TEST REPORT

Dt&C

DT&C Co., Ltd.

42, Yurim-ro, 154Beon-gil, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea, 17042 Tel : 031-321-2664, Fax : 031-321-1664

1. Report No : DRTFCC2006-0185					
2. Customer					
Name : LG Electronics USA, Inc.					
 Address : 111 Sylvan Avenue, North Building Englewood Cliffs, NJ 07632 					
3. Use of Report : FCC Original Grant					
4. Product Name / Model Name : Mobile Phone / LM-Q730BAW FCC ID : ZNFQ730BAW					
5. Test Method Used : KDB789033 D02v02r01, ANSI C 63.10-2013 Test Specification : FCC Part 15.407 Subpart E					
6. Date of Test : 2020.05.28 ~ 2020.06.09					
7. Location of Test : X Permanent Testing Lab On Site Testing					
8. Testing Environment : Refer to appended test report.					
9. Test Result : Refer to the attached test result.					
The results shown in this test report refer only to the sample(s) tested unless otherwise stated.					
Tested by Reviewed by					
Affirmation Name : JungWoo Kim Shutter Name : GeunKi Son (Signature)					
2020.06.25.					
DT&C Co., Ltd.					
Not abided by KS Q ISO / IEC 17025 and KOLAS accreditation.					

If this report is required to confirmation of authenticity, please contact to report@dtnc.net

Test Report Version

Test Report No.	Date	Description Tested by		Reviewed by
DRTFCC2006-0185	Jun. 25, 2020	Initial issue	JungWoo Kim	GeunKi Son

CONTENTS

1. EUT DESCRIPTION	4
2. Information about test items	5
2.1 Transmitting configuration of EUT	5
2.2 Tested Channel Information	5
2.3 Testing Environment	
2.4 EMI Suppression Device(s)/Modifications	
2.5 Measurement Uncertainty	
3. SUMMARY OF TESTS	
4. TEST METHODOLOGY	8
4.1 EUT configuration	
4.2 EUT exercise	
4.3 General test procedures	
4.4 Description of test modes	
6. FACILITIES AND ACCREDITATIONS	
6.1 Facilities	
6.2 Equipment	
7. ANTENNA REQUIREMENTS	
8. TEST RESULT	0
8.1 Emission Bandwidth (26 dB Bandwidth)1	0
8.2 Minimum Emission Bandwidth (6 dB Bandwidth)29	9
8.3 Maximum Conducted Output Power3	6
8.4 Maximum Power Spectral Density4	0
8.5 Radiated Spurious Emission Measurements6	7
8.6 AC Conducted Emissions74	4
9. LIST OF TEST EQUIPMENT	3
APPENDIX I	4
APPENDIX II	5
APPENDIX III	8

1. EUT DESCRIPTION

Equipment Class	Unlicensed National Information Infrastructure (UNII)
Product	Mobile Phone
Model Name	LM-Q730BAW
Add model name	LM-Q730HA, LMQ730BAW, LMQ730HA, Q730BAW, Q730HA
Power Supply	DC 3.87 V
Modulation type	OFDM
Antenna Specification	Antenna type: PIFA Antenna Antenna gain U-NII 1: -1.90 dBi U-NII 2A: -1.90 dBi U-NII 2C: -1.90 dBi U-NII 3: -1.90 dBi

5GHz Band	Mode	Frequency range(MHz)	Max power(dBm)
	802.11a	5 180 ~ 5 240	14.76
	802.11n(HT20)	5 180 ~ 5 240	14.63
U-NII 1	802.11ac(VHT20)	5 180 ~ 5 240	14.66
U-INIT I	802.11n(HT40)	5 190 ~ 5 230	14.78
	802.11ac(VHT40)	5 190 ~ 5 230	14.79
	802.11ac(VHT80)	5 210	12.16
	802.11a	5 260 ~ 5 320	14.98
	802.11n(HT20)	5 260 ~ 5 320	14.98
U-NII 2A	802.11ac(VHT20)	5 260 ~ 5 320	14.98
U-INII ZA	802.11n(HT40)	5 270 ~ 5 310	14.97
	802.11ac(VHT40)	5 270 ~ 5 310	14.98
	802.11ac(VHT80)	5 290	12.67
	802.11a	5 500 ~ 5 720	15.99
U-NII 2C	802.11n(HT20)	5 500 ~ 5 720	15.96
	802.11ac(VHT20)	5 500 ~ 5 720	15.93
0-INII 20	802.11n(HT40)	5 510 ~ 5 710	14.99
	802.11ac(VHT40)	5 510 ~ 5 710	14.98
	802.11ac(VHT80)	5 530 ~ 5 690	13.59
	802.11a	5 745 ~ 5 825	14.93
	802.11n(HT20)	5 745 ~ 5 825	14.83
U-NII 3	802.11ac(VHT20)	5 745 ~ 5 825	14.82
U-INII 3	802.11n(HT40)	5 755 ~ 5 795	14.97
	802.11ac(VHT40)	5 755 ~ 5 795	14.98
	802.11ac(VHT80)	5 775	12.50

2. Information about test items

2.1 Transmitting configuration of EUT

Mode	Data rate
802.11a	6 Mbps ~ 54 Mbps
802.11n(HT20)	MCS 0 ~ 7
802.11ac(VHT20)	MCS 0 ~ 8
802.11n(HT40)	MCS 0 ~ 7
802.11ac(VHT40)	MCS 0 ~ 9
802.11ac(VHT80)	MCS 0 ~ 9

2.2 Tested Channel Information

5GHz Band	802.11a/n(HT20) /802.11ac(VHT20)		802.11n(HT40) /802.11ac(VHT40)		802.11ac(VHT80)	
	Channel	Frequency [MHz]	Channel	Frequency [MHz]	Channel	Frequency [MHz]
	36	5 180	38	5 190	42	5 210
U-NII 1	40	5 200	-	-	-	-
	48	5 240	46	5 230	-	-
	52	5 260	54	5 270	58	5 290
U-NII 2A	60	5 300	-	-	-	-
	64	5 320	62	5 310	-	-
	100	5 500	102	5 510	106	5 530
U-NII 2C	120	5 600	118	5 590	122	5 610
	144	5 720	142	5 710	138	5 690
	149	5 745	151	5 755	155	5 775
U-NII 3	157	5 785	-	-	-	-
	165	5 825	159	5 795	-	-

2.3 Testing Environment

Temperature	: 20 °C ~ 24 °C
Relative humidity content	: 35 % ~ 42 %
Details of power supply	: DC 3.87 V

2.4 EMI Suppression Device(s)/Modifications

EMI suppression device(s) added and/or modifications made during testing \rightarrow None

2.5 Measurement Uncertainty

The measurement uncertainties shown below were calculated in accordance with requirements of ANSI C 63.4-2014 and ANSI C 63.10-2013. All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95 % level of confidence.

Test items	Measurement uncertainty
Transmitter Output Power	0.7 dB (The confidence level is about 95 %, $k = 2$)
Conducted spurious emission	0.9 dB (The confidence level is about 95 %, k = 2)
AC conducted emission	3.6 dB (The confidence level is about 95 %, k = 2)
Radiated spurious emission (1 GHz Below)	4.9 dB (The confidence level is about 95 %, k = 2)
Radiated spurious emission (1 GHz ~ 18 GHz)	5.1 dB (The confidence level is about 95 %, k = 2)
Radiated spurious emission (18 GHz Above)	5.3 dB (The confidence level is about 95 %, k = 2)

3. SUMMARY OF TESTS

FCC Part Section(s)	RSS Section(s)	Parameter	Limit	Test Condition	Status Note 1
15.407(a)	-	Emission Bandwidth (26 dB Bandwidth)	N/A		С
15.407(e)	RSS-247[6.2.4]	Minimum Emission Bandwidth (6 dB Bandwidth)	> 500 kHz in 5 725 MHz ~ 5 850 MHz	-	С
15.407(a)	RSS-247[6.2]	Maximum Conducted Output Power	5 150 MHz ~ 5 250 MHz : < 23.97 dBm 5 250 MHz ~ 5 350 MHz & 5 470 MHz ~ 5 725 MHz : < 250 mW or < 11 + 10 log10(B) dBm, whichever power is less. (B is the 26 dB BW.) 5 725 MHz ~ 5 850 MHz : < 30 dBm	Conducted	С
15.407(a)	RSS-247[6.2]	Peak Power Spectral Density	5 150 MHz ~ 5 250 MHz : 11 dBm/MHz 5 250 MHz ~ 5 350 MHz : 11 dBm/MHz 5 470 MHz ~ 5 725 MHz : 11 dBm/MHz 5 725 MHz ~ 5 850 MHz : 30 dBm/500 kHz		С
-	RSS GEN[6.7]	Occupied Bandwidth (99%)	N/A	-	NA
15.407(h)	RSS-247[6.3]	Dynamic Frequency Selection	FCC 15.407(h)	-	C Note 2
15.407(b)	RSS-247[6.2] RSS-GEN[8.9] RSS-GEN[8.10]	Undesirable Emissions	5 150 MHz ~ 5 725 MHz: < -27 dBm/MHz EIRP 5 725 MHz ~ 5 850 MHz: < -27 dBm/MHz or < 10 dBm/MHz or 15.6 dBm/MHz < 27 dBm/MHz EIRP		C Note 3
15.205 15.209 15.407(b)	RSS-247[6.2] RSS-GEN[8.9] RSS-GEN[8.10]	General Field Strength Limits(Restricted Bands and Radiated Emission Limits)	Emissions in restricted bands must meet the radiated limits detailed in 15.209	Radiated	C Note 3
15.207	RSS-GEN[8.8]	AC Conducted Emissions	FCC 15.207	AC Line Conducted	С
15.203	-	Antenna Requirements	FCC 15.203	-	С

Note 1: C = Comply NC = Not Comply NT = Not Tested NA = Not Applicable

Note 2: Refer to the DFS test report.

Note 3: This test item was performed in each axis and the worst case data was reported.

4. TEST METHODOLOGY

The measurement procedures described in the ANSI C63.10-2013 and the guidance provided in KDB 7899033 D02v02r01 were used in measurement of the EUT.

The EUT was tested per the guidance of KDB789033 D02v02r01. And ANSI C63.10-2013 was used to reference appropriate EUT setup and maximizing procedures of radiated spurious emission and AC line conducted emission testing.

4.1 EUT configuration

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

4.2 EUT exercise

The EUT was operated in the test mode to fix the Tx frequency that was for the purpose of the measurements. According to its specifications, the EUT must comply with the requirements of the Section 15.207, 15.209 and 15.407 under the FCC Rules Part 15 Subpart E.

4.3 General test procedures

Conducted Emissions

The power-line conducted emission test procedure is not described on the KDB789033 D02v02r01. So this test was fulfilled with the requirements in Section 6.2 of ANSI C63.10-2013.

The EUT is placed on the wooden table, which is 0.8 m above ground plane and the conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-peak and Average detector.

Radiated Emissions

Basically the radiated tests were performed with KDB789033 D02v02r01. But some requirements and procedures like test site requirements, EUT setup and maximizing procedure were fulfilled with the requirements in Section 5 and 6 of the ANSI C63.10-2013 as stated on KDB789033 D02v02r01.

The EUT is placed on a non-conductive table, which is 0.8 m above ground plane. For emission measurements above 1 GHz, the table height is 1.5 m. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 1 or 3 m away from the receiving antenna, which varied from 1 m to 4 m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the highest emission, the relative positions of the EUT were rotated through three orthogonal axis.

4.4 Description of test modes

The EUT has been tested with all modes of operating conditions to determine the worst case emission characteristics.

A test program is used to control the EUT for staying in continuous transmitting mode with maximum fixed duty cycle.

5. INSTRUMENT CALIBRATION

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipment, which is traceable to recognized national standards.

6. FACILITIES AND ACCREDITATIONS

6.1 Facilities

DT&C Co., Ltd.

The 3 m test site and conducted measurement facility used to collect the radiated data are located at the 42, Yurim-ro, 154beon-gil, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea 17042.

The test site complies with the requirements of § 2.948 according to ANSI C63.4-2014.

- FCC MRA Accredited Test Firm No. : KR0034

www.dtnc.net		
Telephone	:	+ 82-31-321-2664
FAX	:	+ 82-31-321-1664

6.2 Equipment

Radiated emissions are measured with one or more of the following types of linearly polarized antennas: tuned dipole, bi-conical, log periodic, bi-log, loop, and/or ridged waveguide, horn. Spectrum analyzers with pre-selectors and peak, quasi-peak detectors are used to perform radiated measurements.

Conducted emissions are measured with Line Impedance Stabilization Networks and EMI Test Receivers. Calibrated wideband preamplifiers, coaxial cables, and coaxial attenuators are also used for making measurements. All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

7. ANTENNA REQUIREMENTS

According to FCC 47 CFR §15.203:

An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

The antenna is attached on the device by means of unique coupling method (Spring Tension). Therefore this E.U.T Complies with the requirement of §15.203

Directional antenna gain:

Bands	ANT [dBi]
U-NII 1	-1.90
U-NII 2A	-1.90
U-NII 2C	-1.90
U-NII 3	-1.90

8. TEST RESULT

8.1 Emission Bandwidth (26 dB Bandwidth)

Test Requirements

The bandwidth at 26 dB down from the highest in-band spectral density is measured with a spectrum analyzer connected to the antenna terminal while the EUT is operating in transmission mode at the appropriate frequencies. The 26 dB bandwidth is used to determine the conducted output power limit.

Test Configuration

Refer to the APPENDIX I.

Test Procedure

The transmitter output is connected to the Spectrum Analyzer and used following test procedure of **KDB789033 D02v02r01**.

- 1. Set resolution bandwidth (RBW) = approximately 1 % of the EBW.
- 2. Set the video bandwidth (VBW) > RBW.
- 3. Detector = **Peak**.
- 4. Trace mode = **max hold**.

Measure the maximum width of the emission that is 26 dB down from the peak of the emission. Compare this with the RBW setting of the analyzer. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1%.

Test Results: Comply

Mode	Band	Channel	Frequency [MHz]	Test Result [MHz]
802.11a	U-NII 1	36	5 180	19.61
		40	5 200	19.51
		48	5 240	19.66
		52	5 260	19.69
	U-NII 2A	60	5 300	19.89
		64	5 320	19.70
	U-NII 2C	100	5 500	19.66
		120	5 600	19.80
		144	5 720	19.75
	U-NII 1	36	5 180	20.55
		40	5 200	19.75
		48	5 240	20.51
	U-NII 2A	52	5 260	21.37
802.11n (HT20)		60	5 300	21.60
		64	5 320	21.62
	U-NII 2C	100	5 500	21.26
		120	5 600	20.95
		144	5 720	22.19
802.11n (HT40)	U-NII 1	38	5 190	40.25
		46	5 230	41.87
	U-NII 2A	54	5 270	39.87
		62	5 310	41.01
	U-NII 2C	102	5 510	40.07
		118	5 590	40.47
		142	5 710	42.98
802.11ac (VHT80)	U-NII 1	42	5 210	80.86
	U-NII 2A	58	5 290	80.54
	U-NII 2C	106	5 530	80.19
		122	5 610	80.73
		138	5 690	80.35

Result Plots

26 dB Bandwidth

Test Mode: 802.11a & Ch.36

26 dB Bandwidth

Test Mode: 802.11a & Ch.40

Test Mode: 802.11a & Ch.48

26 dB Bandwidth

Test Mode: 802.11a & Ch.52

Test Mode: 802.11a & Ch.60

Test Mode: 802.11a & Ch.64

STATUS

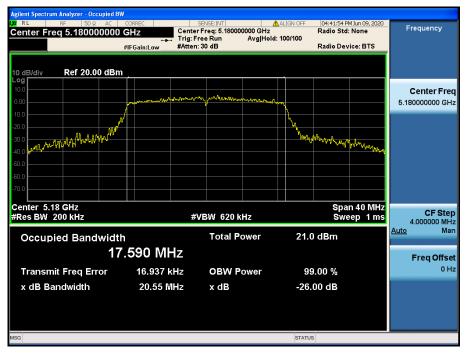
26 dB Bandwidth

m Analyzer - Occupied BW SENSE:INT ALIGN OFF Center Freq: 5.320000000 GHz Trig: Free Run Avg|Hold: 100/100 #Atten: 30 dB 04:48:39 PM Jun 09, 2020 Radio Std: None Frequency Center Freq 5.320000000 GHz Radio Device: BTS #IEGain:Low Ref 20.00 dBm **Center Freq** 5.320000000 GHz Manan Ma m Martin Marine Center 5.32 GHz #Res BW 200 kHz Span 40 MHz Sweep 1 ms CF Step 4.000000 MHz #VBW 620 kHz Man Auto Total Power 21.7 dBm Occupied Bandwidth 16.459 MHz Freq Offset 0 Hz 1.737 kHz **OBW Power** 99.00 % **Transmit Freq Error** 19.70 MHz x dB Bandwidth x dB -26.00 dB

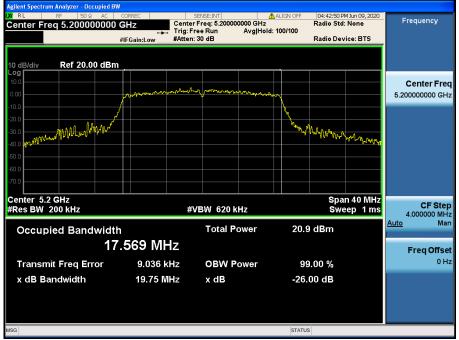
Test Mode: 802.11a & Ch.100

26 dB Bandwidth

Test Mode: 802.11a & Ch.120

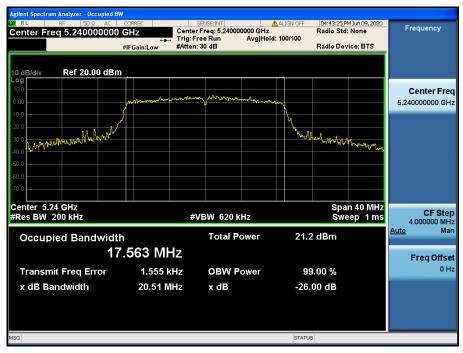


Test Mode: 802.11a & Ch.144

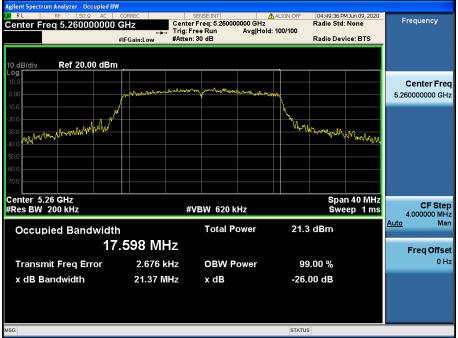


🛈 Dt&C

Test Mode: 802.11n HT20 & Ch.36

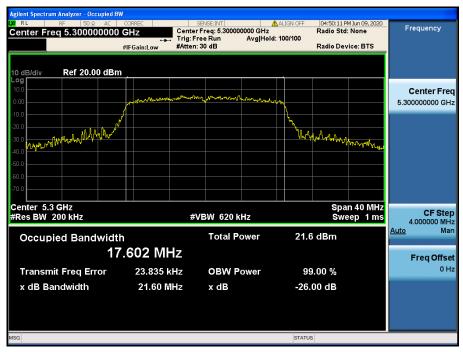


26 dB Bandwidth



🛈 Dt&C

Test Mode: 802.11n HT20 & Ch.48



26 dB Bandwidth

🛈 Dt&C

Test Mode: 802.11n HT20 & Ch.60

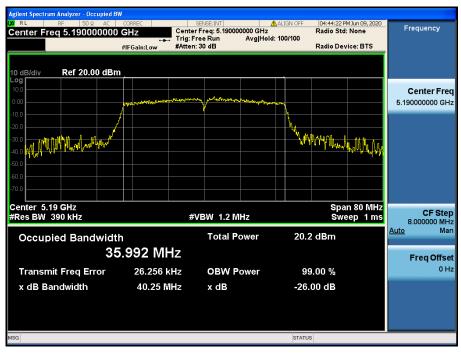
26 dB Bandwidth




🛈 Dt&C

Test Mode: 802.11n HT20 & Ch.100

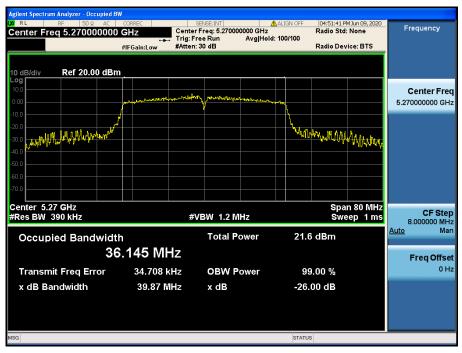
26 dB Bandwidth



🛈 Dt&C

Test Mode: 802.11n HT40 & Ch.38

Test Mode: 802.11n HT40 & Ch.46


26 dB Bandwidth

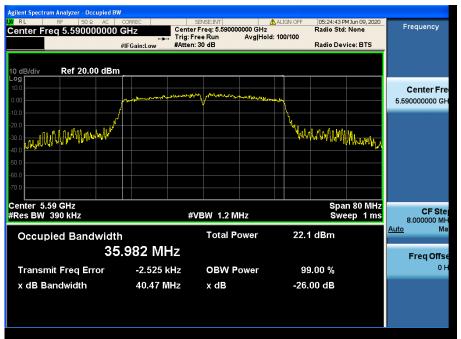
m Analyzer - Occupied BW SENSE:INT ALIGN OFF Center Freq: 5.230000000 GHz Trig: Free Run Avg|Hold: 100/100 #Atten: 30 dB 04:45:16 PM Jun 09, 2020 Radio Std: None Frequency Center Freq 5.230000000 GHz Radio Device: BTS #IEGain:Low Ref 20.00 dBm **Center Freq** 5.230000000 GHz ver all half a server Martin Martin Martin Center 5.23 GHz #Res BW 390 kHz Span 80 MHz Sweep 1 ms CF Step 8.000000 MHz Man #VBW 1.2 MHz Auto Occupied Bandwidth Total Power 21.3 dBm 36.047 MHz Freq Offset 0 Hz -18.425 kHz **OBW Power** 99.00 % **Transmit Freq Error** 41.87 MHz x dB Bandwidth x dB -26.00 dB STATUS

🛈 Dt&C

Test Mode: 802.11n HT40 & Ch.54

Test Mode: 802.11n HT40 & Ch.62

26 dB Bandwidth


m Analyzer - Occupied BW SENSE:INT ALIGN OFF Center Freq: 5.310000000 GHz Trig: Free Run Avg|Hold: 100/100 #Atten: 30 dB 04:52:16 PM Jun 09, 2020 Radio Std: None Frequency Center Freq 5.310000000 GHz Radio Device: BTS #IEGain:Low Ref 20.00 dBm **Center Freq** 5.310000000 GHz Mr. M. Will Marsher M why dealer by ball balls Center 5.31 GHz #Res BW 390 kHz Span 80 MHz Sweep 1 ms CF Step 8.000000 MHz #VBW 1.2 MHz Man Auto Occupied Bandwidth Total Power 21.8 dBm 35.993 MHz Freq Offset 0 Hz 2.593 kHz **OBW Power** 99.00 % **Transmit Freq Error** 41.01 MHz x dB Bandwidth x dB -26.00 dB STATUS

🛈 Dt&C

Test Mode: 802.11n HT40 & Ch.102

26 dB Bandwidth

🛈 Dt&C

Test Mode: 802.11ac VHT80 & Ch.42

Test Mode: 802.11ac VHT80 & Ch.58

26 dB Bandwidth

ectrum Analyzer - Occupied BW SENSE:INT ALIGN OFF Center Freq: 5.29000000 GHz Trig: Free Run Avg|Hold: 100/100 #Atten: 30 dB 04:53:12 PM Jun 09, 2020 Radio Std: None Frequency Center Freq 5.290000000 GHz #IFGain:Low Radio Device: BTS Ref 20.00 dBm **Center Freq** 5.290000000 GHz wayahayan hara L La horas West In Center 5.29 GHz #Res BW 820 kHz Span 160 MHz Sweep 1 ms CF Step 16.000000 MHz 2 Man #VBW 2.4 MHz Auto Occupied Bandwidth Total Power 20.0 dBm 75.232 MHz Freq Offset 0 Hz 10.719 kHz **OBW Power** 99.00 % **Transmit Freq Error** 80.54 MHz x dB Bandwidth x dB -26.00 dB STATUS


🛈 Dt&C

Test Mode: 802.11ac VHT80 & Ch.106

26 dB Bandwidth

Test Mode: 802.11ac VHT80 & Ch.122

🛈 Dt&C

Test Mode: 802.11ac VHT80 & Ch.138

8.2 Minimum Emission Bandwidth (6 dB Bandwidth)

Test Requirements

Within the 5.725-5.85 GHz band, the minimum 6 dB bandwidth of U-NII devices shall be at least 500 kHz.

Test Configuration

Refer to the APPENDIX I.

Test Procedure

The transmitter output is connected to the Spectrum Analyzer and used following test procedure of **KDB789033 D02v02r01**.

- 1. Set resolution bandwidth (RBW) = 100 kHz
- 2. Set the video bandwidth \geq 3 x RBW.
- 3. Detector = **Peak**.
- 4. Trace mode = **max hold**.

Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

Mode	Band	Channel	Frequency [MHz]	Test Result [MHz]
802.11a	U-NII 3	149	5 745	15.86
		157	5 785	16.34
		165	5 825	15.48
802.11n (HT20)	U-NII 3	149	5 745	15.01
		157	5 785	15.66
		165	5 825	15.03
802.11n	U-NII 3	151	5 755	33.79
(HT40)		159	5 795	33.93
802.11ac (VHT80)	U-NII 3	155	5 775	74.09

Test Results: Comply

Result Plots


6 dB Bandwidth

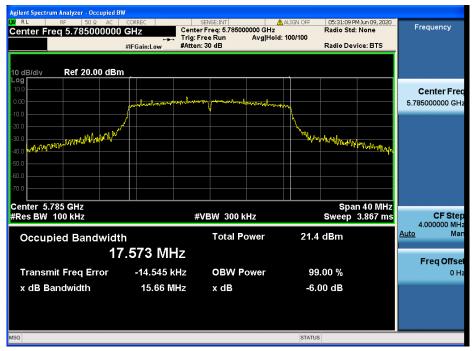
Test Mode: 802.11a & Ch.149

6 dB Bandwidth

Test Mode: 802.11a & Ch.157

Dt&C

Test Mode: 802.11a & Ch.165


Agilent Spectrum Analyzer - Occupied BW					
			Radio St d: 200/200	AM Jun 09, 2020 d: None wice: BTS	Frequency
10 dB/div Ref 20.00 dBm					
10.0 0.00 -10.0	moundmalian	- Joan manutan	4.n.		Center Freq 5.825000000 GHz
-20.0			Why Warder Warder Warder		
-30.0 -40.0 -50.0					
-60.0					
Center 5.825 GHz #Res BW 100 kHz	#V	BW 300 kHz		an 40 MHz 3.867 ms	CF Step 4.000000 MHz
Occupied Bandwidth		Total Power	21.4 dBm		<u>Auto</u> Man
16	.418 MHz				Freq Offset
Transmit Freq Error	-3.168 kHz	OBW Power	99.00 %		0 Hz
x dB Bandwidth	15.48 MHz	x dB	-6.00 dB		
MSG			STATUS		

🛈 Dt&C


Test Mode: 802.11n HT20 & Ch.149

6 dB Bandwidth

🛈 Dt&C

🛈 Dt&C

Test Mode: 802.11n HT40 & Ch.151

6 dB Bandwidth

🛈 Dt&C

Test Mode: 802.11ac VHT80 & Ch.155

8.3 Maximum Conducted Output Power

Test Requirements

Part. 15.407(a)

(1) For the band 5.15 - 5.25 GHz.

(i) For an outdoor access point operating in the band 5.15 - 5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).

(ii) For an indoor access point operating in the band 5.15 - 5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

(iii) For fixed point-to-point access points operating in the band 5.15 - 5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power or maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power and maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

(iv) For mobile and portable client devices in the 5.15 - 5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

- (2) For the 5.25 5.35 GHz and 5.47 5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
- (3) For the band 5.725 5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

- Output power Limit Calculation

Band	Power Limit [mW]	Calculated Limit [dBm]	Limit (Worst case)		
U-NII 1	250	23.97 -1.90		23.97	
·		·	·		
	Power Limit [mW]	Calculated	Antenna Gain	Determined Limit	
Band	Least 26 dBc BW [MHz]	Limit (Worst case) [dBm] [dBi]		[dBm]	
	250	23.97	1.00	22.04	
U-NII 2A	19.69	23.94	[dBi] -1.90	23.94	
	250	23.97	1.00	00.00	
U-NII 2C	19.66	23.93	-1.90	23.93	
		Calculated	Antenna		

Band	Power Limit [mW]	Calculated Limit [dBm]	Antenna Gain [dBi]	Determined Limit [dBm]
U-NII 3	1000	30.00	-1.90	30.00

Test Configuration

Method PM-G

Test Procedure

Method PM-G of KDB789033 D02v02r01

Measurements may be performed using a wideband gated RF power meter provided that the gate parameters are adjusted such that the power is measured only when the EUT is transmitting at its maximum power control level. Since the measurement is made only during the ON time of the transmitter, no duty cycle correction factor is required.

Test Results: Comply

- Output Power

Mode	СН	Freq.[MHz]	Conducted Output Power[dBm]
	36	5 180	14.46
	40	5 200	14.52
	48	5 240	14.76
	52	5 260	14.87
	60	5 300	14.98
802 112	64	5 320	14.97
802.11a	100	5 500	15.99
	120	5 600	14.97
	144	5 720	14.87
	149	5 745	14.93
	157	5 785	14.83
	165	5 825	14.59

Mode	СН	Freq.[MHz]	Conducted Output Power[dBm]
	36	5 180	14.33
	40	5 200	14.41
	48	5 240	14.63
	52	5 260	14.76
	60	5 300	14.97
	64	5 320	14.98
802.11n(HT20)	100	5 500	15.96
	120	5 600	14.95
	144	5 720	14.83
	149	5 745	14.83
	157	5 785	14.76
	165	5 825	14.54

Mode	СН	Freq.[MHz]	Conducted Output Power[dBm]
	36	5 180	14.34
	40	5 200	14.42
	48	5 240	14.66
	52	5 260	14.81
	60	5 300	14.98
	64	5 320	14.95
802.11ac(VHT20)	100	5 500	15.93
	120	5 600	14.97
	144	5 720	14.89
	149	5 745	14.82
	157	5 785	14.73
	165	5 825	14.56

Mode	СН	Freq.[MHz]	Conducted Output Power[dBm]
	38	5 190	13.52
	46	5 230	14.78
	54	5 270	14.92
	62	5 310	14.97
802.11n(HT40)	102	5 510	13.97
	118	5 590	14.99
	142	5 710	14.97
	151	5 755	14.92
	159	5 795	14.91

Mode	СН	Freq.[MHz]	Conducted Output Power[dBm]
	38	5 190	13.57
	46	5 230	14.79
	54	5 270	14.98
	62	5 310	14.97
802.11ac(VHT40)	102	5 510	13.96
	118	5 590	14.93
	142	5 710	14.98
	151	5 755	14.98
	159	5 795	14.90

Mode	СН	Freq.[MHz]	Conducted Output Power[dBm]
	42	5 210	12.16
	58	5 290	12.67
802.11ac(VHT80)	106	5 530	13.59
002.11ac(VH100)	122	5 610	12.78
	138	5 690	12.58
	155	5 775	12.50

Test requirements

Part. 15.407(a)

(1) For the band 5.15 - 5.25 GHz.

(i) For an outdoor access point operating in the band 5.15 - 5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 MHz band. note1

(ii) For an indoor access point operating in the band 5.15 - 5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 MHz band. ^{note1}

(iii) For fixed point-to-point access points operating in the band 5.15 - 5.25 GHz, transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi.

(iv) For mobile and portable client devices in the 5.15 - 5.25 GHz band, the maximum power spectral density shall not exceed 11 dBm in any 1 MHz band. ^{note1}

- (2) For the 5.25 5.35 GHz and 5.47 5.725 GHz bands, the peak power spectral density shall not exceed 11 dBm in any 1 MHz band. ^{note1}
- (3) For the band 5.725 5.85 GHz, the maximum power spectral density shall not exceed 30 dBm in any 500 kHz band.^{note1,note2}
- Note1: If transmitting antennas of directional gain greater than 6 dBi are used, the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
- Note2: Fixed point to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information.

Band	Limit [dBm]	Antenna Gain (Worst case) [dBi]	Determined Limit [dBm]
U-NII 1	11	-1.90	11
U-NII 2A	11	-1.90	11
U-NII 2C	11	-1.90	11
U-NII 3	30	-1.90	30

- Peak Power Spectral Density Limit Calculation

Test Configuration

Refer to the APPENDIX I.

Test procedure

Maximum Power Spectral Density is measured using Measurement Procedure of KDB789033 D02v02r01

- Create an average power spectrum for the EUT operating mode being tested by following the instructions in section II.E.2. for measuring maximum conducted output power using a spectrum analyzer or EMI receiver: select the appropriate test method (SA - 1, SA - 2, SA - 3, or alternatives to each) and apply it up to, but not including, the step labeled, "Compute power...". (This procedure is required even if the maximum conducted output power measurement was performed using a power meter, method PM.)
- 2) Use the peak search function on the instrument to find the peak of the spectrum and record its value.
- 3) Make the following adjustments to the peak value of the spectrum, if applicable:
 a) If Method SA 2 or SA 2 Alternative was used, add 10 log(1 / x), where x is the duty cycle, to the peak of the spectrum.
 - b) If Method SA 3 Alternative was used and the linear mode was used in step II.E.2.g (viii), add 1 dB to the final result to compensate for the difference between linear averaging and power averaging.
- 4) The result is the Maximum PSD over 1 MHz reference bandwidth.
- 5) For devices operating in the bands 5.15 5.25 GHz, 5.25 5.35 GHz, and 5.47 5.725 GHz, the above procedures make use of 1 MHz RBW to satisfy directly the 1 MHz reference bandwidth specified in §15.407(a)(5). For devices operating in the band 5.725 5.85 GHz, the rules specify a measurement bandwidth of 500 kHz. Many spectrum analyzers do not have 500 kHz RBW, thus a narrower RBW may need to be used. The rules permit the use of a RBWs less than 1 MHz, or 500 kHz, "provided that the measured power is integrated over the full reference bandwidth" to show the total power over the specified measurement bandwidth (i.e., 1 MHz, or 500 kHz). If measurements are performed using a reduced resolution bandwidth (< 1 MHz, or < 500 kHz) and integrated over 1 MHz, or 500 kHz bandwidth, the following adjustments to the procedures apply:
 - a) Set RBW ≥ 1 / T, where T is defined in section II.B.1.a). (Refer to Appendix II)
 - b) Set VBW ≥ 3 RBW.
 - c) If measurement bandwidth of Maximum PSD is specified in 500 kHz, add 10 log(500 kHz / RBW) to the measured result, whereas RBW (< 500 kHz) is the reduced resolution bandwidth of the spectrum analyzer set during measurement.
 - d) If measurement bandwidth of Maximum PSD is specified in 1 MHz, add 10 log(1 MHz / RBW) to the measured result, whereas RBW (< 1 MHz) is the reduced resolution bandwidth of spectrum analyzer set during measurement.
 - e) Care must be taken to ensure that the measurements are performed during a period of continuous transmission or are corrected upward for duty cycle.

Note: As a practical matter, it is recommended to use reduced RBW of 100 kHz for the sections 5.c) and 5.d) above, since RBW = 100 kHz is available on nearly all spectrum analyzers.

Test results: Comply

Mode	Channel	Frequency [MHz]	Reading [dBm]	T.F ^{Note 1} [dB]	Power Spectral Density[dBm]	Limit [dBm]
	36	5 180	4.60		4.74	11.00
	40	5 200	5.03		5.17	11.00
	48	5 240	4.96		5.10	11.00
	52	5 260	5.15		5.29	11.00
	60	5 300	5.30	0.14	5.44	11.00
902 110	64	5 320	5.37		5.51	11.00
802.11a	100	5 500	6.46		6.60	11.00
	120	5 600	5.72		5.81	11.00
	144	5 720	5.64		5.78	11.00
	149	5 745	-3.38		3.75	30.00
	157	5 785	-3.86	7.13	3.27	30.00
	165	5 825	-4.09		5.78 3.75 3.27 3.04 4.70 4.60 4.69 4.62 5.34 5.30 6.45 5.39 4.93 2.73 2.57	30.00
	36	5 180	4.55		4.70	11.00
	40	5 200	4.45		4.60	11.00
	48	5 240	4.54		4.69	11.00
	52	5 260	4.47		4.62	11.00
	60	5 300	5.19	0.15	5.34	11.00
802.11n	64	5 320	5.15		5.30	11.00
(HT20)	100	5 500	6.30		6.45	11.00
	120	5 600	5.11		5.39	11.00
	144	5 720	4.78		4.93	11.00
	149	5 745	-4.41		2.73	30.00
	157	5 785	-4.57	7.14	2.57	30.00
	165	5 825	-3.92		4.60 4.69 4.62 5.34 5.30 6.45 5.39 4.93 2.73	30.00
	38	5 190	0.31		0.87	11.00
	46	5 230	1.51		2.07	11.00
	54	5 270	1.49		2.05	11.00
000.44	62	5 310	1.94	0.56	2.50	11.00
802.11n (HT40)	102	5 510	0.99		1.55	11.00
(1140)	118	5 590	2.10		2.66	11.00
	142	5 710	2.20		2.76	11.00
	151	5 755	-7.30	7 55	0.25	30.00
	159	5 795	-7.72	7.55	-0.17	30.00
	42	5 210	-4.65		-3.60	11.00
	58	5 290	-4.03	1.05	-2.98	11.00
802.11ac	106	5 530	-2.74		-1.69	11.00
(VHT80)	122	5 610	-4.20		-3.15	11.00
	138	5 690	-4.08		-3.03	11.00
	155	5 775	-13.45	8.04	-5.41	30.00

Note 1: "U-NII 1, 2A, 2C [T.F] = DCCF"

"U-NII 3 [T.F] = 10*LOG(500 kHz / 100 kHz) + DCCF"

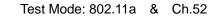
For DCCF(Duty Cycle Correction Factor) please refer to appendix II.

Note 2: Test Result = Measurement Data + T.F

RESULT PLOTS

- Power spectral density

Maximum Power Spectral DensityTest Mode: 802.11a& Ch.36


Maximum Power Spectral Density Test Mode: 802

Test Mode: 802.11a & Ch.48

Aguan Jack RF 50 & AC CORHEL Of RL RF 50 & AC CORHEL PNO: Fast →→ IFGain:Low #Atten: 30 dB ALIGN OFF 04:41:13 PMJun 09, 2020 #Avg Type: RMS TRACE 03:34 FF TYPE A VALUE DET A A A A A A SENSE:INT Frequency Mkr1 5.239 01 GHz 4.96 dBm Auto Tune Ref 20.00 dBm 10 dB/div **Center Freq** 5.240000000 GHz ø **Start Freq** 5.225000000 GHz **Stop Freq** 5.25500000 GHz Manya HUNN CF Step 3.000000 MHz Man <u>Auto</u> Freq Offset 0 Hz Center 5.24000 GHz #Res BW 1.0 MHz Span 30.00 MHz Sweep 1.000 ms (1001 pts) #VBW 3.0 MHz STATUS

🛈 Dt&C

Center Freq 5.260000000 GHz PN0: Fast →→ IFGain:Low 04:47:45 PM Jun 09, 2020 TRACE 1 2 3 4 5 6 TYPE A WARNARY DET A A A A A A SENSE:INT #Avg Type: RMS Frequency Trig: Free Run #Atten: 30 dB Auto Tune Mkr1 5.258 62 GHz 5.15 dBm 0 dB/div Ref 20.00 dBm Center Freq 5.260000000 GHz ¢ Start Freq 5.245000000 GHz Stop Freq 5.275000000 GHz window moleling CF Step 3.000000 MHz Man Auto Freq Offset 0 Hz Center 5.26000 GHz #Res BW 1.0 MHz Span 30.00 MHz Sweep 1.000 ms (1001 pts) #VBW 3.0 MHz

Maximum Power Spectral Density

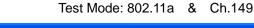
Test Mode: 802.11a & Ch.64

Agumung RF 50 R AC CORHEL ON RL RF 50 R AC CORHEL PNO: Fast →→ IFGain:Low #Atten: 30 dB 04:48:54 PM Jun 09, 2020 TRACE 1 2 3 4 5 6 TYPE A WWWWW DET A A A A A A SENSE:INT ALIGN OFF #Avg Type: RMS Frequency Mkr1 5.320 93 GHz 5.37 dBm Auto Tune Ref 20.00 dBm 10 dB/div **Center Freq** 1 5.320000000 GHz **Start Freq** 5.305000000 GHz **Stop Freq** 5.335000000 GHz www. CF Step 3.000000 MHz Man <u>Auto</u> Freq Offset 0 Hz Center 5.32000 GHz #Res BW 1.0 MHz Span 30.00 MHz Sweep 1.000 ms (1001 pts) #VBW 3.0 MHz STATUS

Dt&C

Maximum Power Spectral Density

Maximum Power Spectral Density


Test Mode: 802.11a & Ch.120

Test Mode: 802.11a & Ch.144

OV RL RF 50 Q AC COMMEN Center Freq 5.720000000 GHz PN0: Fast →→ IFGain:Low #Atten: 30 dB 05:21:22 PM Jun 09, 2020 TRACE 1 2 3 4 5 6 TYPE A WAWAWA DET A A A A A A SENSE: INT ALIGN OFF Frequency Mkr1 5.721 23 GHz 5.64 dBm Auto Tun Ref 20.00 dBm 10 dB/div Loa Center Fre **1** 5.720000000 GH Start Fre 5.705000000 GH Stop Fre 5.735000000 GH Mound CF Ste 3.000000 MH Ma <u>Auto</u> Freq Offse 0 H Center 5.72000 GHz #Res BW 1.0 MHz Span 30.00 MHz Sweep 1.000 ms (1001 pts) #VBW 3.0 MHz

Maximum Power Spectral Density

TDt&C

Maximum Power Spectral Density

Test Mode: 802.11n HT20 & Ch.36

Maximum Power Spectral Density

Test Mode: 802.11n HT20 & Ch.52

Maximum Power Spectral Density

TDt&C

Maximum Power Spectral Density

Test Mode: 802.11n HT20 & Ch.100

Maximum Power Spectral Density

Test Mode: 802.11n HT20 & Ch.149

Maximum Power Spectral Density


Dt&C

Maximum Power Spectral Density

Test Mode: 802.11n HT40 & Ch.38

Maximum Power Spectral Density

Test Mode: 802.11n HT40 & Ch.54

Maximum Power Spectral Density

