

FCC Test Report

FCC ID : SQGBT852

Equipment : Bluetooth Dual Mode USB Dongle

Model No. : BT852

Brand Name : Laird Connectivity

Applicant : Laird Connectivity

Address : W66N220 Commerce Court, Cedarburg,

Wisconsin 53012, USA

Standard : 47 CFR FCC Part 15.247

Received Date : Jul. 11, 2019

Tested Date : Jul. 11 ~ Jul. 17, 2019

We, International Certification Corp., would like to declare that the tested sample has been evaluated and in compliance with the requirement of the above standards. The test results contained in this report refer exclusively to the product. It may be duplicated completely for legal use with the approval of the applicant. It shall not be reproduced except in full without the written approval of our laboratory.

Reviewed by: Approved by:

Along Cheld/ Assistant Manager Gary Chang / Manage

Testing Laboratory

Page: 1 of 36

ing Laborato

Report No.: FR971104AE

Table of Contents

1	GENERAL DESCRIPTION	5
1.1	Information	5
1.2	Local Support Equipment List	7
1.3	Test Setup Chart	7
1.4	Test Equipment List and Calibration Data	8
1.5	Test Standards	9
1.6	Deviation from Test Standard and Measurement Procedure	9
1.7	Measurement Uncertainty	9
2	TEST CONFIGURATION	10
2.1	Testing Condition	10
2.2	The Worst Test Modes and Channel Details	10
3	TRANSMITTER TEST RESULTS	11
3.1	Conducted Emissions	11
3.2	6dB and Occupied Bandwidth	14
3.3	RF Output Power	17
3.4	Power Spectral Density	19
3.5	Emissions in Restricted Frequency Bands	22
3.6	Emissions in non-restricted Frequency Bands	32
4	EXPOSURE EVALUATION OF PORTABLE DEVICES	34
4.1	SAR TEST EXCLUSION THRESHOLD FOR 100MHz to 6GHz and ≤ 50mm	34
4.2	EVALUATION RESULTS	35
5	TEST I ABORATORY INFORMATION	36

Release Record

Report No.	Version	Description	Issued Date
FR971104AE	Rev. 01	Initial issue	Jul. 26, 2019
FR971104AE	Rev. 02	Modify antenna information and add RF exposure evaluation	Sep. 05, 2019

Report No.: FR971104AE Page: 3 of 36

Summary of Test Results

FCC Rules	Test Items	Measured	Result
15.207	AC Power Line Conducted Emissions	[dBuV]: 0.165MHz 53.42 (Margin -11.79dB) - QP	Pass
15.247(d)	Radiated Emissions	[dBuV/m at 3m]: 70.74MHz	Pass
15.209	Radiated Effissions	36.38 (Margin -3.62dB) - PK	F a 3 3
15.247(b)(3)	Maximum Output Power	Power [dBm]: 9.19	Pass
15.247(a)(2)	6dB Bandwidth	Meet the requirement of limit	Pass
15.247(e)	Power Spectral Density	Meet the requirement of limit	Pass
15.203	Antenna Requirement	Meet the requirement of limit	Pass

Declaration of Conformity:

The test results with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers.

Comments and Explanations:

The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification.

Report Version: Rev. 02

The previous version of the test report has been cancelled and replaced by new version.

Page: 4 of 36

1 General Description

1.1 Information

1.1.1 Specification of the Equipment under Test (EUT)

RF General Information						
Frequency Range (MHz) Bluetooth Ch. Freq. (MHz) Channel Number Data Rate						
2400-2483.5 V4.2 LE 2402-2480 0-39 [40] 1 Mbps						
Note 1: Bluetooth LE (Low energy) uses GFSK modulation.						

1.1.2 Antenna Details

Ant. No.	Brand	Model	Туре	Gain (dBi)	Remark
1	LAIRD TECHNOLOGIES	BT852 Printed PCB Antenna	Printed PCB	0	

1.1.3 Power Supply Type of Equipment under Test (EUT)

Power Supply Type	5Vdc from host
-------------------	----------------

1.1.4 Accessories

N/A

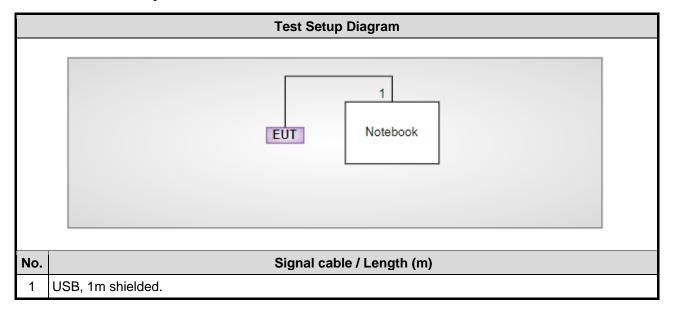
1.1.5 Channel List

	Frequency	band (MHz)			2400~	2483.5	
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
37	2402	9	2422	18	2442	28	2462
0	2404	10	2424	19	2444	29	2464
1	2406	38	2426	20	2446	30	2466
2	2408	11	2428	21	2448	31	2468
3	2410	12	2430	22	2450	32	2470
4	2412	13	2432	23	2452	33	2472
5	2414	14	2434	24	2454	34	2474
6	2416	15	2436	25	2456	35	2476
7	2418	16	2438	26	2458	36	2478
8	2420	17	2440	27	2460	39	2480

1.1.6 Test Tool and Duty Cycle

Test Tool	Broadcom Blue Tool, Version: V 1.8.2.5				
Duty Cycle and Duty Factor	Duty Cycle (%)	Duty Factor (dB)			
Duty Cycle and Duty Factor	63.89%	1.95			

1.1.7 Power Index of Test Tool


Modulation Mode	Test Frequency (MHz)			
Modulation Mode	2402	2440	2480	
GFSK/1Mbps	default	default	default	

1.2 Local Support Equipment List

	Support Equipment List						
No. Equipment Brand Model FCC ID Remarks							
1	Notebook	DELL	Latitude E6430	DoC			

1.3 Test Setup Chart

1.4 Test Equipment List and Calibration Data

Test Item	Conducted Emission								
Test Site	Conduction room 1 / (CO01-WS)								
Instrument	nstrument Manufacturer Model No. Serial No. Calibration Date Calibration Until								
Receiver	R&S	ESR3	101657	Jan. 08, 2019	Jan. 07, 2020				
LISN	R&S	ENV216	101579	Mar. 08, 2019	Mar. 07, 2020				
LISN (Support Unit)	SCHWARZBECK	Schwarzbeck 8127	8127-666	Nov. 29, 2018	Nov. 28, 2019				
RF Cable-CON	Woken	CFD200-NL	CFD200-NL-001	Oct. 23, 2018	Oct. 22, 2019				
50 ohm terminal (Support Unit)	NA	50	04	May 28, 2019	May 27, 2020				
Measurement Software	AUDIX	e3	6.120210k	NA	NA				

Test Item	Radiated Emission	Radiated Emission						
Test Site	966 chamber1 / (03Cl	H01-WS)						
Instrument	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Until			
Spectrum Analyzer	R&S	FSV40	101498	Dec. 27, 2018	Dec. 26, 2019			
Receiver	R&S	ESR3	101658	Dec. 11, 2018	Dec. 10, 2019			
Bilog Antenna	SCHWARZBECK	VULB9168	VULB9168-522	Jul. 18, 2018	Jul. 17, 2019			
Horn Antenna 1G-18G	SCHWARZBECK	BBHA 9120 D	BBHA 9120 D 1096	Dec. 18, 2018	Dec. 17, 2019			
Horn Antenna 18G-40G	SCHWARZBECK	BBHA 9170	BBHA 9170517	Nov. 15, 2018	Nov. 14, 2019			
Loop Antenna	R&S	HFH2-Z2	100330	Nov. 09, 2018	Nov. 08, 2019			
Loop Antenna Cable	KOAX KABEL	101354-BW	101354-BW	Oct. 08, 2018	Oct. 07, 2019			
Preamplifier	EMC	EMC02325	980225	Jul. 20, 2018	Jul. 19, 2019			
Preamplifier	Agilent	83017A	MY39501308	Oct. 04, 2018	Oct. 03, 2019			
Preamplifier	EMC	EMC184045B	980192	Aug. 09, 2018	Aug. 08, 2019			
RF Cable	EMC	EMC104-SM-SM-80 00	181106	Oct. 08, 2018	Oct. 07, 2019			
RF Cable	HUBER+SUHNER	SUCOFLEX104	MY16019/4	Oct. 08, 2018	Oct. 07, 2019			
RF Cable	HUBER+SUHNER	SUCOFLEX104	MY16014/4	Oct. 08, 2018	Oct. 07, 2019			
LF cable 1M	EMC	EMCCFD400-NM-N M-1000	160502	Oct. 08, 2018	Oct. 07, 2019			
LF cable 3M	Woken	CFD400NL-LW	CFD400NL-001	Oct. 08, 2018	Oct. 07, 2019			
LF cable 10M	Woken	CFD400NL-LW	CFD400NL-002	Oct. 08, 2018	Oct. 07, 2019			
Measurement Software	AUDIX	e3	6.120210g	NA	NA			
Note: Calibration Inter	val of instruments liste	d above is one year.						

Report No.: FR971104AE Report Version: Rev. 02

The previous version of the test report has been cancelled and replaced by new version.

Test Item	RF Conducted						
Test Site	(TH01-WS)	(TH01-WS)					
Instrument	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Until		
Spectrum Analyzer	R&S	FSV40	101063	Apr. 17, 2019	Apr. 16, 2020		
Power Meter	Anritsu	ML2495A	1241002	Oct. 09, 2018	Oct. 08, 2019		
Power Sensor	Anritsu	MA2411B	1207366	Oct. 09, 2018	Oct. 08, 2019		
DC POWER SOURCE	GW INSTEK	GPC-6030D	EM892433	Oct. 25, 2018	Oct. 24, 2019		
Measurement Software	Sporton	SENSE-15247_FS	V5.10.1	NA	NA		
Note: Calibration Interval of instruments listed above is one year.							

1.5 Test Standards

According to the specification of EUT, the EUT must comply with following standards and KDB documents.

47 CFR FCC Part 15.247 ANSI C63.10-2013 FCC KDB 558074 D01 15.247 Meas Guidance v05r02

1.6 Deviation from Test Standard and Measurement Procedure

None

1.7 Measurement Uncertainty

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2)

Measurement Uncertainty				
Parameters	Uncertainty			
Bandwidth	±34.130 Hz			
Conducted power	±0.808 dB			
Power density	±0.583 dB			
Conducted emission	±2.715 dB			
AC conducted emission	±2.92 dB			
Radiated emission ≤ 1GHz	±3.41 dB			
Radiated emission > 1GHz	±4.59 dB			

Report No.: FR971104AE Page: 9 of 36

Report Version: Rev. 02

The previous version of the test report has been cancelled and replaced by new version.

2 Test Configuration

2.1 Testing Condition

Test Item	Test Site	Ambient Condition	Tested By
AC Conduction	CO01-WS	25°C / 62%	Alex Tsai
Radiated Emissions	03CH01-WS	25-27°C / 64-65%	Akun Chung
RF Conducted	TH01-WS	23°C / 64%	Brad Wu

FCC Designation No.: TW2732FCC site registration No.: 181692

➤ ISED#: 10807A

➤ CAB identifier: TW2732

2.2 The Worst Test Modes and Channel Details

Test item	Mode	Test Frequency (MHz)	Data Rate	Test Configuration
AC Power Line Conducted Emissions Radiated Emissions ≤ 1GHz	BT LE	2440	1Mbps	
Maximum Output Power 6dB bandwidth Power spectral density Radiated Emissions > 1GHz	BT LE	2402, 2440, 2480	1Mbps	

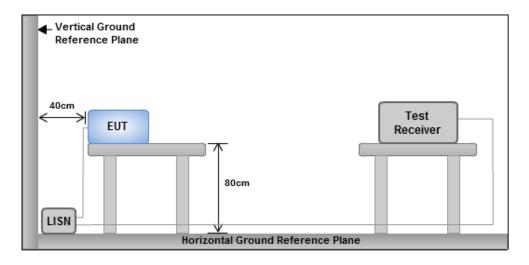
NOTE: The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement -X, Y, and Z-plane. The **X-plane** results were found as the worst case and were shown in this report.

Page: 10 of 36

Report No.: FR971104AE Report Version: Rev. 02

3 Transmitter Test Results

3.1 Conducted Emissions


3.1.1 Limit of Conducted Emissions

Conducted Emissions Limit						
Frequency Emission (MHz) Quasi-Peak Average						
0.15-0.5 66 - 56 * 56 - 46 *						
0.5-5	56	46				
5-30 60 50						
Note 1: * Decreases with the logarithm of the frequency.						

3.1.2 Test Procedures

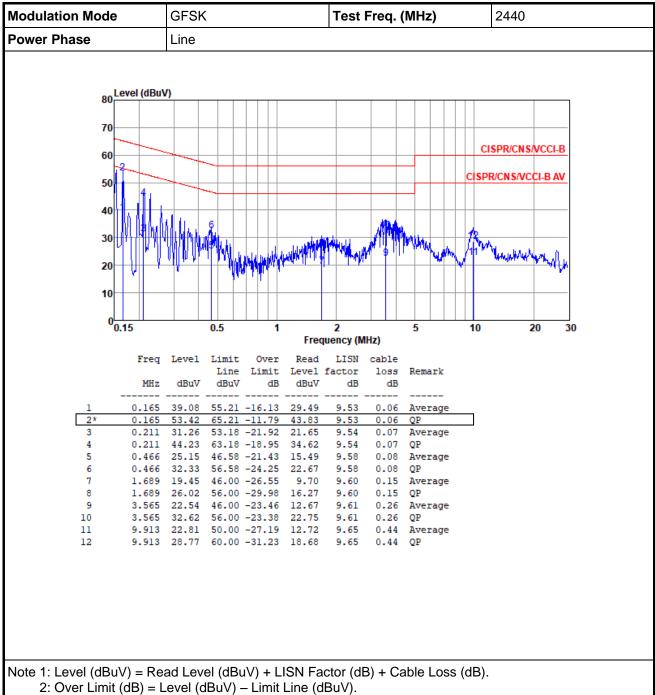
- 1. The device is placed on a test table, raised 80 cm above the reference ground plane. The vertical conducting plane is located 40 cm to the rear of the device.
- 2. The device is connected to line impedance stabilization network (LISN) and other accessories are connected to other LISN. Measured levels of AC power line conducted emission are across the 50 Ω LISN port.
- 3. AC conducted emission measurements is made over frequency range from 150 kHz to 30 MHz.
- 4. This measurement was performed with AC 120V/60Hz

3.1.3 Test Setup

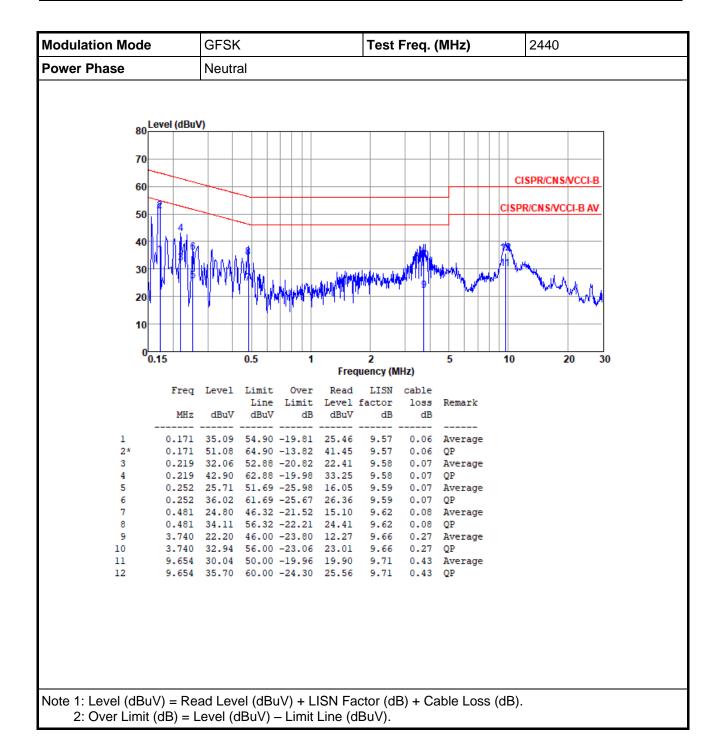
Note: 1. Support units were connected to second LISN.

Both of LISNs (AMN) are 80 cm from EUT and at least 80 cm from other units and other metal planes

Page: 11 of 36


Report No.: FR971104AE

Report Version: Rev. 02


The previous version of the test report has been cancelled and replaced by new version.

3.1.4 **Test Result of Conducted Emissions**

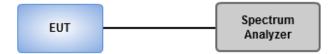
Report No.: FR971104AE Page: 13 of 36

3.2 6dB and Occupied Bandwidth

3.2.1 Limit of 6dB Bandwidth

The minimum 6dB bandwidth shall be at least 500 kHz.

3.2.2 Test Procedures


6dB Bandwidth

- 1. Set resolution bandwidth (RBW) = 100 kHz, Video bandwidth = 300 kHz.
- 2. Detector = Peak, Trace mode = max hold.
- 3. Sweep = auto couple, Allow the trace to stabilize.
- 4. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower) that are attenuated by 6dB relative to the maximum level measured in the fundamental emission.

Occupied Bandwidth

- Set resolution bandwidth (RBW) = 1% ~ 5 % of OBW, Video bandwidth = 3 x RBW
- 2. Detector = Sample, Trace mode = max hold.
- 3 Sweep = auto couple, Allow the trace to stabilize.
- 4. Use the OBW measurement function of spectrum analyzer to measure the occupied bandwidth.

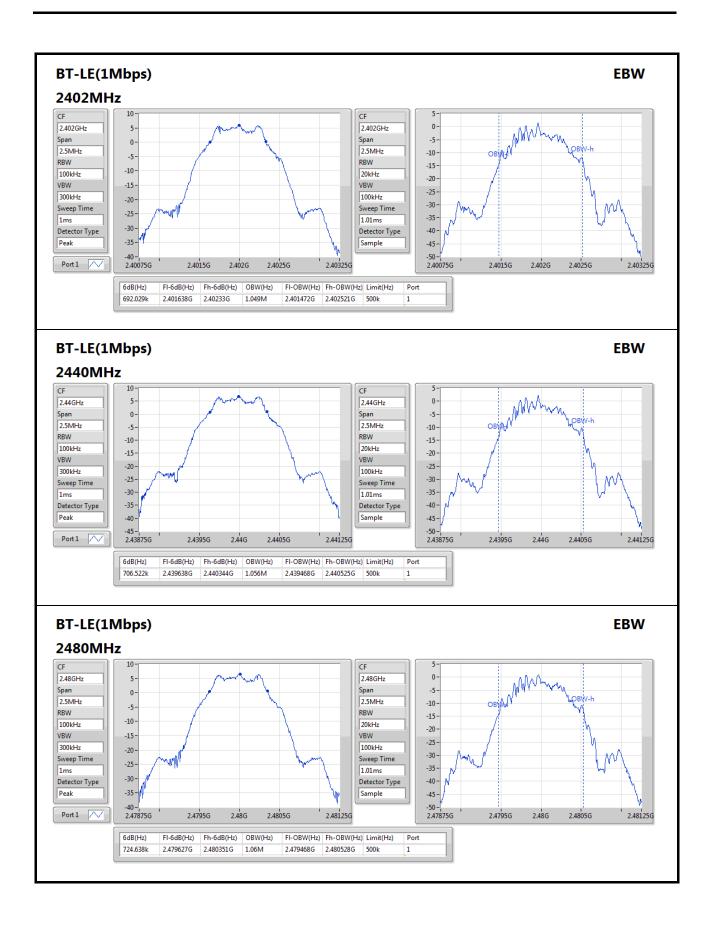
3.2.3 Test Setup

Report No.: FR971104AE Page: 14 of 36

3.2.4 Test Result of 6dB and Occupied Bandwidth

Summary

Mode	Max-N dB	Max-OBW	ITU-Code	Min-N dB	Min-OBW
	(Hz)	(Hz)		(Hz)	(Hz)
2.4-2.4835GHz	-	1	1	-	-
BT-LE(1Mbps)	724.638k	1.06M	1M06F1D	692.029k	1.049M


Max-N dB = Maximum 6dB down bandwidth; **Max-OBW** = Maximum 99% occupied bandwidth; **Min-N dB** = Minimum 6dB down bandwidth; **Min-OBW** = Minimum 99% occupied bandwidth;

Result

Mode	Result	Limit (Hz)	Port 1-N dB (Hz)	Port 1-OBW (Hz)
BT-LE(1Mbps)	-	-	-	-
2402MHz	Pass	500k	692.029k	1.049M
2440MHz	Pass	500k	706.522k	1.056M
2480MHz	Pass	500k	724.638k	1.06M

Port X-N dB = Port X 6dB down bandwidth; Port X-OBW = Port X 99% occupied bandwidth;

3.3 RF Output Power

3.3.1 Limit of RF Output Power

Conducted power shall not exceed 1Watt.

Antenna gain <= 6dBi, no any corresponding reduction is in output power limit.

3.3.2 Test Procedures

A broadband RF power meter is used for output power measurement. The video bandwidth of power meter is greater than DTS bandwidth of EUT. If duty cycle of test signal is not 100 %, trigger and gating function of power meter will be enabled to capture transmission burst for measuring output power.

3.3.3 Test Setup

Report No.: FR971104AE Page: 17 of 36

3.3.4 Test Result of Maximum Output Power

Summary of Peak Conducted Output Power

Mode	Power (dBm)	Power (W)
2.4-2.4835GHz	-	-
BT-LE(1Mbps)	9.19	0.00830

Result

Mode	Result	Gain	Power	Power Limit
		(dBi)	(dBm)	(dBm)
BT-LE(1Mbps)	-	-	-	-
2402MHz	Pass	0	8.36	30.00
2440MHz	Pass	0	9.19	30.00
2480MHz	Pass	0	8.93	30.00

Summary of Conducted (Average) Output Power

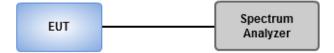
Mode	Power	Power
	(dBm)	(W)
2.4-2.4835GHz	-	-
BT-LE(1Mbps)	9.05	0.00804

Result

Mode	Result	Gain (dBi)	Power (dBm)	Power Limit (dBm)
BT-LE(1Mbps)	-	-	-	-
2402MHz	Pass	0	8.24	-
2440MHz	Pass	0	9.05	-
2480MHz	Pass	0	8.81	-

Note: Average power is for reference only.

3.4 Power Spectral Density


3.4.1 Limit of Power Spectral Density

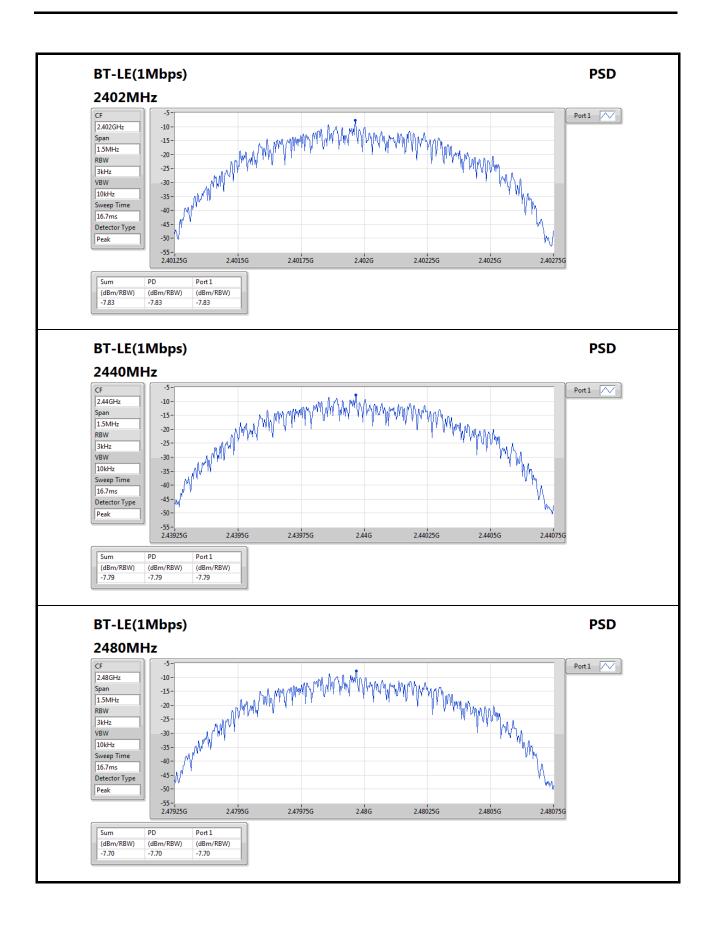
Power spectral density shall not be greater than 8 dBm in any 3 kHz band.

3.4.2 Test Procedures

- 1. Set the RBW = 3 kHz, VBW = 10 kHz.
- 2. Detector = Peak, Sweep time = auto couple.
- 3. Trace mode = max hold, allow trace to fully stabilize.
- 4. Use the peak marker function to determine the maximum amplitude level.

3.4.3 Test Setup

3.4.4 Test Result of Power Spectral Density


Summary

Mode	PD		
	(dBm/RBW)		
2.4-2.4835GHz	-		
BT-LE(1Mbps)	-7.70		

Result

Mode	Result	Gain	PD	PD Limit
		(dBi)	(dBm/RBW)	(dBm/RBW)
BT-LE(1Mbps)	-	-	-	-
2402MHz	Pass	0	-7.83	8.00
2440MHz	Pass	0	-7.79	8.00
2480MHz	Pass	0	-7.70	8.00

Report Version: Rev. 02

Report No.: FR971104AE Page: 21 of 36

3.5 Emissions in Restricted Frequency Bands

3.5.1 Limit of Emissions in Restricted Frequency Bands

	Restricted Band Emissions Limit											
Frequency Range (MHz)	Field Strength (uV/m)	Field Strength (dBuV/m)	Measure Distance (m)									
0.009~0.490	2400/F(kHz)	48.5 - 13.8	300									
0.490~1.705	24000/F(kHz)	33.8 - 23	30									
1.705~30.0	30	29	30									
30~88	100	40	3									
88~216	150	43.5	3									
216~960	200	46	3									
Above 960	500	54	3									

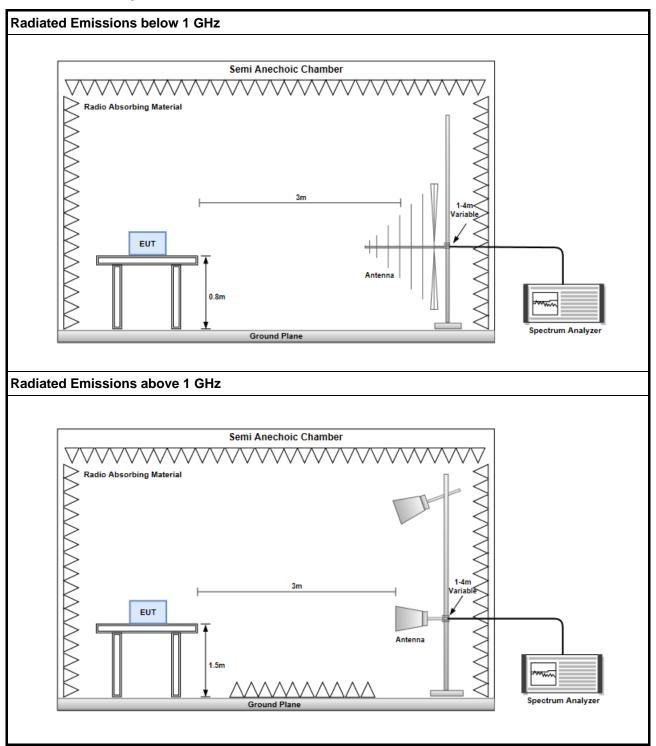
Note 1:

Qusai-Peak value is measured for frequency below 1GHz except for 9–90 kHz, 110–490 kHz frequency band. Peak and average value are measured for frequency above 1GHz. The limit on average radio frequency emission is as above table. The limit on peak radio frequency emissions is 20 dB above the maximum permitted average emission limit

Measurements may be performed at a distance other than what is specified provided. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor as below, Frequency at or above 30 MHz: 20 dB/decade Frequency below 30 MHz: 40 dB/decade.

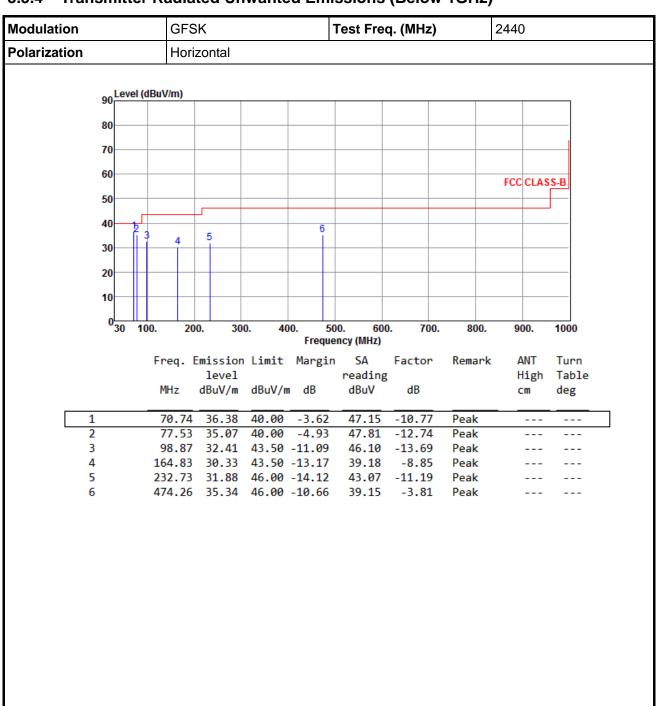
3.5.2 Test Procedures

- 1. Measurement is made at a semi-anechoic chamber that incorporates a turntable allowing a EUT rotation of 360°. A continuously-rotating, remotely-controlled turntable is installed at the test site to support the EUT and facilitate determination of the direction of maximum radiation for each EUT emission frequency. The EUT is placed at test table. For emissions testing at or below 1 GHz, the table height is 80 cm above the reference ground plane. For emission measurements above 1 GHz, the table height is 1.5 m
- 2. Measurement is made with the antenna positioned in both the horizontal and vertical planes of polarization. The measurement antenna is varied in height (1m ~ 4m) above the reference ground plane to obtain the maximum signal strength. Distance between EUT and antenna is 3 m.
- 3. This investigation is performed with the EUT rotated 360°, the antenna height scanned between 1 m and 4 m, and the antenna rotated to repeat the measurements for both the horizontal and vertical antenna polarizations.


Note:

- 1. 120kHz measurement bandwidth of test receiver and Quasi-peak detector is for radiated emission below 1GHz.
- 2. RBW=1MHz, VBW=3MHz and Peak detector is for peak measured value of radiated emission above 1GHz.
- 3. RBW=1MHz, VBW=1/T and Peak detector is for average measured value of radiated emission above 1GHz.

Report No.: FR971104AE Page: 22 of 36



3.5.3 Test Setup

3.5.4 Transmitter Radiated Unwanted Emissions (Below 1GHz)

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

The previous version of the test report has been cancelled and replaced by new version.

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Note 3: All spurious emissions below 30MHz are more than 20 dB below the limit.

Report Version: Rev. 02

Report No.: FR971104AE Page: 24 of 36

Modulation			GFS	K			Test F	req	. (MHz)		2440		
Polarization			Verti	cal			•						
	90 L	evel (dB	uv/m)										
	80												
	70												
	60												
											FCC	CLAS	S-B
	50												
	40			_		ļ.,							
	30-	1	- 3	4		5	1						
	30	11	ĭ										
	20												
	10							\perp					
	030	0 100.	. 20	0. 30	0. 4	00. Fred	500. Juency (Mi	600. Hz)	700.	800.	90	0.	1000
			Frea. F	mission	limit	Marg	in SA		Factor	Remark	- ΔΙ	NT	Turn
				level			read					igh	Table
			MHz	dBuV/m	dBuV/	m dB	dBu	V	dB		CI	m	deg
	1	_	70.74	30.57	40.00	-9.4	3 41.	34	-10.77	Peak			
	2		98.87	26.87		-16.6			-13.69	Peak			
:	3	1	164.83	27.11		-16.3	9 35.		-8.85	Peak			
	4		232.73		46.00				-11.19	Peak			
	5		124.79		46.00				-5.18	Peak			
•	6	4	474.26	33.20	46.00	-12.8	0 37.	ΘŢ	-3.81	Peak			

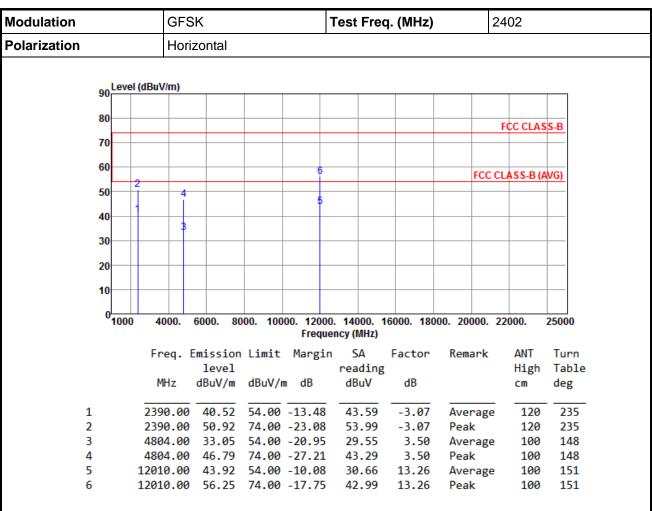
Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor , cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Note 3: All spurious emissions below 30MHz are more than 20 dB below the limit.

Page: 25 of 36

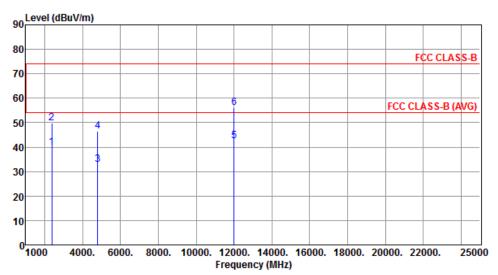

Report No.: FR971104AE

Report Version: Rev. 02

The previous version of the test report has been cancelled and replaced by new version.

3.5.5 Transmitter Radiated Unwanted Emissions (Above 1GHz) for GFSK

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)


*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR971104AE Report Version: Rev. 02

Modulation	GFSK	Test Freq. (MHz)	2402
Polarization	Vertical		

	Freq. MHz	Emission level dBuV/m	Limit dBuV/m	Ū	SA reading dBuV	Factor dB	Remark	ANT High cm	Turn Table deg
4	2200 00	70.74		44.20	42.70			400	252
1	2390.00	39.71	54.00	-14.29	42.78	-3.07	Average	100	252
2	2390.00	49.88	74.00	-24.12	52.95	-3.07	Peak	100	252
3	4804.00	32.87	54.00	-21.13	29.37	3.50	Average	100	104
4	4804.00	46.43	74.00	-27.57	42.93	3.50	Peak	100	104
5	12010.00	42.40	54.00	-11.60	29.14	13.26	Average	100	103
6	12010.00	56.11	74.00	-17.89	42.85	13.26	Peak	100	103

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) - Limit (dBuV/m).

Modulation				GFS	SK				Т	est	Freq.	. (MHz))	24	440	
Polarization				Hori	zonta	l								•		
	90	Level	(dBuV	/m)												
	80															
	80	,													FCC CLAS	SS-B
	70	-							_	-						+-
	60															
	00		~			8								FCC C	LASS-B (A	AVG)
	50		24 	6		+										+-
	40		13			+										
	40	"		5												
	30								_							+-
	20															
	20	,														
	10															+-
		1000	40	000.	6000.	80	00. 10			1400 ncy (M		000. 18	000. 20	0000. 2	2000.	25000
			Fr	ea. I	Emissi	ion	Limit	Mar	gin	SA	1	Factor	Ren	nark	ANT	Turn
					leve				0	read					High	Tabl
			М	Hz	dBuV,	/m	dBuV/	m dB		dBu		dB			cm	deg
	1		239	0.00	40.7	75	54.00	-13	25	43.	82	-3.07	Ave	erage	118	234
	2				50.6					53.		-3.07		_	118	234
	3		248	3.50	40.	38	54.00	-13.	62	43.		-3.22		erage	118	234
	4		248	3.50	50.4	48	74.00	-23.	52	53.	70	-3.22		_	118	234
!	5						54.00			29.		3.61		erage	100	156
	5		488	0.00	46.4	47	74.00	-27.	53	42.	86	3.61	Pea	k	100	156

8.80

8.80

Average

Peak

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

7320.00 38.75 54.00 -15.25 29.95

7320.00 52.33 74.00 -21.67 43.53

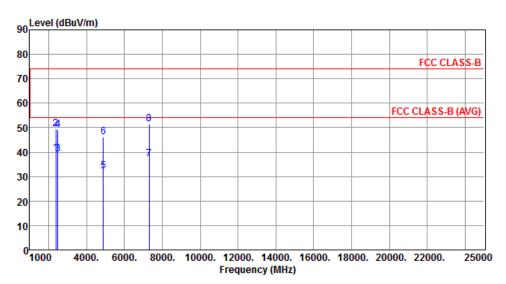
*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

7

8

100


100

152

152

Modulation	GFSK	Test Freq. (MHz)	2440
Polarization	Vertical		

	Freq.	Emission	Limit	Margin	SA	Factor	Remark	ANT	Turn
		level			reading			High	Table
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB		cm	deg
1	2390.00	39.56	54.00	-14.44	42.63	-3.07	Average	112	241
2	2390.00	49.40	74.00	-24.60	52.47	-3.07	Peak	112	241
3	2483.50	39.23	54.00	-14.77	42.45	-3.22	Average	112	241
4	2483.50	49.28	74.00	-24.72	52.50	-3.22	Peak	112	241
5	4880.00	32.08	54.00	-21.92	28.47	3.61	Average	100	103
6	4880.00	46.03	74.00	-27.97	42.42	3.61	Peak	100	103
7	7320.00	37.31	54.00	-16.69	28.51	8.80	Average	100	105
8	7320.00	51.45	74.00	-22.55	42.65	8.80	Peak	100	105

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain

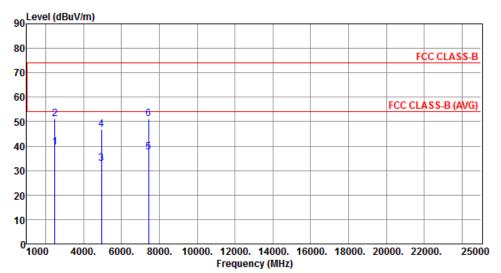
Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

The previous version of the test report has been cancelled and replaced by new version.

Modulation			G	FSI	<				Tes	t Free	q. (MHz	2)	2	480	
Polarization			Н	loriz	ontal								,		
	90	Level	(dBuV/m	1)											
	80														
	70					_								FCC CLAS	S-B
	70														
	60		2		+								FCC C	LASS-B (A	WG)
	50			4		6									
	40	-				5									
	40			3											
	30														
	20					\perp									
	10														
	10														
	0	1000	4000	0. 6	6000.	800	0. 100		00. 14 uency		16000. 1	8000. 2	0000. 2	2000.	25000
			Fred	ı. E	missi	on	Limit	Margi	_	5A	Factor	Re	mark	ANT	Turn
					leve					ading				High	Table
			MHz	<u> </u>	dBuV/	m	dBuV/	m dB	d	BuV	dB			cm	deg
:	1		2483.	.50	40.5	8	54.00	-13.42	2 4	3.80	-3.22	2 Av	erage	119	234
:	2		2483.	50				-19.72		7.50	-3.22	2 Pe	_	119	234
	3		4960.					-21.08		9.06	3.86		erage	100	141
	4		4960.			_		-27.28		2.86	3.86			100	141
	5							-14.91 -22.60		0.55 2.86	8.54 8.54		erage	100 100	152 152

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain


Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report Version: Rev. 02

Report No.: FR971104AE Page: 30 of 36

Modulation	GFSK	Test Freq. (MHz)	2480
Polarization	Vertical		

	Freq.	Emission level	Limit	Margin	SA reading	Factor	Remark	ANT High	Turn Table
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB		cm	deg
1	2483.50	39.64	54.00	-14.36	42.86	-3.22	Average	100	249
2	2483.50	51.01	74.00	-22.99	54.23	-3.22	Peak	100	249
3	4960.00	32.82	54.00	-21.18	28.96	3.86	Average	100	105
4	4960.00	46.72	74.00	-27.28	42.86	3.86	Peak	100	105
5	7440.00	37.47	54.00	-16.53	28.93	8.54	Average	100	102
6	7440.00	51.25	74.00	-22.75	42.71	8.54	Peak	100	102

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain

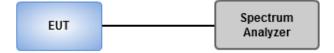
Note 2: Margin (dB) = Emission level (dBuV/m) - Limit (dBuV/m).

3.6 Emissions in non-restricted Frequency Bands

3.6.1 Emissions in non-restricted frequency bands limit

Peak power in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz.

3.6.2 Test Procedures

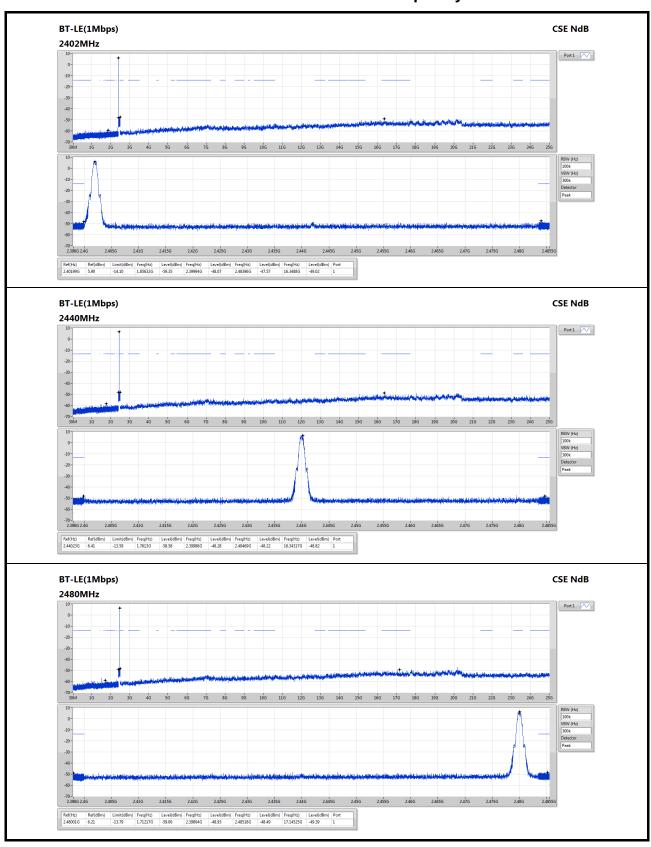

Reference level measurement

- 1. Set RBW=100kHz, VBW = 300kHz, Detector = Peak, Sweep time = Auto
- 2. Trace = max hold, Allow Trace to fully stabilize
- 3. Use the peak marker function to determine the maximum PSD level

Emission level measurement

- 1. Set RBW=100kHz, VBW = 300kHz, Detector = Peak, Sweep time = Auto
- 2. Trace = max hold, Allow Trace to fully stabilize
- 3. Scan Frequency range is up to 25GHz
- 4. Use the peak marker function to determine the maximum amplitude level

3.6.3 Test Setup



Report No.: FR971104AE

Page: 32 of 36

3.6.4 Test Result of Emissions in non-restricted Frequency Bands

4 EXPOSURE EVALUATION OF PORTABLE DEVICES

Human exposure to RF emissions from portable devices (47 CFR §2.1093), as defined by the FCC, must be evaluated with respect to the FCC-adopted limits for SAR. Evaluation of mobile devices, as defined by the FCC, may also be performed with respect to SAR limits, but in such cases it is usually simpler and more cost-effective to evaluate compliance with respect to field strength or power density limits. For certain devices that are designed to be used in both mobile and portable configurations similar to those described in 47 CFR §2.1091(d)(4), such as certain desktop phones and wireless modem modules, compliance for mobile configurations is also satisfied when the same device is evaluated for SAR compliance in portable configurations.

4.1 SAR TEST EXCLUSION THRESHOLD FOR 100MHz to 6GHz and ≤ 50mm

Frequency (MHz)	5	10	15	20	25	Separation distance (mm)
150	39	77	116	155	194	
300	27	55	82	110	137	
450	22	45	67	89	112	
835	16	33	49	66	82	
900	16	32	47	63	79	
1500	12	24	37	49	61	SAR Test Exclusion
1900	11	22	33	44	54	Threshold (mW)
2450	10	19	29	38	48	
3600	8	16	24	32	40	
5200	7	13	20	26	33	
5400	6	13	19	26	32	
5800	6	12	19	25	31	

The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances ≤ 50 mm are determined by

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] $\cdot [\sqrt{f(GHz)}] \le 3.0$ for 1-g SAR and ≤ 7.5 for 10-g extremity SAR, where

- •f(GHz) is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation
- The result is rounded to one decimal place for comparison

The test exclusions are applicable only when the minimum test separation distance is ≤ 50 mm and for transmission frequencies between 100 MHz and 6 GHz. When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion.

Page: 34 of 36

Report No.: FR971104AE

Report Version: Rev. 02

The previous version of the test report has been cancelled and replaced by new version.

4.2 EVALUATION RESULTS

Maximum Conducted Output Power Result					
Condition		RF Output Power (dBm)			
Modulation Mode	Freq. (MHz)	Average Power (dBm)	Rated Power (dBm)	Rated Power (mW)	Antenna Gain (dBi)
LE-1Mbps	2402	8.24	8.5	7.08	0
LE-1Mbps	2440	9.05	9.5	8.91	0
LE-1Mbps	2480	8.81	9	7.94	0

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] * [$\sqrt{f(GHz)}$] =8.91 / 5 * $\sqrt{2.440}$ = 2.784 < 3.0

SAR Test Exclusion Thresholds is < 10mW and 3.0 for separation distance 5mm. Therefore, SAR test is not required.

5 Test laboratory information

Established in 2012, ICC provides foremost EMC & RF Testing and advisory consultation services by our skilled engineers and technicians. Our services employ a wide variety of advanced edge test equipment and one of the widest certification extents in the business.

International Certification Corp (EMC and Wireless Communication Laboratory), it is our definitive objective is to institute long term, trust-based associations with our clients. The expectation we set up with our clients is based on outstanding service, practical expertise and devotion to a certified value structure. Our passion is to grant our clients with best EMC / RF services by oriented knowledgeable and accommodating staff.

Our Test sites are located at Linkou District and Kwei Shan District. Location map can be found on our website http://www.icertifi.com.tw.

Linkou

Tel: 886-2-2601-1640

No. 30-2, Ding Fwu Tsuen, Lin Kou District, New Taipei City,

Taiwan, R.O.C.

Kwei Shan

Tel: 886-3-271-8666

No. 3-1, Lane 6, Wen San 3rd St., Kwei Shan District, Tao Yuan City 333, Taiwan, R.O.C. Kwei Shan Site II

Tel: 886-3-271-8640

No. 14-1, Lane 19, Wen San 3rd St., Kwei Shan District, Tao Yuan City 333, Taiwan, R.O.C.

Page: 36 of 36

If you have any suggestion, please feel free to contact us as below information.

Tel: 886-3-271-8666 Fax: 886-3-318-0155

Email: ICC_Service@icertifi.com.tw

Report No.: FR971104AE Report Version: Rev. 02