

FCC ID: 2BCAX-HY450

FCC Test Report

Applicant : GuangDong SINOY Smart Technology CO., LTD

5TH Floor, Building #2, RunFengZhiGu

Address : Industrial Park Changpin Town, DongGuan City,

Guangdong, DongGuan 523000, China

Product Name : Smart Projector

Report Date : Dec. 10, 2024

Shenzhen Anbotek Compliance Laboratory Limited

Hotline 400-003-0500

www.anbotek.com

Contents

1. General Information	6
1.1. Client Information	8
Operation channel list State of the	g
1.7. Test Summary	11
1.8. Description of Test Facility	
1.10. Test Equipment List	
Conducted Emission at AC power line	
2.1. EUT Operation	
2.3. Test Data	
3. Duty Cycle	18
3.1. EUT Operation	
3.2. Test Setup	
4. Emission bandwidth and occupied bandwidth	
4.1. EUT Operation	
4.2. Test Setup	
Maximum conducted output power	
5.1. EUT Operation	
5.2. Test Setup	23
5.3. Test Data	
6. Power spectral density	
6.1. EUT Operation	
6.3. Test Data	25
7. Channel Move Time, Channel Closing Transmission Time	26
7.1. EUT Operation	
7.2. Test Setup 7.3. Test Data	
8. DFS Detection Thresholds	28
8.1. EUT Operation	
8.2. Test Setup	
9. Band edge emissions (Conducted)	
9.1. EUT Operation	
9.2. Test Setup	
9.3. Test Data	32

10. Band edge emissions (Radiated)	33
10.1. EUT Operation	36
11. Undesirable emission limits (below 1GHz)	45
11.1. EUT Operation 11.2. Test Setup 11.3. Test Data	47
12. Undesirable emission limits (above 1GHz)	50
12.1. EUT Operation	53
APPENDIX I TEST SETUP PHOTOGRAPH APPENDIX II EXTERNAL PHOTOGRAPH	58

FCC ID: 2BCAX-HY450

TEST REPORT

Applicant : GuangDong SINOY Smart Technology CO., LTD

Manufacturer GuangDong SINOY Smart Technology CO., LTD

Product Name Smart Projector

HY450, HY450N, HY450 NTV, HY300plus, HY200, HY200N, HY200 NTV, Model No.

HY260, HY260N, HY260 NTV, HY450A, HY450B

Trade Mark

Rating(s) Input: 100-240V~, 50/60Hz, 2.5A

47 CFR Part 15E

ANSI C63.10-2020 Test Standard(s) KDB 789033 D02 General UNII Test Procedures New Rules v02r01

KDB 905462 D03 Client Without DFS New Rules v01r02

The device described above is tested by Shenzhen Anbotek Compliance Laboratory Limited to determine the maximum emission levels emanating from the device and the severe levels of the device can endure and its performance criterion. The measurement results are contained in this test report and Shenzhen Anbotek Compliance Laboratory Limited is assumed full of responsibility for the accuracy and completeness of these measurements. Also, this report shows that the EUT (Equipment Under Test) is technically compliant with above listed standard(s) requirements. This report applies to above tested sample only and shall not be reproduced in part without written approval of Shenzhen Anbotek Compliance Laboratory Limited.

Date of Receipt:	Nov. 12, 2024	
Date of Test:	Nov. 12, 2024 to Dec. 03, 2024	
Prepared By:	Nian xiu Chen	
	(Nianxiu Chen)	
Approved & Authorized Signer:	Lingkongjin	
	(KingKong Jin)	

Revision History

Report Version	Description	Issued Date
R00	Original Issue.	Dec. 10, 2024

1. General Information

1.1. Client Information

Applicant	:	GuangDong SINOY Smart Technology CO., LTD		
Address	Address 5TH Floor, Building #2, RunFengZhiGu Industrial Park Changpin Tow DongGuan City, Guangdong, DongGuan 523000, China			
Manufacturer	: GuangDong SINOY Smart Technology CO., LTD			
Address	Address 5TH Floor, Building #2, RunFengZhiGu Industrial Park Changpin To DongGuan City, Guangdong, DongGuan 523000, China			
Factory	:	GuangDong SINOY Smart Technology CO., LTD		
Address		5TH Floor, Building #2, RunFengZhiGu Industrial Park Changpin Town, DongGuan City, Guangdong, DongGuan 523000, China		

1.2. Description of Device (EUT)

1.2. Description of Device (LOT)			
Product Name	:	Smart Projector	
Model No.	:	HY450, HY450N, HY450 NTV, HY300plus, HY200, HY200N, HY200 NTV HY260, HY260N, HY260 NTV, HY450A, HY450B (Note: All samples are the same except the model number, so we prepare "HY450" for test only.)	
Trade Mark	:	N/A	
Test Power Supply	•	AC 120V/60Hz	
Test Sample No.	:	1-2-1(Normal Sample), 1-2-2(Engineering Sample)	
Adapter	:	N/A	
RF Specification			
Operation Frequency	·	802.11a/n(HT20)/ac(VHT20)/ax(HEW20): U-NII Band 1: 5180MHz to 5240MHz; U-NII Band 2A: 5260MHz to 5320MHz; U-NII Band 2C: 5500MHz to 5700MHz; U-NII Band 3: 5745MHz to 5825MHz; 802.11n(HT40)/ac(VHT40)/ax(HEW40): U-NII Band 1: 5190MHz to 5230MHz; U-NII Band 2A: 5270MHz to 5310MHz; U-NII Band 2C: 5510MHz to 5670MHz; U-NII Band 3: 5755MHz to 5795MHz;	
Number of Channel	:	802.11a/n(HT20)/ac(VHT20)/ax(HEW20): U-NII Band 1: 4; U-NII Band 2C: 1; U-NII Band 3: 5; 802.11n(HT40)/ac(VHT40)/ax(HEW40): U-NII Band 1: 2; U-NII Band 2A: 2; U-NII Band 2C: 5; U-NII Band 3: 2;	

Modulation Type	:	802.11a: OFDM(BPSK, QPSK, 16QAM, 64QAM); 802.11n: OFDM (BPSK, QPSK, 16QAM, 64QAM); 802.11ac: OFDM (BPSK, QPSK, 16QAM, 64QAM, 256QAM); 802.11ax: OFDMA (BPSK, QPSK, 16QAM, 64QAM, 256QAM, 1024QAM)	
Device Type	:	Client Devices	
DFS Type	:	Slave without radar detection	
Antenna Type	:	FPC Antenna	
TPC Function	:	Without TPC	
Antenna Gain(Peak)	:	WiFi 5.2G: 4.70dBi WiFi 5.3G: 6.32dBi WiFi 5.6G: 6.61dBi WiFi 5.8G: 6.79dBi	

Remark:

- (1) All of the RF specification are provided by customer.(2) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

1.3. Auxiliary Equipment Used During Test

Title	Manufacturer	Model No.	Serial No.
ROG Rapture Quad- band Gaming Router	ASUSTeK Computer Inc	GT-AXE16000 (FCC ID: MSQ- RTAX5D00 IC: 3568A-RTAX5D00)	RAIG5D2020695NL

- 1. The time for the EUT to fully restart up is 65s.
- 2. The time for the master device to fully restart up is 65s.

1.4. Operation channel list

Operation Band: U-NII Band 1

Bandwidth:	20MHz	Bandwidth:	40MHz
Channel	Frequency (MHz)	Channel	Frequency (MHz)
36	5180	38	5190
40	5200	46	5230
44	5220	1	1
48	5240	1	1

Operation Band: U-NII Band 2A

Bandwidth:	20MHz	Bandwidth:	40MHz
Channel	Frequency (MHz)	Channel	Frequency (MHz)
52	5260	54	5270
56	5280	62	5310
60	5300	1	1
64	5320	1	1

Operation Band: U-NII Band 2C

Bandwidth:	20MHz	Bandwidth:	40MHz
Channel	Frequency (MHz)	Channel	Frequency (MHz)
100	5500	102	5510
104	5520	110	5550
108	5540	118	5590
112	5560	134	5670
116	5580	1	1
132	5660	1	1
136	5680	1	1
140	5700	1	1

Operation Band: U-NII Band 3

•			
Bandwidth:	20MHz	Bandwidth:	40MHz
Channel	Frequency (MHz)	Channel	Frequency (MHz)
149	5745	151	5755
153	5765	159	5795
157	5785	1	1
161	5805	1	1
165	5825	1	1

1.5. Description of Test Modes

Descriptions
Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report.
Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.
Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.
Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ax modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.
Keep the EUT works in normal operating mode and connect to companion device

Note: 80211ax mode only support full resource unit size.

FCC ID: 2BCAX-HY450

1.6. Measurement Uncertainty

Parameter	Uncertainty
Conducted emissions (AMN 150kHz~30MHz)	3.4dB
Dwell Time	2%
Occupied Bandwidth	925Hz
Conducted Output Power	0.76dB
Power Spectral Density	0.76dB
Conducted Spurious Emission	1.24dB
Radiated spurious emissions (above 1GHz)	1G-6GHz: 4.78dB; 6G-18GHz: 4.88dB 18G-40GHz: 5.68dB
Radiated emissions (Below 30MHz)	3.53dB
Radiated spurious emissions (30MHz~1GHz)	Horizontal: 3.92dB; Vertical: 4.52dB

The measurement uncertainty and decision risk evaluated according to AB/WI-RF-F-032.

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

1.7. Test Summary

Test Items	Test Modes	Status
Conducted Emission at AC power line	Mode1,2,3,4	Р
Duty Cycle	Mode1,2,3,4	Р
Emission bandwidth and occupied bandwidth	Mode1,2,3,4	Р
Maximum conducted output power	Mode1,2,3,4	Р
Power spectral density	Mode1,2,3,4	Р
Channel Move Time, Channel Closing Transmission Time	Mode5	Р
DFS Detection Thresholds	Mode5	Р
Band edge emissions (Conducted)	Mode1,2,3,4	Р
Band edge emissions (Radiated)	Mode1,2,3,4	Р
Undesirable emission limits (below 1GHz)	Mode1,2,3,4	Р
Undesirable emission limits (above 1GHz)	Mode1,2,3,4	Р
N	·	

Note: P: Pass

N: N/A, not applicable

1.8. Description of Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.:434132

Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No. 434132.

ISED-Registration No.: 8058A

Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registered and fully described in a report filed with the (ISED) Innovation, Science and Economic Development Canada. The acceptance letter from the ISED is maintained in our files. Registration 8058A.

Test Location

Shenzhen Anbotek Compliance Laboratory Limited.

Sogood Industrial Zone Laboratory & 1/F. of Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Subdistrict, Bao'an District, Shenzhen, Guangdong, China.

1.9. Disclaimer

- The test report is invalid if not marked with the signatures of the persons responsible for preparing and approving the test report.
- 2. The test report is invalid if there is any evidence and/or falsification.
- 3. The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein.
- 4. This document may not be altered or revised in any way unless done so by Anbotek and all revisions are duly noted in the revisions section.
- 5. Content of the test report, in part or in full, cannot be used for publicity and/or promotional purposes without prior written approval from the laboratory.
- 6. The authenticity of the information provided by the customer is the responsibility of the customer and the laboratory is not responsible for its authenticity.

The laboratory is only responsible for the data released by the laboratory, except for the part provided by the applicant.

FCC ID: 2BCAX-HY450

1.10. Test Equipment List

Conducted Emission at AC power line						
Item	Equipment	Manufacturer Model No. Serial No. Last Cal. Cal.Due De				
1	L.I.S.N. Artificial Mains Network	Rohde & Schwarz	ENV216	100055	2024-09-09	2025-09-08
2	Three Phase V- type Artificial Power Network	CYBERTEK	EM5040DT	E215040D T001	2024-01-17	2025-01-16
3	Software Name EZ-EMC	Farad Technology	ANB-03A	N/A	1	/
4	EMI Test Receiver	Rohde & Schwarz	ESPI3	100926	2024-09-09	2025-09-08

Duty Cycle

Emission bandwidth and occupied bandwidth

Maximum conducted output power

Power spectral density

Channel Move Time, Channel Closing Transmission Time

DFS Detection Thresholds

Band edge emissions (Conducted)

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.Due Date
1	Constant Temperature Humidity Chamber	ZHONGJIAN	ZJ- KHWS80B	N/A	2024-10-14	2025-10-13
2	DC Power Supply	IVYTECH	IV3605	1804D360 510	2024-09-09	2025-09-08
3	Spectrum Analyzer	Rohde & Schwarz	FSV40-N	102150	2024-05-06	2025-05-05
4	MXA Spectrum Analysis	KEYSIGHT	N9020A	MY505318 23	2024-09-09	2025-09-08
5	Oscilloscope	Tektronix	MDO3012	C020298	2024-10-10	2025-10-09
6	MXG RF Vector Signal Generator	Agilent	N5182A	MY474206 47	2024-02-04	2025-02-03

Band edge emissions (Radiated) Undesirable emission limits (above 1GHz)						
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.Due Date
1	EMI Test Receiver	Rohde & Schwarz	ESR26	101481	2024-01-23	2025-01-22
2	EMI Preamplifier	SKET Electronic	LNPA- 0118G-45	SKET-PA- 002	2024-01-17	2025-01-16
3	Double Ridged Horn Antenna	SCHWARZBECK	BBHA 9120D	02555	2022-10-16	2025-10-15
4	EMI Test Software EZ-EMC	SHURPLE	N/A	N/A	/	/
5	Horn Antenna	A-INFO	LB-180400- KF	J21106062 8	2024-01-22	2027-01-21
6	Spectrum Analyzer	Rohde & Schwarz	FSV40-N	102150	2024-05-06	2025-05-05
7	Amplifier	Talent Microwave	TLLA18G40 G-50-30	23022802	2024-05-07	2025-05-06

Undesirable emission limits (below 1GHz)						
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.Due Date
1	EMI Test Receiver	Rohde & Schwarz	ESR26	101481	2024-01-23	2025-01-22
2	Pre-amplifier	SONOMA	310N	186860	2024-01-17	2025-01-16
3	Bilog Broadband Antenna	Schwarzbeck	VULB9163	345	2022-10-23	2025-10-22
4	Loop Antenna (9K- 30M)	Schwarzbeck	FMZB1519 B	00053	2024-09-12	2025-09-11
5	EMI Test Software EZ-EMC	SHURPLE	N/A	N/A	1	1

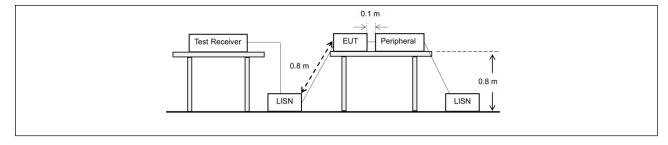
2. Conducted Emission at AC power line

Test Requirement:	47 CFR Part 15.207(a)		
	Frequency of emission (MHz)	Conducted limit (dBµV)	
		Quasi-peak	Average
Test Limit:	0.15-0.5	66 to 56*	56 to 46*
	0.5-5	56	46
	5-30	60	50
	*Decreases with the logarithm of t	he frequency.	
Test Method:	ANSI C63.10-2020 section 6.2		

2.1. EUT Operation

Operating	Environment:
Operaning	

1: 802.11a mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report.

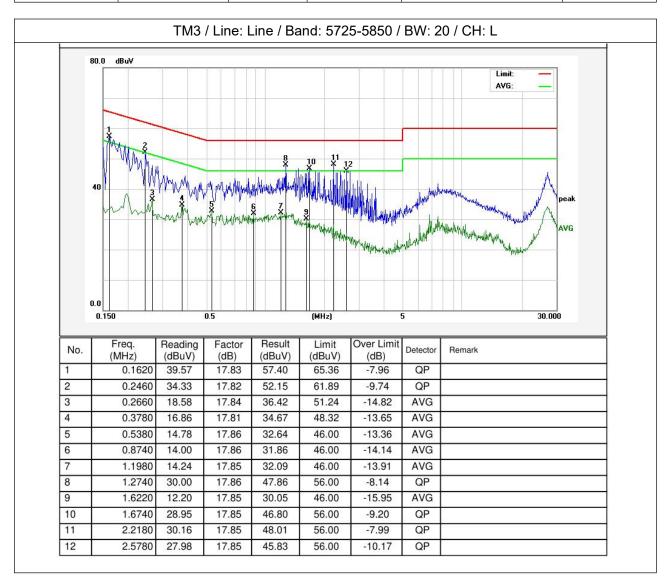

2: 802.11n mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

Test mode:

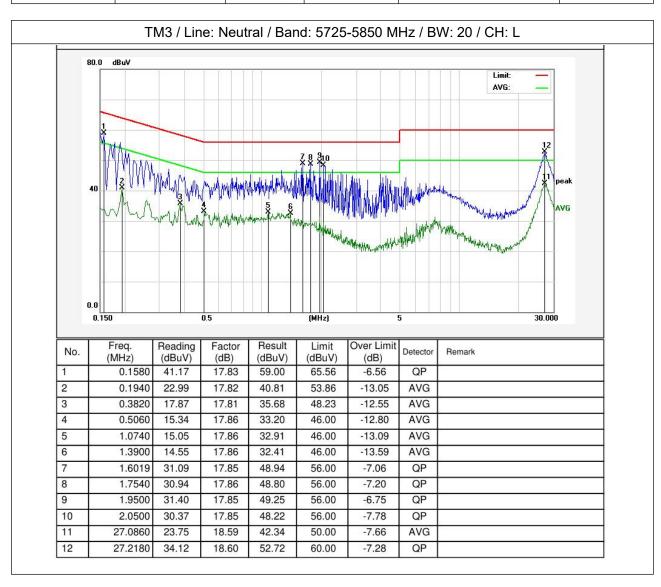
3: 802.11ac mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

4: 802.11ax mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ax modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

2.2. Test Setup



2.3. Test Data


Temperature:	24.3 °C	Humidity:	57 %	Atmospheric Pressure:	101 kPa

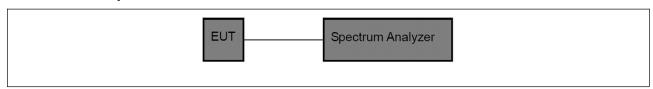
Temperature: 24.3 °C Humidity: 57 % Atmospheric Pressure: 101 kPa

Note:Only record the worst data in the report.

FCC ID: 2BCAX-HY450

3. Duty Cycle

Test Requirement:	All measurements are to be performed with the EUT transmitting at 100% duty cycle at its maximum power control level; however, if 100% duty cycle cannot be achieved, measurements of duty cycle, x, and maximum-power transmission duration, T, are required for each tested mode of operation.
Test Limit:	No limits, only for report use.
Test Method:	ANSI C63.10-2020 section 12.2 (b)
Procedure:	 i) Set the center frequency of the instrument to the center frequency of the transmission. ii) Set RBW >= EBW if possible; otherwise, set RBW to the largest available value. iii) Set VBW >= RBW. iv) Set detector = peak. v) The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T, where T is defined in item a1) of 12.2, and the number of sweep points across duration T exceeds 100.


3.1. EUT Operation

Operating Envi	ronment:
	1: 802.11a mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report.
	2: 802.11n mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of
Test mode:	worst case is recorded in the report. 3: 802 11ac mode: Keep the FUT connect to AC power line and works in

continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report. 4: 802.11ax mode: Keep the EUT connect to AC power line and works in

continuously transmitting mode with 802.11ax modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

3.2. Test Setup

3.3. Test Data

Temperature: 24.3	°C Humidity:	57 %	Atmospheric Pressure:	101 kPa
-------------------	--------------	------	-----------------------	---------

Please Refer to Appendix for Details.

4. Emission bandwidth and occupied bandwidth

Test Requirement:	U-NII 1, U-NII 2A, U-NII 2C: No limits, only for report use.
ı	U-NII 3, U-NII 4: 47 CFR Part 15.407(e)
	U-NII 1, U-NII 2A, U-NII 2C: No limits, only for report use.
Test Limit:	U-NII 3, U-NII 4: Within the 5.725-5.850 GHz and 5.850-5.895 GHz bands, the minimum 6 dB bandwidth of U-NII devices shall be at least 500 kHz.
Test Method:	ANSI C63.10-2020, section 6.9 & 12.5 KDB 789033 D02, Clause C.2
Procedure:	Emission bandwidth: a) Set RBW = approximately 1% of the emission bandwidth. b) Set the VBW > RBW. c) Detector = peak. d) Trace mode = max hold. e) Measure the maximum width of the emission that is 26 dB down from the peak of the emission. Compare this with the RBW setting of the instrument. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1%. Occupied bandwidth: a) The instrument center frequency is set to the nominal EUT channel center frequency. The frequency span for the spectrum analyzer shall be between 1.5 times and 5.0 times the OBW. b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW, and VBW shall be approximately three times the RBW, unless otherwise specified by the applicable requirement. c) Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level. Specific guidance is given in 4.1.5.2. d) Step a) through step c) might require iteration to adjust within the specified range. e) Video averaging is not permitted. Where practical, a sample detection and single sweep mode shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be recovered and directly summed in linear power terms. The recovered amplitude data points,

beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached:

that frequency is recorded as the lower frequency. The process is repeated until 99.5% of the

total is reached; that frequency is recorded as the upper frequency. The 99% power bandwidth is

the difference between these two frequencies.

h) The occupied bandwidth shall be reported by providing plot(s) of the measuring instrument

display; the plot axes and the scale units per division shall be clearly labeled. Tabular data may

be reported in addition to the plot(s).

6 dB emission bandwidth:

- a) Set RBW = 100 kHz.
- b) Set the video bandwidth (VBW) ≥ 3 >= RBW.
- c) Detector = Peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.
- g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

4.1. EUT Operation

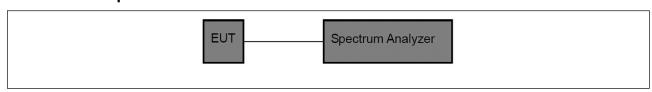
Operating Environment:

1: 802.11a mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report.

2: 802.11n mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

Test mode:

3: 802.11ac mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.


4: 802.11ax mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ax modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

4.2. Test Setup

4.3. Test Data

7	Temperature:	24.3 °C	Humidity:	57 %	Atmospheric Pressure:	101 kPa	
---	--------------	---------	-----------	------	-----------------------	---------	--

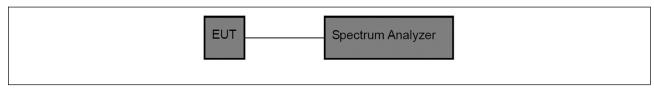
Please Refer to Appendix for Details.

5. Maximum conducted output power

Test Requirement:	47 CFR Part 15.407(a)(1)(iv) 47 CFR Part 15.407(a)(2) 47 CFR Part 15.407(a)(3)(i)
	For client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
To add Lineido	For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
Test Limit:	For the band 5.725-5.850 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.
Test Method:	ANSI C63.10-2020, section 12.4
Procedure:	Refer to ANSI C63.10-2020 section 12.4

5.1. EUT Operation

Operating Envi	ronment:
Test mode:	1: 802.11a mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report. 2: 802.11n mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report. 3: 802.11ac mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report. 4: 802.11ax mode: Keep the EUT connect to AC power line and works in



FCC ID: 2BCAX-HY450

continuously transmitting mode with 802.11ax modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

5.2. Test Setup

5.3. Test Data

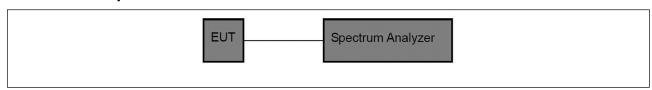
Temperature:	24.3 °C	Humidity:	57 %	Atmospheric Pressure:	101 kPa
--------------	---------	-----------	------	-----------------------	---------

Please Refer to Appendix for Details.

6. Power spectral density

Test Requirement: 4	47 CFR Part 15.407(a)(1)(iv)
2	47 CFR Part 15.407(a)(2) 47 CFR Part 15.407(a)(3)(i)
l I r	For client devices in the 5.15-5.25 GHz band, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
s I r	For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
rest Limit: r t F v i F s t	For the band 5.725-5.850 GHz, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively
	for fixed, point-to-point operations. ANSI C63.10-2020, section 12.6
	Refer to ANSI C63.10-2020, section 12.6

6.1. EUT Operation

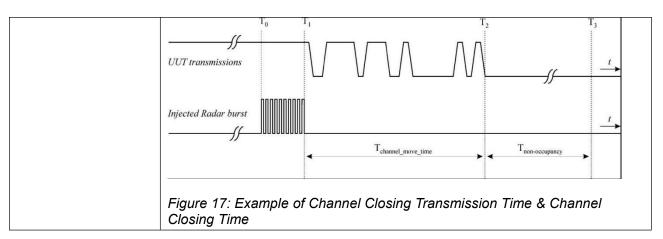

Operating Environment:			
Test mode:	1: 802.11a mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report. 2: 802.11n mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report. 3: 802.11ac mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report. 4: 802.11ax mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ax modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.		

6.2. Test Setup

6.3. Test Data

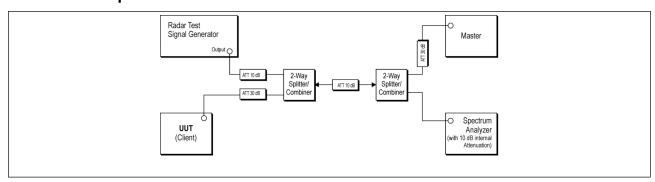
7	Temperature:	24.3 °C	Humidity:	57 %	Atmospheric Pressure:	101 kPa	
---	--------------	---------	-----------	------	-----------------------	---------	--

Please Refer to Appendix for Details.



7. Channel Move Time, Channel Closing Transmission Time

	47 CER Port 15 407/b/(2)/iii)
Test Requirement:	47 CFR Part 15.407(h)(2)(iii)
Test Limit:	Channel Move Time: within 10 seconds Channel Closing Transmission Time: 200 milliseconds + an aggregate of 60 milliseconds over remaining 10 second period. (The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required to facilitate a Channel move (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.)
Test Method:	KDB 905462 D02, Clause 7.8.3
Procedure:	The steps below define the procedure to determine the above-mentioned parameters when a radar <i>Burst</i> with a level equal to the <i>DFS Detection Threshold</i> + 1dB is generated on the <i>Operating Channel</i> of the U-NII device (<i>In- Service Monitoring</i>). 1. One frequency will be chosen from the <i>Operating Channels</i> of the UUT within the 5250-5350 MHz or 5470-5725 MHz bands. For 802.11 devices, the test frequency must contain control signals. This can be verified by disabling channel loading and monitoring the spectrum analyzer. If no control signals are detected, another frequency must be selected within the emission bandwidth where control signals are detected. 2. In case the UUT is a U-NII device operating as a <i>Client Device</i> (with or without DFS), a U-NII device operating as a <i>Master Device</i> . In case the UUT (Client device) to <i>Associate</i> with the <i>Master Device</i> . In case the UUT is a <i>Master Device</i> , a U-NII device operating as a <i>Client Device</i> will be used and it is assumed that the Client will <i>Associate</i> with the UUT (Master). In both cases for conducted tests, the <i>Radar Waveform</i> generator will be connected to the <i>Master Device</i> . For radiated tests, the emissions of the <i>Radar Waveform</i> generator will be directed towards the <i>Master Device</i> . If the <i>Master Device</i> has antenna gain, the main beam of the antenna will be directed toward the radar emitter. Vertical polarization is used for testing. 3. Stream the channel loading test file from the <i>Master Device</i> to the <i>Client Device</i> on the test <i>Channel</i> for the entire period of the test. 4. At time T0 the <i>Radar Waveform</i> generator sends a <i>Burst</i> of pulses for one of the Radar Type 0 in Table 5 at levels defined in Table 3, on the <i>Operating Channel</i> . An additional 1 dB is added to the radar test signal to ensure it is at or above the <i>DFS Detection Threshold</i> , accounting for equipment variations/errors. 5. Observe the transmissions from the UUT during the observation time (<i>Channel Move Time</i>). Measure and record the <i>Channel Move Time</i> and <i>Channel</i>


7.1. EUT Operation

Operating Environment:

Test mode:

5: Normal Operating: Keep the EUT works in normal operating mode and connect to companion device

7.2. Test Setup

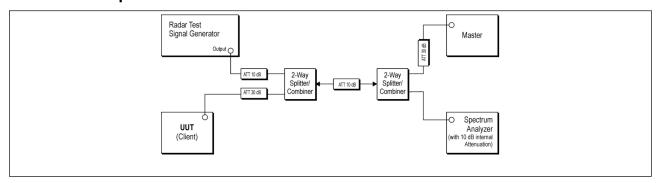
7.3. Test Data

Temperature: 24.3 °C Humidity: 57 % Atmospheric Pressure: 101 kPa

Please Refer to Appendix for Details.

8. DFS Detection Thresholds

Test Requirement:	KDB 905462 D02, Clause 5.2 Table 3			
	Table 3: DFS Detection Thresholds for Master I with Radar Detection Table 3: DFS Detection Thresholds for Ma and Client Devices with Radar Detection Thresholds for Ma and Client Devices with Radar Detection Thresholds for Ma and Client Devices with Radar Detection Thresholds for Master I w	ster Devices		
Test Limit: Maximum Transmit Power Value (See Notes 1, 2, and 3) EIRP ≥ 200 milliwatt -64 dBm EIRP < 200 milliwatt and power spectral density < 10 dBm/MHz EIRP < 200 milliwatt that do not meet the power spectral density requirement -62 dBm Note 1: This is the level at the input of the receiver assuming a 0 dBi receive antenna. Note 2: Throughout these test procedures an additional 1 dB has been added to the amplitude of the test transmission waveforms to account for variations in measurement equipment. This will ensure the test signal is at or above the detection threshold level to trigger a DFS response. Note3: EIRP is based on the highest antenna gain. For MIMO devices refer to KDB Publication 662911 D01. Test Method: KDB 905462 D02 Clause 7 4 1.1				
Test Method:	KDB 905462 D02, Clause 7.4.1.1			
Procedure:	1) A 50 ohm load is connected in place of the s spectrum analyzer is connected to place of the 2) The interference Radar Detection Threshold had been taken into account the output power 3) The following equipment setup was used to waveform. A vector signal generator was utilize level for radar type 0. During this process, there either the master or client device. The spectrum the zero spans (time domain) at the frequency generator. Peak detection was used. The spect bandwidth (RBW) and video bandwidth (VBW) spectrum analyzer had offset -1.0dB to comper 4) The vector signal generator amplitude was s measured at the spectrum analyzer was TH + 0 the spectrum analyzer plots on short pulse rada Note: TH=-64 dBm or -62 dBm	master Level is TH+ 0dBi +1dB that range and antenna gain. calibrate the conducted radar d to establish the test signal e were no transmissions by a nanalyzer was switched to of the radar waveform trum analyzer resolution were set to 3 MHz. The neate RF cable loss 1.0dB. et so that the power level 0dBi +1dB = -63dBm. Capture		


8.1. EUT Operation

Operating Environment:		
Test mode:	5: Normal Operating: Keep the EUT works in normal operating mode and connect to companion device	

8.2. Test Setup

8.3. Test Data

	Temperature:	24.3 °C	Humidity:	57 %	Atmospheric Pressure:	101 kPa
--	--------------	---------	-----------	------	-----------------------	---------

Please Refer to Appendix for Details.

Test Limit:

Report No.:1812C40139212504

FCC ID: 2BCAX-HY450

9. Band edge emissions (Conducted)

	For the population of a position in the F. 4F. F. OF OHE bond, All aminoine outside
	47 CFR Part 15.407(b)(10)
	47 CFR Part 15.407(b)(4)
Test Requirement:	47 CFR Part 15.407(b)(3)
	47 CFR Part 15.407(b)(2)
	47 CFR Part 15.407(b)(1)

For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of −27 dBm/MHz.

For transmitters operating in the 5.25-5.35 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

For transmitters operating in the 5.47-5.725 GHz band: All emissions outside of the 5.47-5.725 GHz band shall not exceed an e.i.r.p. of −27 dBm/MHz.

For transmitters operating solely in the 5.725-5.850 GHz band: All emissions shall be limited to a level of −27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495-0.505	16.69475-	608-614	5.35-5.46
	16.69525		
2.1735-2.1905	16.80425-	960-1240	7.25-7.75
	16.80475		
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-	9.3-9.5
		1646.5	
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-	13.25-13.4
		1722.2	
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-	2483.5-2500	17.7-21.4
	156.52525		
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(2)
13.36-13.41			

¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

The field strength of emissions appearing within these frequency bands shall not exceed the limits shown in § 15.209. At frequencies equal to or less than

² Above 38.6

FCC ID: 2BCAX-HY450

1000 MHz, compliance with the limits in § 15.209shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in § 15.209shall be demonstrated based on the average value of the measured emissions. The provisions in § 15.35apply to these measurements.

Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance
0.000.0.400	0.400/5/111	(meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100 **	3
88-216	150 **	3
216-960	200 **	3
Above 960	500	3

** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§ 15.231 and 15.241.

In the emission table above, the tighter limit applies at the band edges. The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9–90 kHz, 110–490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector.

Test Method:

Procedure:

ANSI C63.10-2020, section 12.7.4, 12.7.6, 12.7.7

Above 1GHz:

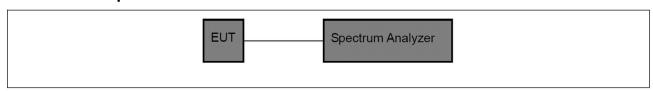
- a. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak or average method as specified and then reported in a data sheet.
- g. Test the EUT in the lowest channel, the middle channel, the Highest

channel.

- h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
- i. Repeat above procedures until all frequencies measured was complete. Remark:
- 1. Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor
- 2. Scan from 18GHz to 40GHz, the disturbance above 18GHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.
- 3. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.
- 4. The disturbance above 18GHz were very low and the harmonics were the highest point could be found when testing, so only the above harmonics had been displayed.

9.1. EUT Operation

Operating Environment:


1: 802.11a mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report.

2: 802.11n mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

Test mode:

- 3: 802.11ac mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.
- 4: 802.11ax mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ax modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

9.2. Test Setup

9.3. Test Data

	Temperature:	25.3 °C	Humidity:	49 %	Atmospheric Pressure:	101 kPa	
--	--------------	---------	-----------	------	-----------------------	---------	--

Please Refer to Appendix for Details.

Test Limit:

Report No.:1812C40139212504

FCC ID: 2BCAX-HY450

10. Band edge emissions (Radiated)

Test Requirement:	47 CFR Part 15.407(b)(1) 47 CFR Part 15.407(b)(2) 47 CFR Part 15.407(b)(3) 47 CFR Part 15.407(b)(4) 47 CFR Part 15.407(b)(10)
	For transmitters appraising in the 5.15.5.25 GHz hand: All emissions outside

For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

For transmitters operating in the 5.25-5.35 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

For transmitters operating in the 5.47-5.725 GHz band: All emissions outside of the 5.47-5.725 GHz band shall not exceed an e.i.r.p. of −27 dBm/MHz.

For transmitters operating solely in the 5.725-5.850 GHz band: All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
10.495-0.505	16.69475-	608-614	5.35-5.46
	16.69525		
2.1735-2.1905	16.80425-	960-1240	7.25-7.75
	16.80475		
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-	9.3-9.5
		1646.5	
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-	13.25-13.4
		1722.2	
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-	2483.5-2500	17.7-21.4
	156.52525		
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(2)
13.36-13.41			

¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

The field strength of emissions appearing within these frequency bands shall not exceed the limits shown in § 15.209. At frequencies equal to or less than

² Above 38.6

FCC ID: 2BCAX-HY450

1 00 10. 2		
using measurement ins detector. Above 1000 M 15.209shall be demons emissions. The provision Except as provided else	with the limits in § 15.209shal trumentation employing a CIS IHz, compliance with the emis trated based on the average was in § 15.35apply to these methods where in this subpart, the em I not exceed the field strength	PR quasi-peak sion limits in § value of the measured easurements. issions from an
Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009-0.490	2400/F(kHz)	300

0.490-1.705 24000/F(kHz) 30 1.705-30.0 30 30 100 ** 30-88 3 88-216 150 ** 3 200 ** 216-960 3 Above 960 3 500

** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§ 15.231 and 15.241.

In the emission table above, the tighter limit applies at the band edges. The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector.

Test Method:

Procedure:

ANSI C63.10-2020, section 12.7.4, 12.7.6, 12.7.7

Above 1GHz:

- a. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak or average method as specified and then reported in a data sheet.
- g. Test the EUT in the lowest channel, the middle channel, the Highest

channel.

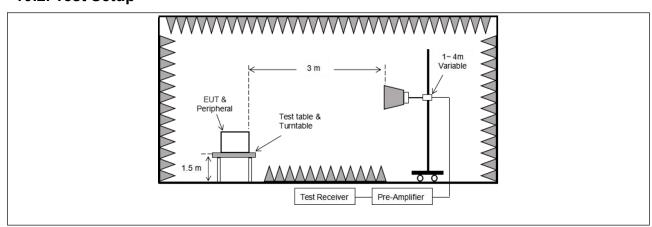
- h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
- i. Repeat above procedures until all frequencies measured was complete. Remark:
- 1. Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor
- 2. Scan from 18GHz to 40GHz, the disturbance above 18GHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.
- 3. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.
- 4. The disturbance above 18GHz were very low and the harmonics were the highest point could be found when testing, so only the above harmonics had been displayed.

10.1. EUT Operation

Operating Environment:

1: 802.11a mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report.

2: 802.11n mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.


Test mode:

- 3: 802.11ac mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.
- 4: 802.11ax mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ax modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

10.2. Test Setup

10.3. Test Data

	TM1 / Band: 5150-5350 MHz / BW: 20 / L									
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector			
5150.00	37.13	15.99	53.12	68.20	-15.08	Н	Peak			
5150.00	39.23	15.99	55.22	68.20	-12.98	V	Peak			
5150.00	27.03	15.99	43.02	54.00	-10.98	Н	AVG			
5150.00	29.12	15.99	45.11	54.00	-8.89	V	AVG			
		TM1 / B	and: 5150-53	350 MHz / BV	V: 20 / H					
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector			
5350.00	37.54	16.43	53.97	68.20	-14.23	Н	Peak			
5350.00	40.58	16.43	57.01	68.20	-11.19	V	Peak			
5350.00	28.92	16.43	45.35	54.00	-8.65	Н	AVG			
5350.00	29.76	16.43	46.19	54.00	-7.81	V	AVG			

Remark: 1. Result=Reading + Factor

	TM2 / Band: 5150-5350 MHz / BW: 20 / L										
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector				
5150.00	36.02	15.99	52.01	68.20	-16.19	Н	Peak				
5150.00	37.46	15.99	53.45	68.20	-14.75	V	Peak				
5150.00	26.74	15.99	42.73	54.00	-11.27	Н	AVG				
5150.00	27.72	15.99	43.71	54.00	-10.29	V	AVG				
		TM2 / B	and: 5150-53	350 MHz / BV	V: 20 / H						
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector				
5350.00	37.87	16.43	54.30	68.20	-13.90	Н	Peak				
5350.00	38.88	16.43	55.31	68.20	-12.89	V	Peak				
5350.00	27.92	16.43	44.35	54.00	-9.65	Н	AVG				
5350.00	29.41	16.43	45.84	54.00	-8.16	V	AVG				

	TM2 / Band: 5150-5350 MHz / BW: 40 / L										
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector				
5150.00	36.64	15.99	52.63	68.20	-15.57	Н	Peak				
5150.00	38.47	15.99	54.46	68.20	-13.74	V	Peak				
5150.00	27.22	15.99	43.21	54.00	-10.79	Н	AVG				
5150.00	28.81	15.99	44.80	54.00	-9.20	V	AVG				
		TM2 / B	and: 5150-53	350 MHz / BV	V: 40 / H						
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector				
5350.00	38.19	16.43	54.62	68.20	-13.58	Н	Peak				
5350.00	37.01	16.43	53.44	68.20	-14.76	V	Peak				
5350.00	28.47	16.43	44.90	54.00	-9.10	Н	AVG				
5350.00	29.70	16.43	46.13	54.00	-7.87	V	AVG				

Remark: 1. Result=Reading + Factor

	TM3 / Band: 5150-5350 MHz / BW: 20 / L										
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector				
5150.00	37.11	15.99	53.10	68.20	-15.10	Н	Peak				
5150.00	38.89	15.99	54.88	68.20	-13.32	V	Peak				
5150.00	26.65	15.99	42.64	54.00	-11.36	Н	AVG				
5150.00	28.90	15.99	44.89	54.00	-9.11	V	AVG				
		TM3 / B	and: 5150-53	350 MHz / BV	V: 20 / H						
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector				
5350.00	37.97	16.43	54.40	68.20	-13.80	Н	Peak				
5350.00	38.21	16.43	54.64	68.20	-13.56	V	Peak				
5350.00	27.91	16.43	44.34	54.00	-9.66	Н	AVG				
5350.00	28.53	16.43	44.96	54.00	-9.04	V	AVG				

Remark: 1. Result=Reading + Factor

Hotline

400-003-0500

	TM3 / Band: 5150-5350 MHz / BW: 40 / L										
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector				
5150.00	36.05	15.99	52.04	68.20	-16.16	Н	Peak				
5150.00	36.44	15.99	52.43	68.20	-15.77	V	Peak				
5150.00	26.30	15.99	42.29	54.00	-11.71	Н	AVG				
5150.00	26.97	15.99	42.96	54.00	-11.04	V	AVG				
		TM3 / B	and: 5150-53	350 MHz / BV	V: 40 / H						
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector				
5350.00	38.17	16.43	54.60	68.20	-13.60	Н	Peak				
5350.00	37.27	16.43	53.70	68.20	-14.50	V	Peak				
5350.00	27.58	16.43	44.01	54.00	-9.99	Н	AVG				
5350.00	27.69	16.43	44.12	54.00	-9.88	V	AVG				

Remark: 1. Result=Reading + Factor

		TM4 / B	and: 5150-53	350 MHz / BV	V: 20 / L		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5150.00	37.04	15.99	53.03	68.20	-15.17	Н	Peak
5150.00	38.81	15.99	54.80	68.20	-13.40	V	Peak
5150.00	26.62	15.99	42.61	54.00	-11.39	Н	AVG
5150.00	28.84	15.99	44.83	54.00	-9.17	V	AVG
		TM4 / B	and: 5150-53	350 MHz / BV	V: 20 / H		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5350.00	37.94	16.43	54.37	68.20	-13.83	Н	Peak
5350.00	38.18	16.43	54.61	68.20	-13.59	V	Peak
5350.00	27.87	16.43	44.30	54.00	-9.70	Н	AVG
5350.00	28.46	16.43	44.89	54.00	-9.11	V	AVG

Remark: 1. Result=Reading + Factor

	TM4 / Band: 5150-5350 MHz / BW: 40 / L										
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector				
5150.00	35.98	15.99	51.97	68.20	-16.23	Н	Peak				
5150.00	36.40	15.99	52.39	68.20	-15.81	V	Peak				
5150.00	26.21	15.99	42.20	54.00	-11.80	Н	AVG				
5150.00	26.90	15.99	42.89	54.00	-11.11	V	AVG				
		TM4 / B	and: 5150-53	350 MHz / BV	V: 40 / H						
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector				
5350.00	38.11	16.43	54.54	68.20	-13.66	Н	Peak				
5350.00	37.24	16.43	53.67	68.20	-14.53	V	Peak				
5350.00	27.55	16.43	43.98	54.00	-10.02	Н	AVG				
5350.00	27.60	16.43	44.03	54.00	-9.97	V	AVG				

		TM1 / B	and: 5470-58	350 MHz / BV	V: 20 / L		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5460.00	38.36	16.37	54.73	68.20	-13.47	Н	Peak
5460.00	39.81	16.37	56.18	68.20	-12.02	V	Peak
5470.00	39.29	16.70	55.99	68.20	-12.21	Н	Peak
5470.00	40.10	16.70	56.80	68.20	-11.40	V	Peak
5460.00	28.90	16.37	45.27	54.00	-8.73	Н	AVG
5460.00	28.79	16.37	45.16	54.00	-8.84	V	AVG
5470.00	29.17	16.70	45.87	54.00	-8.13	Н	AVG
5470.00	30.30	16.70	47.00	54.00	-7.00	V	AVG
		TM1 / B	and: 5470-58	350 MHz / BV	V: 20 / H		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5850.00	39.34	17.21	56.55	68.20	-11.65	Н	Peak
5850.00	39.74	17.21	56.95	68.20	-11.25	V	Peak
5850.00	29.29	17.21	46.50	54.00	-7.50	Н	AVG
5850.00	29.27	17.21	46.48	54.00	-7.52	V	AVG

Remark: 1. Result=Reading + Factor

		TM2 / B	and: 5470-58	350 MHz / BV	V: 20 / L		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5460.00	38.35	16.37	54.72	68.20	-13.48	Н	Peak
5460.00	38.98	16.37	55.35	68.20	-12.85	V	Peak
5470.00	38.46	16.70	55.16	68.20	-13.04	Н	Peak
5470.00	38.93	16.70	55.63	68.20	-12.57	V	Peak
5460.00	27.26	16.37	43.63	54.00	-10.37	Н	AVG
5460.00	27.74	16.37	44.11	54.00	-9.89	V	AVG
5470.00	27.70	16.70	44.40	54.00	-9.60	Н	AVG
5470.00	28.28	16.70	44.98	54.00	-9.02	V	AVG
		TM2 / B	and: 5470-58	350 MHz / BV	V: 20 / H		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5850.00	37.58	17.21	54.79	68.20	-13.41	Н	Peak
5850.00	38.14	17.21	55.35	68.20	-12.85	V	Peak
5850.00	27.90	17.21	45.11	54.00	-8.89	Н	AVG
5850.00	28.66	17.21	45.87	54.00	-8.13	V	AVG

		TM2 / B	and: 5470-58	350 MHz / BV	V: 40 / L		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5460.00	37.93	16.37	54.30	68.20	-13.90	Н	Peak
5460.00	38.86	16.37	55.23	68.20	-12.97	V	Peak
5470.00	38.76	16.70	55.46	68.20	-12.74	Н	Peak
5470.00	39.47	16.70	56.17	68.20	-12.03	V	Peak
5460.00	27.00	16.37	43.37	54.00	-10.63	Н	AVG
5460.00	28.82	16.37	45.19	54.00	-8.81	V	AVG
5470.00	27.20	16.70	43.90	54.00	-10.10	Н	AVG
5470.00	28.50	16.70	45.20	54.00	-8.80	V	AVG
		TM2 / B	and: 5470-58	350 MHz / BV	V: 40 / H		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5850.00	38.29	17.21	55.50	68.20	-12.70	Н	Peak
5850.00	38.62	17.21	55.83	68.20	-12.37	V	Peak
5850.00	28.48	17.21	45.69	54.00	-8.31	Н	AVG
5850.00	29.52	17.21	46.73	54.00	-7.27	V	AVG

Remark: 1. Result=Reading + Factor

		TM3 / B	and: 5470-58	350 MHz / BV	V: 20 / L		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5460.00	37.54	16.37	53.91	68.20	-14.29	Н	Peak
5460.00	37.61	16.37	53.98	68.20	-14.22	V	Peak
5470.00	38.12	16.70	54.82	68.20	-13.38	Н	Peak
5470.00	38.41	16.70	55.11	68.20	-13.09	V	Peak
5460.00	28.13	16.37	44.50	54.00	-9.50	Н	AVG
5460.00	28.84	16.37	45.21	54.00	-8.79	V	AVG
5470.00	28.41	16.70	45.11	54.00	-8.89	Н	AVG
5470.00	29.30	16.70	46.00	54.00	-8.00	V	AVG
		TM3 / B	and: 5470-58	350 MHz / BV	V: 20 / H		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5850.00	38.28	17.21	55.49	68.20	-12.71	Н	Peak
5850.00	39.13	17.21	56.34	68.20	-11.86	V	Peak
5850.00	28.12	17.21	45.33	54.00	-8.67	Н	AVG
5850.00	29.26	17.21	46.47	54.00	-7.53	V	AVG

Remark: 1. Result=Reading + Factor

Hotline

400-003-0500

TM3 / Band: 5470-5850 MHz / BW: 40 / L								
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector	
5460.00	36.47	16.37	52.84	68.20	-15.36	Н	Peak	
5460.00	37.94	16.37	54.31	68.20	-13.89	V	Peak	
5470.00	36.90	16.70	53.60	68.20	-14.60	Н	Peak	
5470.00	38.28	16.70	54.98	68.20	-13.22	V	Peak	
5460.00	27.44	16.37	43.81	54.00	-10.19	Н	AVG	
5460.00	27.55	16.37	43.92	54.00	-10.08	V	AVG	
5470.00	27.69	16.70	44.39	54.00	-9.61	Н	AVG	
5470.00	28.36	16.70	45.06	54.00	-8.94	V	AVG	
		TM3 / B	and: 5470-58	350 MHz / BV	V: 40 / H			
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector	
5850.00	37.80	17.21	55.01	68.20	-13.19	Н	Peak	
5850.00	38.70	17.21	55.91	68.20	-12.29	V	Peak	
5850.00	27.82	17.21	45.03	54.00	-8.97	Н	AVG	
5850.00	27.49	17.21	44.70	54.00	-9.30	V	AVG	

Remark: 1. Result=Reading + Factor

	TM4 / Band: 5470-5850 MHz / BW: 20 / L									
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector			
5460.00	37.53	16.37	53.90	68.20	-14.30	Н	Peak			
5460.00	37.61	16.37	53.98	68.20	-14.22	V	Peak			
5470.00	38.11	16.70	54.81	68.20	-13.39	Н	Peak			
5470.00	38.41	16.70	55.11	68.20	-13.09	V	Peak			
5460.00	28.13	16.37	44.50	54.00	-9.50	Н	AVG			
5460.00	28.83	16.37	45.20	54.00	-8.80	V	AVG			
5470.00	28.41	16.70	45.11	54.00	-8.89	Н	AVG			
5470.00	29.29	16.70	45.99	54.00	-8.01	V	AVG			
		TM4 / B	and: 5470-58	350 MHz / BV	V: 20 / H					
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector			
5850.00	38.27	17.21	55.48	68.20	-12.72	Н	Peak			
5850.00	39.12	17.21	56.33	68.20	-11.87	V	Peak			
5850.00	28.11	17.21	45.32	54.00	-8.68	Н	AVG			
5850.00	29.25	17.21	46.46	54.00	-7.54	V	AVG			

TM4 / Band: 5470-5850 MHz / BW: 40 / L								
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector	
5460.00	36.46	16.37	52.83	68.20	-15.37	Н	Peak	
5460.00	37.94	16.37	54.31	68.20	-13.89	V	Peak	
5470.00	36.89	16.70	53.59	68.20	-14.61	Н	Peak	
5470.00	38.28	16.70	54.98	68.20	-13.22	V	Peak	
5460.00	27.44	16.37	43.81	54.00	-10.19	Н	AVG	
5460.00	27.55	16.37	43.92	54.00	-10.08	V	AVG	
5470.00	27.69	16.70	44.39	54.00	-9.61	Н	AVG	
5470.00	28.36	16.70	45.06	54.00	-8.94	V	AVG	
		TM4 / B	and: 5470-58	350 MHz / BV	V: 40 / H			
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector	
5850.00	37.79	17.21	55.00	68.20	-13.20	Н	Peak	
5850.00	38.69	17.21	55.90	68.20	-12.30	V	Peak	
5850.00	27.81	17.21	45.02	54.00	-8.98	Н	AVG	
5850.00	27.48	17.21	44.69	54.00	-9.31	V	AVG	

11. Undesirable emission limits (below 1GHz)

Test Requirement:	47 CFR Part 15.407(b)(9)						
	Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in § 15.209.							
	Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:							
	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)					
	0.009-0.490	2400/F(kHz)	300					
	0.490-1.705	24000/F(kHz)	30					
	1.705-30.0	30	30					
	30-88	100 **	3					
Test Limit:	88-216	150 **	3					
rest Limit:	216-960	200 **	3					
	Above 960	500	3					
	However, operation within these frequency bands is permitted under other sections of this part, e.g., §§ 15.231 and 15.241. In the emission table above, the tighter limit applies at the band edges. The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9–90 kHz, 110–490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector.							
Test Method:	ANSI C63.10-2020, section 12.7.4, 12.7.5							
Procedure:	meters above the groun was rotated 360 degree b. The EUT was set 3 or antenna, which was more. The antenna height is ground to determine the and vertical polarization d. For each suspected and then the antenna watest frequency of below and the rotatable table waximum reading. e. The test-receiver syst Bandwidth with Maximum f. If the emission level of limit specified, then testi would be reported. Other would be re-tested one then reported in a data set.	f the EUT in peak mode was on the could be stopped and the prwise the emissions that did it by one using quasi-peak meth	chamber. The table the highest radiation. erference-receiving height antenna tower. It meters above the strength. Both horizontal ake the measurement. It is done to its worst case eter to 4 meters (for the ed to heights 1 meter) 360 degrees to find the unction and Specified 10dB lower than the peak values of the EUT not have 10dB margin and as specified and					

Shenzhen Anbotek Compliance Laboratory Limited

Report No.:1812C40139212504

FCC ID: 2BCAX-HY450

channel.

- h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
- i. Repeat above procedures until all frequencies measured was complete. Remark:
- 1. Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor
- 2. Scan from 9kHz to 30MHz, the disturbance below 30MHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.
- 3. The disturbance below 1GHz was very low and the harmonics were the highest point could be found when testing, so only the above harmonics had been displayed.

Above 1GHz:

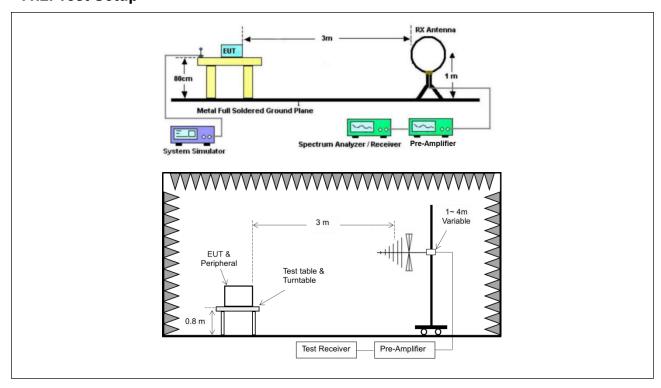
- a. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak or average method as specified and then reported in a data sheet.
- g. Test the EUT in the lowest channel, the middle channel, the Highest channel.
- h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case
- i. Repeat above procedures until all frequencies measured was complete. Remark:
- 1. Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor
- 2. Scan from 18GHz to 40GHz, the disturbance above 18GHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.
- 3. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak

measurement is shown in the report.

4. The disturbance above 18GHz were very low and the harmonics were the highest point could be found when testing, so only the above harmonics had been displayed.

11.1. EUT Operation

Operating Environment:

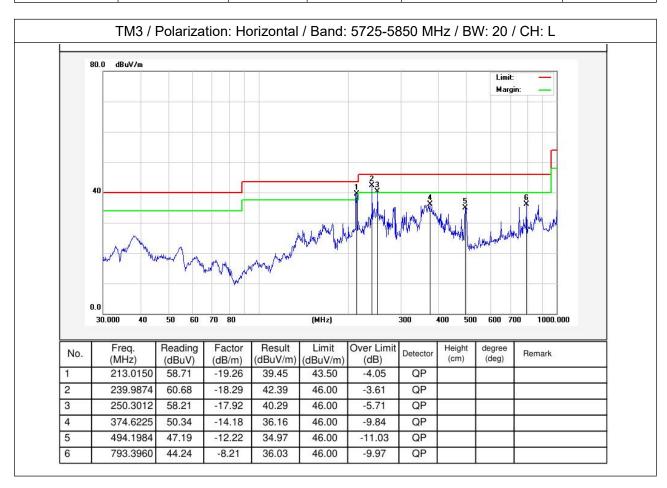

1: 802.11a mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report.

2: 802.11n mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

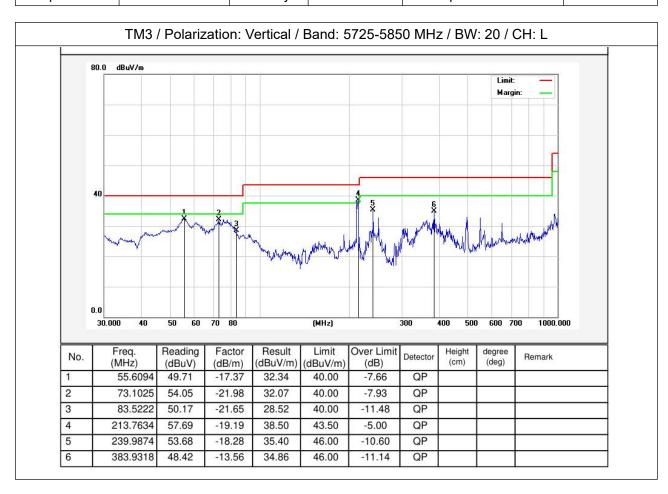
Test mode:

- 3: 802.11ac mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.
- 4: 802.11ax mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ax modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

11.2. Test Setup



11.3. Test Data


The test results of 9kHz-30MHz was attenuated more than 20dB below the permissible limits, so the results don't record in the report.

Temperature: 25.1 °C Humidity: 54 % Atmospheric Pressure: 101 kPa

Temperature: 25.1 °C Humidity: 54 % Atmospheric Pressure: 101 kPa

Note:Only record the worst data in the report.

Test Limit:

Report No.:1812C40139212504

FCC ID: 2BCAX-HY450

12. Undesirable emission limits (above 1GHz)

	,
Test Requirement:	47 CFR Part 15.407(b)(1) 47 CFR Part 15.407(b)(2) 47 CFR Part 15.407(b)(3) 47 CFR Part 15.407(b)(4) 47 CFR Part 15.407(b)(10)
	For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

For transmitters operating in the 5.25-5.35 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

For transmitters operating in the 5.47-5.725 GHz band: All emissions outside of the 5.47-5.725 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.


For transmitters operating solely in the 5.725-5.850 GHz band: All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495-0.505	16.69475-	608-614	5.35-5.46
	16.69525		
2.1735-2.1905	16.80425-	960-1240	7.25-7.75
	16.80475		
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-	9.3-9.5
		1646.5	
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-	13.25-13.4
		1722.2	
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-	2483.5-2500	17.7-21.4
	156.52525		
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(2)
13.36-13.41			

¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

The field strength of emissions appearing within these frequency bands shall not exceed the limits shown in § 15.209. At frequencies equal to or less than

Shenzhen Anbotek Compliance Laboratory Limited

² Above 38.6

1000 MHz, compliance with the limits in § 15.209shall be demonstrated
using measurement instrumentation employing a CISPR quasi-peak
detector. Above 1000 MHz, compliance with the emission limits in §
15.209shall be demonstrated based on the average value of the measured
emissions. The provisions in § 15.35apply to these measurements.

Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance
0.000.0.400	0.400/5/111	(meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100 **	3
88-216	150 **	3
216-960	200 **	3
Above 960	500	3

** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§ 15.231 and 15.241.

In the emission table above, the tighter limit applies at the band edges. The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9–90 kHz, 110–490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector.

Test Method:

Procedure:

ANSI C63.10-2020, section 12.7.4, 12.7.6, 12.7.7

Above 1GHz:

- a. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak or average method as specified and then reported in a data sheet.
- g. Test the EUT in the lowest channel, the middle channel, the Highest

Shenzhen Anbotek Compliance Laboratory Limited

channel.

- h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
- i. Repeat above procedures until all frequencies measured was complete. Remark:
- 1. Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor
- 2. Scan from 18GHz to 40GHz, the disturbance above 18GHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.
- 3. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.
- 4. The disturbance above 18GHz were very low and the harmonics were the highest point could be found when testing, so only the above harmonics had been displayed.

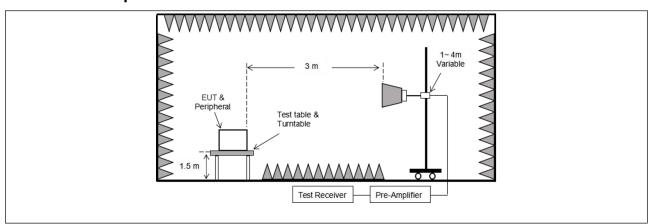
12.1. EUT Operation

Operating Environment:

1: 802.11a mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report.

2: 802.11n mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

Test mode:


- 3: 802.11ac mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.
- 4: 802.11ax mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ax modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

12.2. Test Setup

12.3. Test Data

	TM4 / Band: 5150-5250 MHz / BW: 20 / CH: L									
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector			
10360.00	31.53	23.81	55.34	68.20	-12.86	V	Peak			
15540.00	32.91	28.68	61.59	68.20	-6.61	V	Peak			
10360.00	31.99	23.81	55.80	68.20	-12.40	Н	Peak			
15540.00	32.97	28.68	61.65	68.20	-6.55	Н	Peak			
10360.00	20.963	23.81	44.77	54.00	-9.23	V	AVG			
15540.00	22.092	28.68	50.77	54.00	-3.23	V	AVG			
10360.00	21.183	23.81	44.99	54.00	-9.01	Н	AVG			
15540.00	21.634	28.68	50.31	54.00	-3.69	Н	AVG			
		TM4 / Ban	d: 5150-5250	MHz / BW:	20 / CH: M					
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector			
10400.00	30.89	23.81	54.70	68.20	-13.50	V	Peak			
15600.00	32.44	29.13	61.57	68.20	-6.63	V	Peak			
10400.00	31.48	23.81	55.29	68.20	-12.91	Н	Peak			
15600.00	32.49	29.13	61.62	68.20	-6.58	Н	Peak			
10400.00	21.233	23.81	45.04	54.00	-8.96	V	AVG			
15600.00	22.212	29.13	51.34	54.00	-2.66	V	AVG			
10400.00	21.173	23.81	44.98	54.00	-9.02	Н	AVG			
15600.00	21.714	29.13	50.84	54.00	-3.16	Н	AVG			
		TM4 / Ban	d: 5150-5250	MHz/BW:	20 / CH: H					
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector			
10480.00	30.46	23.80	54.26	68.20	-13.94	V	Peak			
15720.00	31.92	30.03	61.95	68.20	-6.25	V	Peak			
10480.00	31.12	23.80	54.92	68.20	-13.28	Н	Peak			
15720.00	31.40	30.03	61.43	68.20	-6.77	Н	Peak			
10480.00	19.90	23.80	43.70	54.00	-10.30	V	AVG			
15720.00	20.97	30.03	51.00	54.00	-3.00	V	AVG			
10480.00	20.38	23.80	44.18	54.00	-9.82	Н	AVG			
15720.00	20.50	30.03	50.53	54.00	-3.47	Н	AVG			

Remark:

- 1. Result =Reading + Factor
- 2. Only the worst case(802.11ax(HEW20)) is recorded in the report.

	TM1 / Band: 5250-5350 MHz / BW: 20 / CH: L									
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector			
10520.00	28.02	23.81	51.83	68.20	-16.37	V	Peak			
15780.00	29.51	30.48	59.99	68.20	-8.21	V	Peak			
10520.00	28.87	23.81	52.68	68.20	-15.52	Н	Peak			
15780.00	27.89	30.48	58.37	68.20	-9.83	Н	Peak			
10520.00	17.751	23.81	41.56	54.00	-12.44	V	AVG			
15780.00	19.568	30.48	50.05	54.00	-3.95	V	AVG			
10520.00	19.352	23.81	43.16	54.00	-10.84	Н	AVG			
15780.00	18.584	30.48	49.06	54.00	-4.94	Н	AVG			
		TM1 / Ban	d: 5250-5350	MHz / BW:	20 / CH: M					
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector			
10600.00	29.21	23.87	53.08	68.20	-15.12	V	Peak			
15900.00	28.56	31.38	59.94	68.20	-8.26	V	Peak			
10600.00	28.17	23.87	52.04	68.20	-16.16	Н	Peak			
15900.00	28.31	31.38	59.69	68.20	-8.51	Н	Peak			
10600.00	18.421	23.87	42.29	54.00	-11.71	V	AVG			
15900.00	19.318	31.38	50.70	54.00	-3.30	V	AVG			
10600.00	18.632	23.87	42.50	54.00	-11.50	Н	AVG			
15900.00	18.734	31.38	50.11	54.00	-3.89	Н	AVG			
		TM1 / Ban	d: 5250-5350	MHz / BW:	20 / CH: H					
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector			
10640.00	28.55	23.90	52.45	68.20	-15.75	V	Peak			
15960.00	28.06	31.83	59.89	68.20	-8.31	V	Peak			
10640.00	28.54	23.90	52.44	68.20	-15.76	Н	Peak			
15960.00	27.87	31.83	59.70	68.20	-8.50	Н	Peak			
10640.00	17.16	23.90	41.06	54.00	-12.94	V	AVG			
15960.00	18.28	31.83	50.11	54.00	-3.89	V	AVG			
10640.00	17.80	23.90	41.70	54.00	-12.30	Н	AVG			
15960.00	19.05	31.83	50.88	54.00	-3.12	Н	AVG			

Remark:

- 1. Result =Reading + Factor
- 2. Only the worst case (802.11a) is recorded in the report.

		TM2 / Ban	d: 5470-572	5 MHz / BW:	40 / CH: L		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
11020.000	27.56	24.12	51.68	68.20	-16.52	V	Peak
16530.000	27.85	32.96	60.81	68.20	-7.39	V	Peak
11020.000	28.66	24.12	52.78	68.20	-15.42	Н	Peak
16530.000	27.50	32.96	60.46	68.20	-7.74	Н	Peak
11020.000	17.28	24.12	41.40	54.00	-12.60	V	AVG
16530.000	17.97	32.96	50.93	54.00	-3.07	V	AVG
11020.000	16.86	24.12	40.98	54.00	-13.02	Н	AVG
16530.000	17.60	32.96	50.56	54.00	-3.44	Н	AVG
		TM1 / Ban	d: 5470-572	5 MHz / BW:	40 / CH: M		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
11180.000	26.89	23.86	50.75	68.20	-17.45	V	Peak
16770.000	28.07	32.25	60.32	68.20	-7.88	V	Peak
11180.000	27.44	23.86	51.30	68.20	-16.90	Н	Peak
16770.000	27.65	32.25	59.90	68.20	-8.30	Н	Peak
11180.000	16.50	23.86	40.36	54.00	-13.64	V	AVG
16770.000	16.68	32.25	48.93	54.00	-5.07	V	AVG
11180.000	16.46	23.86	40.32	54.00	-13.68	Н	AVG
16770.000	17.15	32.25	49.40	54.00	-4.60	Н	AVG
		TM2 / Ban	d: 5470-572	5 MHz / BW:	40 / CH: H		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
11340.000	27.89	23.60	51.49	68.20	-16.71	V	Peak
17010.000	28.07	31.58	59.65	68.20	-8.55	V	Peak
11340.000	26.44	23.60	50.04	68.20	-18.16	Н	Peak
17010.000	27.10	31.58	58.68	68.20	-9.52	Н	Peak
11340.000	17.29	23.60	40.89	54.00	-13.11	V	AVG
17010.000	17.92	31.58	49.50	54.00	-4.50	V	AVG
11340.000	16.94	23.60	40.54	54.00	-13.46	Н	AVG
17010.000	17.75	31.58	49.33	54.00	-4.67	Н	AVG

Remark:

- 1. Result =Reading + Factor
- 2. Only the worst case (802.11n(HT40)) is recorded in the report.

TM3 / Band: 5725-5850 MHz / BW: 20 / CH: L							
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
11490.000	28.51	23.36	51.87	68.20	-16.33	V	Peak
17235.000	29.85	31.97	61.82	68.20	-6.38	V	Peak
11490.000	28.96	23.36	52.32	68.20	-15.88	Н	Peak
17235.000	30.08	31.97	62.05	68.20	-6.15	Н	Peak
11490.000	17.80	23.36	41.16	54.00	-12.84	V	AVG
17235.000	18.56	31.97	50.53	54.00	-3.47	V	AVG
11490.000	17.99	23.36	41.35	54.00	-12.65	Н	AVG
17235.000	18.04	31.97	50.01	54.00	-3.99	Н	AVG
TM3 / Band: 5725-5850 MHz / BW: 20 / CH: M							
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
11570.000	29.09	23.42	52.51	68.20	-15.69	V	Peak
17355.000	29.73	32.18	61.91	68.20	-6.29	V	Peak
11570.000	29.16	23.42	52.58	68.20	-15.62	Н	Peak
17355.000	30.17	32.18	62.35	68.20	-5.85	Н	Peak
11570.000	19.071	23.42	42.49	54.00	-11.51	V	AVG
17355.000	18.879	32.18	51.06	54.00	-2.94	V	AVG
11570.000	18.975	23.42	42.40	54.00	-11.60	Н	AVG
17355.000	18.424	32.18	50.60	54.00	-3.40	Н	AVG
TM3 / Band: 5725-5850 MHz / BW: 20 / CH: H							
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
11650.000	28.60	23.49	52.09	68.20	-16.11	V	Peak
17475.000	29.97	32.39	62.36	68.20	-5.84	V	Peak
11650.000	28.90	23.49	52.39	68.20	-15.81	Н	Peak
17475.000	29.78	32.39	62.17	68.20	-6.03	Н	Peak
11650.000	18.14	23.49	41.63	54.00	-12.37	V	AVG
17475.000	18.68	32.39	51.07	54.00	-2.93	V	AVG
11650.000	18.16	23.49	41.65	54.00	-12.35	Н	AVG
17475.000	18.39	32.39	50.78	54.00	-3.22	Н	AVG

Remark:

1. Result =Reading + Factor

Only the worst case (802.11ac(VHT20)) is recorded in the report.

APPENDIX I -- TEST SETUP PHOTOGRAPH

Please refer to separated files Appendix I -- Test Setup Photograph_RF

APPENDIX II -- EXTERNAL PHOTOGRAPH

Please refer to separated files Appendix II -- External Photograph

APPENDIX III -- INTERNAL PHOTOGRAPH

Please refer to separated files Appendix III -- Internal Photograph

