

	TEST REPOR	Т	
FCC ID:	2AHZ5T30		
Test Report No::	TCT220422E049	(3)	(6)
Date of issue::	May 17, 2022		
Testing laboratory:	SHENZHEN TONGCE TESTING	S LAB	·
Testing location/ address:	TCT Testing Industrial Park Fuqi Street, Bao'an District Shenzhen Republic of China		
Applicant's name::	Shenzhen Huafurui Technology	Co., Ltd	
Address::	Unit 1401 14/F, Jin qi zhi gu mar shan district, Shenzhen, China	nsion Liu xian stree	t, Xili, Nan
Manufacturer's name:	Shenzhen Huafurui Technology	Co., Ltd	
Address:	Unit 1401 14/F, Jin qi zhi gu mar shan district, Shenzhen, China	nsion Liu xian stree	t, Xili, Nan
Standard(s):	FCC CFR Title 47 Part 15 Subpa KDB 662911 D01 Multiple Trans KDB 789033 D02 General U-NII v02r01	mitter Output v02r0	01
Product Name::	Tablet		
Trade Mark:	CUBOT	(c)	
Model/Type reference:	TAB 30		
Rating(s)::	Adapter Information: Model: HJ-FC001K7-US Input: AC 100-240V, 50/60Hz, 0. Output: DC 5.0V, 2.0A; DC 9.0V, Rechargeable Li-ion Battery DC	, 2.0A; DC 12.0V, 1	1.5A 18.0W
Date of receipt of test item	Apr. 22, 2022		
Date (s) of performance of test:	Apr. 22, 2022 - May 17, 2022		(C)
Tested by (+signature):	Brews XU	forens to	GCETA
Check by (+signature):	Beryl ZHAO	Boyl 16 T	CT)
Approved by (+signature):	Tomsin	Tomsm 45	84

General disclaimer:

This report shall not be reproduced except in full, without the written approval of SHENZHEN TONGCE TESTING LAB. This document may be altered or revised by SHENZHEN TONGCE TESTING LAB personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample.

TABLE OF CONTENTS

1. General Product Informa			
1.1. EUT description	(0)	(0)	3
1.2. Model(s) list			3
1.3. Test Frequency			
2. Test Result Summary			5
3. General Information			6
3.1. Test environment and m			
3.2. Description of Support	Units		7
4. Facilities and Accreditat	tions		8
4.1. Facilities	(\mathcal{O})	<u>((</u>	8
4.2. Location			8
4.3. Measurement Uncertain	-		
5. Test Results and Measu	rement Data	(0)	9
5.1. Antenna requirement			9
5.2. Conducted Emission			
5.3. Maximum Conducted O	utput Power	/	14
5.4. 6dB Emission Bandwidt			
5.5. 26dB Bandwidth and 99			
5.6. Power Spectral Density			18
5.7. Band edge			
5.8. Unwanted Emissions) ((33
5.9. Frequency Stability Mea	asurement		49
Appendix A: Test Result of	of Conducted Test		
Appendix B: Photographs	s of Test Setup		
Appendix C: Photographs	s of EUT		

1. General Product Information

1.1. EUT description

Product Name:	Tablet	(c ⁴)			<u>(()</u>
Model/Type reference:	TAB 30				
Sample Number:	TCT2204	122E002-0101	Ži)		
Operation Frequency:	Band 2A	5180 MHz ~ 5240 : 5260 MHz ~ 532 5745 MHz ~ 5825	0 MHz		
Channel Bandwidth:			, 80MHz		9)
Modulation Technology:	Orthogor	nal Frequency Div	ision Multiplexino	g(OFDM)	
Modulation Type:	256QAM	l, 64QAM, 16QAM	I, BPSK, QPSK		
Antenna Type:	PIFA Ant	tenna	(0)		C(I)
Antenna Gain:	1dBi				
Rating(s)::	Model: H Input: AC Output: E	Information: IJ-FC001K7-US C 100-240V, 50/60 DC 5.0V, 2.0A; DC eable Li-ion Batte	9.0V, 2.0A; DC	12.0V, 1.5A 18	8.0W

Note: The antenna gain listed in this report is provided by applicant, and the test laboratory is not responsible for this parameter.

1.2. Model(s) list

None.

Page 3 of 165

1.3. Test Frequency

Band 1

20M	1Hz		40MHz	80	MHz
Channel	Frequency	Channel	Frequency	Channel	Frequency
36	5180	38	5190	42	5210
40	5200	46	5230		
48	5240				

Band 2A

20N	20MHz		40MHz		MHz
Channel	Frequency	Channel	Frequency	Channel	Frequency
52	5260	54	5270	58	5290
60	5300	62	5310		
64	5320				

Band 3

20MHz		40MHz		80	MHz
Channel	Frequency	Channel	Frequency	Channel	Frequency
149	5745	151	5755	155	5775
157	5785	159	5795		
165	5825				

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Page 4 of 165

2. Test Result Summary

Requirement	CFR 47 Section	Result
Antenna requirement	§15.203	PASS
AC Power Line Conducted Emission	§15.207	PASS
Maximum Conducted Output Power	§15.407(a)	PASS
6dB Emission Bandwidth	§15.407(a)	PASS
26dB Emission Bandwidth& 99% Occupied Bandwidth	§15.407(a)	PASS
Power Spectral Density	§15.407(a)	PASS
Restricted Bands around fundamental frequency	§15.407(b)	PASS
Radiated Emission	§15.407(b)	PASS
Frequency Stability	§15.407(g)	PASS

Note:

- 1. PASS: Test item meets the requirement.
- 2. Fail: Test item does not meet the requirement.
- 3. N/A: Test case does not apply to the test object.
- 4. The test result judgment is decided by the limit of test standard.
- 5. For the band 5.15-5.25 GHz, EUT meet the requirements of 15.407(a)(ii).

TESTING CENTRE TECHNOLOGY Report No.: TCT220422E049

3. General Information

3.1. Test environment and mode

Operating Environment:			
Temperature:	25.0 °C		
Humidity:	56 % RH		
Atmospheric Pressure:	1010 mbar		
Test Software:			
Software Information:	Engineer Mode		
Power Level:	Defaulted		
Test Mode:			
Engineer mode:	Keep the EUT in continuous transmitting by select channel and modulations with max. duty cycle.		

The sample was placed 0.8m/1.5m for blow/above 1GHz above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

Mode	Data rate
802.11a	6 Mbps
802.11n(HT20)	6.5 Mbps
802.11n(HT40)	13.5 Mbps
802.11ac(VHT20)	6.5 Mbps
802.11ac(VHT40)	13.5 Mbps
802.11ac(VHT80)	29.3 Mbps

3.2. Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Equipment	Model No.	Serial No.	FCC ID	Trade Name
1(0)	1 (0)) /	<u>(j)</u> /	(0)1

Note:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended
- 3. For conducted measurements (Output Power, Emission Bandwidth, Power Spectral Density, Spurious Emissions), the antenna of EUT is connected to the test equipment via temporary antenna connector, the antenna connector is soldered on the antenna port of EUT, and the temporary antenna connector is listed in the Test Instruments.

Page 7 of 165

4. Facilities and Accreditations

4.1. Facilities

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 645098

SHENZHEN TONGCE TESTING LAB

Designation Number: CN1205

The testing lab has been registered and fully described in a report with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

IC - Registration No.: 10668A-1

SHENZHEN TONGCE TESTING LAB

CAB identifier: CN0031

The testing lab has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing.

4.2. Location

SHENZHEN TONGCE TESTING LAB

Address: TCT Testing Industrial Park Fuqiao 5th Industrial Zone, Fuhai Street, Bao'an

District Shenzhen, Guangdong, 518103, People's Republic of China

TEL: +86-755-27673339

4.3. Measurement Uncertainty

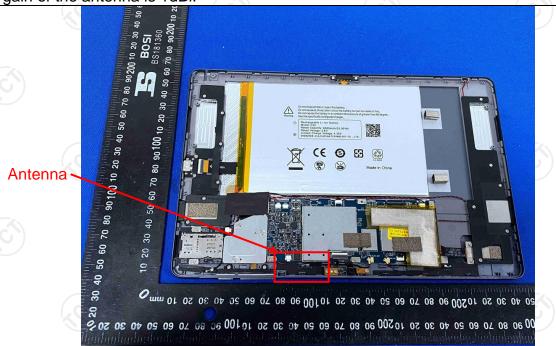
The reported uncertainty of measurement y ± U, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	MU
1	Conducted Emission	± 3.10 dB
2	RF power, conducted	± 0.12 dB
3	Spurious emissions, conducted	± 0.11 dB
4	All emissions, radiated(<1 GHz)	± 4.56 dB
5	All emissions, radiated(1 GHz - 18 GHz)	± 4.22 dB
6	All emissions, radiated(18 GHz- 40 GHz)	± 4.36 dB

Report No.: TCT220422E049

5. Test Results and Measurement Data

5.1. Antenna requirement


Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

E.U.T Antenna:

The EUT antenna is PIFA antenna which permanently attached, and the best case gain of the antenna is 1dBi.

Page 9 of 165

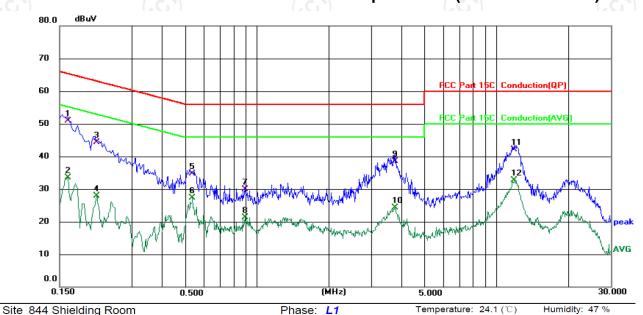
5.2. Conducted Emission

5.2.1. Test Specification

Test Requirement:	FCC Part15 C Section	15.207	100		
Test Method:	ANSI C63.10:2013	ANSI C63.10:2013			
Frequency Range:	150 kHz to 30 MHz	(C)	(C ¹)		
Receiver setup:	RBW=9 kHz, VBW=30	kHz, Sweep time	e=auto		
	Frequency range (MHz)	Limit (Quasi-peak	(dBuV) Average		
Limits:	0.15-0.5 0.5-5 5-30	66 to 56* 56 60	56 to 46* 46 50		
Test Setup:	Reference 40cm 40cm E.U.T AC powe Test table/Insulation plane Remarkc E.U.T: Equipment Under Test LISN: Line Impedence Stabilization Net Test table height=0.8m	80cm LISN Filter	AC power		
Test Mode:	Charging + Transmitting Mode				
Test Procedure:	 The E.U.T and simulation power through a line (L.I.S.N.). This proimpedance for the modern power through a LI coupling impedance refer to the block photographs). Both sides of A.C. conducted interferer emission, the relative the interface cables ANSI C63.10: 2013 	e impedance stale ovides a 500hm easuring equipm ses are also connot SN that provides with 500hm terrodiagram of the line are checkence. In order to five positions of equals must be change	polization network n/50uH coupling nent. ected to the main as a 50ohm/50uH mination. (Please test setup and led for maximum and the maximum uipment and all of ged according to		
	- X - /				

5.2.2. Test Instruments

Conducted Emission Shielding Room Test Site (843)							
Equipment Manufacturer Model Serial Number Calibration Du							
EMI Test Receiver	R&S	ESCI3	100898	Jul. 07, 2022			
Line Impedance Stabilisation Newtork(LISN)	Schwarzbeck	NSLK 8126	8126453	Feb. 24, 2023			
Line-5	TCT	CE-05	N/A	Jul. 07, 2022			
EMI Test Software	Shurple Technology	EZ-EMC	N/A	N/A			



5.2.3. Test data

Please refer to following diagram for individual

Report No.: TCT220422E049

Conducted Emission on Line Terminal of the power line (150 kHz to 30MHz)

Limit: FCC Part 15C Conduction(QP)

Power: AC 120 V/60 Hz

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBu∨	dB	dBu∨	dBu∨	dB	Detector	Comment
1	*	0.1620	41.28	9.61	50.89	65.36	-14.47	QP	
2		0.1620	23.89	9.61	33.50	55.36	-21.86	AVG	
3		0.2139	34.74	9.55	44.29	63.05	-18.76	QP	
4		0.2139	18.32	9.55	27.87	53.05	-25.18	AVG	
5		0.5380	24.98	9.71	34.69	56.00	-21.31	QP	
6		0.5380	17.66	9.71	27.37	46.00	-18.63	AVG	
7		0.8940	20.09	9.74	29.83	56.00	-26.17	QP	
8		0.8940	11.66	9.74	21.40	46.00	-24.60	AVG	
9		3.7780	28.60	9.89	38.49	56.00	-17.51	QP	
10		3.7780	14.41	9.89	24.30	46.00	-21.70	AVG	
11		11.8940	32.39	9.80	42.19	60.00	-17.81	QP	
12		11.8940	22.90	9.80	32.70	50.00	-17.30	AVG	

Note:

Freq. = Emission frequency in MHz

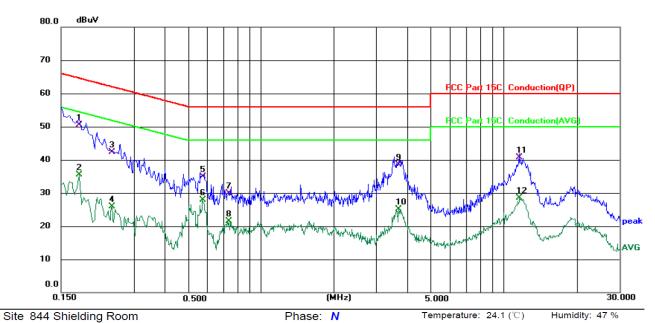
Reading level $(dB\mu V)$ = Receiver reading

Corr. Factor (dB) = LISN factor + Cable loss

Measurement (dB μ V) = Reading level (dB μ V) + Corr. Factor (dB)

Limit (dBµV) = Limit stated in standard

 $Margin (dB) = Measurement (dB\mu V) - Limits (dB\mu V)$


Q.P. =Quasi-Peak

AVG =average

^{*} is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

Conducted Emission on Neutral Terminal of the power line (150 kHz to 30MHz)

Limit: FCC Part 15C Conduction(QP)

Power:	ΔC	120	V//60	Hъ

No. I	Иk. Fre		eading Level	Correct Factor	Measure- ment	Limit	Over		
	MH	Z	dBu∨	dB	dBu∨	dBu∀	dB	Detector	Comment
1 '	0.17	79	40.77	9.72	50.49	64.58	-14.09	QP	
2	0.17	79	25.78	9.72	35.50	54.58	-19.08	AVG	
3	0.24	19	32.75	9.56	42.31	62.03	-19.72	QP	
4	0.24	19	16.29	9.56	25.85	52.03	-26.18	AVG	
5	0.57	38	25.16	9.73	34.89	56.00	-21.11	QP	
6	0.57	38	18.15	9.73	27.88	46.00	-18.12	AVG	
7	0.74	19	20.07	9.74	29.81	56.00	-26.19	QP	
8	0.74	19	11.85	9.74	21.59	46.00	-24.41	AVG	
9	3.71	39	28.80	9.79	38.59	56.00	-17.41	QP	
10	3.71	39	15.41	9.79	25.20	46.00	-20.80	AVG	
11	11.63	00	30.97	9.71	40.68	60.00	-19.32	QP	
12	11.63	00	18.81	9.71	28.52	50.00	-21.48	AVG	

Note:

Freq. = Emission frequency in MHz

Reading level $(dB\mu V)$ = Receiver reading

Corr. Factor (dB) = LISN factor + Cable loss

Measurement $(dB\mu V)$ = Reading level $(dB\mu V)$ + Corr. Factor (dB)

Limit (dBµV) = Limit stated in standard

 $Margin (dB) = Measurement (dB\mu V) - Limits (dB\mu V)$

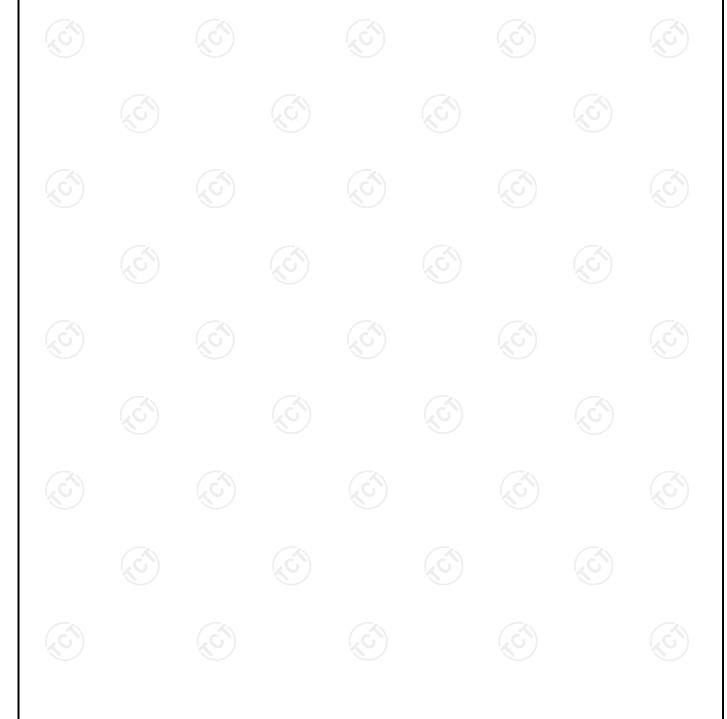
Q.P. =Quasi-Peak

AVG =average

* is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

Measurements were conducted in all three channels (high, middle, low) and all modulation (802.11a, 802.11n(HT20), 802.11n(HT40), 802.11ac(VHT20), 802.11ac(VHT40), 802.11ac(VHT80) and the worst case Mode (Lowest channel and 802.11a) was submitted only.

5.3. Maximum Conducted Output Power


5.3.1. Test Specification

Test Requirement:	FCC Part15 E Section 2.1046	on 15.407(a)& Part 2 J Section				
Test Method:	KDB662911 D01 Multiple Transmitter Output v02r01 KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section E					
	Frequency Band (MHz)	Limit				
	5180 - 5240	24dBm(250mW) for client device				
Limit:	5260 - 5320	24dBm(250mW) or 11 dBm + 10 log B, B is the 26 dB emission bandwidth in megahertz				
	5470 - 5725	24dBm(250mW) or 11 dBm + 10 log B, B is the 26 dB emission bandwidth in megahertz				
	5745 - 5825	30dBm(1W)				
Test Setup:	Power meter	EUT				
Test Mode:	Transmitting mode w	vith modulation				
Test Procedure:	 The testing follows the Measurement Procedure of KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section E, 3, a The RF output of EUT was connected to the power meter by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Measure the conducted output power and record the results in the test report. 					
Test Result:	PASS					
Remark:	+10log(1/x) X is duty	ower= measurement power v cycle=1, so 10log(1/1)=0 ower= measurement power				

5.3.2. Test Instruments

Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jul. 18, 2022
Power Meter	Agilent	E4418B	GB43312526	Jul. 07, 2022
Power Sensor	Agilent	E9301A	MY41497725	Jul. 07, 2022
Combiner Box	Ascentest	AT890-RFB	N/A	Jul. 07, 2022

5.4. 6dB Emission Bandwidth

5.4.1. Test Specification

Test Requirement:	FCC CFR47 Part 15 Section 15.407(e)& Part 2 J Section 2.1049
Test Method:	KDB662911 D01 Multiple Transmitter Output v02r01 KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section C
Limit:	>500kHz
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Transmitting mode with modulation
Test Procedure:	 KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section C Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6dB bandwidth must be greater than 500 kHz. Measure and record the results in the test report.
Test Result:	PASS

5.4.2. Test Instruments

Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jul. 18, 2022
Combiner Box	Ascentest	AT890-RFB	N/A	Jul. 07, 2022

Page 16 of 165

5.5. 26dB Bandwidth and 99% Occupied Bandwidth

5.5.1. Test Specification

47 CFR Part 15C Section 15.407 (a)& Part 2 J Section 2.1049
KDB662911 D01 Multiple Transmitter Output v02r01 KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section D
No restriction limits
Spectrum Anabasa EUT
Spectrum Analyzer
Transmitting mode with modulation
 KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section D Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 1% to 5% of the OBW. Set the Video bandwidth (VBW) = 3 *RBW. In order to make an accurate measurement. Measure and record the results in the test report.
PASS

5.5.2. Test Instruments

Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jul. 18, 2022
Combiner Box	Ascentest	AT890-RFB	N/A	Jul. 07, 2022

Page 17 of 165

5.6. Power Spectral Density

5.6.1. Test Specification

Test Requirement:	FCC Part15 E Section 15.407 (a)
Test Method:	KDB662911 D01 Multiple Transmitter Output v02r01 KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section F
Limit:	≤11.00dBm/MHz for Band 1 5150MHz-5250MHz(client device) ≤11.00dBm/MHz for Band 2A&2C 5250-5350&5470-5725 ≤30.00dBm/500KHz for Band 3 5725MHz-5850MHz The e.i,r,p spectral density for Band 1 5150MHz – 5250 MHz should not exceed 10dBm/MHz
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Transmitting mode with modulation
Test Procedure:	 Set the spectrum analyzer or EMI receiver span to view the entire emission bandwidth. Set RBW = 510 kHz/1 MHz, VBW ≥ 3*RBW, Sweep time = Auto, Detector = RMS. Allow the sweeps to continue until the trace stabilizes. Use the peak marker function to determine the maximum amplitude level. The E.I.R.P spectral density used radiated test method. At a test site that has been validated using the procedures of ANSI C63.4 or the latest CISPR 16-1-4 for measurements above 1 GHz, so as to simulate a near free-space environment.
Test Result:	PASS

5.6.2. Test Instruments

Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jul. 18, 2022
Combiner Box	Ascentest	AT890-RFB	N/A	Jul. 07, 2022

5.7. Band edge

5.7.1. Test Specification

Test Requirement:	FCC CFR47 Pa	rt 15E Sectio	n 15.407	(c)
Test Method:	ANSI C63.10 20	013		
	In un-restricted ba For Band 1&2A&2 For Band 3:		lz	(6)
	Frequency (MHz)	Limit (dBm/MHz)	Frequency (MHz)	Limit (dBm/MHz)
	< 5650	-27	5850~5855	27~15.6
Limit:	5650~5700	-27~10	5855~5875	15.6~10
	5700~5720	10~15.6	5875~5925	10~-27
	$\frac{5720\sim5725}{E[dB\mu V/m]=EIR}$		> 5925 ? @3m	-27
	In restricted band			
	Detec		Limit@	
	Peal		74dBµ 54dBµ	
Test Setup:	80 cm	Ground Reference Pa	Artific Contolor	, AND
Test Mode:	Transmitting mo	de with mode	ulation	
Test Procedure:	1. The EUT was meters above the was rotated 360 highest radiation 2. The EUT was interference-received the top of a variance of the field polarizations of measurement. 4. For each susto its worst case heights from 1 received from 0 demaximum readiance. 5. The test-received from and Specific from and	ne ground at a degrees to degree to degr	a 3 meter cambed as away from the part of	per. The table position of the position of the mounted on eter to four maximum and vertical ethe pass arranged tuned to table was ad the contact table was additionally and table was additionally

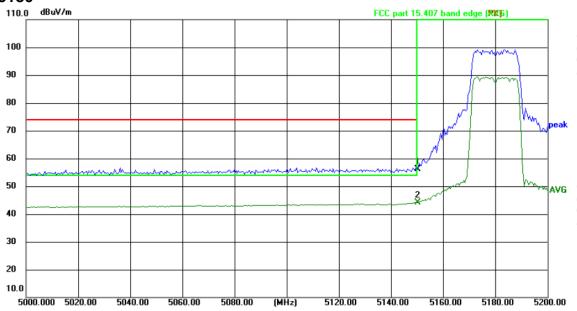
Report No.: TCT220422E049

Mode.

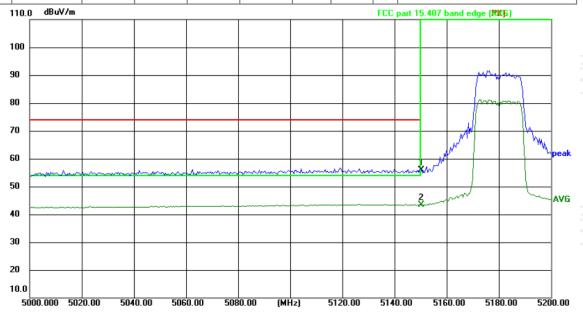
Report No.: TCT220422E049

6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be

	reported 10dB m quasipe	Γ would be did not hav one using	d not have ne using peak,			
Result:	PASS					
		reported 10dB m quasiped reported PASS	reported. Otherwis 10dB margin woul quasipeak or average reported in a data. Result: PASS One of the wist of the work of the part of the	stopped and the peak values reported. Otherwise the emis 10dB margin would be re-tes quasipeak or average methor reported in a data sheet. PASS Result: PASS	stopped and the peak values of the EU reported. Otherwise the emissions that 10dB margin would be re-tested one by quasipeak or average method as specif reported in a data sheet. PASS Result: PASS	PASS


5.7.2. Test Instruments

	Radiated Er	nission Test Sit	e (966)	
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
EMI Test Receiver	R&S	ESIB7	100197	Jul. 07, 2022
Spectrum Analyzer	R&S	FSQ40	200061	Jul. 07, 2022
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jul. 18, 2022
Pre-amplifier	SKET	LNPA_0118G- 45	SK202101210 2	Feb. 24, 2023
Pre-amplifier	SKET	LNPA_1840G- 50	SK202109203 500	Feb. 24, 2023
Pre-amplifier	HP	8447D	2727A05017	Jul. 07, 2022
Loop antenna	ZHINAN	ZN30900A	12024	Sep. 05, 2022
Broadband Antenna	Schwarzbeck	VULB9163	340	Sep. 04, 2022
Horn Antenna	Schwarzbeck	BBHA 9120D	631	Sep. 04, 2022
Horn Antenna	Schwarzbeck	BBHA 9170	00956	Apr. 10, 2023
Coaxial cable	SKET	RC_DC18G-N	N/A	Feb. 24, 2023
Coaxial cable	SKET	RC-DC18G-N	N/A	Feb. 24, 2023
Coaxial cable	SKET	RC-DC40G-N	N/A	Jul. 07, 2022
Antenna Mast	Keleto	CC-A-4M	N/A	N/A
EMI Test Software	Shurple Technology	EZ-EMC	N/A	N/A


5.7.3. Test Data AC20-5180

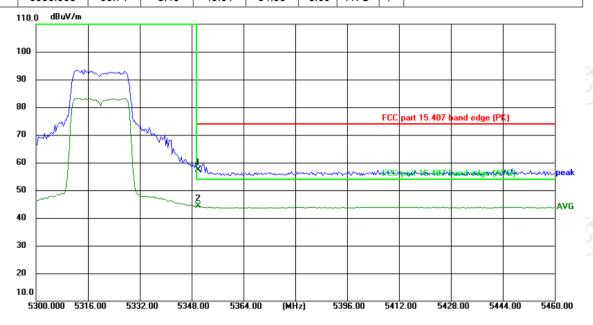
Site Polarization: Horizontal Temperature: 24(℃)

✓ Limit: FCC part 15.407 band edge (PK) Power: DC 3.8 V Humidity: 52 %

	•								
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1	5150.000	64.72	-8.48	56.24	74.00	-17.76	peak	Р	
2 *	5150.000	52.71	-8.48	44.23	54.00	-9.77	AVG	Р	

Site Polarization: Vertical Temperature: 24(°C)
Limit: FCC part 15.407 band edge (PK) Power: DC 3.8 V Humidity: 52 %

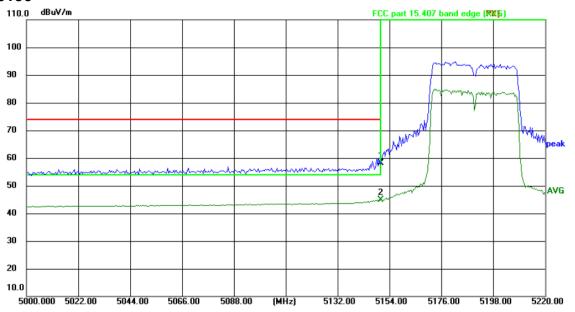
No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1	5150.000	64.36	-8.48	55.88	74.00	-18.12	peak	Р	
2 *	5150.000	51.79	-8.48	43.31	54.00	-10.69	AVG	Р	



AC20-5320

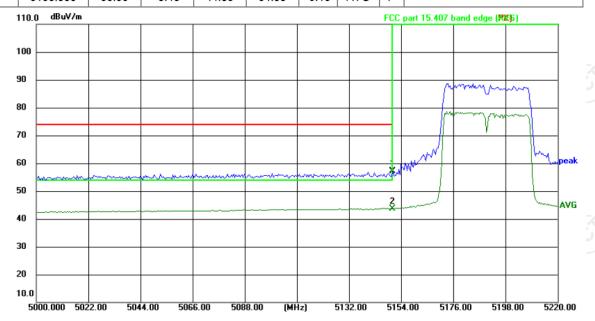
Site Polarization: Horizontal Temperature: 24($^{\circ}$ C) Limit: FCC part 15.407 band edge (PK) Power: DC 3.8 V Humidity: 52 %

	No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
	1	5350.000	68.31	-8.40	59.91	74.00	-14.09	peak	Р	
ľ	2 *	5350 000	53 71	-8 40	45.31	54 00	-8 69	AVG	Р	



Site Polarization: Vertical Temperature: 24($^{\circ}$ C) Limit: FCC part 15.407 band edge (PK) Power: DC 3.8 V Humidity: 52 %

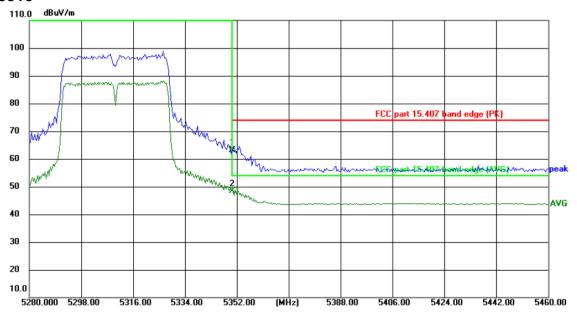
N	lo.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)		Margin (dB)	Detector	P/F	Remark
1	1	5350.000	65.88	-8.40	57.48	74.00	-16.52	peak	Р	
2	*	5350.000	52.76	-8.40	44.36	54.00	-9.64	AVG	Р	



AC40-5190

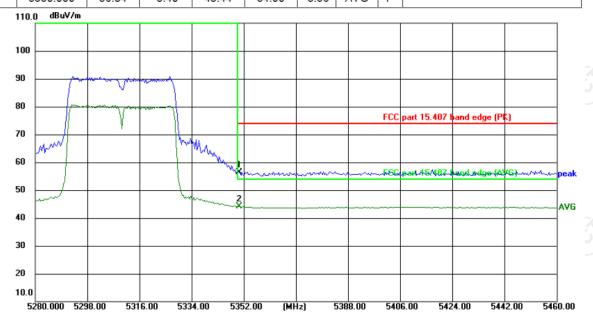
Site Polarization: Horizontal Temperature: 24($^{\circ}$ C) Limit: FCC part 15.407 band edge (PK) Power: DC 3.8 V Humidity: 52 %

	No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
	1	5150.000	66.58	-8.48	58.10	74.00	-15.90	peak	Р	
Γ	2 *	5150.000	53.33	-8.48	44.85	54.00	-9.15	AVG	Р	



Site Polarization: Vertical Temperature: 24($^{\circ}$ C) Limit: FCC part 15.407 band edge (PK) Power: DC 3.8 V Humidity: 52 %

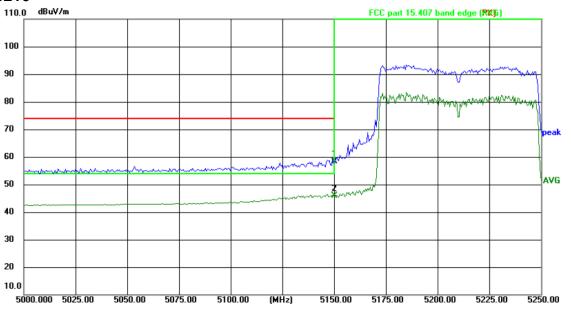
No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1	5150.000	65.55	-8.48	57.07	74.00	-16.93	peak	Р	
2 *	5150.000	52.14	-8.48	43.66	54.00	-10.34	AVG	Р	



AC40-5310

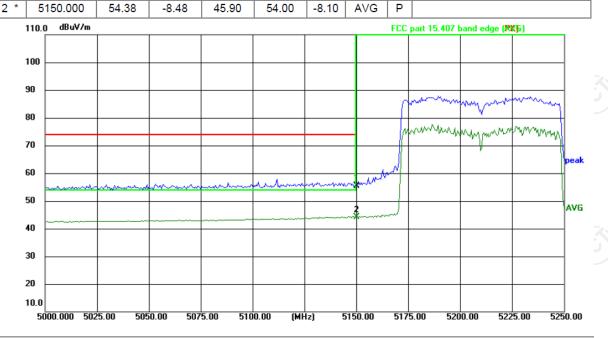
Site Polarization: Horizontal Temperature: 24($^{\circ}$ C) Limit: FCC part 15.407 band edge (PK) Power: DC 3.8 V Humidity: 52 %

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)		Margin (dB)	Detector	P/F	Remark
1	5350.000	71.65	-8.40	63.25	74.00	-10.75	peak	Р	
2 *	5350 000	56.84	-8 40	48 44	54.00	-5.56	A\/G	Р	



Site Polarization: Vertical Temperature: $24(^{\circ}C)$ Limit: FCC part 15.407 band edge (PK) Power: DC 3.8 V Humidity: 52%

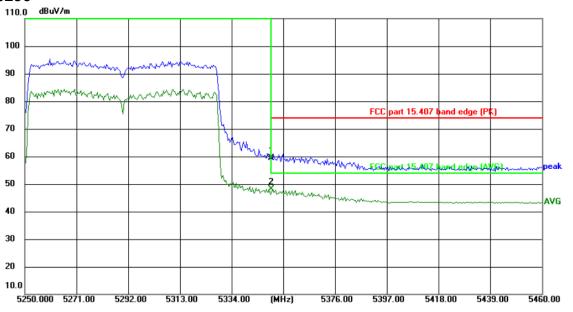
No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)		Margin (dB)	Detector	P/F	Remark
1	5350.000	64.83	-8.40	56.43	74.00	-17.57	peak	Р	
2 *	5350.000	52.42	-8.40	44.02	54.00	-9.98	AVG	Р	



AC80-5210

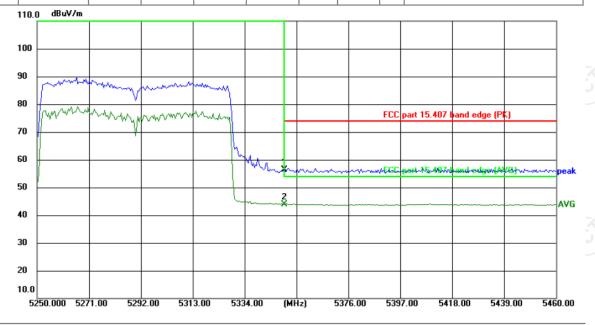
Site Polarization: Horizontal Temperature: 24($^{\circ}$ C) Limit: FCC part 15.407 band edge (PK) Power: DC 3.8 V Humidity: 52 %

Frequency Reading Factor Level Limit Margin Detector P/F No. Remark (dB/m) (dBuV/m) | (dBuV/m) | (dB)(MHz) (dBuV) 5150.000 66.88 58.40 -8.48 74.00 -15.60 Ρ 1 peak



Site Polarization: Vertical Temperature: $24(^{\circ}\text{C})$ Limit: FCC part 15.407 band edge (PK) Power: DC 3.8 V Humidity: 52%

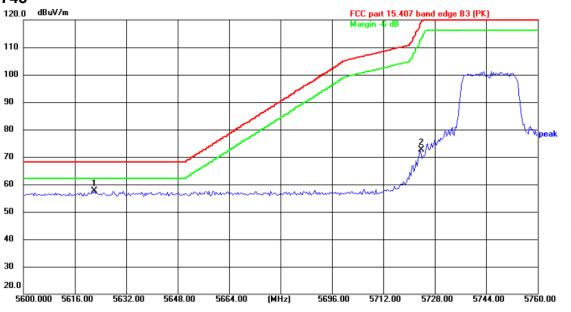
No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)		Margin (dB)	Detector	P/F	Remark
1	5150.000	63.98	-8.48	55.50	74.00	-18.50	peak	Р	
2 *	5150.000	52.60	-8.48	44.12	54.00	-9.88	AVG	Р	


AC80-5290

Site Polarization: Horizontal Temperature: 24(°C)

Limit: FCC part 15.407 band edge (PK) Power: DC 3.8 V Humidity: 52 %

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1	5350.000	67.86	-8.40	59.46	74.00	-14.54	peak	Р	
2 *	5350.000	56.47	-8.40	48.07	54.00	-5.93	AVG	Р	



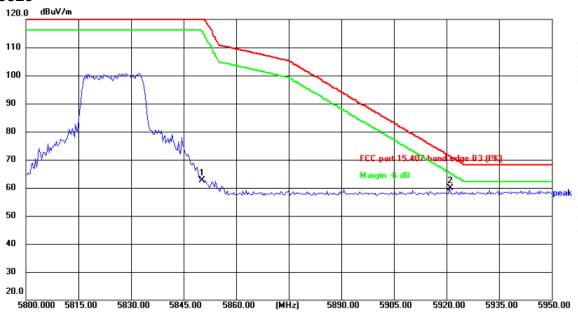
Site Polarization: Vertical Temperature: 24($^{\circ}$ C) Limit: FCC part 15.407 band edge (PK) Power: DC 3.8 V Humidity: 52 %

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1	5350.000	64.72	-8.40	56.32	74.00	-17.68	peak	Р	
2 *	5350.000	52.31	-8.40	43.91	54.00	-10.09	AVG	Р	

AC20-5745

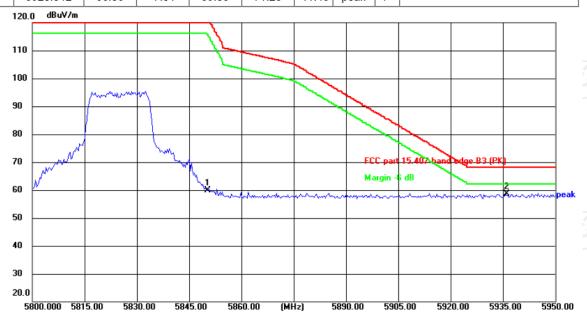
Site Polarization: Horizontal Temperature: 24(°C)
Limit: FCC part 15.407 band edge B3 (PK) Power: DC 3.8 V Humidity: 52 %

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)		Margin (dB)	Detector	P/F	Remark
1 *	5622.124	65.64	-7.95	57.69	68.20	-10.51	peak	Р	
2	5723.447	80.19	-7.63	72.56	118.66	-46.10	peak	Р	



Site Polarization: Vertical Temperature: 24($^{\circ}$ C) Limit: FCC part 15.407 band edge B3 (PK) Power: DC 3.8 V Humidity: 52 %

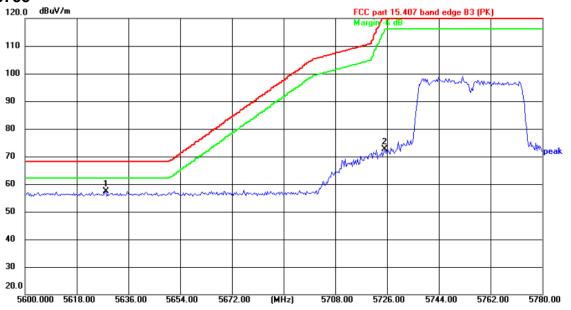
No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1 *	5635.271	65.63	-7.91	57.72	68.20	-10.48	peak	Р	
2	5725.000	77.06	-7.63	69.43	122.20	-52.77	peak	Р	



AC20-5825

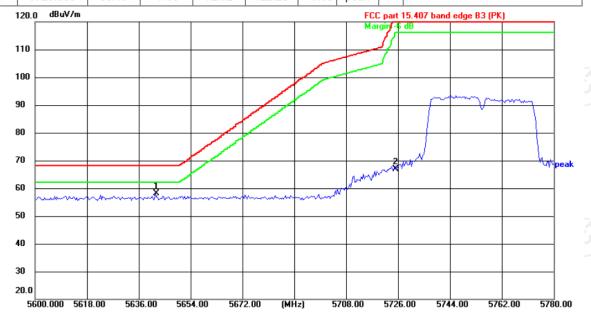
Site Polarization: Horizontal Temperature: 24(°C)
Limit: FCC part 15.407 band edge B3 (PK) Power: DC 3.8 V Humidity: 52 %

₹.										
	No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
	1	5850.000	69.83	-7.23	62.60	122.20	-59.60	peak	Р	
	2 *	5920.842	66.86	-7.01	59.85	71.28	-11.43	peak	Р	



Site Polarization: Vertical Temperature: 24($^{\circ}$) Limit: FCC part 15.407 band edge B3 (PK) Power: DC 3.8 V Humidity: 52 %

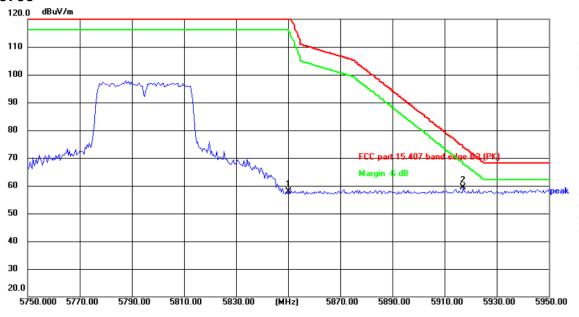
No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1	5850.000	67.01	-7.23	59.78	122.20	-62.42	peak	Р	
2 *	5935.872	65.50	-6.96	58.54	68.20	-9.66	peak	Р	



AC40-5755

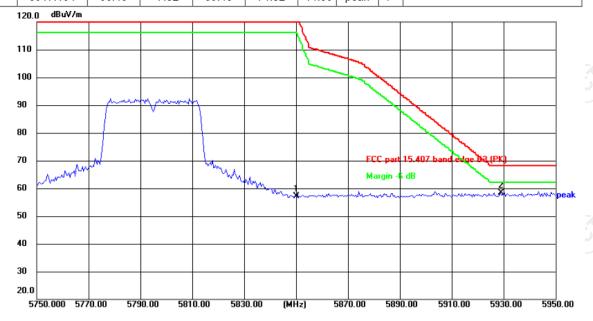
Site Polarization: Horizontal Temperature: 24($^{\circ}$ C) Limit: FCC part 15.407 band edge B3 (PK) Power: DC 3.8 V Humidity: 52 %

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1 *	5628.136	65.39	-7.94	57.45	68.20	-10.75	peak	Р	
2	5725.000	80.15	-7.63	72.52	122.20	-49.68	peak	Р	



Site Polarization: Vertical Temperature: 24(°C)
Limit: FCC part 15.407 band edge B3 (PK) Power: DC 3.8 V Humidity: 52 %

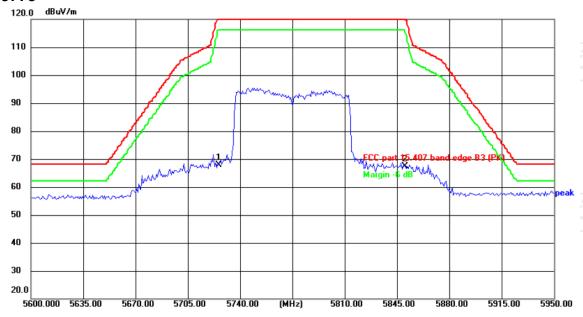
No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1 *	5641.844	66.11	-7.89	58.22	68.20	-9.98	peak	Р	
2	5725.000	74.62	-7.63	66.99	122.20	-55.21	peak	Р	



AC40-5795

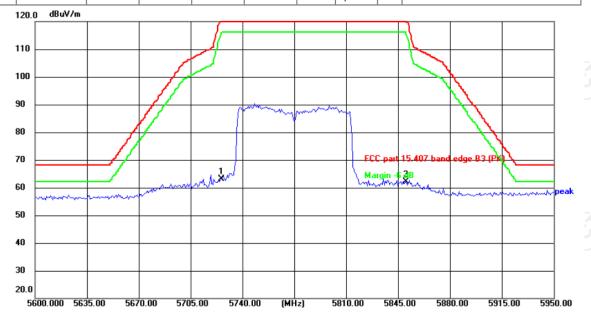
Site Polarization: Horizontal Temperature: 24($^{\circ}$) Limit: FCC part 15.407 band edge B3 (PK) Power: DC 3.8 V Humidity: 52 %

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)		Margin (dB)	Detector	P/F	Remark
1	5850.000	65.01	-7.23	57.78	122.20	-64.42	peak	Р	
2 *	5917.134	66.45	-7.02	59.43	74.02	-14.59	peak	Р	



Site Polarization: Vertical Temperature: $24(^{\circ}\text{C})$ Limit: FCC part 15.407 band edge B3 (PK) Power: DC 3.8 V Humidity: 52 %

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1	5850.000	64.41	-7.23	57.18	122.20	-65.02	peak	Р	
2 *	5928.758	65.30	-6.98	58.32	68.20	-9.88	peak	Р	


AC80-5775

Site Polarization: Horizontal Temperature: 24(°C)
Limit: FCC part 15.407 band edge B3 (PK) Power: DC 3.8 V Humidity: 52 %

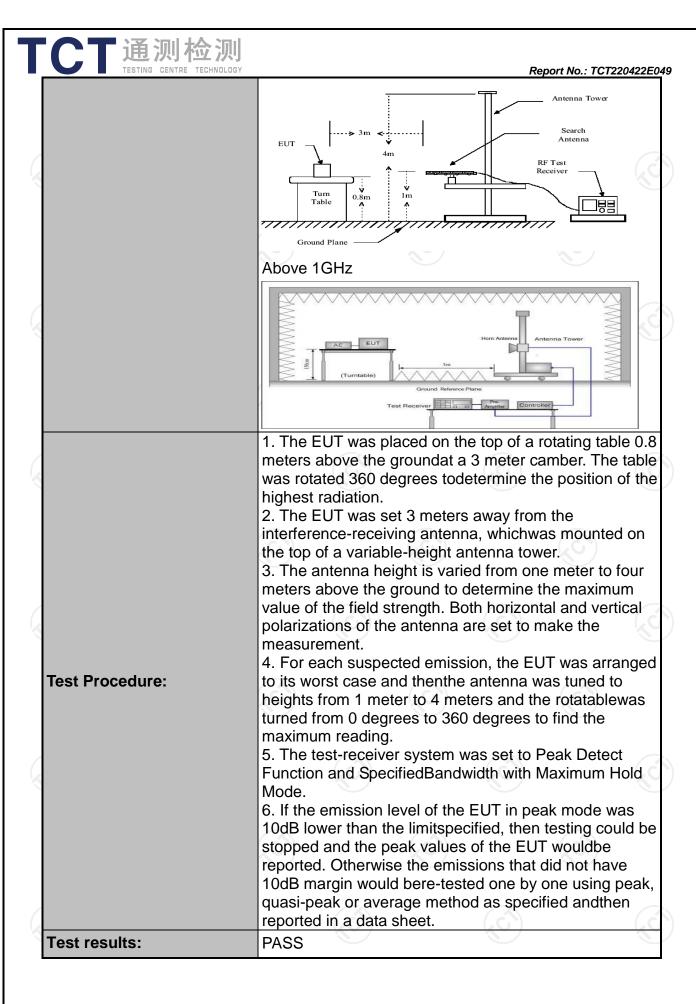
Frequency Reading Factor Level Limit Margin

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1 *	5725.000	75.39	-7.63	67.76	122.20	-54.44	peak	Р	
2	5850.000	74.60	-7.23	67.37	122.20	-54.83	peak	Р	

Site Polarization: Vertical Temperature: 24($^{\circ}$ C) Limit: FCC part 15.407 band edge B3 (PK) Power: DC 3.8 V Humidity: 52 %

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1 *	5725.000	70.70	-7.63	63.07	122.20	-59.13	peak	Р	
2	5850.000	69.33	-7.23	62.10	122.20	-60.10	peak	Р	

Note: All modulation (802.11a, 802.11n, 802.11ac) have been tested, only the worst case in 802.11ac be reported.

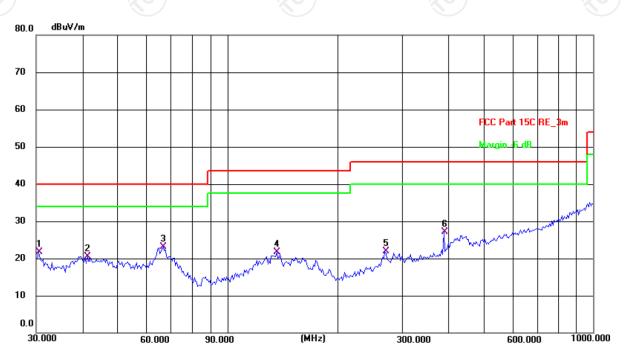

TESTING CENTRE TECHNOLOGY

Report No.: TCT220422E049

5.8. Unwanted Emissions

5.8.1. Test Specification

	FCC CFR47 Part 15 Section 15.407 & 15.209 & 15.20							
Test Method:	KDB 789033 D02 v02r01							
Frequency Range:	9kHz to 40GHz							
Measurement Distance:	3 m							
Antenna Polarization:	Horizontal & Vertical							
Operation mode:	th modulat	ulation						
	Frequency 9kHz- 150kHz	Detector Quasi-pea		VBW 1kHz	Remark Quasi-peak Value			
Receiver Setup:	150kHz- 30MHz	Quasi-pea		30kHz	Quasi-peak Value			
·	30MHz-1GHz	Quasi-pea	k 120KHz	300KHz	Quasi-peak Value			
	Above 1GHz	Peak	1MHz	3MHz	Peak Value			
		Peak	1MHz	10Hz	Average Value			
	Frequency Above 1G		Detec Pea AVC	K	74dBµV/m 54dBµV/m			
	below table, In restricted	tor	Limit@3m					
	Above 1G							
Limit:	Frequency		Field Strengtl (microvolts/m		Measurement Distance (meters)			
	0.009-0.490		2400/F(KHz)		300			
	0.490-1.705		24000/F(KHz		3			
	1.705-30		30		30			
			100		3			
	30-88		150		3			
	88-216		150 200		3			
			150 200 500		3 3 3			
	88-216 216-960	ed bands	200 500	//m	3			
	88-216 216-960 Above 960	-11	200 500 s: 68.2dBu\		3			
	88-216 216-960 Above 960 In un-restrict For radiated	-11	200 500 s: 68.2dBu\		3			
	88-216 216-960 Above 960 In un-restrict For radiated	emission	200 500 s: 68.2dBu\		3 3			
Test setup:	88-216 216-960 Above 960 In un-restrict For radiated	emission	200 500 s: 68.2dBu\		Computer Pre-Amplifier			
Test setup:	88-216 216-960 Above 960 In un-restrict For radiated	emission Distance = 3m Turn table	200 500 s: 68.2dBu\ s below 30		Computer			



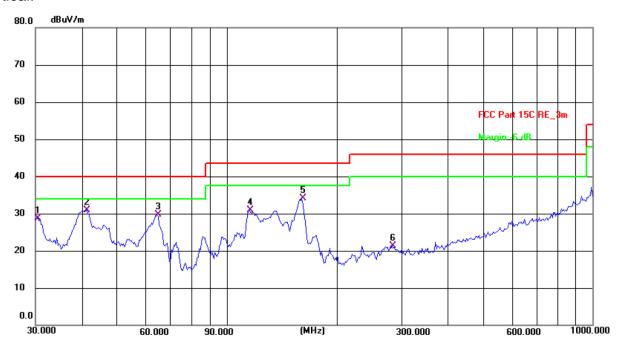
5.8.2. Test Data

Please refer to following diagram for individual

Below 1GHz

Horizontal:

Site #1 3m Anechoic Chamber Polarization: Horizontal Temperature: 24.3(C) Humidity: 45 %


Limit: FCC Part 15C RE_3m Power: DC 3.8 V

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1	30.4238	9.27	12.47	21.74	40.00	-18.26	QP	Р	
2	41.4215	6.91	13.69	20.60	40.00	-19.40	QP	Р	
3 *	66.7325	11.71	11.32	23.03	40.00	-16.97	QP	Р	
4	136.4598	9.21	12.46	21.67	43.50	-21.83	QP	Р	
5	269.4284	9.18	12.69	21.87	46.00	-24.13	QP	Р	
6	390.7226	11.27	15.82	27.09	46.00	-18.91	QP	Р	

Vertical:

Humidity: 45 % Site #1 3m Anechoic Chamber Polarization: Vertical Temperature: 24.3(C)

Limit: FCC Part 15C RE_3m Power: DC 3.8 V									
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1	30.2111	16.29	12.43	28.72	40.00	-11.28	QP	Р	
2 *	41.4215	17.13	13.69	30.82	40.00	-9.18	QP	Р	
3	64.4331	18.15	11.61	29.76	40.00	-10.24	QP	Р	
4	115.3205	19.73	11.20	30.93	43.50	-12.57	QP	Р	
5	160.3456	20.75	13.35	34.10	43.50	-9.40	QP	Р	
6	282.9852	8.26	13.14	21.40	46.00	-24.60	QP	Р	

Note: 1.The low frequency, which started from 9KHz~30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported

- 2. Measurements were conducted in all three channels (high, middle, low) and all modulation (802.11a, 802.11n(HT20), 802.11n(HT40), 802.11ac(VHT20), 802.11ac(VHT40), 802.11ac(VHT80) and the worst case Mode (Lowest channel and 802.11a) was submitted only.
- 3.Measurement (dBµV) = Reading level + Correction Factor , correction Factor = Antenna Factor + Cable loss -Pre-amplifier.

			N	lodulation T	ype: Band	1			
				11a CH36:	•				
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correctio n Factor (dB/m)		οn Level AV (dBμV/m)	Peak limit (dBµV/m)		Margin (dB)
10360	Н	38.11		8.02	46.13	(abp 1/)	68.2		-22.07
15540	- 1	38.46		9.87	48.33		74	54	-5.67
	(H)		-4,0			G`)		(.6.)	
				/					
10360	V	38.04		8.02	46.06		68.2		-22.14
15540	V	38.78		9.87	48.65		7 4	54	-5.35
				11a CH40:	5200MHz				
Frequency		Peak reading	AV reading	Correctio n Factor	Emissio	n Level	Peak limit		Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
10400	H	39.97		7.97	47.94	<u> </u>	68.2		-20.26
15600	Н	38.43		9.83	48.26		74	54	-5.74
	Н								
10400	V	40.78		7.97	48.75		68.2		-19.45
15600	V	38.06		9.83	47.89		74	54	-6.11
	V								
				11a CH48:	5240MHz				
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction n Factor (dB/m)	Emissic Peak	on Level	Peak limit (dBµV/m)		Margin (dB)
		(αΒμν)	(ασμν)	(dB/III)	(dBµV/m)	(dBµV/m)			
10480	Н	38.34		7.97	46.31		68.2		-21.89
15720	Н	37.89		9.83	47.72		74	54	-6.28
	Н								
				in the second			1		
10480	V	38.69	-t,G	7.97	46.66	G')	68.2		-21.54
15720	V	36.44		9.83	46.27	<u></u>	74	54	-7.73
	V			// ITOO\ O!					
				·	136: 5180M	HZ			
Frequency (MHz)	Ant. Pol. H/V	Peak reading	AV reading	Correction n Factor	Emissio	n Level	Peak limit (dBµV/m)		Margin (dB)
(IVII IZ)	Γ1/ V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(ασμν/ιιι)	(ασμ ν/ιτι)	(ub)
10360	H	41.27		8.02	49.29		68.2		-18.91
15540	(H)	37.55	770	9.87	47.42	<u> </u>	74	54	-6.58
	H								
10360	V	42.33		8.02	50.35		68.2		-17.85
15540	V	37.95		9.87	47.82		74	54	-6.18
	V								

10460

15690

1-11

٧

٧

٧

41.72

38.92

Report No.: TCT220422E049 11n(HT20) CH40: 5200MHz ΑV Peak Correctio **Emission Level** Ant. Pol. Peak limit **AV limit** Margin Frequency reading n Factor reading (MHz) H/V (dBµV/m) $(dB\mu V/m)$ (dB) ΑV (dBµV) (dBµV) (dB/m) Peak (dBµV/m) $(dB\mu V/m)$ 10400 Н 40.83 7.97 48.8 68.2 -19.4 15600 Η 38.56 9.83 ---48.39 ---74 54 -5.61Н ------10400 V 40.47 7.97 48.44 68.2 -19.76 15600 37.98 9.83 47.81 74 54 -6.19٧ ----------------------------11n(HT20) CH48: 5240MHz A۷ Peak Correctio **Emission Level** Peak limit Frequency Ant. Pol. **AV limit** Margin reading reading n Factor (MHz) H/V (dBµV/m) $(dB\mu V/m)$ (dB) Peak ΑV (dBµV) (dBµV) (dB/m) (dBµV/m) $(dB\mu V/m)$ 10480 Н 41.72 7.97 49.69 68.2 ----18.51 Н 15720 39.92 9.83 49.75 74 54 -4.25Н ---------------------------10480 40.85 7.97 68.2 48.82 -19.3815720 ٧ 39.46 ---9.83 49.29 ---74 54 -4.71٧ 11n(HT40) CH38: 5190MHz Peak AVCorrectio **Emission Level** Ant. Pol. Peak limit **AV** limit Frequency Margin n Factor reading reading (MHz) H/V (dBµV/m) (dBµV/m) (dB) Peak ΑV (dBµV) (dBµV) (dB/m) (dBµV/m) (dBµV/m) 10380 Н 39.97 7.75 47.72 68.2 -20.48 ---15570 Н 37.81 9.87 47.68 74 54 -6.32Η 10380 40.76 7.75 48.51 68.2 -19.6915570 V 37.99 9.87 -4-47.86 4--74 54 -6.14 V 11n(HT40) CH46: 5230MHz Peak ΑV Correctio **Emission Level** Peak limit Ant. Pol. **AV limit** Frequency Margin reading reading n Factor (MHz) H/V (dBµV/m) $(dB\mu V/m)$ (dB) ΑV (dBµV) Peak (dBµV) (dB/m) (dBµV/m) (dBµV/m) 10460 Η 41.87 7.97 49.84 68.2 -18.36Н 38.24 15690 9.83 48.07 ---\---74 54 -5.93 H 1... M

-18.51

-5.25

7.97

9.83

49.69

48.75

68.2

74

54

		CENTRE TECHNO	_				Rep	oort No.: TCT	220422E04
			11ac	(VHT20) C	H36: 5180	MHz			
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correctio n Factor (dB/m)	Emission Peak (dBµV/m)	on Level ΑV (dBμV/m)	Peak limit (dBµV/m)		Margin (dB)
10360	Н	40.76		8.02	48.78		68.2		-19.42
15540	Н	37.95		9.87	47.82		74	54	-6.18
	Н								
10360	V	38.77	- (, C)	8.02	46.79	G `}	68.2	$(-\Theta)$	-21.41
15540	V	39.46		9.87	49.33	<u> </u>	74	54	-4.67
	V								
			11ac	(VHT20) C	H40: 5200I	MHz			
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correctio n Factor (dB/m)	Peak	on Level	Peak limit (dBµV/m)		Margin (dB)
	- //				(dBµV/m)	(dBµV/m)			
10400	H	39.99		7.97	47.96	<u></u>	68.2		-20.24
15600	H	38.74		9.83	48.57)	74	54	-5.43
	Н								
				1	IF	1		1	
10400	V	39.52		7.97	47.49		68.2		-20.71
15600	V	38.23		9.83	48.06		74	54	-5.94
	V								
				1ac(VHT20)) CH48:524	10			
Frequency	Ant. Pol. H/V	Peak reading	AV reading	Correction n Factor	Emissio	on Level	Peak limit (dBµV/m)		Margin
(MHz)	Γ1/ V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(ασμν/ιιι)	(dBµV/m)	(dB)
10480	Н	37.42		7.97	45.39		68.2		-22.81
15720	Н	37.75		9.83	47.58		74	54	-6.42
	Η				/				
10480	V	38.94		7.97	46.91		68.2		-21.29
15720	V	38.72	- f .G	9.83	48.55		74	54	-5.45
	V			/	<	<u></u>			
			1′	1ac(VHT40) CH38:519	90			
Frequency	Ant. Pol.	Peak reading	AV reading	Correctio n Factor	Emissio	on Level	Peak limit		Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	ΑV (dBμV/m)	(dBµV/m)	(dBµV/m)	(dB)
10380	Н	40.86		7.75	48.61		68.2		-19.59
15570	H	39.52	(X	9.87	49.39	<u> </u>	74	54	-4.61
	(H)		770)	(0)		(Ω)	
10380	V	38.36		7.75	46.11		68.2		-22.09
15570	V	38.99		9.87	48.86		74	54	-5.14
(202)	V	(-0)		(, ()		(C)		

			11	1ac(VHT40) CH46:523	30	-1	, , , , , , , , , , , , , , , , , , ,	
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correctio n Factor (dB/m)	Emission Peak (dBµV/m)	on Level ΑV (dBμV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
10460	Н	38.88		7.97	46.85		68.2		-21.35
15690	Н	38.51		9.83	48.34		74	54	-5.66
	Н								
					/				
10460	V	39.47	-120	7.97	47.44	O')	68.2	(2 G-)	-20.76
15690	V	37.83		9.83	47.66	<u> </u>	74	54	-6.34
	V								
			11	1ac(VHT80) CH42:521	0			
Frequency (MHz)	Ant. Pol. H/V	Peak reading	AV reading	Correctio n Factor		on Level	Peak limit	AV limit (dBµV/m)	Margin (dB)
(1011 12)	1 1/ V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(ασμν/ιιι)	(αΒμ ۷/111)	(ub)
10420	H	41.25	- + 6	7.96	49.21		68.2		-18.99
15630	H	39.84		9.84	49.68)	74	54	-4.32
	Н								
1				ī	La	ı	00.0		
10420	V	41.96		7.96	49.92		68.2		-18.28
10420 15630	V	41.96 39.67		7.96 9.84	49.92 49.51		68.2 74	 54	-18.28 -4.49

Note:

- 1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss Pre-amplifier
- 2. Margin (dB) = Emission Level (Peak) (dB μ V/m)-Average limit (dB μ V/m)
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency. The highest test frequency is 40GHz.
- 5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

			Me		ype: Band 2	2A			
Frequency	Ant. Pol.	Peak reading	AV reading	Correction n Factor	Emissio	on Level	Peak limit	AV limit	Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	ΑV (dBμV/m)	(dBµV/m)	(dBµV/m)	(dB)
10520	Н	38.19		7.97	46.16		68.2		-22.04
15780	Н	36.82		9.83	46.65	-X\	74	54	-7.35
	(H)		-{20)	(())		(\bullet)	
10700	.,	44.00							
10520	V	41.38		7.97	49.35		68.2		-18.85
15780	V	38.74		9.83	48.57		74	54	-5.43
				•	: 5300MHz				
Frequency		Peak reading	AV reading	Correction n Factor	Emissio	on Level	Peak limit		Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
10600	H	38.58		7.98	46.56	·)	74	54	-7.44
15900	Н	38.62		9.85	48.47		74	54	-5.53
	Н								
	3							-	
10600	V	39.34		7.98	47.32		74	54	-6.68
15900	V	37.89		9.85	47.74		74	54	-6.26
	V								
				11a CH64:	: 5320MHz				
Frequency		Peak reading	AV reading	Correctio n Factor	Emissio	n Level	Peak limit	AV limit	Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	ΑV (dBμV/m)	(dBµV/m)	(dBµV/m)	(dB)
10640	Н	40.03		7.98	48.01		. 74	54	-5.99
15960	Н	37.42		9.85	47.27		74	54	-6.73
	Н								
							<u> </u>		
10640	V	39.56		7.98	47.54		74	54	-6.46
15960	V	35.97		9.85	45.82	<u></u>	74	54	-8.18
	V								
			11	n(HT20) C	52: 5260MF	-lz			
Frequency	Ant. Pol.	Peak	AV	Correctio		on Level	Peak limit	AV limit	Margin
(MHz)	H/V	reading (dBµV)	reading (dBµV)	n Factor (dB/m)	Peak	AV	(dBµV/m)	(dBµV/m)	(dB)
		(иБру)	(ασμν)	(ub/III)	(dBµV/m)				
10520	H	41.03		7.97	49	<u> </u>	68.2	(K)	-19.2
15780	(H)	38.06	770	9.83	47.89	<u> </u>	74	54	-6.11
	Ħ								
10520	V	38.45		7.97	46.42		68.2		21.70
15780	V	35.76		9.83	46.42				-21.78
15780	V	35.76			45.59 		74 	54 	-8.41
	V								

		火儿 TVK 化	-				_	No TOT	000400504
	IESTING	CENTRE TECHNO		n(HT20) CH	160: 5300M	Hz	Rej	oort No.: TCT	22U422E04
Frequency (MHz)	Ant. Pol. H/V	Peak reading	AV reading	Correctio n Factor		on Level	Peak limit (dBµV/m)		Margin (dB)
		(dBµV)	(dBµV)	(dB/m)	(dBµV/m)	(dBµV/m)			
10600	Н	38.67		7.98	46.65		74	54	-7.35
15900	Н	37.86		9.85	47.71		74	54	-6.29
	Н								
10600	V	40.56	-4.6	7.98	48.54	G \	74	54	-5.46
15900	V	39.52		9.85	49.37	<u></u>	74	54	-4.63
	V								
	V			n(HT20) CH					
		Peak	AV	Correctio					
Frequency	Ant. Pol.	reading	reading	n Factor	Emissio	on Level	Peak limit		Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak	AV (dD::V/(ss)	(dBµV/m)	(dBµV/m)	(dB)
10010	- 16	07.74		7.00	(dBµV/m)		7.4	(54)	
10640	H	37.74	7,0	7.98	45.72	<u>()</u>	74	54	-8.28
15960	H	35.96		9.85	45.81	/	74	54	-8.19
	Н								
10640	V	39.44		7.98	47.42		74	54	-6.58
15960	V	39.69		9.85	49.54		74	54	-4.46
	V								
	•		11r	n(HT40) CH	154: 5270M	Hz			
	Ant. Pol.	Peak	AV	Correctio		on Level	Daalalinsit	A) / lima i4	N.A
Frequency (MHz)	H/V	reading	reading	n Factor			Peak limit (dBµV/m)		Margin (dB)
(1711 12)	1 1/ V	(dBµV)	(dBµV)	(dB/m)	Peak	AV	(αΒμ ۷/111)	(αΒμ ۷/111)	(GD)
					(dBµV/m)	(dBµV/m)			
10540	Н	41.08		7.97	49.05		68.2		-19.15
15810	Н	37.78		9.83	47.61		74	54	-6.39
	Н				/				-77
10540	V	37.61		7.97	15.50		60.0		22.62
15810	V	36.52		9.83	45.58		68.2		-22.62
13610	V		-t.C	9.03	46.35		74 	54	-7.65
	V			n(HT40) CH					
	Ant Del	Peak	AV	Correctio		on Level	Dool: Em.'	A \	Marri
Frequency (MHz)	Ant. Pol. H/V	reading	reading	n Factor			Peak limit (dBµV/m)		Margin (dB)
((dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(== = : : : :)	((5-2)
10620	Н	40.64		7.98	48.62		74	54	-5.38
15930	H	38.83		9.85	48.68		74	54	-5.32
	(H)		-120)		O)			
		-		,			-		
10620	V	38.21		7.98	46.19		74	54	-7.81
15930	V	36.34		9.85	46.19		74	54	-7.81
[.C.2]	\/	(C ,)	l	(.0	[1]	l	(, C , L)		LLCT

10540

15810

1-11

٧

٧

٧

39.11

37.52

Report No.: TCT220422E049 11ac(VHT20) C52: 5260MHz ΑV Peak Correctio **Emission Level** Ant. Pol. Peak limit **AV limit** Margin Frequency reading n Factor reading (MHz) H/V (dBµV/m) $(dB\mu V/m)$ (dB) ΑV (dBµV) (dBµV) (dB/m) Peak (dBµV/m) $(dB\mu V/m)$ 10520 Н 40.34 7.97 48.31 68.2 -19.8915780 Η 39.56 9.83 ---49.39 ---74 54 -4.61Н ___ ---10520 V 40.47 7.97 48.44 68.2 -19.76 15780 37.04 9.83 46.87 74 54 -7.13 -------------------------11ac(VHT20) CH60: 5300MHz A۷ Peak Correctio **Emission Level** Peak limit Frequency Ant. Pol. **AV limit** Margin reading reading n Factor (MHz) H/V $(dB\mu V/m)$ $(dB\mu V/m)$ (dB) Peak ΑV (dBµV) (dBµV) (dB/m) (dBµV/m) $(dB\mu V/m)$ 10600 Н 38.77 7.98 46.75 74 54 -7.25 Н 15900 37.32 9.85 47.17 74 54 -6.83Η ---------------------------10600 37.63 7.98 45.61 74 54 -8.399.85 15900 ٧ 36.42 ---46.27 ---74 54 -7.73٧ 11ac(VHT20) CH64: 5320MHz Peak ΑV Correctio **Emission Level** Ant. Pol. Peak limit **AV** limit Frequency Margin n Factor reading reading (MHz) H/V (dBµV/m) (dBµV/m) (dB) Peak ΑV (dBµV) (dBµV) (dB/m) (dBµV/m) (dBµV/m) 10640 Н 40.95 7.98 74 54 48.93 -5.0715960 Н 39.11 9.85 48.96 74 54 -5.04Η 10640 40.28 7.98 48.26 74 54 -5.74 15960 V 9.85 35.69 ---45.54 4--74 54 -8.46 V 11ac(VHT40) CH54: 5270MHz Peak ΑV Correctio **Emission Level** Peak limit Ant. Pol. **AV** limit Frequency Margin reading reading n Factor (MHz) H/V (dBµV/m) $(dB\mu V/m)$ (dB) ΑV (dBµV) (dBµV) (dB/m) Peak (dBµV/m) (dBµV/m) 10540 Η 40.64 7.97 48.61 68.2 -19.59Н 37.55 15810 9.83 47.38 74 ---\---54 -6.62 H 1...

-21.12

-6.65

7.97

9.83

47.08

47.35

68.2

74

54

Report No.: TCT220422E049 11ac(VHT40) CH62: 5310MHz Peak ΑV Correctio **Emission Level** Ant. Pol. Peak limit **AV** limit Frequency Margin reading reading n Factor (MHz) H/V (dBµV/m) $(dB\mu V/m)$ (dB) ΑV Peak (dBµV) (dBµV) (dB/m) (dBµV/m) $(dB\mu V/m)$ Н 7.98 10620 38.83 46.81 74 54 -7.19Н 9.85 15930 36.96 46.81 74 -7.19 ---54 Н ---10620 V 39.25 7.98 47.23 74 54 -6.7715930 37.46 9.85 47.31 74 54 -6.69----------------11ac(VHT80) C58:5290MHz Peak A۷ Correctio **Emission Level** Peak limit Ant. Pol. **AV limit** Frequency Margin reading reading n Factor (MHz) H/V $(dB\mu V/m)$ $(dB\mu V/m)$ (dB) Peak ΑV (dBµV) (dBµV) (dB/m) (dBµV/m) (dBµV/m) 10580 Н 41.88 7.98 49.86 74 54 -4.14 Н 39.17 15870 9.85 49.02 74 54 -4.98Н ---------------------------10580 40.33 7.98 48.31 74 54 -5.69

Note:

15870

٧

٧

1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss - Pre-amplifier

47.59

74

54

-6.41

9.85

2. Margin (dB) = Emission Level (Peak) (dB μ V/m)-Average limit (dB μ V/m)

37.74

- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency. The highest test frequency is 40GHz.
- 5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

			N	lodulation T	vpe: Band	3			
				11a CH149	• •				
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correctio n Factor (dB/m)		AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
11490	Н	37.84		8.09	45.93		74	54	-8.07
17235	H	37.25		9.67	46.92		68.2		-21.28
	H		4.0		(,	<u>(^)</u>		(.c.)	
							•		
11490	V	40.37		8.09	48.46		74	54	-5.54
17235	V	38.81		9.67	48.48		68.2		-19.72
				11a CH157	: 5785MHz				
Frequency	MHz) H/\/ reading reading n Factor (de-		Peak limit		Margin (dB)				
(1011 12)	Γ1/ V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(ub)
11570	H	39.27	-14/0	8.1	47.37	9 /	74	54	-6.63
17355	Н	38.69	-	9.65	48.34		68.2		-19.86
	Н								
11570	V	38.82		8.1	46.92		74	54	-7.08
17355	V	39.93		9.65	49.58		68.2		-18.62
	V								
				11a CH165	: 5825MHz				
Frequency (MHz)	Ant. Pol. H/V	Peak reading	AV reading	Correction n Factor	Emissio	on Level	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
(IVII IZ)	1 1/ V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(ασμν/ιιι)	(ασμ ν/π)	(ub)
11650	Н	37.74		8.12	45.86		74	54	-8.14
17475	Н	36.97		9.62	46.59		68.2		-21.61
	Н								
11650	V	38.77	+6	8.12	46.89	<u></u>	74	54	-7.11
17475	V	38.45		9.62	48.07	<u></u>	68.2	\ <u></u> /	-20.13
	V								
				(HT20) CH	149: 5745N	ЛHz			
Frequency (MHz)	Ant. Pol. H/V	Peak reading	AV reading	Correction n Factor	Emissio	on Level	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
(IVII 12)	I 1/ V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(ασμν/ιιι)	(ασμν/ιιι)	(ub)
11490	H	38.81		8.09	46.9	Z\	74	54	-7.1
17235	(H)	38.62	-4,0	9.67	48.29	(C)	68.2		-19.91
	Н					<u></u>			
44465	,, 1	00 ==		I 6.3-	I	I			
11490	V	39.72		8.09	47.81		74	54	-6.19
17235	V	37.29		9.67	46.96		68.2		-21.24
	V								

17385

1-11

٧

٧

37.77

Report No.: TCT220422E049 11n(HT20) CH157: 5785MHz ΑV Peak Correctio **Emission Level** Ant. Pol. Peak limit **AV limit** Margin Frequency reading n Factor reading (MHz) H/V (dBµV/m) $(dB\mu V/m)$ (dB) ΑV (dBµV) (dBµV) (dB/m) Peak (dBµV/m) $(dB\mu V/m)$ 11570 Н 38.04 8.1 46.14 74 54 -7.8617355 Η 39.76 9.65 ---49.41 ---68.2 -18.79Н ------11570 V 38.55 8.1 46.65 74 54 -7.3517355 39.22 9.65 48.87 68.2 -19.33-------------------------11n(HT20) CH165: 5825MHz A۷ Peak Correctio **Emission Level** Peak limit Frequency Ant. Pol. **AV limit** Margin reading reading n Factor (MHz) H/V (dBµV/m) $(dB\mu V/m)$ (dB) Peak ΑV (dBµV) (dBµV) (dB/m) (dBµV/m) (dBµV/m) 11650 Н 38.92 8.12 47.04 74 54 -6.96 17475 Н 37.17 9.62 46.79 68.2 -21.41 Н ---------------------------11650 38.56 8.12 -7.3246.68 74 54 17475 ٧ 39.14 ---9.62 48.76 ---68.2 -19.44 ٧ 11n(HT40) CH151: 5755MHz Peak ΑV Correctio **Emission Level** Frequency Ant. Pol. Peak limit **AV** limit Margin n Factor reading reading (MHz) H/V (dBµV/m) (dBµV/m) (dB) Peak ΑV (dBµV) (dBµV) (dB/m) (dBµV/m) (dBµV/m) 11510 Н 40.45 8.09 48.54 -5.46 74 54 17265 Н 37.97 9.67 47.64 68.2 -20.56Η 11510 41.08 8.09 49.17 74 54 -4.83 17265 V 38.33 9.67 -4-48 4--68.2 100 -20.2V 11n(HT40) CH159: 5795MHz Peak ΑV Correctio **Emission Level** Peak limit Ant. Pol. **AV limit** Frequency Margin reading n Factor reading (MHz) H/V (dBµV/m) $(dB\mu V/m)$ (dB) ΑV (dBµV) (dBµV) (dB/m) Peak (dBµV/m) (dBµV/m) 11590 Η 46.61 -7.39 38.51 8.1 74 54 17385 Н 9.65 38.67 48.32 68.2 ---\-------19.88 S H 1... 11590 ٧ 38.38 8.1 46.48 74 54 -7.52

-20.78

9.65

47.42

68.2

144

▋通测检测 Report No.: TCT220422E049 11ac(VHT20) CH149: 5745MHz ΑV Peak Correctio **Emission Level** Ant. Pol. Peak limit **AV limit** Margin Frequency reading n Factor reading (MHz) H/V (dBµV/m) $(dB\mu V/m)$ (dB) ΑV (dBµV) (dBµV) (dB/m) Peak (dBµV/m) $(dB\mu V/m)$ 11490 Н 40.17 8.09 48.26 74 54 -5.74 17235 Η 37.64 9.67 ---47.31 ---68.2 ----20.89Н ---------11490 V 40.13 8.09 48.22 74 54 -5.78 17235 38.28 9.67 47.95 68.2 -20.25 ----------------------------11ac(VHT20) CH157: 5785MHz Peak ΑV Correctio **Emission Level** Peak limit Frequency Ant. Pol. **AV limit** Margin reading reading n Factor (MHz) H/V (dBµV/m) $(dB\mu V/m)$ (dB) Peak ΑV (dBµV) (dBµV) (dB/m) (dBµV/m) $(dB\mu V/m)$ 46.35 11570 Н 38.25 8.1 74 54 -7.65Н 17355 36.74 9.65 46.39 68.2 -21.81 Н ---------------------------11570 37.72 8.1 45.82 74 54 -8.1817355 ٧ 38.46 ---9.65 48.11 ---68.2 -20.09٧ 11ac(VHT20) CH165: 5825MHz Peak ΑV Correctio **Emission Level** Ant. Pol. Peak limit **AV** limit Frequency Margin n Factor reading reading (MHz) H/V (dBµV/m) (dBµV/m) (dB) Peak ΑV (dBµV) (dBµV) (dB/m) (dBµV/m) (dBµV/m) 11650 Н 40.07 8.12 48.19 74 54 -5.81 17475 Н 38.85 9.62 48.47 68.2 -19.73Η 11650 38.99 8.12 47.11 74 54 -6.8917475 V 40.47 9.62 50.09 ---4--68.2 100 -18.11 V 11ac(VHT40) CH151: 5755MHz ΑV Peak Correctio **Emission Level** Peak limit Ant. Pol. **AV limit** Frequency Margin reading reading n Factor (MHz) H/V (dBµV/m) $(dB\mu V/m)$ (dB) ΑV (dBµV) (dBµV) (dB/m) Peak (dBµV/m) (dBµV/m) 11510 Η 8.09 47.72 39.63 74 54 -6.2817265 Н 37.49 9.67 -21.04 47.16 68.2 ---·------S H 1...

-5.34

-22.37

8.09

9.67

48.66

45.83

74

68.2

144

54

11510

17265

1-11

٧

٧

٧

40.57

36.16

			11ac	(VHT40) CI	H159: 5795	MHz		JOIL 110.: 101	
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correctio n Factor (dB/m)	Emission Peak (dBµV/m)	AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
11590	Н	40.08		8.1	48.18		74	54	-5.82
17385	Н	37.16		9.65	46.81		68.2		-21.39
	Н								
11590	V	39.75	42	8.1	47.85	G `}	74	54	-6.15
17385	V	38.19		9.65	47.84)	68.2		-20.36
	V								
			11ac	(VHT80) CI	H155: 5775	MHz			
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correctio n Factor (dB/m)	Emissic Peak (dBµV/m)	AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
11550	H	40.12		8.09	48.21	(αΒμ ۷/ΙΙΙ)	74	54	-5.79
17325	H	38.48	- KG	9.66	48.14	()	68.2		-20.06
	Н								-20.00
11550	V	41.09		8.09	49.18		74	54	-4.82
17325	V	38.67		9.66	48.33		68.2		-19.87
	V	-							

Note:

- 1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss Pre-amplifier
- 2. Margin (dB) = Emission Level (Peak) (dB μ V/m)-Average limit (dB μ V/m)
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency. The highest test frequency is 40GHz.
- 5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

5.9. Frequency Stability Measurement

5.9.1. Test Specification

Test Requirement:	FCC Part15 Section 15.407(g) &Part2 J Section 2.1055
Test Method:	ANSI C63.10: 2013
Limit:	The frequency tolerance shall be maintained within the band of operation frequency over a temperature variation of 0 degrees to 45 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C.
Test Setup:	Spectrum Analyzer EUT
Test Procedure:	The EUT was placed inside the environmental test chamber and powered by nominal AC/DC voltage. b. Turn the EUT on and couple its output to a spectrum analyzer. c. Turn the EUT off and set the chamber to the highest temperature specified. d. Allow sufficient time (approximately 30 min) for the temperature of the chamber to stabilize. e. Repeat step 2 and 3 with the temperature chamber set to the lowest temperature. f. The test chamber was allowed to stabilize at +20 degree C for a minimum of 30 minutes. The supply voltage was then adjusted on the EUT from 85% to 115% and the frequency record.
Test Result:	PASS
Remark:	Pre-scan was performed at all models(11a,11n,11ac), the worst case (11ac) was found and test data was shown in this report.

Test plots as follows:

Test mode:	802.11ac	(HT20)	Freque	ency(MHz):	5180
Temperature (°C)	Voltage(VDC)	Measu	rement	Delta	Result
remperature (C)	voltage(vDC)	Frequen	cy(MHz)	Frequency(F	Hz)
45		5179	.980	-20000	PASS
35		5179	.980	-20000	PASS
25	3.8V	5179	.980	-20000	PASS
15	3.0 V	5179	.980	-20000	PASS
5		51	80	0	PASS
0		51	80	0	PASS
	3.3V	51	80	0	PASS
25	3.8V	5179	.980	-20000	PASS
	4.35V	51	80	0	PASS

Test mode:	802.11ac(HT20) Frequ	ency(MHz):	5200
Temperature (°C)	Voltage(VDC)	Measurement	Delta	Result
remperature (C)	voltage(vDC)	Frequency(MHz)	Frequency(Hz)	Nesuit
45		5199.980	-20000	PASS
35		5200	0	PASS
25	3.8V	5199.980	-20000	PASS
15	3.67	5199.980	-20000	PASS
5		5199.980	-20000	PASS
0		5199.980	-20000	PASS
	3.3V	5199.980	-20000	PASS
25	3.8V	5199.960	-40000	PASS
	4.35V	5199.980	-20000	PASS

Test mode:	802.11ac(HT20)	Frequency(MHz):		5	240
Temperature (°C)	Voltage(VDC)	Measur	ement	Delta		Result
Temperature (C)	voltage(vDC)	Frequenc	y(MHz)	Frequency(H	lz)	Nesuit
45		5239.	980	-20000	(, C	PASS
35		5239.	980	-20000		PASS
25	3.8V	5239.	980	-20000		PASS
15	3.0 V	524	10	0	\	PASS
5		5239.	960	-40000)	PASS
0		5239.	960	-40000		PASS
	3.3V	5239.	980	-20000		PASS
25	3.8V	5239.	980	-20000		PASS
	4.35V	5239.	980	-20000	100	PASS

Test mode:	802.11ac	(HT20)	Freque	ency(MHz):	5745		
Temperature (°C)	Voltage(VDC)	Measu	rement	Delta		Result	
remperature (C)	voltage(vDC)	Frequen	cy(MHz)	Frequency(Hz)		Nesuit	
45	(.c)	5744	.979	-21000		PASS	-11
35		5744	.979	-21000		PASS	
25	3.8V	5744	.979	-21000		PASS	
15	3.6 V	5744	.979	-21000		PASS	
5		5744	.979	-21000		PASS	
0		5744	.979	-21000		PASS	
	3.3V	5744	.979	-21000		PASS	
25	3.8V	5744	.979	-21000		PASS	~
(C_{\bullet})	4.35V	5744	.979	-21000)	PASS	

Test mode:	802.11ac	HT20) Freq	uency(MHz):	5785	
Temperature (°C)	Voltage(VDC)	Measurement	Delta	Result	
Temperature (C)	voltage(vDC)	Frequency(MHz	requency(Hz)	Nesuit	
45		5784.979	-21000	PASS	
35		5784.979	-21000	PASS	
25	5784.979 -21000		-21000	PASS	
15	3.8V	5784.979	-21000	PASS	
5		5784.979	-21000	PASS	
0		5784.979	-21000	PASS	
(, (,)	3.3V	5784.979	-21000	PASS	
25	3.8V	5784.979	-21000	PASS	
	4.35V	5784.979	-21000	PASS	

				/ 41
Test mode:	802.11ac	(HT20) Freq	uency(MHz):	5825
Temperature (°C)	Voltage(VDC)	Measurement Frequency(MHz	Delta () Frequency(Hz)	Result
45		5824.979	-21000	PASS
35		5824.979	-21000	PASS
25	3.8V	5824.979	-21000	PASS
15	3.0 V	5824.979	-21000	PASS
5		5824.979	-21000	PASS
0		5824.979	-21000	PASS
	3.3V	5824.979	-21000	PASS
25	3.8V	5824.979	-21000	PASS
	4.35V	5824.979	-21000	PASS

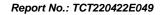
Test mode:	e: 802.11ac(HT40		Frequency(MHz):		5190		
Temperature (°C)	Voltage(VDC)	Measu	rement	Delta		Result	
remperature (C)	voltage(vDC)	Frequen	cy(MHz)	Frequency(Hz)		Result	
45	(c)	5189	.980	-20000		PASS	
35		5189	.981	-19000		PASS	
25	3.8V	5189	9.981	-19000		PASS	
15	3.0 V	5189	9.981	-19000		PASS	
5		5189	0.981	-19000		PASS	
0		5189	9.981	-19000		PASS	
	3.3V	5189	9.981	-19000		PASS	
25	3.8V	5189	.981	-19000		PASS	7
(C)	4.35V	5189	9.981	-19000)	PASS	O_{\bullet}

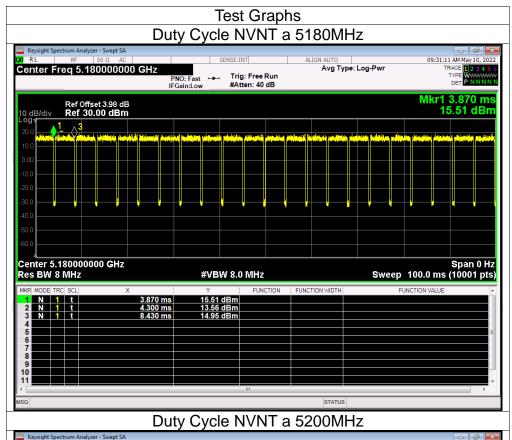
Test mode:	Test mode: 802.11ac(H		ency(MHz):	5230	
Temperature (°C)	Voltage(VDC)	Measurement	Delta	Result	
Temperature (C)	voitage(vDC)	Frequency(MHz)	Frequency(Hz)	Nesuit	
45		5229.980	-20000	PASS	
35		5229.980	-20000	PASS	
25	3.8V 5229.980 -20000		-20000	PASS	
15	3.61	5229.980	-20000	PASS	
5		5229.980	-20000	PASS	
0		5229.980	-20000	PASS	
(,c)	3.3V	5229.980	-20000	PASS	
25	3.8V	5229.980	-20000	PASS	
	4.35V	5229.980	-20000	PASS	

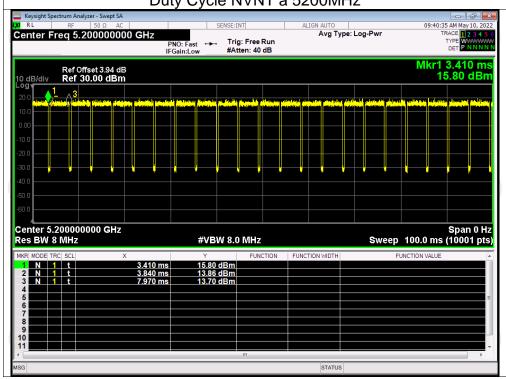
Test mode:	Test mode: 802.11ac(H		Frequen	5755	
Temperature (°C)	Voltage(VDC)	Measurer Frequency			z) Result
45		5754.97	79	-21000	PASS
35		5754.97	79	-21000	PASS
25	3.8V	5754.97	79	-21000	PASS
15	3.0 V	5754.97	79	-21000	PASS
5		5754.97	79	-21000	PASS
0		5754.97	79	-21000	PASS
	3.3V	5754.97	79	-21000	PASS
25	3.8V	5754.97	79	-21000	PASS
	4.35V	5754.97	79	-21000	PASS

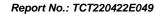
Test mode: 802.11ac(H		(HT40)	40) Frequency(MHz):		5795	
Temperature (°C)	Voltage(VDC)	Measu	rement	Delta		Result
remperature (C)	voitage(vDC)	Frequen	cy(MHz)	Frequency(H	Hz)	Result
45	(,c,')	5794	.980	-20000		PASS
35		5794	.980	-20000		PASS
25	3.8V	5794	.980	-20000		PASS
15	3.67	5794	.980	-20000		PASS
5 (3)		5794	.980	-20000		PASS
0		5794	.980	-20000		PASS
	3.3V	5794	.981	-19000		PASS
25	3.8V	5794	.980	-20000		PASS
(C)	4.35V	5794	.980	-20000)	PASS

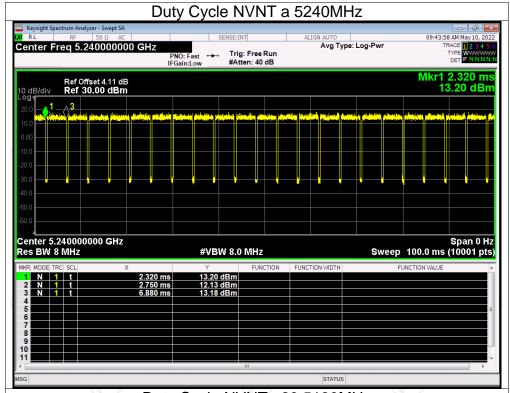
Test mode:		802.11ac(V	/HT80)	Frequency(MHz):			5210	
Temperature (°C)	Vc	ltage(VDC)	Measurement		Delta		Result	
Temperature (C)	VC	mage(VDC)	Frequen	cy(MHz)	Frequenc	y(Hz)	Nesuit	
45			5209	.981	-1900	00	PASS	
35	35		5209	.981	-1900	00	PASS	
25		3.8V	5209.981		-1900	00	PASS	C
15		3.6 V	5209	.981	-1900	00	PASS	
5			5209	.981	-1900	00	PASS	
0			5209	.981	-1900	00	PASS	
(¿G')		3.3V	5209.981		-1900	00	PASS	
25		3.8V	5209	.981	-1900	00	PASS	•
		4.35V	5209	.981	-1900	00	PASS	

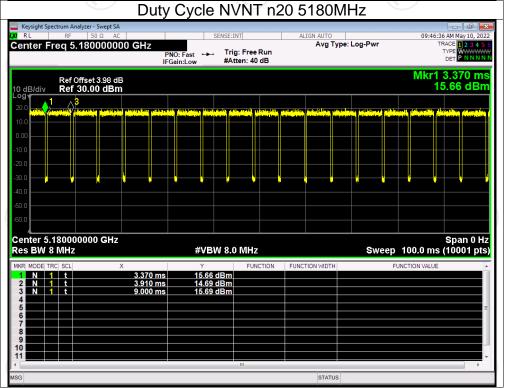

Test mode:	802.11ac(\	/HT80)	Freque	ency(MHz):	5775
Temperature (°C)	Voltage(VDC)	Measurer	Measurement		Result
remperature (C)	voltage(vDC)	Frequency	(MHz)	Frequency(H	Hz)
45		5774.9	86	-14000	PASS
35		5774.9	86	-14000	PASS
25	3.8V	5774.9	86	-14000	PASS
15	3.0 V	5774.9	86	-14000	PASS
5		5774.9	86	-14000	PASS
0		5774.9	86	-14000	PASS
	3.3V	5774.9	86	-14000	PASS
25	3.8V	5774.9	86	-14000	PASS
	4.35V	5774.9	86	-14000	PASS

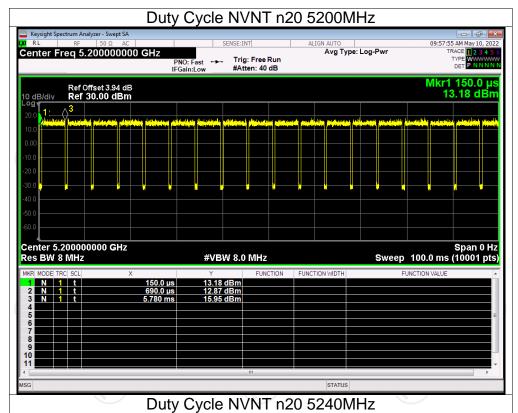

Appendix A: Test Result of Conducted Test

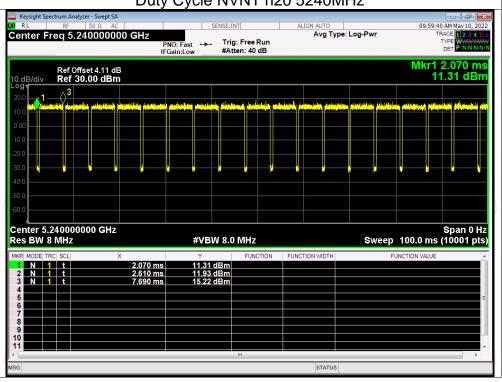

Duty Cycle

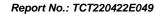

Duty Cycle								
Condition	Mode	Frequency (MHz)	Duty Cycle (%)	Correction Factor (dB)				
NVNT	а	5180	90.81	0.42				
NVNT	а	5200	90.76	0.42				
NVNT	a	5240	90.76	0.42				
NVNT	n20	5180	90.48	0.43				
NVNT	n20	5200	90.46	0.44				
NVNT	n20	5240	90.47	0.43				
NVNT	n40	5190	80.99	0.92				
NVNT	n40	5230	81	0.92				
NVNT	ac20	5180	90.46	0.44				
NVNT	ac20	5200	90.46	0.44				
NVNT	ac20	5240	90.46	0.44				
NVNT	ac40	5190	80.84	0.92				
NVNT	ac40	5230	80.97	0.92				
NVNT	ac80	5210	66.66	1.76				
NVNT	a	5260	90.76	0.42				
NVNT	a	5300	90.76	0.42				
NVNT	a	5320	90.76	0.42				
NVNT	n20	5260	89.95	0.46				
NVNT	n20	5300	89.43	0.49				
NVNT	n20	5320	89.41	0.49				
NVNT	n40	5270	80.99	0.92				
NVNT	n40	5310	80.95	0.92				
NVNT	ac20	5260	89.90	0.46				
NVNT	ac20	5300	89.40	0.49				
NVNT	ac20	5320	89.68	0.47				
NVNT	ac40	5270	80.92	0.92				
NVNT	ac40	5310	80.99	0.92				
NVNT	ac80	5290	66.68	1.76				
NVNT	a	5745	90.76	0.42				
NVNT	a	5785	90.76	0.42				
NVNT	a	5825	90.89	0.42				
NVNT	n20	5745	89.41	0.49				
NVNT	n20	5785	89.94	0.49				
NVNT	n20	5825	89.71	0.47				
NVNT	n40	5755	80.51	0.94				
NVNT	n40	5795	80.97	0.94				
NVNT	ac20	5745	89.93	0.46				
NVNT	ac20	5745 5785	89.40	0.49				
NVNT	ac20	5825	89.40	0.49				
NVNT	ac40	5755	80.91	0.49				
NVNT	ac40	5795	80.93	0.92				
NVNT	ac80	5775	66.68	1.76				

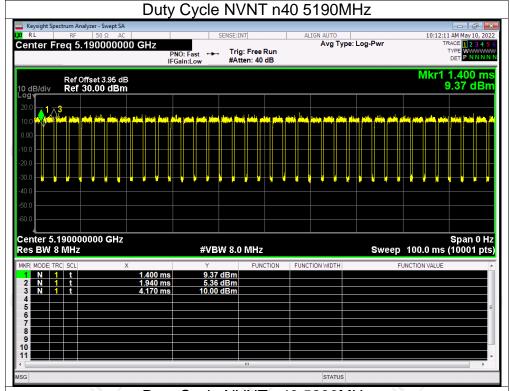


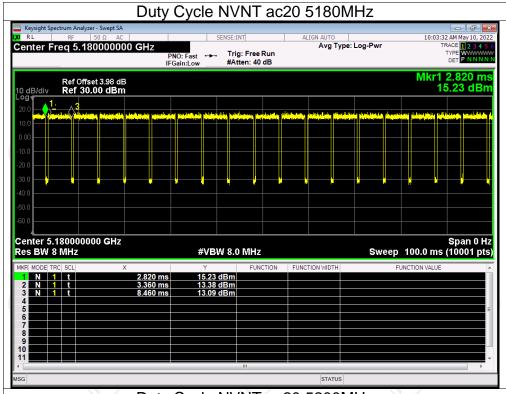


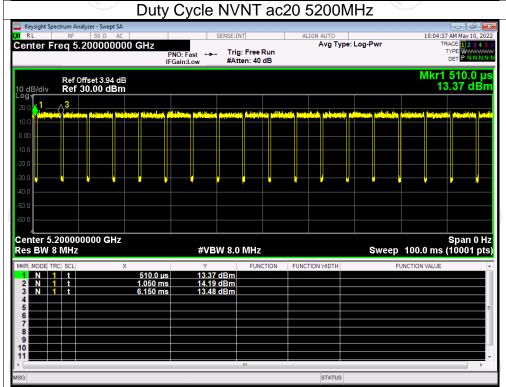


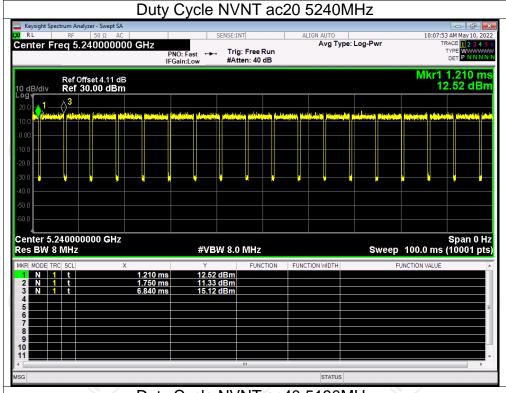


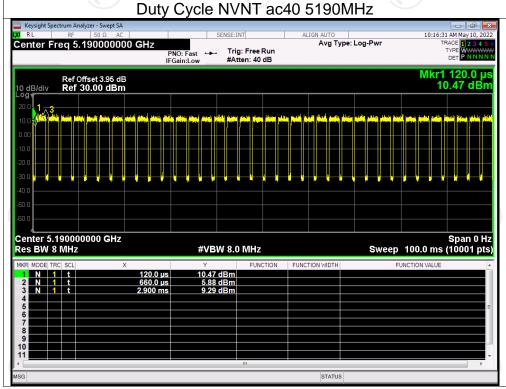


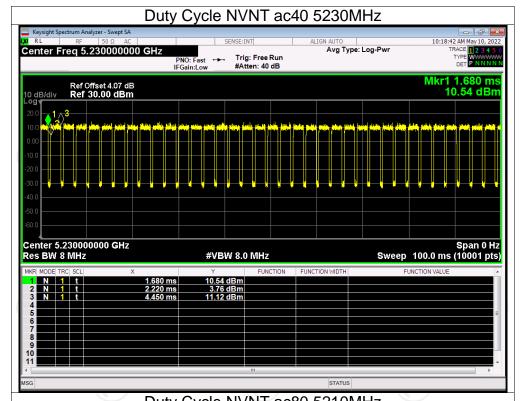


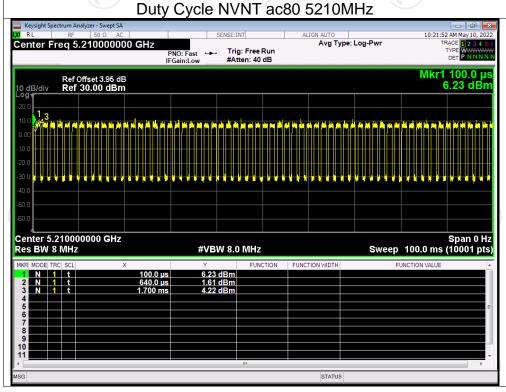


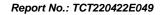


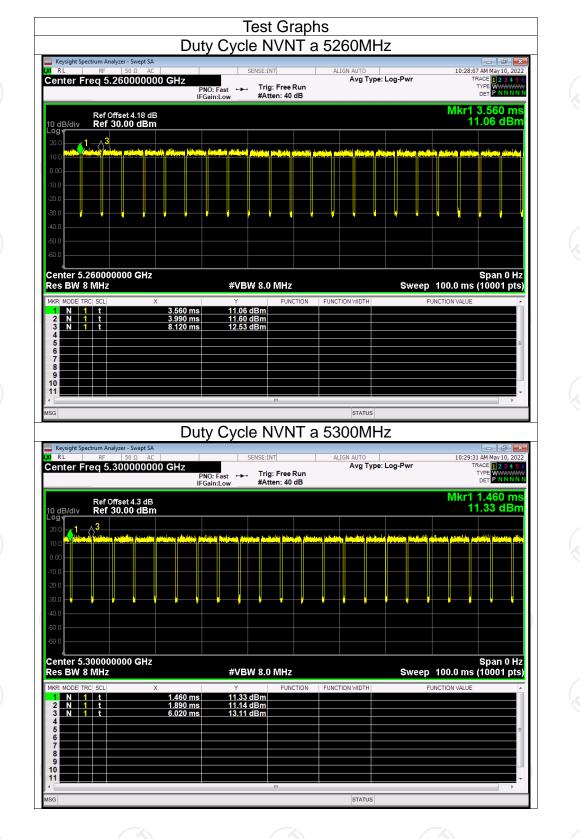


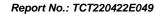


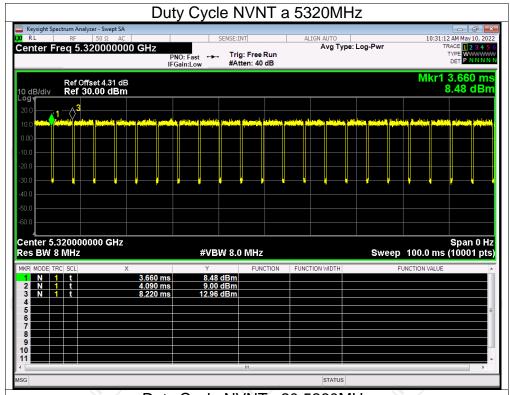


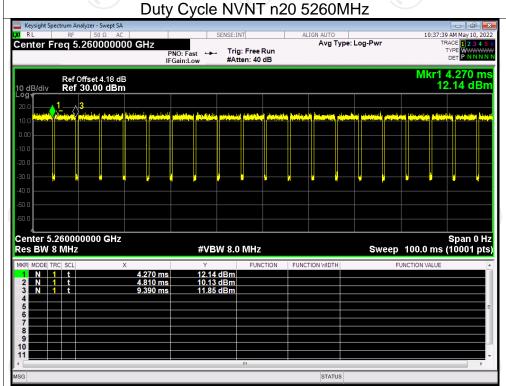


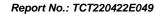


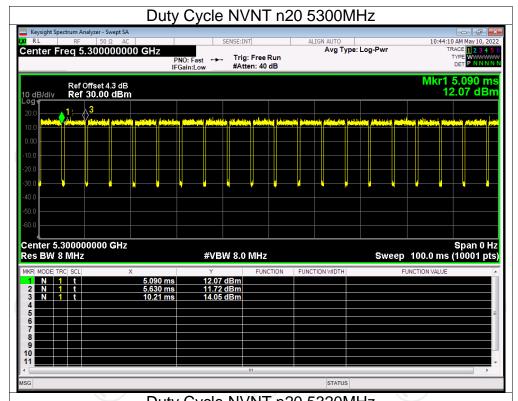


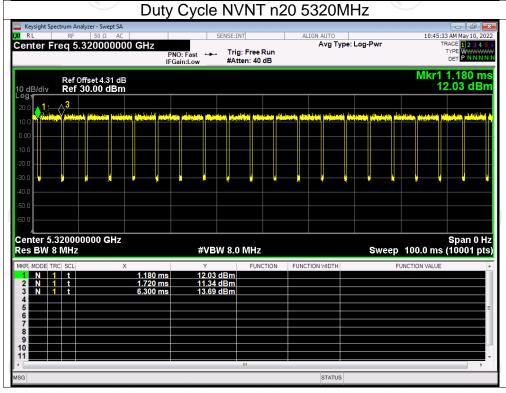


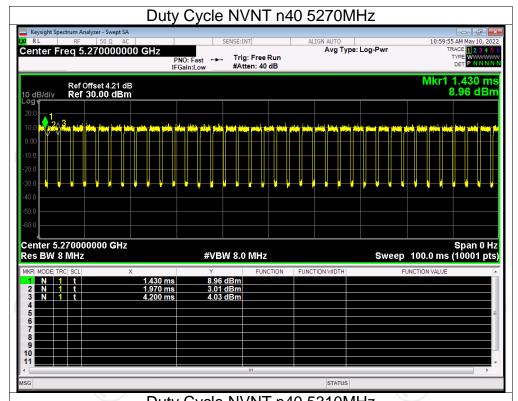


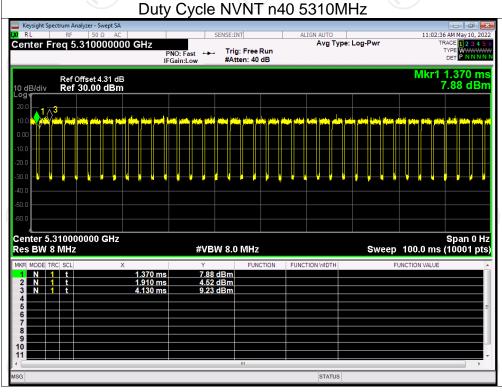


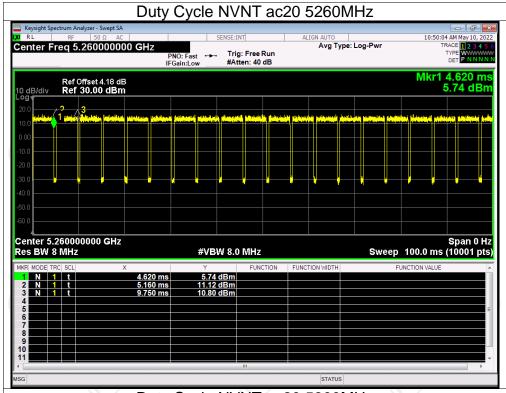


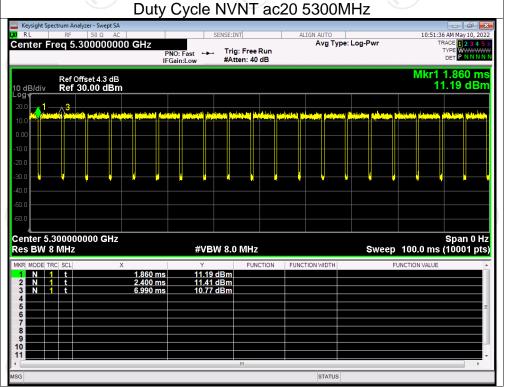


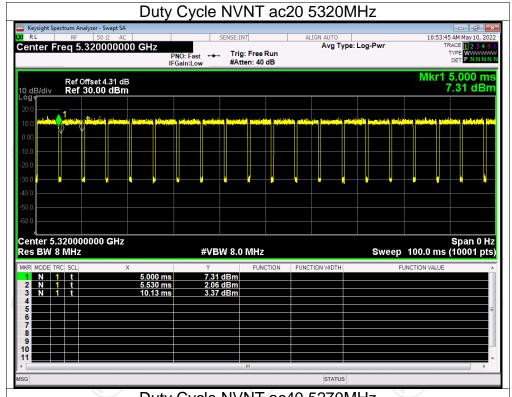


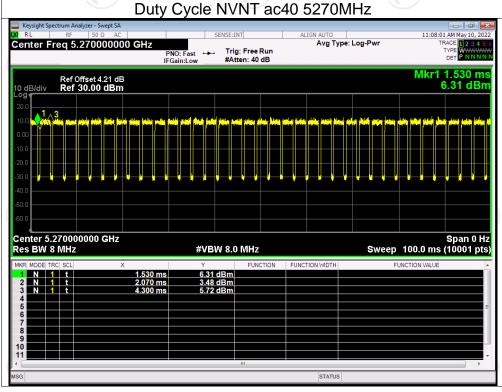


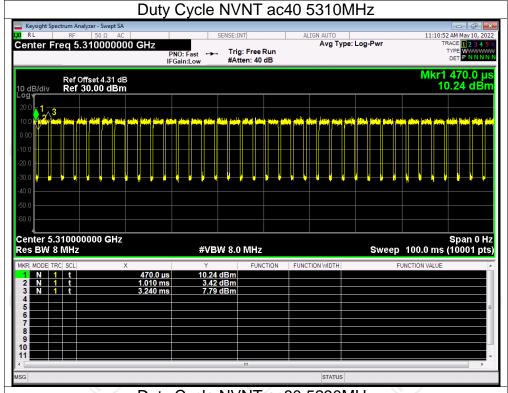


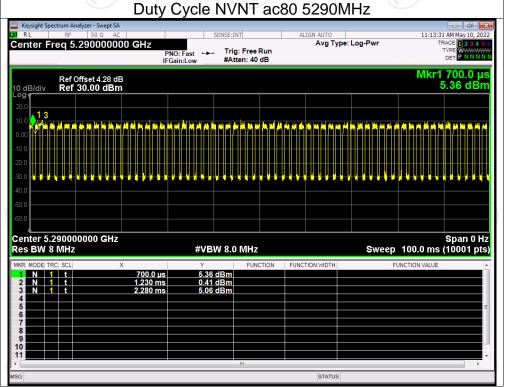


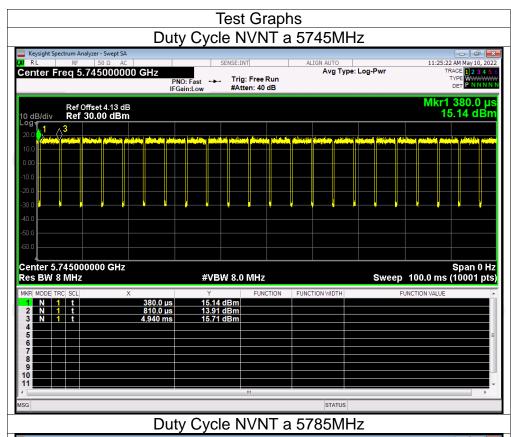


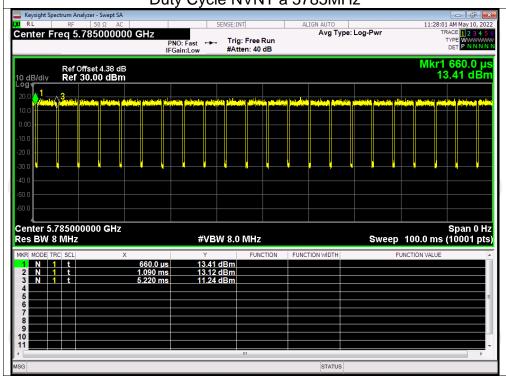


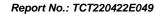


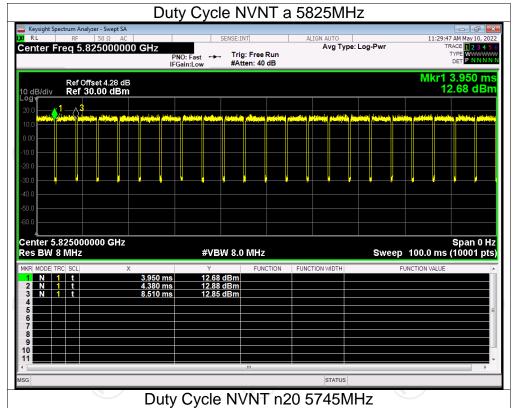


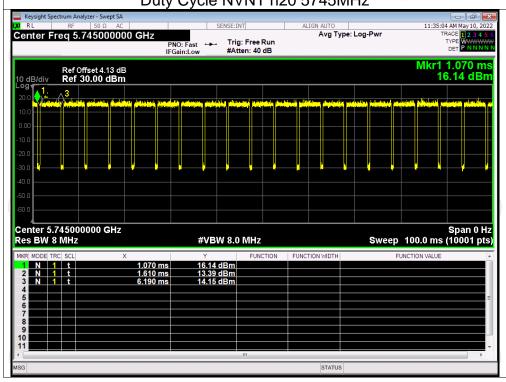


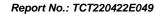


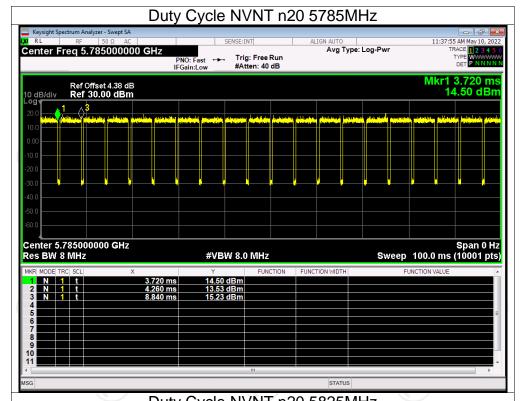


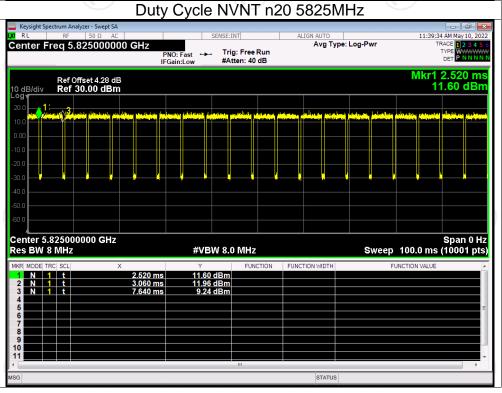


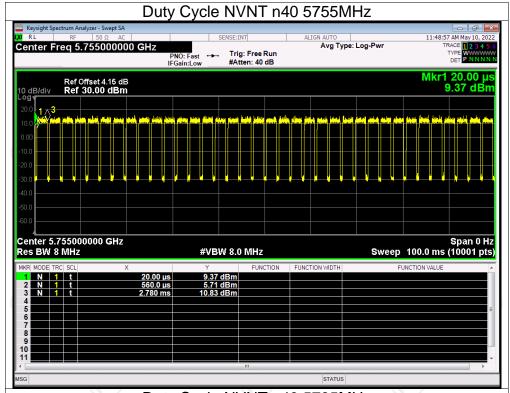




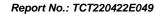


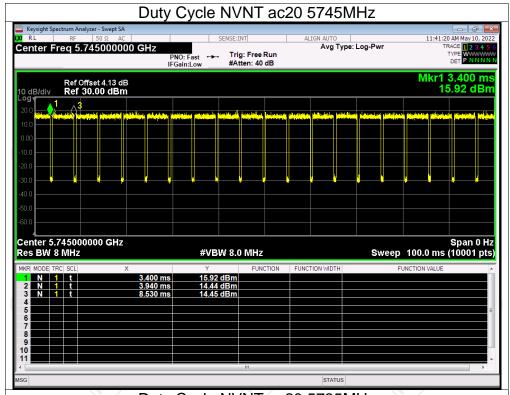


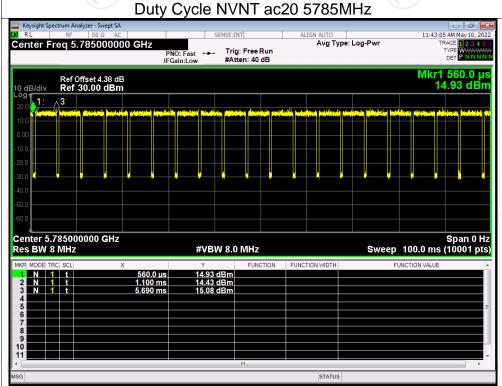


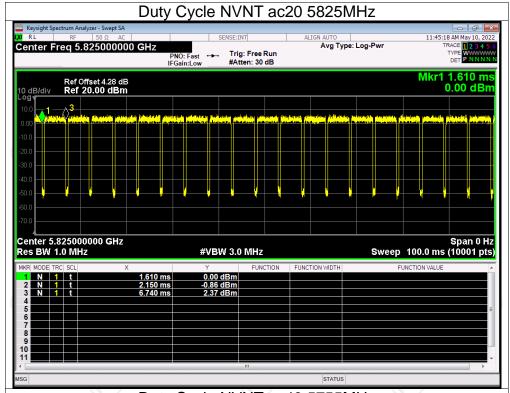


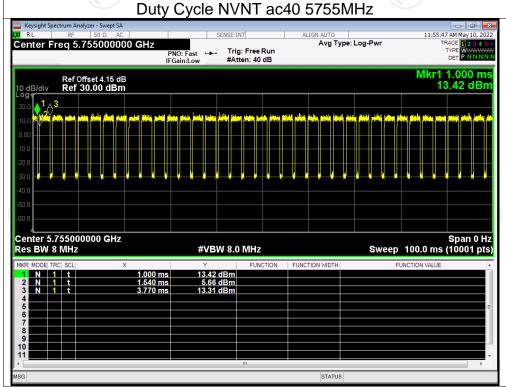


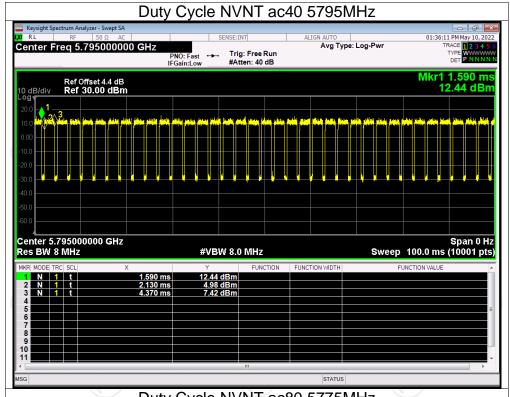


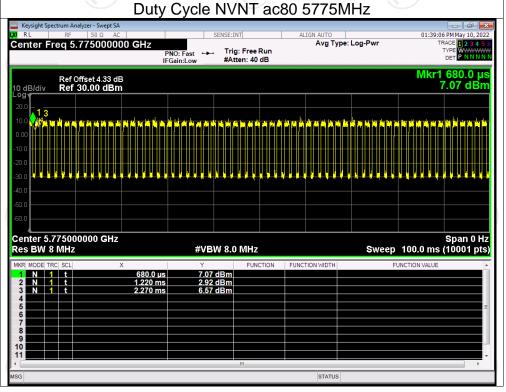




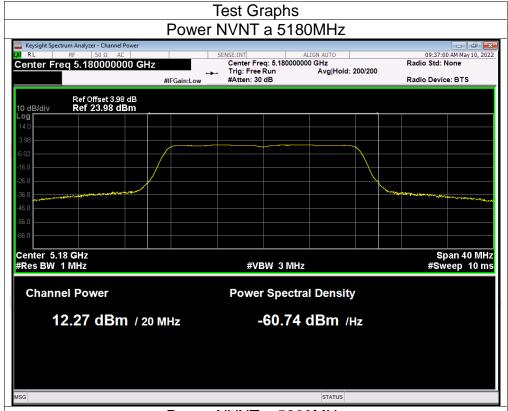


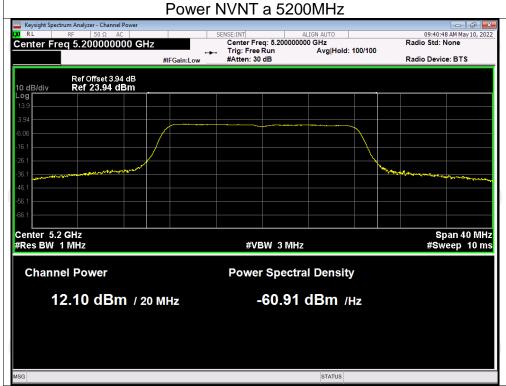











Maximum Conducted Output Power

			im Conducted C	Duty	Total		
Condition	Mode	Frequency (MHz)	Conducted Power (dBm)	Factor (dB)	Power (dBm)	Limit (dBm)	Verdict
NVNT	а	5180	12.27	0.42	12.69	24	Pass
NVNT	а	5200	12.10	0.42	12.52	24	Pass
NVNT	a	5240	10.73	0.42	11.15	24	Pass
NVNT	n20	5180	11.99	0.43	12.42	24	Pass
NVNT	n20	5200	11.41	0.44	11.85	24	Pass
NVNT	n20	5240	10.27	0.43	10.70	24	Pass
NVNT	n40	5190	10.92	0.92	11.84	24	Pass
NVNT	n40	5230	9.65	0.92	10.57	24	Pass
NVNT	ac20	5180	12.03	0.44	12.47	24	Pass
NVNT	ac20	5200	11.61	0.44	12.05	24	Pass
NVNT	ac20	5240	10.11	0.44	10.55	24	Pass
NVNT	ac40	5190	10.98	0.92	11.90	24	Pass
NVNT	ac40	5230	9.78	0.92	10.70	24	Pass
NVNT	ac80	5210	9.82	1.76	11.58	24	Pass
NVNT	а	5260	9.39	0.42	9.81	24	Pass
NVNT	а	5300	9.53	0.42	9.95	24	Pass
NVNT	а	5320	9.99	0.42	10.41	24	Pass
NVNT	n20	5260	9.20	0.46	9.66	24	Pass
NVNT	n20	5300	9.41	0.46	9.87	24	Pass
NVNT	n20	5320	9.76	0.49	10.25	24	Pass
NVNT	n40	5270	8.78	0.92	9.70	24	Pass
NVNT	n40	5310	9.31	0.92	10.23	24	Pass
NVNT	ac20	5260	9.78	0.46	10.24	24	Pass
NVNT	ac20	5300	9.93	0.49	10.42	24	Pass
NVNT	ac20	5320	9.48	0.47	9.95	24	Pass
NVNT	ac40	5270	8.78	0.92	9.70	24	Pass
NVNT	ac40	5310	9.36	0.92	10.28	24	Pass
NVNT	ac80	5290	8.37	1.76	10.13	24	Pass
NVNT	а	5745	12.10	0.42	12.52	30	Pass
NVNT	а	5785	11.85	0.42	12.27	30	Pass
NVNT	а	5825	10.75	0.41	11.16	30	Pass
NVNT	n20	5745	12	0.49	12.49	30	Pass
NVNT	n20	5785	11.83	0.46	12.29	30	Pass
NVNT	n20	5825	10.79	0.47	11.26	30	Pass
NVNT	n40	5755	11.76	0.94	12.70	30	Pass
NVNT	n40	5795	11.30	0.92	12.22	30	Pass
NVNT	ac20	5745	12.25	0.46	12.71	30	Pass
NVNT	ac20	5785	12.02	0.49	12.51	30	Pass
NVNT	ac20	5825	10.93	0.49	11.42	30	Pass
NVNT	ac40	5755	11.74	0.92	12.66	30	Pass
NVNT	ac40	5795	11.24	0.92	12.16	30	Pass
NVNT	ac80	5775	10.38	1.76	12.14	30	Pass

