------|--|--| | Model | ZA1002US-5 | Test By | Ted Huang | | | | Test Mode | IEEE 802.11n HT20 TX (CH Low) | TEMP& Humidity | 28.6 , 57% | | | | | TX / IEEE | 802.11n F | IT20 mod | de / CH Low | Measur | Measurement Distance at 3m Horizontal polari | | | | | | |---|-----------|-----------|----------|-------------|---------|--|----------|----------|--------|---------|--| | | Freq. | Reading | AF | Cable Loss | Pre-amp | Filter | Level | Limit | Margin | Mark | | | | (MHz) | (dBµV) | (dB/m) | (dB) | (dB) | (dB) | (dBµV/m) | (dBµV/m) | (dB) | (P/Q/A) | | | | 1935.96 | 60.66 | 30.03 | 2.29 | 48.17 | 0.30 | 45.11 | 74.00 | -28.89 | Р | | | | 1935.96 | 56.71 | 30.03 | 2.29 | 48.17 | 0.30 | 41.16 | 54.00 | -12.84 | Α | | | | 3215.96 | 55.35 | 30.69 | 3.03 | 47.27 | 0.30 | 42.09 | 74.00 | -31.91 | Р | | | | 3215.96 | 46.64 | 30.69 | 3.03 | 47.27 | 0.30 | 33.38 | 54.00 | -20.62 | Α | | | * | 4823.96 | 70.21 | 33.87 | 3.78 | 48.29 | 0.40 | 59.96 | 74.00 | -14.04 | Р | | | * | 4823.96 | 59.64 | 33.87 | 3.78 | 48.29 | 0.40 | 49.39 | 54.00 | -4.61 | Α | | | | N/A | | | | | | | | | Р | | | | N/A | | | | | | | | | Α | | | | TX / IEEE | 802.11n F | IT20 mod | de / CH Low | Measu | Measurement Distance at 3m Vertical polarity | | | | | | |---|-----------|-----------|----------|-------------|---------|--|----------|----------|--------|---------|--| | | Freq. | Reading | AF | Cable Loss | Pre-amp | Filter | Level | Limit | Margin | Mark | | | | (MHz) | (dBµV) | (dB/m) | (dB) | (dB) | (dB) | (dBµV/m) | (dBµV/m) | (dB) | (P/Q/A) | | | * | 1584.14 | 57.84 | 27.42 | 2.06 | 48.65 | 0.30 | 38.97 | 74.00 | -35.03 | Р | | | * | 1584.14 | 52.06 | 27.42 | 2.06 | 48.65 | 0.30 | 33.19 | 54.00 | -20.81 | Α | | | | 3215.97 | 54.53 | 30.69 | 3.03 | 47.27 | 0.30 | 41.27 | 74.00 | -32.73 | Р | | | | 3215.97 | 45.74 | 30.69 | 3.03 | 47.27 | 0.30 | 32.48 | 54.00 | -21.52 | Α | | | * | 4824.03 | 65.34 | 33.87 | 3.78 | 48.29 | 0.40 | 55.10 | 74.00 | -18.90 | Р | | | * | 4824.03 | 56.02 | 33.87 | 3.78 | 48.29 | 0.40 | 45.78 | 54.00 | -8.22 | Α | | | | N/A | | | | | | | | | Р | | | | N/A | | | | | | | | | Α | | - 1. AF: Antenna Factor, Cable: Cable Loss, Pre-Amp: Preamplifier gain, Filter: 2.4GHz~2.5GHz Filter Insertion Loss - Spectrum analyzer setting P(Peak): RBW=1MHz, VBW=1MHz, A(Average): RBW=1MHz, VBW=10Hz - The result basic equation calculation is as follow:
$\label{eq:Level} \textit{Level} = \textit{Reading} + \overset{\cdot}{\textit{AF}} + \textit{Cable} - \textit{Preamp} + \textit{Filter} \;, \; \textit{Margin} = \textit{Level-Limit} \\ \textit{The other emission levels were 20dB below the limit}$ - 4. - The test limit distance is 3M limit. | Product Name | Enterprise Access Point | Test Date | 2015/12/03 | | | |---------------------|----------------------------------|----------------|------------|--|--| | Model | ZA1002US-5 | Test By | Ted Huang | | | | Test Mode | IEEE 802.11n HT20 TX (CH Middle) | TEMP& Humidity | 28.6 , 57% | | | | | TX / IEEE 8 | 802.11n HT | 720 mode | / CH Middle | Measur | Measurement Distance at 3m Horizontal po | | | | | |---|-------------|------------|----------|-------------|---------|--|----------|----------|--------|---------| | | Freq. | Reading | AF | Cable Loss | Pre-amp | Filter | Level | Limit | Margin | Mark | | | (MHz) | (dBµV) | (dB/m) | (dB) | (dB) | (dB) | (dBµV/m) | (dBµV/m) | (dB) | (P/Q/A) | | | 1936.05 | 61.32 | 30.03 | 2.29 | 48.17 | 0.30 | 45.77 | 74.00 | -28.23 | Р | | | 1936.05 | 56.87 | 30.03 | 2.29 | 48.17 | 0.30 | 41.32 | 54.00 | -12.68 | Α | | | 3249.42 | 55.74 | 30.70 | 3.04 | 47.30 | 0.30 | 42.48 | 74.00 | -31.52 | Р | | | 3249.42 | 46.13 | 30.70 | 3.04 | 47.30 | 0.30 | 32.87 | 54.00 | -21.13 | Α | | * | 4873.97 | 70.46 | 34.02 | 3.80 | 48.29 | 0.40 | 60.38 | 74.00 | -13.62 | Р | | * | 4873.97 | 59.22 | 34.02 | 3.80 | 48.29 | 0.40 | 49.14 | 54.00 | -4.86 | Α | | | N/A | | | | | | | | | Р | | | N/A | | | | | | | | | Α | | | TX / IEEE 8 | 802.11n HT | 20 mode / | CH Middle | Measurement Distance at 3m Vertical polarity | | | | | | |---|-------------|------------|-----------|------------|--|--------|----------|----------|--------|---------| | | Freq. | Reading | AF | Cable Loss | Pre-amp | Filter | Level | Limit | Margin | Mark | | | (MHz) | (dBµV) | (dB/m) | (dB) | (dB) | (dB) | (dBµV/m) | (dBµV/m) | (dB) | (P/Q/A) | | * | 1584.03 | 56.39 | 27.42 | 2.06 | 48.65 | 0.30 | 37.52 | 74.00 | -36.48 | Р | | * | 1584.03 | 48.97 | 27.42 | 2.06 | 48.65 | 0.30 | 30.10 | 54.00 | -23.90 | Α | | | 3249.21 | 55.24 | 30.70 | 3.04 | 47.30 | 0.30 | 41.99 | 74.00 | -32.01 | Р | | | 3249.21 | 46.57 | 30.70 | 3.04 | 47.30 | 0.30 | 33.31 | 54.00 | -20.69 | Α | | * | 4874.45 | 64.83 | 34.02 | 3.80 | 48.29 | 0.40 | 54.76 | 74.00 | -19.24 | Р | | * | 4874.45 | 55.34 | 34.02 | 3.80 | 48.29 | 0.40 | 45.27 | 54.00 | -8.73 | Α | | | N/A | | | | | | | | | Р | | | N/A | | | | | | | | | Α | - 1. AF: Antenna Factor, Cable: Cable Loss, Pre-Amp: Preamplifier gain, Filter: 2.4GHz~2.5GHz Filter Insertion Loss - Spectrum analyzer setting P(Peak): RBW=1MHz, VBW=1MHz, A(Average): RBW=1MHz, VBW=10Hz - The result basic equation calculation is as follow: $\label{eq:Level} \textit{Level} = \textit{Reading} + \overset{\cdot}{\textit{AF}} + \textit{Cable} - \textit{Preamp} + \textit{Filter} \;, \; \textit{Margin} = \textit{Level-Limit} \\ \textit{The other emission levels were 20dB below the limit}$ - 4. - The test limit distance is 3M limit. | Product Name | Enterprise Access Point | Test Date | 2015/12/03 | | |---------------------|--------------------------------|----------------|------------|--| | Model | ZA1002US-5 | Test By | Ted Huang | | | Test Mode | IEEE 802.11n HT20 TX (CH High) | TEMP& Humidity | 28.6 , 57% | | | | TX / IEEE | 802.11n H | T20 mode | e / CH High | Measur | ement | Distance | at 3m | Horizontal p | olarity | |---|-----------|-----------|----------|-------------|---------|--------|----------|----------|--------------|---------| | | Freq. | Reading | AF | Cable Loss | Pre-amp | Filter | Level | Limit | Margin | Mark | | | (MHz) | (dBµV) | (dB/m) | (dB) | (dB) | (dB) | (dBµV/m) | (dBµV/m) | (dB) | (P/Q/A) | | | 1935.76 | 59.87 | 30.02 | 2.29 | 48.17 | 0.30 | 44.31 | 74.00 | -29.69 | Р | | | 1935.76 | 56.34 | 30.02 | 2.29 | 48.17 | 0.30 | 40.78 | 54.00 | -13.22 | Α | | | 3282.83 | 54.86 | 30.71 | 3.06 | 47.33 | 0.30 | 41.61 | 74.00 | -32.39 | Р | | | 3282.83 | 46.75 | 30.71 | 3.06 | 47.33 | 0.30 | 33.49 | 54.00 | -20.51 | Α | | * | 4924.14 | 69.52 | 34.17 | 3.82 | 48.30 | 0.40 | 59.61 | 74.00 | -14.39 | Р | | * | 4924.14 | 58.68 | 34.17 | 3.82 | 48.30 | 0.40 | 48.77 | 54.00 | -5.23 | Α | | | N/A | | | | | | | | | Р | | | N/A | | | | | | | | | Α | | | TX / IEEE | 802.11n H | T20 mod | e / CH High | Measu | rement | Distance | at 3m | Vertical p | olarity | |---|-----------|-----------|---------|-------------|---------|--------|----------|----------|------------|---------| | | Freq. | Reading | AF | Cable Loss | Pre-amp | Filter | Level | Limit | Margin | Mark | | | (MHz) | (dBµV) | (dB/m) | (dB) | (dB) | (dB) | (dBµV/m) | (dBµV/m) | (dB) | (P/Q/A) | | * | 1583.97 | 57.37 | 27.42 | 2.06 | 48.65 | 0.30 | 38.50 | 74.00 | -35.50 | Р | | * | 1583.97 | 51.76 | 27.42 | 2.06 | 48.65 | 0.30 | 32.89 | 54.00 | -21.11 | Α | | | 3282.58 | 55.58 | 30.71 | 3.06 | 47.33 | 0.30 | 42.33 | 74.00 | -31.67 | Р | | | 3282.58 | 45.96 | 30.71 | 3.06 | 47.33 | 0.30 | 32.71 | 54.00 | -21.29 | Α | | * | 4923.76 | 64.85 | 34.17 | 3.82 | 48.30 | 0.40 | 54.94 | 74.00 | -19.06 | Р | | * | 4923.76 | 55.23 | 34.17 | 3.82 | 48.30 | 0.40 | 45.32 | 54.00 | -8.68 | Α | | | N/A | | | | | | | | | Р | | | N/A | | | | | | | | | Α | - AF: Antenna Factor, Cable: Cable Loss, Pre-Amp: Preamplifier gain, Filter: 2.4GHz~2.5GHz Filter Insertion Loss Spectrum analyzer setting P(Peak): RBW=1MHz, VBW=1MHz, A(Average): RBW=1MHz, VBW=10Hz - The result basic equation calculation is as follow: Level = Reading + AF + Cable - Preamp + Filter, Margin = Level-Limit - The other emission levels were 20dB below the limit - The test limit distance is 3M limit. | Product Name | Enterprise Access Point | Test Date | 2015/12/03 | |---------------------|-------------------------------|----------------|------------| | Model | ZA1002US-5 | Test By | Ted Huang | | Test Mode | IEEE 802.11n HT40 TX (CH Low) | TEMP& Humidity | 28.6 , 57% | | | TX / IEEE | 802.11n l | IT40 mod | de / CH Low | Measur | ement | Distance a | at 3m I | lorizontal p | olarity | |---|-----------|-----------|----------|-------------|---------|--------|------------|----------|--------------|---------| | | Freq. | Reading | AF | Cable Loss | Pre-amp | Filter | Level | Limit | Margin | Mark | | | (MHz) | (dBµV) | (dB/m) | (dB) | (dB) | (dB) | (dBµV/m) | (dBµV/m) | (dB) | (P/Q/A) | | | 1935.99 | 60.46 | 30.03 | 2.29 | 48.17 | 0.30 | 44.91 | 74.00 | -29.09 | Р | | | 1935.99 | 56.11 | 30.03 | 2.29 | 48.17 | 0.30 | 40.56 | 54.00 | -13.44 | Α | | | 3242.69 | 55.59 | 30.70 | 3.04 | 47.29 | 0.30 | 42.33 | 74.00 | -31.67 | Р | | | 3242.69 | 47.91 | 30.70 | 3.04 | 47.29 | 0.30 | 34.65 | 54.00 | -19.35 | Α | | * | 4843.26 | 67.48 | 33.93 | 3.78 | 48.29 | 0.40 | 57.30 | 74.00 | -16.70 | Р | | * | 4843.26 | 57.86 | 33.93 | 3.78 | 48.29 | 0.40 | 47.68 | 54.00 | -6.32 | Α | | | N/A | | | | | | | | | Р | | | N/A | | | | | | | | | Α | | | TX / IEEE | de / CH Low | Measurement Distance at 3m Vertical polarity | | | | | olarity | | | |---|-----------|-------------|--|------------|---------|--------|----------|----------|--------|---------| | | Freq. | Reading | AF | Cable Loss | Pre-amp | Filter | Level | Limit | Margin | Mark | | | (MHz) | (dBµV) | (dB/m) | (dB) | (dB) | (dB) | (dBµV/m) | (dBµV/m) | (dB) | (P/Q/A) | | * | 1583.99 | 57.91 | 27.42 | 2.06 | 48.65 | 0.30 | 39.04 | 74.00 | -34.96 | Р | | * | 1583.99 | 51.71 | 27.42 | 2.06 | 48.65 | 0.30 | 32.84 | 54.00 | -21.16 | Α | | | 3242.61 | 55.88 | 30.70 | 3.04 | 47.29 | 0.30 | 42.62 | 74.00 | -31.38 | Р | | | 3242.61 | 46.93 | 30.70 | 3.04 | 47.29 | 0.30 | 33.67 | 54.00 | -20.33 | Α | | * | 4844.17 | 63.64 | 33.93 | 3.78 | 48.29 | 0.40 | 53.46 | 74.00 | -20.54 | Р | | * | 4844.17 | 54.34 | 33.93 | 3.78 | 48.29 | 0.40 | 44.16 | 54.00 | -9.84 | Α | | | N/A | | | | | | | | | Р | | | N/A | | | | | | | | | Α | - 1. AF: Antenna Factor, Cable: Cable Loss, Pre-Amp: Preamplifier gain, Filter: 2.4GHz~2.5GHz Filter Insertion Loss - Spectrum analyzer setting P(Peak): RBW=1MHz, VBW=1MHz, A(Average): RBW=1MHz, VBW=10Hz - The result basic equation calculation is as follow: $\label{eq:Level} \textit{Level} = \textit{Reading} + \overset{\cdot}{\textit{AF}} + \textit{Cable} - \textit{Preamp} + \textit{Filter} \;, \; \textit{Margin} = \textit{Level-Limit} \\ \textit{The other emission levels were 20dB below the limit}$ - 4. - The test limit distance is 3M limit. | Product Name | Enterprise Access Point | cess Point Test Date 2015/12 | | | |---------------------|----------------------------------|-------------------------------------|------------|--| | Model | ZA1002US-5 | Test By | Ted Huang | | | Test Mode | IEEE 802.11n HT40 TX (CH Middle) | TEMP& Humidity | 28.6 , 57% | | | | TX / IEEE 8 | Measur | Measurement Distance at 3m H | | | Horizontal polarity | | | | | |---|-------------|---------|------------------------------|------------|---------|---------------------|----------|----------|--------|---------| | | Freq. | Reading | AF | Cable Loss | Pre-amp | Filter | Level | Limit | Margin | Mark | | | (MHz) | (dBµV) | (dB/m) | (dB) | (dB) | (dB) | (dBµV/m) | (dBµV/m) | (dB) | (P/Q/A) | | | 1935.96 | 61.40 | 30.03 | 2.29 | 48.17 | 0.30 | 45.85 | 74.00 | -28.15 | Р | | | 1935.96 | 57.59 | 30.03 | 2.29 | 48.17 | 0.30 | 42.04 | 54.00 | -11.96 | Α | | * | 3262.55 | 55.52 | 30.71 | 3.05 | 47.31 | 0.30 | 42.26 | 74.00 | -31.74 | Р | | * | 3262.55 | 47.07 | 30.71 | 3.05 | 47.31 | 0.30 | 33.82 | 54.00 | -20.18 | Α | | * | 4873.85 | 65.41 | 34.02 | 3.80 | 48.29 | 0.40 | 55.33 | 74.00 | -18.67 | Р | | * | 4873.85 | 56.98 | 34.02 | 3.80 | 48.29 | 0.40 | 46.91 | 54.00 | -7.09 | Α | | | N/A | | | | | | | | | Р | | | N/A | | | | | | | | | Α | | | TX / IEEE 8 | TX / IEEE 802.11n HT40 mode / CH Middle | | | | Measurement Distance at 3m Vertical polarity | |
| | | |---|-------------|---|--------|------------|---------|--|----------|----------|--------|---------| | | Freq. | Reading | AF | Cable Loss | Pre-amp | Filter | Level | Limit | Margin | Mark | | | (MHz) | (dBµV) | (dB/m) | (dB) | (dB) | (dB) | (dBµV/m) | (dBµV/m) | (dB) | (P/Q/A) | | * | 1584.06 | 56.82 | 27.42 | 2.06 | 48.65 | 0.30 | 37.95 | 74.00 | -36.05 | Р | | * | 1584.06 | 51.74 | 27.42 | 2.06 | 48.65 | 0.30 | 32.87 | 54.00 | -21.13 | Α | | * | 3262.59 | 55.28 | 30.71 | 3.05 | 47.31 | 0.30 | 42.03 | 74.00 | -31.97 | Р | | * | 3262.59 | 46.58 | 30.71 | 3.05 | 47.31 | 0.30 | 33.33 | 54.00 | -20.67 | Α | | * | 4874.86 | 63.58 | 34.02 | 3.80 | 48.29 | 0.40 | 53.51 | 74.00 | -20.49 | Р | | * | 4874.86 | 54.33 | 34.02 | 3.80 | 48.29 | 0.40 | 44.25 | 54.00 | -9.75 | Α | | | N/A | | | | | | | | | Р | | | N/A | | | | | | | | | Α | - AF: Antenna Factor, Cable: Cable Loss, Pre-Amp: Preamplifier gain, Filter: 2.4GHz~2.5GHz Filter Insertion Loss Spectrum analyzer setting P(Peak): RBW=1MHz, VBW=1MHz, A(Average): RBW=1MHz, VBW=10Hz - The result basic equation calculation is as follow: Level = Reading + AF + Cable - Preamp + Filter, Margin = Level-Limit - The other emission levels were 20dB below the limit - The test limit distance is 3M limit. | Product Name | Enterprise Access Point | Access Point Test Date 201 | | |---------------------|--------------------------------|-----------------------------------|------------| | Model | ZA1002US-5 | Test By | Ted Huang | | Test Mode | IEEE 802.11n HT40 TX (CH High) | TEMP& Humidity | 28.6 , 57% | | | TX / IEEE | TX / IEEE 802.11n HT40 mode / CH High | | | | | Measurement Distance at 3m | | | Horizontal polarity | | |---|-----------|---------------------------------------|--------|------------|---------|--------|----------------------------|----------|--------|---------------------|--| | | Freq. | Reading | AF | Cable Loss | Pre-amp | Filter | Level | Limit | Margin | Mark | | | | (MHz) | (dBµV) | (dB/m) | (dB) | (dB) | (dB) | (dBµV/m) | (dBµV/m) | (dB) | (P/Q/A) | | | | 1935.98 | 60.26 | 30.03 | 2.29 | 48.17 | 0.30 | 44.70 | 74.00 | -29.30 | Р | | | | 1935.98 | 56.36 | 30.03 | 2.29 | 48.17 | 0.30 | 40.80 | 54.00 | -13.20 | Α | | | | 3282.61 | 55.82 | 30.71 | 3.06 | 47.33 | 0.30 | 42.57 | 74.00 | -31.43 | Р | | | | 3282.61 | 46.64 | 30.71 | 3.06 | 47.33 | 0.30 | 33.39 | 54.00 | -20.61 | Α | | | * | 4904.49 | 67.65 | 34.11 | 3.81 | 48.30 | 0.40 | 57.68 | 74.00 | -16.32 | Р | | | * | 4904.49 | 56.48 | 34.11 | 3.81 | 48.30 | 0.40 | 46.51 | 54.00 | -7.49 | Α | | | | N/A | | | | | | | | | Р | | | | N/A | | | | | | | | | Α | | | | TX / IEEE | Measurement Distance at 3m Vertical polarity | | | | | olarity | | | | |---|-----------|--|--------|------------|---------|--------|----------|----------|--------|---------| | | Freq. | Reading | AF | Cable Loss | Pre-amp | Filter | Level | Limit | Margin | Mark | | | (MHz) | (dBµV) | (dB/m) | (dB) | (dB) | (dB) | (dBµV/m) | (dBµV/m) | (dB) | (P/Q/A) | | * | 1583.95 | 57.39 | 27.42 | 2.06 | 48.65 | 0.30 | 38.52 | 74.00 | -35.48 | Р | | * | 1583.95 | 51.10 | 27.42 | 2.06 | 48.65 | 0.30 | 32.23 | 54.00 | -21.77 | Α | | | 3282.64 | 55.21 | 30.71 | 3.06 | 47.33 | 0.30 | 41.96 | 74.00 | -32.04 | Р | | | 3282.64 | 46.53 | 30.71 | 3.06 | 47.33 | 0.30 | 33.28 | 54.00 | -20.72 | Α | | * | 4903.73 | 63.44 | 34.11 | 3.81 | 48.30 | 0.40 | 53.47 | 74.00 | -20.53 | Р | | * | 4903.73 | 54.06 | 34.11 | 3.81 | 48.30 | 0.40 | 44.08 | 54.00 | -9.92 | Α | | | N/A | | | | | | | | | Р | | | N/A | | | | | | | | | Α | - 1. AF: Antenna Factor, Cable: Cable Loss, Pre-Amp: Preamplifier gain, Filter: 2.4GHz~2.5GHz Filter Insertion Loss - Spectrum analyzer setting P(Peak): RBW=1MHz, VBW=1MHz, A(Average): RBW=1MHz, VBW=10Hz - The result basic equation calculation is as follow: $\label{eq:Level} \textit{Level} = \textit{Reading} + \overset{\cdot}{\textit{AF}} + \textit{Cable} - \textit{Preamp} + \textit{Filter} \;, \; \textit{Margin} = \textit{Level-Limit} \\ \textit{The other emission levels were 20dB below the limit}$ - 4. - The test limit distance is 3M limit. FCC: KFR-ZA1002US-5 # 8.6.4 RESTRICTED BAND EDGES | Model Name | ZA1002US-5 | Test By | Ted Huang | |-----------------|-------------|-----------|------------| | Temp & Humidity | 28.6°C, 57% | Test Date | 2015/12/03 | Report No.: T151026N04-RP1-2 **Detector mode: Peak Polarity: Horizontal** **Detector mode: Average Polarity: Horizontal** CH Low (802.11b MODE) Detector mode : Peak Polarity : Horizontal Start 2.31000 GHz Res BW 1.0 MHz FCC: KFR-ZA1002US-5 Report No.: T151026N04-RP1-2 Stop 2.42000 GHz #Sweep 100.0 ms (1001 pts) **Detector mode: Peak Polarity: Vertical** CH Low (802.11g MODE) Start Freq 2.310000000 GHz PNO: Feet Trig: Free Run IFGeint.ow #Atten: 20 dB Frequency #Avg Type: RM5 Avg/Hold:>1/1 Auto Tune Mkr1 2.390 00 GHz 53.188 dBµV Ref Offset 4.7 dB Ref 112.29 dBµV 2.365000000 GHz 2.310000000 GHz 7x 00 db Stop Freq 2.420000000 GHz CF Step 20.000000 MHz Mag Freq Offset 0 Hz **#VBW 1.0 MHz** **Polarity: Horizontal Detector mode: Average** Detector mode : Peak Polarity : Horizontal Detector mode : Peak Polarity : Vertical Detector mode : Average Polarity : Vertical FCC : KFR-ZA1002US-5 Detector mode : Peak Polarity : Horizontal Report No.: T151026N04-RP1-2 FCC : KFR-ZA1002US-5 Detector mode : Peak Polarity : Vertical Report No.: T151026N04-RP1-2 ## 8.7 POWERLINE CONDUCTED EMISSIONS # **LIMITS** § 15.207 (a) Except as shown in paragraph (b) and (c) this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges. | Frequency of Emission (MHz) | Conducted limit (dΒμν) | | | |-----------------------------|------------------------|----------|--| | | Quasi-peak | Average | | | 0.15 - 0.5 | 66 to 56 | 56 to 46 | | | 0.5 - 5 | 56 | 46 | | | 5 - 30 | 60 | 50 | | ## **TEST EQUIPMENTS** The following test equipments are used during the conducted power line tests: | Conducted Emission room #1 | | | | | | | | | |----------------------------|-----------------|-----------|---------------|-----------------|--|--|--|--| | Name of
Equipment | Manufacturer | Model | Serial Number | Calibration Due | | | | | | L.I.S.N. | SCHWARZBECK | NNLK 8130 | 8130124 | OCT. 27, 2016 | | | | | | L.I.S.N. | Rohde & Schwarz | ESH 3-Z5 | 893540/015 | APR. 12, 2016 | | | | | | TEST RECEIVER | Rohde & Schwarz | ESCS 30 | 100348 | DEC. 08, 2016 | | | | | | TYPE N COAXIAL
CABLE | CCS | BNC50 | 11 | DEC. 04, 2016 | | | | | | Test S/W | e-3 (5.04211c) | | | | | | | | | 1.001.0777 | | R&S | S (2.27) | | | | | | # **TEST SETUP** ## **TEST PROCEDURE** The EUT is placed on a non-conducting table 40 cm from the vertical ground plane and 80cm above the horizontal ground plane. The EUT IS CONFIGURED IN ACCORDANCE WITH ANSI C63.10. The resolution bandwidth is set to 9 kHz for both quasi-peak detection and average detection measurements. Line conducted data is recorded for both NEUTRAL and LINE. # **TEST RESULTS** No non-compliance noted. | Model No. | ZA1002US-5 | Test Mode | Normal Operation | |-----------------------------|--------------|-------------------------|------------------| | Environmental
Conditions | 174 4 56% RH | Resolution
Bandwidth | 9 kHz | | Tested by | Ted Huang | | | #### LINE REMARKS: 1. Level (dBuV) = Read Level (dBuV) + LISN Factor (dB) + Cable Loss (dB) 2. Over Limit (dBuV) = Measured Level (dBuV) – Limits (dBuV) | Model No. | ZA1002US-5 | Test Mode | Normal Operation | |-----------------------------|--------------|-------------------------|------------------| | Environmental
Conditions | 174 4 56% RH | Resolution
Bandwidth | 9 kHz | | Tested by | Ted Huang | | | REMARKS: 1. Level (dBuV) = Read Level (dBuV) + LISN Factor (dB) + Cable Loss (dB) 2. Over Limit (dBuV) = Measured Level (dBuV) – Limits (dBuV) # 9. ANTENNA REQUIREMENT ## 9.1 STANDARD APPLICABLE For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. And according to FCC 47 CFR Section 15.247 (b), if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi. # 9.2 ANTENNA CONNECTED CONSTRUCTION Antenna (1TX1RX) Type: PCB Mode: AVA88 Gain: 5.3 dBi