MEASUREMENT AND TECHNICAL REPORT

CUBIC COMMUNICATIONS, INC.

9535 Waples Street **San Digo, CA 92121-2953**

DATE: 11 May 1999

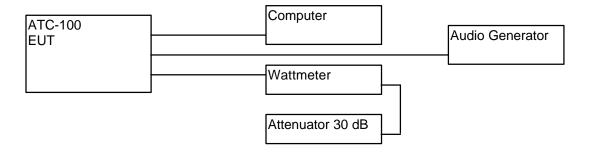

This Report Conce	erns:	Original Grant:	X	Class II Change:
Equipment	Tran	sceiver, Model AT	C-100	
Type:		,		
Transition Rules F	Reques	t per 15.37?	Yes: *No	:
(*) FCC Part 2, Pa 87.131, 87.133, 87.			7(a), 2.1049, 2.1051, 2	2. 1053, 2.1055(d) and Part 87, Paragraphs
Repor	rt Prep	ared by:	TÜV PROI	DUCT SERVICE
				a Rim Road
			San Diego, Phone: 619	CA 92121-2912 546 3000
				546 0364

TABLE OF CONTENTS

		Pages
1	GENERAL INFORMATION	3
1.1	Product Description	3
1.2	Test Methodology	5
1.3	Test Facility	5
1.4	Part 2 Requirements See attachments	6
2	SYSTEM TEST CONFIGURATION	7
	2.1 Justification	7
	2.2 EUT Exercise Software	7
	2.3 Special Accessories	7
	2.4 Equipment Modifications	7
	2.5 Configuration of Tested System	7
3	TEST REPORT	8
	3.1 RADIATED MEASUREMENT EQUIPMENT/DATA	8
	FIELD STRENGTH CALCULATION	9
	3.2 CONDUCTED MEASUREMENT EQUIPMENT/DATA	13
	3.3 FREQUENCY STABILITY (VOLTAGE VARIATION)	26
	3.4 TEST SETUPS CONDUCTED AND FREQUENCY STABILITY	28
4	GENERAL SUMMARY	31
5	DATA TESTED BY CUBIC (OVER TEMPERATURE)	32

1 GENERAL INFORMATION

		Р	RODU	CT DE	ESCRI	PTIC	ON			
NAME, MODEL, SER	RIAL#(OF EUT: T	ransce	iver, N	Model A	ATC	-100			
DESCRIPTION OF E		Т	ranscei naximui		118-13	8 MI	Hz; Pow	er: 115 Vac,	60 Hz	z; Output: 25 watts
		•	Comp	onen	nts of E	EUT				
Description		Model Number					rial Num	ber	FCC	D Number
Transceiver		ATC-100							NVS	SATC-100
OPERATING MODE	(S):	Α	\3E							
			1/0	O CA	BLES					
CONNECTION	Power	ſ	Remo	te co	ntrol		RX		Α	udio
SHIELD			Yes				Coax		N	0
CONNECTORS	AC plu	ug	25-pir	า "D"			"N" typ	е	1:	5-pin "D"
TERMINATION TYPE		-	Fema	le			50 ohn		F	emale
LENGTH	6'		10 me	eters			24"		6'	
REMOVABLE	Yes		Yes				Yes		Υ	es
			PO	WER	CORD	S	•			
UNIT:	Sta	indard								
MANUFACTURER:										
SHIELDED:	No									
LENGTH:	6'									
	•		POWE	ER IN	TERF/	ACE				
FREQUENCY/AC/DO	VOLT	AGE: 6	60 Hz / 1	120 V	ac					
PHASES/CURRENT:		1	/							
		OS	CILLAT	OR F	REQU	JENG	CIES			
FREQUENCY		EUT L	OCATIO	NC				DESCRIPTION	ON C	F USE
47.152 MHz						DS	P clock			
163-183 MHz						1st	LO			
			POV	VER :	SUPPL	_Y				
DESCRIPTION	MAN	UFACTURER	M	ODEL	_ #	SI	ERIAL#	SWITC	HING	/LINEAR FREQ.
Internal										
			POWE	R LIN	E FILT	TER:	S			
MANUFACTURE	R	MODEL	NO.		QTY	/ .		LOCATI	ON C	N EUT
Internal										
		CRI	TICAL	EMI (COMP	ONE	NTS			
DESCRIPTION	MAN	UFACTURER	PAR	Г#О	R VAL	UE	QTY.	LOC	CATIO	ON ON EUT
DESCRIPTION OF E	NCLOS	SURE:	-				•	•		
		ACING AND/O	R SIMU	JLAT	ORS P	PERI	PHERA	L EQUIPMEI	NT:	
DESCRIPTION		MANUFACTU			MODE			SERIAL#		FCC ID
Computer		Toshiba								
Wattmeter		Bird								
Dummy Load Attenua	ator									
2-tone Generator										
Typical test setup b			See nex	1						

Report No. 9102-08 (FCC ID: NVSATC-100)

1.2 Test Methodology

Purpose of Test: To demonstrate compliance with the ANSI C63.4 setup.

Test Performed: X 1. Conducted Emissions, FCC Part 2, Paragraph 2.1046, 2. 1047(a), 2.1049, 2.1051, and

Part 87, Paragraphs 87.131, 87.135, 87.141

2. Radiated Emissions EN55022: 1992 Class B limit, 30 - 1,000 MHz, 10 meters

X 3. Radiated Emission per FCC Part 2, Paragraph 2.1053, Part 87, Paragraph 87.139

X 4. Frequency Stability Part 2, Paragraph 2.1046 Part 87, Paragraph 87.131

Both Conducted and radiated testing were performed according to the procedures in FCC/ANSI C63.4 and CSA 108.8 - M1983. Radiated testing was performed at an antenna-to-EUT distance of 3 meters (1 - 10 GHz).

1.3 Test Facility

The open area test site and conducted measurement data were tested by:

TÜV PRODUCT SERVICE 10040 Mesa Rim Road San Diego, CA 92121-2912 Phone: 619 546 3999 Fax: 619 546 0364

The Test Site Data and performance comply with ANSI 63.4 and are registered with the FCC, 7435 Oakland Mills Rd, Columbia Maryland 21046. All Measurement Data is acquired according to the content of FCC Measurement Procedure and ANSI C63.4, unless supplemented with additional requirements as noted in the test report.

1.4 Part 2 Requirements

See attachments.

- A) Microprocessor Nos. Control: i386
 Digital Signal Processor TMS320C31
- B) Type of emission. A3E, manual page 1-3 (AM, mode O)
- C) Frequency Range. Manual page 1-2 118-136.975 MHz
- Range of Operating Power values or specific operating power levels;
 and description of any means provided for variation of operating power.
 1 25 Watts in 1 W increments, Manual page 1-3.
 Page 3-1 Remote control via RS-232.
- **E)** Maximum power rating 25 Watts, Manual page 1-3; Frequency Tolerance, 2% 273 Hz, 20 ppm Manual 1-2.
- F) DC voltages applied to and dc currents into the several elements of the final radio frequency amplifying device for normal operation over the power range.

 24 32 Vdc @ 15 amps, manual page 1-3
- **G)** Description of the modulation system to be used, including the response characteristics (frequency, phase and amplitude) of any filters provided See manual, page 4-1.
- H) Description of the modulating wavetrain

 AM. It is produced in Digital Signal Processor but the output is amplitude modulation.
- I) The unit is not stereo.

2. SYSTEM TEST CONFIGURATION

2.1 Justification

The **Transceiver**, **Model ATC-100** was initially tested for FCC emission in the following configuration:

See Block Diagram attached.

2.2 EUT Exercise Software

None

2.3 Special Accessories

None

2.4 Modification

None

2.5 Configuration of Tested System

See Block Diagram attached.

3 TEST REPORT

3.1 Emissions Test Conditions: RADIATED EMISSIONS, FCC Part 2, Paragraph 2.1053, Part 87, Paragraph 87.139

The RADIATED EMISSIONS measurements were performed at the following test location:

□ - Test not applicable

■ - Roof (Small Open Area Test Site)

Testing was performed at a test distance of:

■- 3 meters

Test Equipment Used:

Model No.	Prop. No.	Description	Manufacturer	Serial No.	Cal Date
3115	453	Antenna, Double Ridge	EMCO	9412-4363	10/99
		Guide			
3104	234	Biconical Antenna	EMCO	3031	08/99
3146	244	Log Periodic Antenna	EMCO	1063	09/99
8566B	720	Spectrum Analyzer	Hewlett Packard	211500842	03/99
8566B	721	Spectrum Analyzer Display	Hewlett Packard	2112A02185	03/99

Remarks: See test setup photos for test setup.

Field Strength Calculation

If a preamplifier was used during the Radiated Emission Testing, it is required that the amplifier gain must be subtracted from the Spectrum Analyzer (Meter) Reading. In addition, a correction factor for the antenna, cable used and a distance factor, if any, must be applied to the Meter Reading before a true field strength reading can be obtained. In the automatic measurement, these considerations are automatically presented as a part of the print out. In the case of manual measurements and for greater efficiency and convenience, instead of using these correlation factors for each meter reading, the specification limit was modified to reflect these correlation factors at each frequency value so that the meter readings can be compared directly to the modified specification limit. This modified specification limit is referred to as the "Corrected Meter Reading Limit" or simply the CMRL, which is the actual field strength present at the antenna. The quantity can be derived in the following manner:

Corrected Meter Reading Limit (CMRL) = SAR + AF + CL - AG - DC

Where, SAR = Spectrum Analyzer Reading

AF = Antenna Factor

CL = Cable Loss

AG = Amplifier Gain (if any)

DC = Distance Correction (if any)

Assume the following situation: A meter reading of 29.4 dBuV was obtained from a Class A computing device measured at 83 MHz. Assume an antenna factor of 9.2 dB, a cable loss of 1.4 dB and amplifier gain of 20.0 dB at 83 MHz. The final field strength would be determined as follows:

CMRL = 29.4 dBuV + 9.2dB = 1.4 dB - 20 dB/M - 0.0 dB

CMRL = 20.0 dBuV/M

This result is well below the FCC and CSA Class A limit of 29.5 dbuV/m at 83 MHz.

For the manual mode of measurement, a table of corrected meter reading limit was used to permit immediate comparison of the meter reading to determine if the measure emission amplitude exceeded the specification limit at that specific frequency.

REPORT No:

9102

TESTED BY: dm

SPEC FCC Part2 para2.1053

FCC Part 87 para. 87.139

CUSTOMER: Cubic communications Inc.

TEST DIST: 1

EUT:

ATC-100

TEST SITE: 3

EUT MODE: transmit - AM

BICONICAL: 234

DATE:

29-Mar-99

LOG:

244

NOTES:

Duty Cycle= 100%

OTHER:

453

AM w/ internal 1kHz modulation

low channel

internal 10-turn choke on DC power input leads. Steward 28B1142-100 core

v.beta1

FREQ (MHz)		FICAL (uv) av	HORIZ (dB	CORRECTION FACTOR (dB/m)	MAX L (dBu pk	SPEC (dBu ^v	MAR (di pk	EUT Rotatio	v.beta Antenna Height
118.025	56.7	· · · ·	52.8	16.0	72.7				
236.05	61.3		58.1	14.1	75.4	84.4	-9.02		
354.075	53		46.5	 17.7	70.7	84.4	-13.7		
472.1	35.3		42.3	20.6	62.9	 84.4	-21.5		
590.125	19.2		20	22.8	42.8	84.4	-41.6		
708.15	22.6		29.1	25.1	54.2	 84.4	-30.2		
826.175	26.5		31	26.3	57.3	84.4	-27.1		
944.2	23.7		22	27.5	51.2	84.4	-33.2		
1062.225	4.4		3.6	27.1	31.5	84.4	-52.9		
1180.25	3.7		5.2	28.0	33.2	84.4	-51.2		
		· 							
									·
				 			·		
						`			

REPORT No:

9102

TESTED BY: d

SPEC FCC Part2 para2.1053

FCC Part 87 para. 87.139

CUSTOMER: Cubic communications Inc.

TEST DIST: 1

EUT:

ATC-100

TEST SITE: 3

EUT MODE: transmit - AM

BICONICAL: 234

DATE:

29-Mar-99

LOG:

244

NOTES:

Duty cycle 100% OTHER:

453

AM w/ internal 1kHz modulation mid channel

tested with 4-turn ferrite on DC power input leads. Steward 28A2024-0A0

	1 ./==-							I = = = :					v.beta1
FREQ		ΓICAL			CORRECTION			SPEC				EUT Rotatio	Antenna Height
(MHz)	1 -	uv)	(dB	•	FACTOR	(dBu	•	(dBu	•	(dl	-		
	pk	av	pk	av	(dB/m)	pk	av	pk	av	pk	av	<u>o</u> .	<u> </u>
127.1	65.9		61		14.4	80.3							
254.2	56.6		64		15.2	79.2	<u> </u>	84.4		-5.25		180	1
381.3	52	_	53.7		18.4	72.1		84.4		-12.3			
508.4	29.4		31.5		22.0	53.5		84.4		-30.9			
635.5	23		26.4		23.1	49.5		84.4		-34.9			
762.6	37.5		40.9		25.4	66.3		84.4		-18.1			
889.7	27.2		25.7		27.1	54.3		84.4		-30.1			
1016.8	29.1		26.4		26.7	55.8		84.4		-28.6			
1143.9	23.8		22.2		27.8	51.6		84.4		-32.8			
1271	14.2		15.2		28.8	44.0		84.4		-40.4			ĺ
						·							
										- "			
		-											
												 	
	İ												
	T												
···									 				
			·										
			-		-								
	 		+										
			+										
· · · · · · · · · · · · · · · · · · ·							-						
<u> </u>	L								[l			

REPORT No:

9102

TESTED BY: driver

SPEC FCC Part2 para2.1053

FCC Part 87 para. 87.139

CUSTOMER: Cubic communications Inc.

TEST DIST: 1

EUT:

ATC-100

TEST SITE: 3

EUT MODE: transmit - AM

BICONICAL: 234

DATE:

29-Mar-99

LOG:

244

NOTES:

Duty cycle 100%

AM w/ internal 1kHz modulation

OTHER:

453

mid channel

internal 10-turn choke on DC power input leads. Steward 28B1142-100 core

v beta1

	VEDI	ΓΙCAL	LICOLIZA	CAITAI				0050				τ	v.beta1
FREQ		uv)	(dB		CORRECTION			SPEC				Z m	유호
(MHz)	pk	av,	(ub pk	av)	(dB/m)	(dBu pk	v/m) av	(dBu¹ pk	v/m) av	(dl	•	EUT Rotatio	Antenna Height
135.4	62	av		av			av	pk .	av	pk	av	<u> </u>	^ ≅
			70		13.3	83.3	ļ						
270.8	57.8		55.2		16.0	73.8		84.4		-10.6		180	_1_
406.2	42.9		51.2		18.9	70.1	L	84.4		-14.3			
541.6	32.7		25.3		22.0	54.7		84.4		-29.7			
677	21.9		24.7		24.6	49.3		84.4		-35.2			
812.4	51.7		54.9		26.1	81.0		84.4		-3.35			
947.8	21.2		26.8		27.7	54.5		84.4		-29.9			
1083.2	32.1		20.5		27.3	59.4		84.4		-25			
1218.6	17.3		12.3		28.3	45.6		84.4		-38.8			
1354	18.4		9.6		29.4	47.8		84.4		-36.6			
]										
												1	

	 		<u> </u>				_						
	-												
													
	I												
		_											
			ļļ										
]

3.2 CONDUCTED EMISSION DATA

Emissions Test Conditions: CONDUCTED EMISSIONS, FCC Part 2, Paragraphs 2.1046, 2. 1047(a), 2.1049, 2.1051, 2. 1053, 2.1055(d) and Part 87, Paragraphs 87.131, 87.133, 87.135, 87.139, 87.141

The RADIATED EMISSIONS measurements were performed at the following test location :

□ - Test not applicable

■ - SR-3, Shielded Room, 12' x 20' x 8', Metal Chamber

Test Equipment Used:

. 001 – 94.p		• •			
Model No.	Prop. No.	Description	Manufacturer	Serial No.	Cal Date
8498A	446	Attenuator	Hewlett Packard	03273	03/99
8566B	744	Spectrum Analyzer	Hewlett Packard	2618A02913	02/00
C3910	638	Directional Coupler	Weralatone	5416	*
43		Bird Wattmeter	Bird	166671	11/99
45-20-33		20 dB Load	Weinshel	DW445	09/99
3325A	688	Audio Frequency Generator	Hewlett Packard	2512A23803	02/00
XF4-60-20		DC Power Supply	Xantrex	28977	NCR
HP5386A		Frequency Counter	Hewlett Packard	2621A00303	10/99

Remarks: (*) Verified prior to testing.

Output Power Specification: FCC Part 2, Paragraph 2.1046 and Part 87, Paragraph 87.131 NOTES: 1. A3E emission. ATTEN 70 dB many washington gon 2. 2500 Hz internally generated modulation. 3. f_o 135.4 MHz (high) MKR 5Ø.ØØ msec REF 58.8 dBm 43.00 dBm 1Ø dB/ POS PK OFFSET 28.8 dB CENTER 175 135 4ØØ MHZ CENTER 135.400 175 MHz SPAN Ø Hz RES BW 10 Hz VBW 3Ø Hz SWP 100 msec

Date: 30 March 1999

Customer: CUBIC COMMUNICAITONS

Date: 30 March 1999

FCC Part 2, Paragraph 2.1046 and Part 87, Paragraph 87.131 Specification:

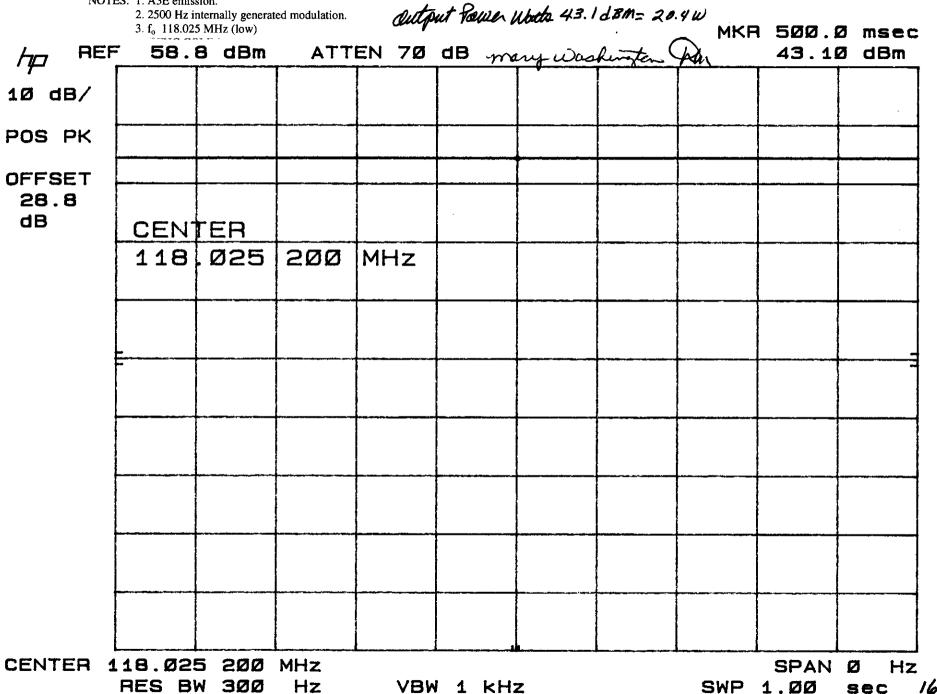
NOTES: 1. A3E emission.

Output Power

ATTEN 70 dB mary washington De 2. 2500 Hz internally generated modulation. 3. f_o 127.1 MHz (mid) MKR 500.0 msec REF 58.8 dBm 43.3Ø dBm 10 dB/ POS PK OFFSET 28.8 dB CENTER 15Ø 127 100 MHZ CENTER SPAN Ø Hz

127.100 150 MHz RES BW 300 Hz

VBW 1 kHz

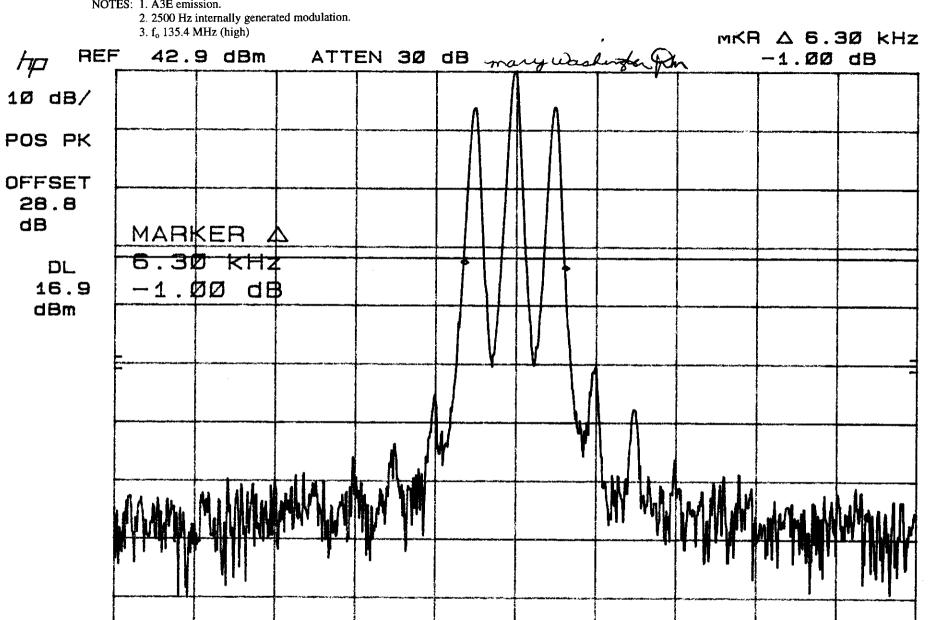

SWP 1.00 sec Customer: CUBIC COMMUNICAITONS Output Power Specification:

Date: 30 March 1999

FCC Part 2, Paragraph 2.1046 and Part 87, Paragraph 87.131

NOTES: 1. A3E emission.

2. 2500 Hz internally generated modulation.


Specification:

Date: 30 March 1999

FCC Part 2, Paragraph 2.1049 and Part 87, Paragraph 87.135

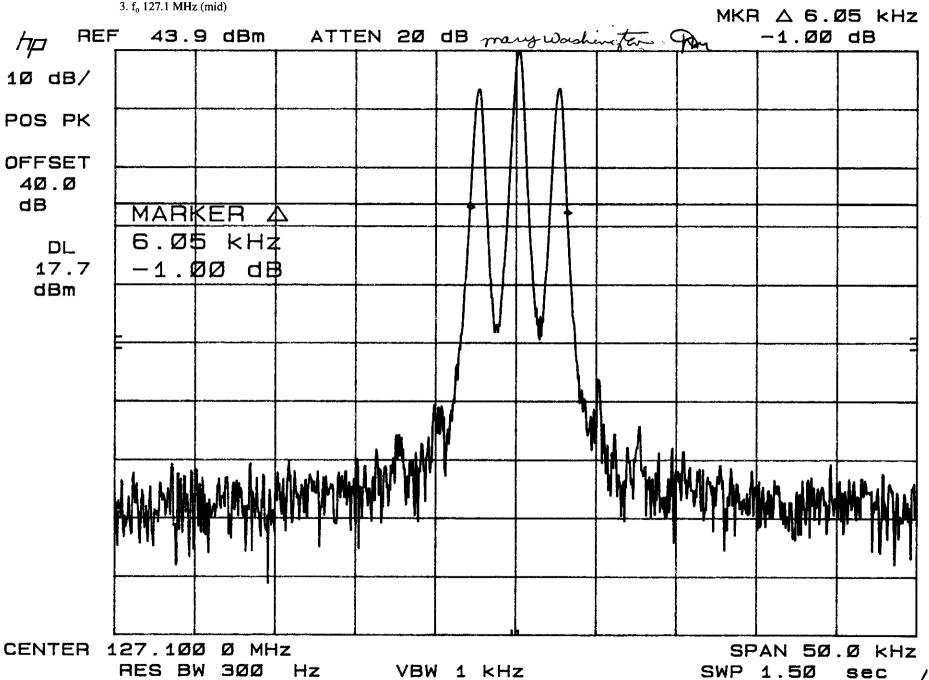
NOTES: 1. A3E emission.

Occupied Bandwidth

CENTER 135.400 3 MHz RES BW 3ØØ Hz

VBW kHz

SPAN 5Ø.Ø kHz SWP 1.50 sec


Specification:

Date: 30 March 1999

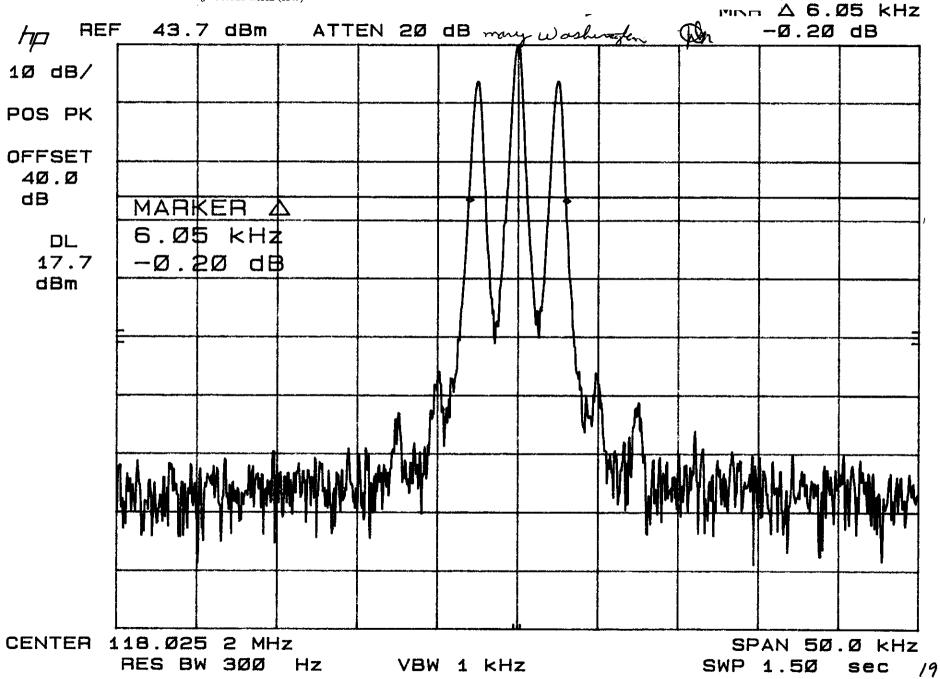
Occupied Bandwidth NOTES: 1. A3E emission.

2. 2500 Hz internally generated modulation.

FCC Part 2, Paragraph 2.1049 and Part 87, Paragraph 87.135

Occupied Bandwidth S

Specification:


Date: 29 March 1999

FCC Part 2, Paragraph 2.1049 and Part 87, Paragraph 87.135

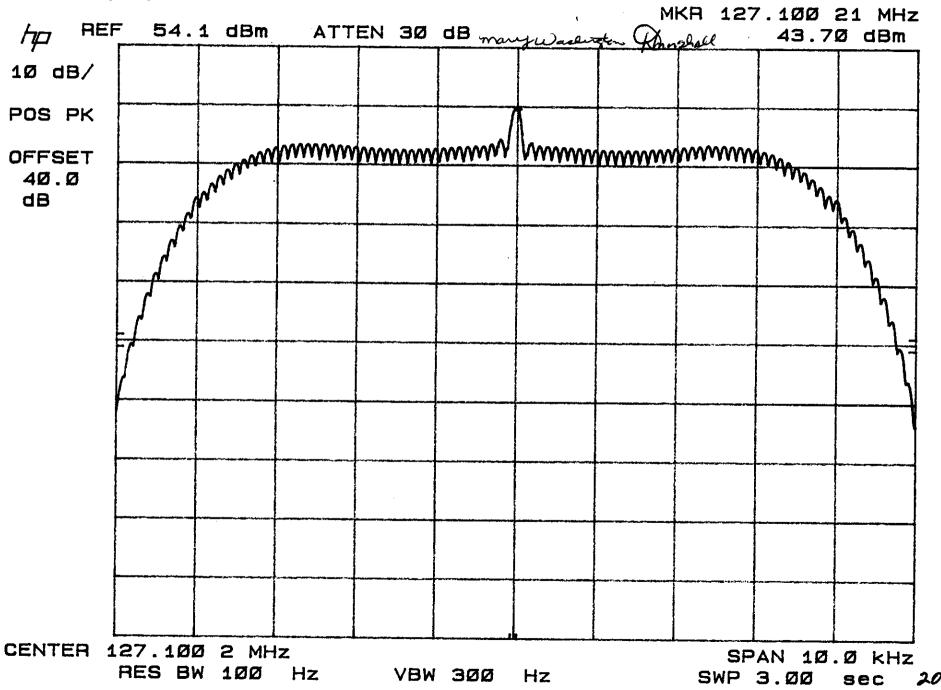
NOTES: 1. A3E emission.

2. 2500 Hz internally generated modulation.

3. f_o 118.025 MHz (low)

Date: 30 March 1999

Test: Modulation Characteristics


Specification:

FCC Part 2, Paragraph 2.1047(a) and Part 87, Paragraph 87.141

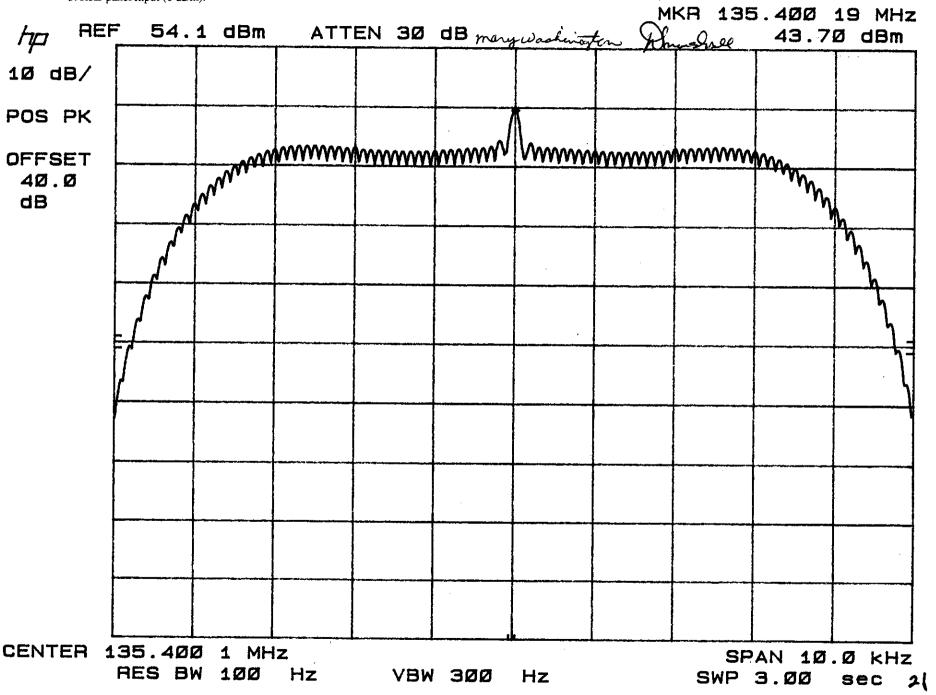
NOTES: 1. A3E emission.

2. RF output with audio single-tone swept input from 100-5000 Hz in 100 Hz steps.

3. Rear panel input (0 dBm).

Customer: CUBIC COMMUNICAITONS
Test: Modulation Characteristics

Date: 30 March 1999


Specification:

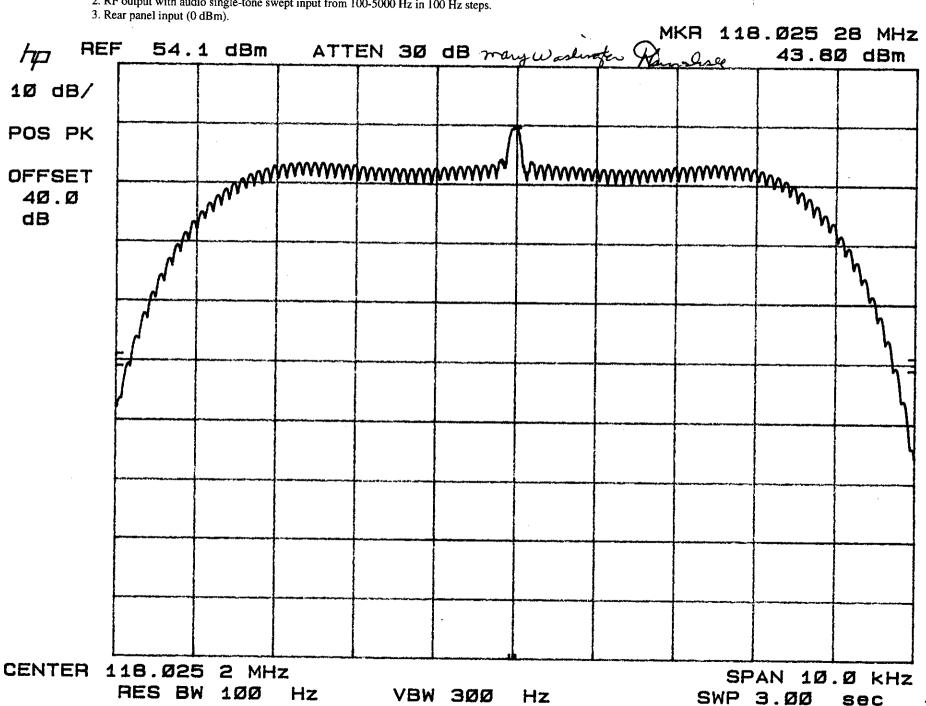
FCC Part 2, Paragraph 2.1047(a) and Part 87, Paragraph 87.141

NOTES: 1. A3E emission.

2. RF output with audio single-tone swept input from 100-5000 Hz in 100 Hz steps.

3. Rear panel input (0 dBm).

Customer: CUBIC COMMUNICAITONS Test: Modulation Characteristics


Date: 30 March 1999

Specification:

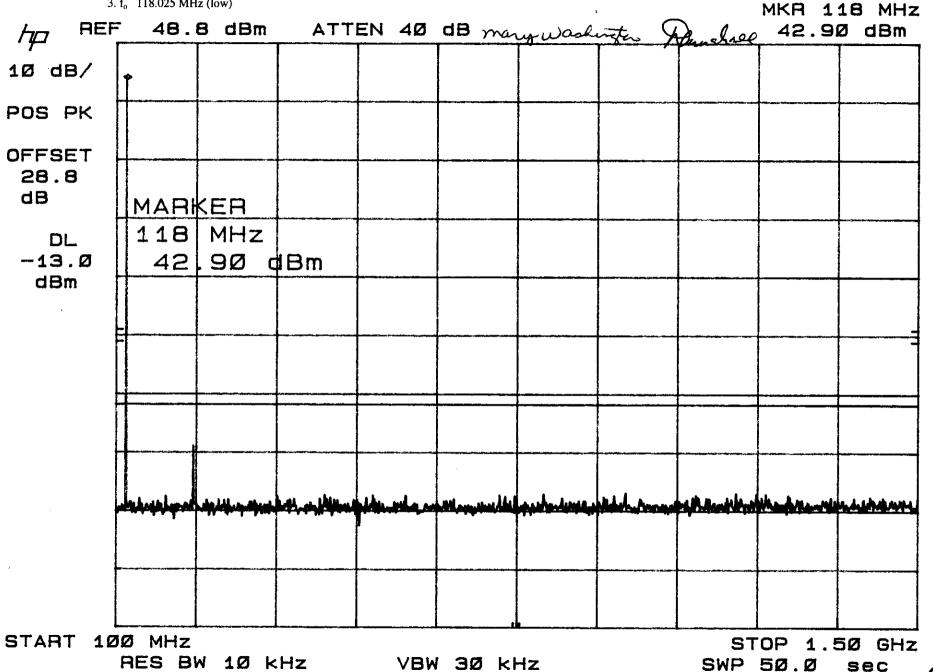
FCC Part 2, Paragraph 2.1047(a) and Part 87, Paragraph 87.141

NOTES: 1. A3E emission.

2. RF output with audio single-tone swept input from 100-5000 Hz in 100 Hz steps.

Date: 30 March 1999

Spurious Emissions


Specification:

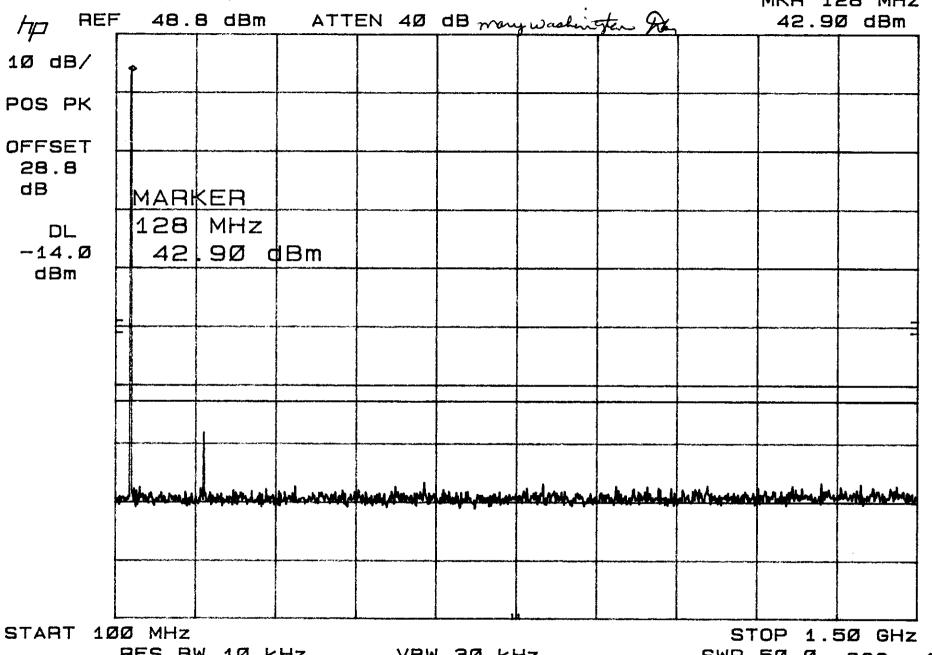
FCC Part 2, Paragraph 2.1051 and Part 87, Paragraph 87.139

NOTES: 1. A3E emission.

2. 2500 Hz internally generated modulation.

3. f_o 118.025 MHz (low)

Spurious Emissions


Specification:

Date: 30 March 1999

FCC Part 2, Paragraph 2.1051 and Part 87, Paragraph 87.139

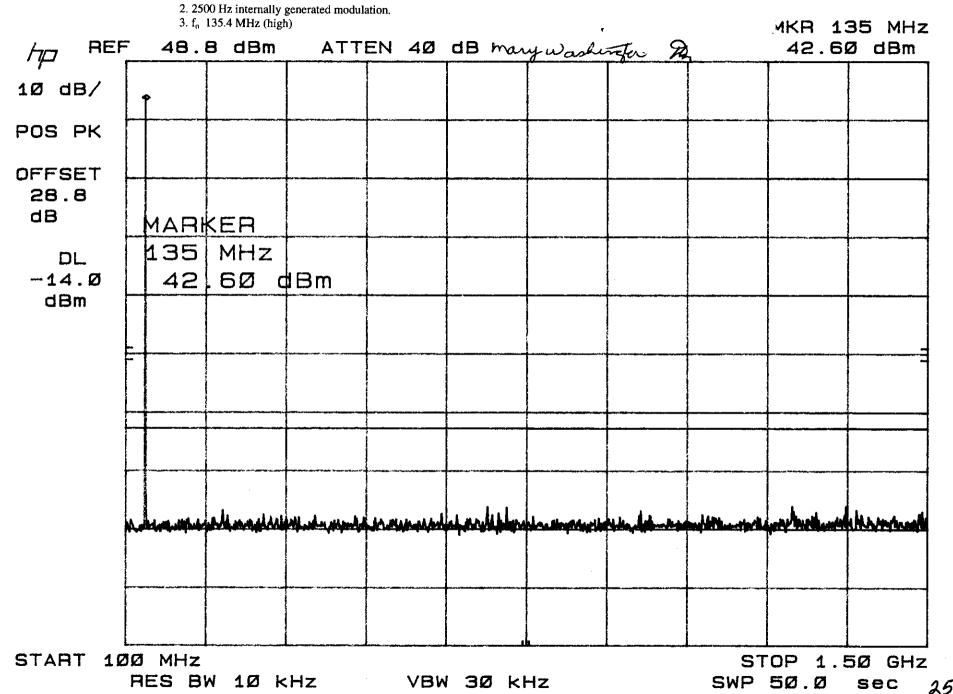
NOTES: 1. A3E emission.

2. 2500 Hz internally generated modulation. 3. f₀ 127.1 MHz (mid) MKR 128 MHz 48.8 dBm

START 100 MHz

RES BW 10 kHz

VBW 3Ø kHz


SWP 50.0

Spurious Emissions NOTES: 1. A3E emission.

Date: 30 March 1999

Specification:

FCC Part 2, Paragraph 2.1051 and Part 87, Paragraph 87.139

3.3 Frequency Stability (Voltage Variation)

Emissions Test Conditions: FREQUENCY STABILITY (f_o 136 MHz, Voltage Variation), FCC Part 2, Paragraph 2.1055(d) and Part 87, Paragraph 87.133

The frequency stability measurements were performed at the following test location :
--

□ - Test not applicable

■ - SR-3, Shielded Room, 12' x 20' x 8', Metal Chamber

Test Equipment Used:

Model No.	Prop. No.	Description	Manufacturer	Serial No.	Cal Date
XF4-60-20		DC Power Supply	Xantrex	28977	NCR
C3910	638	Directional Coupler	Weralatone	5416	*
43		Bird Wattmeter	Bird	166671	11/99
45-20-33		20 dB Load	Weinshel	DW445	09/99
HP5386A		Frequency Counter	Hewlett Packard	2621A00303	10/99

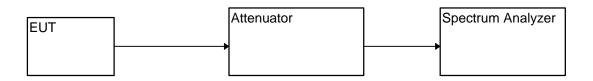
Remarks:	(*) Verified internally.

Report No. 9102-08 (FCC ID: NVSATC-100)

REPORT NO: 9102 **DATE**: 30 March 1999

TEST: Frequency Stability

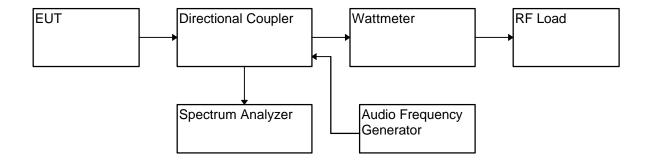
CUSTOMER: CUBIC COMMUNICATIONS, INC.

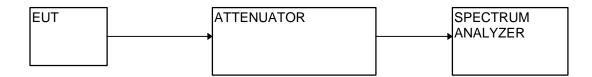

EUT: ATC-100

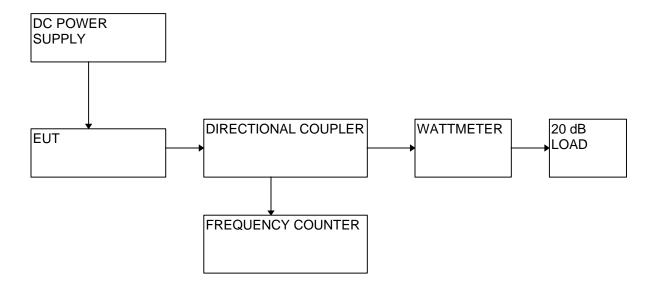
SPECIFICATION: FCC Part 2, Paragraph 2.1055(d) and Part 87, Paragraph 87.133

	Vnominal 28 Vdc	Vnominal 28 Vdc	Vnominal 28 Vdc
f _o 136 MHz			
Startup	136.00015 MHz	136.00014 MHz	136.00011 MHz
+2 min	136.00017 MHz	136.00017 MHz	136.00014 MHz
+5 min	136.00020 MHz	136.00019 MHz	136.00018 MHz
+10 min	136.00018 MHz	136.00018 MHz	136.00017 MHz

3.4 TEST SETUPS CONDUCTED EMISSIONS AND FREQUENCY STABILITY (VOLTAGE VARIATION)


RF OUTPUT POWER TEST SETUP


OCCUPIED BANDWIDTH TEST SETUP


MODULATION CHARACTERISTICS TEST SETUP

SPURIOUS EMISSIONS TEST SEUTP

FREQUENCY STABILITY TEST SETUP

Report No. 9102-08 (FCC ID: NVSATC-100)

4 SIGNATURE PAGE **GENERAL REMARKS: SUMMARY:** All tests according to United States Standard 47 CFR Part 2, Paragraphs 2.1046, 2. 1047(a), 2.1049, 2.1051, 2. 1053, 2.1055(d) and Part 87, Paragraphs 87.131, 87.133, 87.135, 87.139, 87.141 ■- Performed ☐ - Not Performed The Equipment Under Test ■- Fulfills the general approval requirements cited above ☐ - **Does not** fulfill the general approval requirements cited above - TÜV PRODUCT SERVICE, INC. -Responsible Engineer: Responsible Test Engineer: marshall Mary Washington

Mary Washington (EMC Engineer)

Dave Marshall (EMC Test Engineer)

5 DATA TESTED BY CUBIC COMMUNICATIONS

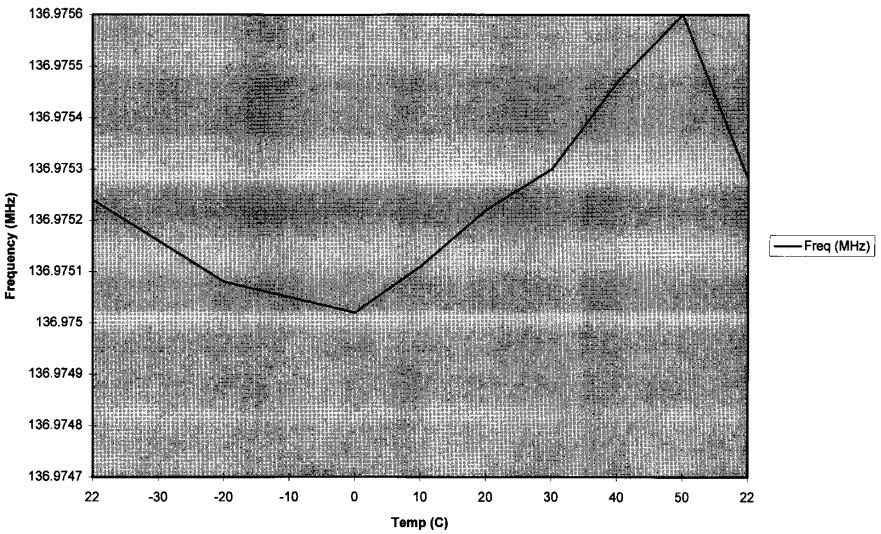
5.1 Frequency Stability (over Temperature)

Emissions Test Conditions: FREQUENCY STABILITY (f_o 136 MHz, Voltage Variation), FCC Part 2, Paragraph *2.1055(d)* and Part *87, Paragraph 87.133*

requency stability measurements were performed at the following test location	on ·
equality discussions were performed at the renorming test results	,

□ - Test not applicable

■ - Temperature Chamber


Test Equipment Used:

Model No.	Prop. No.	Description	Manufacturer	Serial No.	Cal Date
XF4-60-20		DC Power Supply	Xantrex	28977	NCR
DP 1351		Voltmeter	Data Precision	2508	09/99
T4500		PC	Toshiba		NCR*
510		Controller	Systems, Inc.		07/99
43		Bird Wattmeter	Bird	166671	11/99
45-20-33		20 dB Load	Weinshel	DW445	09/99
HP5386A		Frequency Counter	Hewlett Packard	2621A00303	10/99

Remarks:	(*) Used to control transceiver has no effect on performance.	

FCC ID: NVSCTX-5000

Frequency Stability

Part 2, Paragraph 2.1046, Part 87, Para. 87.131

fcctemp.atc

Test Procedure for Temperature Stability TestMon 4-19-99

A. <u>Description:</u> The requirements are that the "frequency determining unit" be checked from -20°C to +50°C. The unit must "soak" for one hour before the measurement is taken. This means that the test will be 8 hours.

The frequency measurement is taken from the output of the ATC-100 with a frequency counter (HP5386A) through an appropriate amount of attenuation.

The resolution of the frequency counter will be 10 Hz.

B. Procedure:

(Step #)

- 1. Begin: Put the warmed-up ATC-100, tuned to 136.975 MHz, into the temperature chamber. Make a baseline frequency measurment at ambient temperature (+22°C).
- 2. Time 0: Turn on the temp chamber and set it to -20 C. Wait 1 hour.
- 3. Time 1: Turn on the ATC-100. Set the frequency to 136.975 MHz. Key the ATC-100 and make a frequency measurement every minute for 10 minutes. Turn off the ATC-100. Set the temperature chamber to -10 C. Wait one hour.
- Time 2: Turn on the ATC-100. Set the frequency to 136.975 MHz.
 Key the ATC-100 and make a frequency measurement every minute for 10 minutes.
 Turn off the ATC-100. Set the temperature chamber to 0 C. Wait one hour.
- 5. Time 3: Turn on the ATC-100. Set the frequency to 136.975 MHz. Key the ATC-100 and make a frequency measurement every minute for 10 minutes. Turn off the ATC-100. Set the temperature chamber to+10 C. Wait one hour.
- 6. Time 4: Turn on the ATC-100. Set the frequency to 136.975 MHz.

 Key the ATC-100 and make a frequency measurement every minute for 10 minutes.

 Turn off the ATC-100. Set the temperature chamber to +20 C. Wait one hour.
- 7. Time 5: Turn on the ATC-100. Set the frequency to 136.975 MHz. Key the ATC-100 and make a frequency measurement every minute for 10 minutes. Turn off the ATC-100. Set the temperature chamber to +30 C. Wait one hour.
- 8. Time 6: Turn on the ATC-100. Set the frequency to 136.975 MHz. Key the ATC-100 and make a frequency measurement every minute for 10 minutes. Turn off the ATC-100. Set the temperature chamber to +40 C. Wait one hour.
- 9. Time 7: Turn on the ATC-100. Set the frequency to 136.975 MHz. Key the ATC-100 and make a frequency measurement every minute for 10 minutes. Turn off the ATC-100. Set the temperature chamber to +50 C. Wait one hour.
- 10. Time 9: Turn on the ATC-100. Set the frequency to 136.975 MHz.

 Key the ATC-100 and make a frequency measurement every minute for 10 minutes.

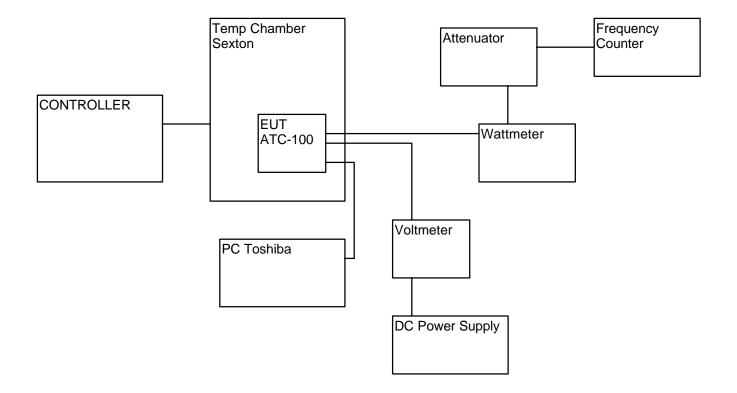
 Turn off the ATC-100. Set the temperature chamber to +22 C. Wait one hour.
- 11. Time 10: Turn on the ATC-100. Set the frequency to 136,975 MHz. Key the ATC-100 and make a frequency measurement every minute for 10 minutes.

Temp/	Hours	0	1	2	3	4	5	6	7	8	9	10	11
		 						- Step	#'s				
160.0												10	
+50 C											9	- 10	
+40 C										8	9		
+30 C									7	8			
+20 C			1	2				6-	7			10	11
+10 C							5	6					
0 C						4	5						
-10 C					3	4							
-20 C				2	3								

TEST DATA SHEET TEMPERATURE STABILITY TEST ATC-100 4-20-99

4-28-99

Verify that the output frequency of the ATC-100 remains ± 20 PPM from -20° C to $+50^{\circ}$ C. (At 136.975 MHz 20 PPM = 2.739 kHz)


Temp (°C)	Frequency (Hz)			Temp (°C)	Frequency (Hz)	
Step 1+22°C	136,975 340		Step 3	20°C	136,975,140	
	250	1 min	•		120	1 min
	260	2 min			1/0	2 min
	250	3 min			090	3 min
	240	4 min			080	4 min
	240	5 min			070	5 min
	230	6 min			050	6 min
	230	7 min			040	7 min
		8 min			030	8 min
	<u></u>	9 min			030	9 min
	210	10 min			030	10 min
Step 410°C	136.975,110		Step 5	0°C	030	
		1 min	-		020	l min
	080	2 min			020	2 min
	040	3 min			023	3 min
	050	4 min			020	4 min
	040	5 min			<u>63 o</u>	5 min
	<u>o Eo</u>	6 min			040	6 min
	030	7 min			050	7 min
	020	8 min			060	8 min
	020	9 min			070	9 min
	020	10 min			080	10 min
Step 6+10°C			Step 7	+20°C	260	
	0 70	1 min			240	1 min
	080	2 min			230	2 min
	/66	3 min			220	3 min
		4 min			220	4 min
	130	5 min			220	5 min
	150	6 min			273	6 min
		7 min			240	7 min
	200	8 min			250	8 min
	230	9 min			260	9 min
		10 min			260	10 min

Step 8+30°C	136,975,240	•	Step 9+40°C	131,975,390	
	250	1 min	·—	400	1 min
	270	2 min		420	2 min
	290	3 min		440	3 min
	300	4 min		470	4 min
	<u> </u>	5 min		190	5 min
	300	6 min		520	6 min
	300	7 min		540	7 min
	700	8 min		550	8 min
	300	9 min		560	9 min
	310	10 min		570	10 min
Step 10+50°C	136, 975, 650		Step 11 +22°C	_136,975, 220	
	690	1 min	Step 11 +22°C	136,975, 220	1 min
Step 10+50°C	630	2 min	Step 11 +22°C		
	640 630 610	2 min 3 min	Step 11 +22°C	230 240 266	1 min
	640 630 610 600	2 min 3 min 4 min	Step 11 +22°C	230 240 266 280	1 min 2 min
	640	2 min 3 min 4 min 5 min	Step 11 +22°C	230 240 266 280 290	1 min 2 min 3 min 4 min 5 min
	640	2 min 3 min 4 min 5 min 6 min	Step 11 +22°C	230 240 266 280 290 320	1 min 2 min 3 min 4 min 5 min 6 min
	640	2 min 3 min 4 min 5 min 6 min 7 min	Step 11 +22°C	230 240 266 280 290 320 310	1 min 2 min 3 min 4 min 5 min 6 min 7 min
	640	2 min 3 min 4 min 5 min 6 min 7 min 8 min	Step 11 +22°C	230 240 260 280 290 320 310 300	1 min 2 min 3 min 4 min 5 min 6 min 7 min 8 min
	640	2 min 3 min 4 min 5 min 6 min 7 min	Step 11 +22°C	230 240 266 280 290 320 310	1 min 2 min 3 min 4 min 5 min 6 min 7 min

Toch Michael E. Norman Whithaelh Vomen

CUBIC COMMUNICATIONS, INC

FREQUENCY STABILITY TEST SETUP OVER TEMPERATURE

