

EMC Laboratory

Page: 1 of 32 MS-Word2000

GSM1900 test report for

Report Date:

November 4, 2003

Signatures:

Tested by:

John Julh

Marko Turkkila

Testing Engineer

Contents approved:

J.M.

Tomi Nyberg

Laboratory Manager

Test results are valid for the tested unit only.

Business Identity Code: 1538517-7

This report shall not be reproduced except in full

EMC Laboratory

Page: 2 of 32 MS-Word2000

CONTENTS

1	LAE	SORATORY INFORMATION	.4
2	CUS	STOMER INFORMATION	.4
3	SUN	IMARY OF TEST RESULTS	. 5
4	EUT 4.1	INFORMATION EUT description	.6 .6
5	EUT	TEST SETUPS	.7
6	APP	LICABLE STANDARDS	. 7
7	RAI 7.1	DIATED RF OUTPUT POWER Test setup	. 8
	7.2 7.3 7.4	EUT operation mode	.9 .9 .9
	7.5	Results	10
8	99% 8.1 8.2 8.3 8.4	OCCUPIED BANDWIDTH Test setup EUT operation mode Results Screen shots	12 12 12 13 14
9	BAN 9.1 9.2 9.3 9.4 9.5	ND-EDGE COMPLIANCE Test setup EUT operation mode Limit Results Screen shots	17 17 17 17 18 19
10	RAI	DIATED SPURIOUS EMISSIONS	21
	10.1 10.2 10.3	Test setup Test method EUT operation mode	21 22 22
	10.4 10.5	Limit	22
	10.5	1000110	

EMC Laboratory

Page: 3 of 32 MS-Word2000

11 FRE	QUENCY STABILITY, TEMPERATURE VARIATION	
11.1	Test setup	
11.2	EUT operation mode	
11.3	Limit	
11.4	Test method	
11.5	Results	
12 FRE	QUENCY STABILITY, VOLTAGE VARIATION	
12.1	Test setup	
12.2	EUT operation mode	
12.3	Limit	
12.4	Test method	30
12.5	Results	30
13 TES	T EQUIPMENT	
13.1	Conducted measurements	
13.2	Radiated measurements	
14 TES	T SETUP PHOTOGRAPHS	

EMC Laboratory

Page: 4 of 32 MS-Word2000

1 LABORATORY INFORMATION

Test Laboratory	Konette Design Center Oy		
v	EMC Laboratory		
	Koneenkatu 12 / K17		
	05830 Hyvinkää		
	FINLAND		
	Tel: +358 20 475 2800		
	Fax: +358 20 475 2719		
	e-mail: firstname.surname@ette.com		
FCC registration	910391 (January 27, 2003)		
number:	IC 4616 (May 14, 2003)		
IC file number:			

2 CUSTOMER INFORMATION

Client	Nokia Corporation				
	Keilalahdentie 2-4				
	02150 Espoo				
	PL 226				
	00045 NOKIA GROUP				
	Tel: 07180 08000				
Contact person:	Jarkko Luoma				
	Nokia Corporation / TCC Salo				
	P.O. Box 86 (Joensuunkatu 7E / Kiila 1B)				
	FIN -24101 SALO				
	FINLAND				
	Tel: +358 7180 42913				
	Fax: +358 7180 45220				
	E-mail: jarkko.luoma@nokia.com				
Receipt of EUT:	September 24, 2003				
Testing date:	September 25 – October 08, 2003				
Report date:	October 10, 2003				

The tests listed in this report have been done to demonstrate compliance with the applicable requirements in FCC rules Part 24 and 2 and IC standard RSS-133.

EMC Laboratory

Page: 5 of 32 MS-Word2000

3 SUMMARY OF TEST RESULTS

Section in CFR 47	Section in	Test	Result
	RSS-133		
§2.1046 (a)	6.2	Conducted RF output	-
§24.232 (b)	6.2	Radiated RF output	PASS
§2.1049 (h)	5.6	99% occupied bandwidth	PASS
§24.238 (a)	6.3	Block-edge compliance	PASS
§24.238 (a), §2.1051	6.3	Spurious emissions at antenna	
		terminals	-
§24.238 (a), §2.1053	6.3	Radiated spurious emissions	PASS
§24.235, §2.1055	7	Frequency stability, temperature	DASS
(a)(1)(b)		variation	rass
§24.235, §2.1055	7	Frequency stability, voltage	DASS
(d)(1)(2)		variation	газэ

PASS Pass

FAIL Fail

X Measured, but there is no applicable performance criteria

- Not done

EMC Laboratory

Page: 6 of 32 MS-Word2000

4 EUT INFORMATION

The EUT and accessories used in the tests are listed below. Later in this report only EUT numbers are used as reference.

	Device	Туре	S/N	EUT number
	GSM 1900 Mobile phone	NHL-9	004400 32 172504 4	05601
	GSM 1900 Mobile phone	NHL-9	004400 32 172502 8	05602
EUI	GSM 1900 Mobile phone	NHL-9	004400 32 172539 0	05603
	GSM 1900 Mobile phone	NHL-9	004400 32 172513 5	05604
	Battery,	BL-5C		05605
	Battery	BL-5C		05606
Accessories	Battery	BL-5C		05607

Notes: -

4.1 EUT description

EUT is a triple band (GSM900 / GSM 1800 / GSM 1900) mobile phone.

The EUT was not modified during the tests.

EMC Laboratory

Page: 7 of 32 MS-Word2000

Identification: T03-056A2-EMC

5 EUT TEST SETUPS

For each test the EUT was exercised to find out the worst case of operation modes and device configuration.

The test setup photographs are in the document referenced in section 14.

6 APPLICABLE STANDARDS

The tests were performed in guidance of CFR 47 part 24, part 2, ANSI C63.4-1992, ANSI/TIA/EIA-603-A-2001 and RSS-133.

Deviations, modifications or clarifications (if any) to above mentioned documents are written in each section under "Test method" for each test case.

Test results are valid for the tested unit only.

Business Identity Code: 1538517-7

This report shall not be reproduced except in full

EMC Laboratory

Page: 8 of 32 MS-Word2000

7 RADIATED RF OUTPUT POWER

EUT	05601				
Accessories	05605, 05606, 05607				
Temp, Humidity,	23 °C	51 RH% 1009 h			
Air Pressure					
Date of measurement	October 27, 2003				
FCC rule part	§24.232 (b)				
RSS-133 section	6.2				
Measured by	Marko Turkkila				

7.1 Test setup

The EUT was set on a non-conductive turntable in a semi-anechoic chamber. In the corner of the chamber there was a communications antenna, which was connected to the BS simulator located outside the chamber.

The radiated power from the EUT was measured with an antenna fixed to an antenna tower. Antenna polarization and height can be changed remotely. The turntable is remotely controlled to turn the EUT

The EUT was set at 0.8m height. Measuring antenna was scanned 1 - 4 m in height.

The measured signal was routed from the measuring antenna to the spectrum analyzer.

The BS simulator was used to set the TX channel and power level and modulate the TX signal with different bit patterns.

Picture 1: Test setup for radiated RF output power measurement

EMC Laboratory

Page: 9 of 32 MS-Word2000

7.2 Test method

- 1. Substitution method calibration was made for determining correction factors for horizontal and vertical polarization. In the calibration the EUT was substituted with a signal generator and antenna, which gain over isotropic and dipole radiator was known.
- 2. The maximum power level was searched by moving the turntable, by manipulating the EUT and by changing the measurement antenna polarization and height. The maximum measured level (P_{EUT}) was recorded.
- 3. The measured power from EUT was corrected with the correction factor in an automated test system to give the EUT EIRP.

7.3 EUT operation mode

EUT operation mode	TX on, 1 time slot transmission, PRBS 2E9-1 modulation		
EUT channel	512, 661, 810		
EUT TX power level	0 (30dBm)		

7.4 Limit

EIRP	• [W]
FCC	≤ 2
IC	≤ 2

EMC Laboratory

Page: 10 of 32 MS-Word2000

7.5 Results

The formula below was used to calculate the EIRP of the EUT.

$$P_{EIRP[W]} = \frac{10^{(P_{EUT[dBm]} + (P_{Subst_{RX}[dBm]} - P_{Subst_{TX}[dBm]} + L_{Cable[dB]} - G_{Substitute_antenna[dBi]))/10}}{1000}$$

$$10^{(P_{EUT[dBm]} + CF[dB])/10}$$

1000

where the variables are as follows:

$P_{\rm EUT[dBm]}$	Measured power level (from step 2 in 7.2) from the EUT
P _{Subst_TX [dBm]}	Power (step 1 in 7.2) fed to the substituting antenna
P _{Subst_RX [dBm]}	Power (step 1 in 7.2) received with the spectrum analyzer
$G_{ m Substitute_antenna}$ [dE	Gain of the substitutive antenna over isotropic radiator
$L_{\text{Cable [dB]}}$	Loss of the cable between signal generator and the substituting antenna
<i>CF</i> [dB]	Correction factor combined from the $P_{\text{Subst_TX [dBm]}}$, $P_{\text{Subst_RX [dBm]}}$; $G_{\text{Substitute_antenna [dBi]}}$ and $L_{\text{Cable [dB]}}$ used in the automated measurement system (step 3 in 7.2).

In the tables below, the abbreviated column titles are:

EUT H / V	EUT orientation, Horizontal / Vertical
Pol H / V	Measuring antenna polarization, Horizontal / Vertical
Height [m]	Measuring antenna height from reference ground in meters
TT [deg]	Turn table angle in degrees

EMC Laboratory

Page: 11 of 32 MS-Word2000

Table 1:Radiated RF output power measurement results, GSM GMSK, flip
closed.

EUT Channel	P _{EUT} [dBm]	CF [dB]	EIRP [dBm]	EIRP [W]	EUT H / V	Pol. H / V	Height [m]	TT [deg]
512	-14.5	44.1	29.6	0.91	Н	Н	124	35
661	-13.7	44.2	30.5	1.13	Н	Н	124	45
810	-18.2	44.4	26.2	0.42	V	Н	106	248

Table 2:Radiated RF output power measurement results, GSM GMSK, flip
open.

EUT Channel	P _{EUT} [dBm]	CF [dB]	EIRP [dBm]	EIRP [W]	EUT H / V	Pol. H / V	Height [m]	TT [deg]
512	-15.8	44.1	28.3	0.67	Н	Н	127	46
661	-16.2	44.2	28.0	0.64	Н	Н	100	60
810	-16.8	44.4	27.6	0.58	Н	Н	122	282

Table 3:Radiated RF output power measurement results, flip closed, GSMEDGE 8 PSK modulation.

EUT Channel	P _{EUT} [dBm]	CF [dB]	EIRP [dBm]	EIRP [W]	EUT H/V	Pol. H / V	Height [m]	TT [deg]
512	-16.42	44.1	27.7	0.58	Н	Н	133	30
661	-14.73	44.2	29.5	0.89	Н	Н	125	35
810	-14.86	44.4	29.5	0.90	Н	Н	120	30

Table 3 results are measured at GSM power level setting 2 (- dBm)

EMC Laboratory

Page: 12 of 32 MS-Word2000

8 99% OCCUPIED BANDWIDTH

EUT	05602			
Accessories	05605, 05606, 05607			
Temp, Humidity,	22°C 52 RH% 1018 hPa			
Air Pressure				
Date of measurement	09 - 16 October, 2003			
FCC rule part	§2.1049 (h)			
RSS-133 section	5.6			
Measured by	Antti Teronen			

8.1 Test setup

The BS simulator was used to set the TX channel and power level and modulate the TX signal with different bit patterns.

Picture 2: Test setup for 99% occupied bandwidth measurement

8.2 EUT operation mode

EUT operation mode	TX on, 1 time slot transmission,
EUT channel	512, 661, 810
EUT TX power level	0 (+30dBm)

EMC Laboratory

Page: 13 of 32 MS-Word2000

8.3 Results

The 99% occupied bandwidth was calculated from spectrum analyzer measurements.

The measurement data was read from the analyzer to computer. Software in computer calculated the total power from the measurement data and defined the frequency band containing 99% of the total power. Markers in the spectrum analyzer were then placed between the calculated

frequencies to show the calculated 99% power band in the screenshots.

Table 4:99% occupied bandwidth measurement results, GSM GMSK
modulation

EUT Channel	99% occupied bandwidth [kHz]
512	247
661	244
810	247

Table 5:99% occupied bandwidth measurement results, GSM EDGE 8PSK
modulation

EUT Channel	99% occupied bandwidth [kHz]
512	245
661	247
810	244

EMC Laboratory

Page: 14 of 32 MS-Word2000

8.4 Screen shots

Picture 3: 99% occupied bandwidth, GSM GMSK, channel 512

Picture 4: 99% occupied bandwidth, GSM GMSK, channel 661

EMC Laboratory

Page: 15 of 32 MS-Word2000

Picture 6: 99% occupied bandwidth, GSM EDGE 8PSK, channel 512

Test results are valid for the tested unit only.

Email: firstname.surname@ette.com

Page: 16 of 32 MS-Word2000

EMC Laboratory

Picture 7: 99% occupied bandwidth, GSM EDGE 8PSK, channel 661

Picture 8: 99% occupied bandwidth, GSM EDGE 8PSK, channel 810

EMC Laboratory

Page: 17 of 32 MS-Word2000

9 BAND-EDGE COMPLIANCE

EUT	05602			
Accessories	05605, 05606, 05607			
Temp, Humidity,	22°C 52 RH% 1018 hPa			
Air Pressure				
Date of measurement	9 October, 2003			
FCC rule part	§24.238 (a)			
RSS-133 section	6.3			
Measured by	Antti Teronen			

9.1 Test setup

The BS simulator was used to set the TX channel and power level and modulate the TX signal with different bit patterns.

Picture 9: Test setup for block edge compliance measurement

9.2 EUT operation mode

EUT operation mode	TX on, 1 time slot transmission
EUT channel	Channels listed in section 9.4
EUT TX power level	0 (+30dBm)

9.3 Limit

Frequency [MHz]	Level [dBm]
<1850	-13
>1910	-13

EMC Laboratory

Page: 18 of 32 MS-Word2000

9.4 Results

The line in the screen shots is the -13dBm limit line. The results were corrected with combined attenuation of the cables, attenuator and power divider set as "offset" in the spectrum analyzer.

Table 6:Band edge compliance measurement results, GSM GMSK
modulation

EUT Channel	Signal path loss [dB]	Level at band edge [dBm]
512	9.3	-38,72
810	9.3	-35,28

Table 7:Band edge compliance measurement results, GSM EDGE 8PSK
modulation

EUT Channel	Signal path loss [dB]	Level at band edge [dBm]
512	9.3	-35,47
810	9.3	-40,92

EMC Laboratory

Page: 19 of 32 MS-Word2000

9.5 Screen shots

Picture 11: GSM GMSK, channel 810

EMC Laboratory

Page: 20 of 32 MS-Word2000

Picture 13: GSM EDGE 8PSK, channel 810

EMC Laboratory

Page: 21 of 32 MS-Word2000

10 RADIATED SPURIOUS EMISSIONS

EUT	05603			
Accessories	05605, 05606, 05607			
Temp, Humidity,	21°C 52 RH% 1018 hPa			
Air Pressure				
Date of measurement	September 30 – November 1, 2003			
FCC rule part	§24.238 (a), §2.1053			
RSS-133 section	6.3			
Measured by	Marko Turkkila			

10.1 Test setup

Band reject and high pass filters was used to prevent overloading the spectrum analyzer and preamplifier.

The BS simulator was used to set the TX channel and power level and modulate the TX signal with different bit patterns.

The test was done using an automated test system, where the measurement equipment was controlled by a computer.

Picture 14: Test setup for radiated spurious emissions measurement on below 3 GHz frequencies

Picture 15: Test setup for radiated spurious emissions measurement on 3 GHz and above frequencies

EMC Laboratory

Page: 22 of 32 MS-Word2000

- 10.2 Test method
 - 1. The emissions were searched and maximized by moving the turntable, changing the measuring antenna polarization and height and manipulating the EUT.
 - 2. Levels of suspicious signals and levels of EUT transmitter harmonics were recorded.
 - 3. The recorded levels were corrected in the automated test system with the correction factor given by a substitution calibration made before the measurements. The calibration is made separately for vertical and horizontal polarization and the system uses different correction factors depending on the measuring antenna polarization.
 - 4. The corrected values, giving the EUT radiated spurious emission levels as e.i.r.p, are reported.

10.3 EUT operation mode

EUT operation mode	TX on, 1 time slot transmission,
EUT channel	512, 661, 810
EUT TX power level	0 (+30dBm)

10.4 Limit

Frequency [MHz]	Level	[dBm]
30 - 19100	-1	3

EMC Laboratory

Page: 23 of 32 MS-Word2000

10.5 Results

The formula below was used to calculate the EIRP of the spurious emissions.

$$P_{Emission[dBm]} = P_{Measured[dBm]} + \left(P_{SubstRX[dBm]} - P_{SubstTX[dBm]} + L_{Cable[dB]} - G_{Antenna[dBi]}\right)$$
$$= P_{Measured[dBm]} + CF_{[dB]}$$

where the variables are as follows:

P _{Measured [dBm]}	Measured emission level (from step 2 in 10.2)
P _{Subst_TX [dBm]}	Signal generator power (from step 4 in 10.2) fed to the
	substituting antenna
P _{Subst_RX [dBm]}	Measured power (from step 4 in 10.2) in the substitution
	calibration
L _{Cable [dB]}	Loss of the cable between antenna and signal generator (from
	step 4 in 10.2)
GAntenna [dBi]	Gain of the substitutive antenna over isotropic radiator
CF _[dB]	Correction factor combined from the P _{Subst TX [dBm]} , L _{Cable [dB]} and
	G _{Antenna [dBi]} used in the automated test software

Measurement system noise level was least 15 dB below the spurious emission limit. Only levels of suspicious signals and transmitter harmonic frequencies, which were above the measurement system noise, are reported.

In the tables below, the abbreviated column titles are:

f[MHz]	Measured frequency
EUT H / V	EUT orientation, Horizontal / Vertical
Pol H / V	Measuring antenna polarization, Horizontal / Vertical
Height [m]	Measuring antenna height from reference ground in meters
TT [deg]	Turn table angle in degrees

EMC Laboratory

Page: 24 of 32 MS-Word2000

GSM GMSK modulation, flip closed

Table 8:	Radiated spurious emission levels, GSM GMSK, flip closed, Channel
	512

f [MHz]	P _{Measured} [dBm]	CF [dB]	P _{Emission} [dBm]	EUT H / V	Pol. H / V	Height [m]	TT [deg]
3700.4	-31.2	7.2	-24.0	V	V	1.2	200.0
5550.6	-44.7	14.5	-30.1	Н	Н	1.1	10.0
7400.8	-55.8	18.4	-37.5	V	V	1.5	100.0
9251.0	-56.3	18.9	-37.4	V	V	1.3	100.0
11101.2	-61.5	22.6	-38.8	V	V	1.6	380.0
12951.4	-62.4	22.1	-40.2	V	V	1.2	0.0

Table 9:Radiated spurious emission levels, GSM GMSK, flip closed, Channel661

f	P _{Measured}	CF	PEmission	EUT	Pol.	Height	TT
[MHz]	[dBm]	[dB]	[dBm]	H / V	H / V	[m]	[deg]
3760.0	-35.0	7.3	-27.7	Н	V	1.1	40.0
5640.0	-49.5	14.9	-34.7	Н	V	1.3	60.0
7520.0	-59.3	18.2	-41.1	V	V	1.4	180.0
9400.0	-55.6	18.6	-37.0	V	V	1.2	290.0
11280.0	-60.8	23.1	-37.7	V	V	1.3	380.0

Table 10:Radiated spurious emission levels, GSM GMSK, flip closed, Channel
810

f	P _{Measured}	CF	PEmission	EUT	Pol.	Height	TT
[MHz]	[dBm]	[dB]	[dBm]	H / V	H / V	[m]	[deg]
3819.6	-41.5	7.5	-34.0	Н	V	1.1	30.0
5729.4	-58.0	15.1	-42.9	Н	V	2.0	120.0
7639.2	-58.8	18.5	-40.3	V	V	1.2	210.0
9549.0	-56.9	18.5	-38.4	V	V	1.3	320.0
11458.8	-60.1	23.6	-36.4	Н	V	1.7	120.0

EMC Laboratory

Page: 25 of 32 MS-Word2000

GSM GMSK modulation, flip open

Table 11:	Radiated spurious emission levels,	GSM GMSK,	flip open,	Channel
	512			

f [MHz]	P _{Measured} [dBm]	CF [dB]	P _{Emission} [dBm]	EUT H / V	Pol. H / V	Height [m]	TT [deg]
3700.4	-36.2	7.2	-29.1	V	V	1.4	170.0
5550.6	-48.6	14.7	-34.0	Н	V	1.3	150.0
7400.8	-57.4	18.4	-39.0	Н	V	1.0	330.0
9251.0	-58.0	18.9	-39.1	Н	V	1.4	180.0

Table 12:Radiated spurious emission levels, GSM GMSK, flip open, Channel661

f [MHz]	P _{Measured} [dBm]	CF [dB]	P _{Emission} [dBm]	EUT H / V	Pol. H / V	Height [m]	TT [deg]
3760.0	-42.6	7.3	-35.3	Н	V	1.3	30.0
5640.0	-53.7	14.9	-38.8	Н	V	1.2	300.0
7520.0	-60.0	18.2	-41.8	Н	V	1.2	190.0
9400.0	-58.0	18.6	-39.3	Н	V	1.4	280.0

Table 13:Radiated spurious emission levels, GSM GMSK, flip open, Channel
810

f [MHz]	P _{Measured} [dBm]	CF [dB]	P _{Emission} [dBm]	EUT H / V	Pol. H / V	Height [m]	TT [deg]
3819.6	-43.3	7.5	-35.8	Н	V	1.1	30.0
5729.4	-55.4	15.1	-40.3	V	V	1.2	100.0
7639.2	-56.7	18.5	-38.3	V	V	1.3	10.0
9549.0	-55.4	18.5	-36.9	Н	V	1.3	280.0

EMC Laboratory

Page: 26 of 32 MS-Word2000

GSM EDGE 8PSK modulation, flip closed

Table 14:Radiated spurious emission levels, GSM EDGE 8PSK, flip closed,
Channel 512

f [MHz]	P _{Measured} [dBm]	CF [dB]	P _{Emission} [dBm]	EUT H / V	Pol. H / V	Height [m]	TT [deg]
3700.4	-34.7	7.2	-27.6	Н	V	1.0	40.0
5550.6	-44.7	14.7	-30.0	Н	V	1.1	10.0
7400.8	-60.1	18.4	-41.7	V	V	1.1	120.0
9251.0	-57.0	18.9	-38.1	Н	V	1.4	240.0
11101.2	-59.5	22.6	-36.9	Н	V	2.0	310.0

Table 15:	Radiated spurious emission levels, GSM	EDGE	8PSK,	flip	closed,
	Channel 661				

f [MHz]	P _{Measured} [dBm]	CF [dB]	P _{Emission} [dBm]	EUT H / V	Pol. H / V	Height [m]	TT [deg]
3760.0	-38.3	7.3	-31.0	Н	V	1.0	0.0
5640.0	-47.6	14.9	-32.8	Н	V	1.2	300.0
7520.0	-58.8	18.2	-40.6	V	V	1.3	180.0
9400.0	-59.6	18.6	-41.0	Н	V	1.3	300.0
11280.0	-58.6	23.1	-35.5	Н	V	1.5	70.0

Table 16:	Radiated spurious emission levels,	GSM EDGE	8PSK,	flip clos	sed,
	Channel 810				

f [MHz]	P _{Measured} [dBm]	CF [dB]	P _{Emission} [dBm]	EUT H / V	Pol. H / V	Height [m]	TT [deg]
3819.6	-43.3	7.5	-35.8	Н	V	1.3	30.0
5729.4	-58.0	15.1	-43.0	Н	V	1.3	10.0
7639.2	-41.8	2.0	-39.8	Н	V	1.8	220.0
9549.0	-59.6	18.5	-41.1	V	V	1.0	300.0
11458.8	-59.1	23.6	-35.5	V	V	1.2	330.0

EMC Laboratory

Page: 27 of 32 MS-Word2000

11 FREQUENCY STABILITY, TEMPERATURE VARIATION

EUT	05602			
Accessories	05605, 05606, 05607			
Temp, Humidity,	- °C	- RH%	- hPa	
Air Pressure				
Date of measurement	October 03, 2003			
FCC rule part	§24.235, §2.1055 (a)(1)(b)		
RSS-133 section	7			
Measured by	Marko Turkkila			

11.1 Test setup

The BS simulator was used to set the TX channel and power level and modulate the TX signal with different bit patterns.

11.2 EUT operation mode

EUT operation mode	TX on, 1 time slot transmission, PRBS 2E9-1 modulation
EUT channel	661
EUT TX power level	0 (+30dBm)

11.3 Limit

Frequency deviation [ppm]
± 2.5

EMC Laboratory

Page: 28 of 32 MS-Word2000

11.4 Test method

- 1. The climate chamber temperature was set to the minimum value and the temperature was allowed to stabilize.
- 2. The EUT was placed in the chamber
- 3. The EUT was set in idle mode for 45 minutes.
- 4. The EUT was set to transmit.
- 5. The maximum of transmit frequency error was measured immediately from BS simulator
- 6. The steps 3 5 were repeated for each temperature

11.5 Results

 Table 17:
 Frequency stability over temperature measurement results

Temperature [°C]	Deviation [Hz]	Deviation [ppm]
-30	61	0,0324
-20	48	0,0255
-10	56	0,0298
0	30	0,0160
10	49	0,0260
20	48	0,0255
30	62	0,0330
40	47	0,0250
50	63	0,0335

EMC Laboratory

Page: 29 of 32 MS-Word2000

12 FREQUENCY STABILITY, VOLTAGE VARIATION

EUT	05602				
Accessories	05605, 05606, 05607				
Temp, Humidity,	22 °C	1005 RH%	53 hPa		
Air Pressure					
Date of measurement	September 26, 2003				
FCC rule part	§24.235, §2.1055 (d)(1)(2)			
RSS-133 section	7				
Measured by	Antti Teronen				

12.1 Test setup

The BS simulator was used to set the TX channel and power level and modulate the TX signal with different bit patterns.

Picture 16: Test setup for frequency deviation over voltage variation measurement

12.2 EUT operation mode

EUT operation mode	TX on, 1 time slot transmission, PRBS 2E9-1 modulation
EUT channel	661
EUT TX power level	0 (+30dBm)

12.3 Limit

Frequency deviation [ppm]
± 2.5

EMC Laboratory

Page: 30 of 32 MS-Word2000

12.4 Test method

The EUT battery was replaced with an adjustable power supply. The frequency stability was measured at nominal voltage and at the battery cut-off point.

12.5 Results

 Table 18:
 Frequency stability over voltage variation measurement results

Level	Voltage [V]	Deviation [Hz]	Deviation [ppm]
Nominal	3.7	35	0,019
Battery cut-off	3.4	-59	0,031

Test results are valid for the tested unit only.

Business Identity Code: 1538517-7

This report shall not be reproduced except in full

Tel: +358 20 475 2800 Fax: +358 20 475 2719 Email: firstname.surname@ette.com

EMC Laboratory

Page: 31 of 32 MS-Word2000

13 TEST EQUIPMENT

All testing and measurement equipment has been calibrated once a year, except the antennas which are calibrated every two years.

13.1 Conducted measurements

Equipment	Manufacturer	Model
Spectrum Analyzer	Agilent	E7405A
GSM Base station	Rohde & Schwarz	CMU 200
simulator		
Signal Generator	Rohde & Schwarz	SMR27
Attenuator 3 dB	Narda	779-3
Power splitter	Mini Circuits	ZFSC-2-4
Power splitter	Narda	4426-2
Temperature	Finero	LK 540
chamber		
DC power supply	Delta Elektronika	SM 120-13
Multimeter	Fluke	179

13.2 Radiated measurements

Equipment	Manufacturer	Model
Spectrum Analyzer	Agilent	E7405A
GSM Base station	Rohde & Schwarz	CMU 200
simulator		
Antenna	Chase	CBL 6140
Antenna	Schwarzbeck	BBHA 9120D
Antenna	Chase	CBL 6141
Antenna	EMCO	3115
Signal Generator	Rohde & Schwarz	SMR27
Tunable notch filter	Wainwright Instruments	WRCD 1700/2000-0.2/40-
		10EEK
Tunable notch filter	Wainwright Instruments	WRCT 800/960-0.2/40-
		8EEK
High pass filter	Wainwright Instruments	WHK3/18GST
High pass filter	Wainwright Instruments	WHK 2.1/18GST
Band Reject filter	Wainwright instruments	WRCT2400/2483-45/10EE
Pre-amplifier	JCA	118-400
Turn table /	EMCO	2090
antenna mast		
controller		
Antenna mast	EMCO	2075-2

Test results are valid for the tested unit only.

Business Identity Code: 1538517-7

This report shall not be reproduced except in full

EMC Laboratory

Page: 32 of 32 MS-Word2000

14 TEST SETUP PHOTOGRAPHS

Test setup photographs can be found in a separate document

T03-056A2-EMC_PHOTOS.doc

Test results are valid for the tested unit only.

Business Identity Code: 1538517-7

This report shall not be reproduced except in full

Tel: +358 20 475 2800 Fax: +358 20 475 2719 Email: firstname.surname@ette.com