

# **FCC Test Report**

**Report No.:** 2505P37465EE

Applicant: Huizhou speed wireless technology co.,ltd

Address: No.138 Huize Road, Hi-Tech Industrial Park of East River, Zhongkai

Hi-tech District, Huizhou City, Guangdong Province, China

Product Name: WiFi+BT Module

Product Model: WL00033

Multiple Models: N/A

Trade Mark: N/A

FCC ID: 2BBLK-WL6376B

Standards: FCC CFR Title 47 Part 15C (§15.247)

**Test Date:** 2025-02-07 to 2025-03-05

Test Result: Complied

**Report Date:** 2025-03-05

Reviewed by:

Approved by:

Abel Chen

Abel Chen

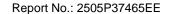
**Project Engineer** 

Jacob Kong

Jacob Gong

Manager

#### Prepared by:


World Alliance Testing & Certification (Shenzhen) Co., Ltd

No. 1002, East Block, Laobing Building, Xingye Road 3012, Xixiang street, Bao'an District, Shenzhen, Guangdong, People's Republic of China



This report may contain data that are not covered by the NVLAP accreditation and shall be marked with an asterisk "★"

Report Template: TR-4-E-008/V1.2 Page 1 of 90





### **Announcement**

- 1. This test report shall not be reproduced except in full, without the written approval of World Alliance Testing & Certification (Shenzhen) Co., Ltd
- 2. The results in this report apply only to the sample tested.
- 3. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the U.S. Government.
- 4. The information marked "#" is provided by the applicant, the laboratory is not responsible for its authenticity and this information can affect the validity of the result in the test report. Customer model name, addresses, names, trademarks etc. are included.

## **Revision History**

| Version No. | Issued Date | Description |
|-------------|-------------|-------------|
| 00          | 2025-03-05  | Original    |

Report Template: TR-4-E-008/V1.2 Page 2 of 90



## **Contents**

| 1 | Gene | ral Info | rmation                                  | 4    |
|---|------|----------|------------------------------------------|------|
|   | 1.1  | Client   | Information                              | 4    |
|   | 1.2  | Produ    | ct Description of EUT                    | 4    |
|   | 1.3  | Anten    | na information                           | 4    |
|   | 1.4  | Relate   | ed Submittal(s)/Grant(s)                 | 5    |
|   | 1.5  | Meas     | urement Uncertainty                      | 5    |
|   | 1.6  | Labor    | atory Location                           | 5    |
|   | 1.7  | Test N   | Nethodology                              | 5    |
| 2 | Desc | ription  | of Measurement                           | 6    |
|   | 2.1  | Test C   | Configuration                            | 6    |
|   | 2.2  | Test A   | uxiliary Equipment                       | 7    |
|   | 2.3  | Interc   | onnecting Cables                         | 7    |
|   | 2.4  | Block    | Diagram of Connection between EUT and AE | 7    |
|   | 2.5  | Test S   | Setup                                    | 8    |
|   | 2.6  | Test F   | Procedure                                | 10   |
|   | 2.7  | Meas     | urement Method                           | 11   |
|   | 2.8  | Meas     | urement Equipment                        | 12   |
| 3 | Test | Results  | ;                                        | 13   |
|   | 3.1  | Test S   | Summary                                  | 13   |
|   | 3.2  | Limit.   |                                          | 14   |
|   | 3.3  | AC Li    | ne Conducted Emissions Test Data         | 15   |
|   | 3.4  | Radia    | ted emission Test Data                   | 17   |
|   | 3.5  | RF Co    | onducted Test Data                       | 78   |
|   | ;    | 3.5.1    | 6 dB Emission Bandwidth                  | 78   |
|   | ;    | 3.5.2    | 99% Occupied Bandwidth                   | 78   |
|   | ;    | 3.5.3    | Maximum Conducted Peak Output Power      | 79   |
|   | ;    | 3.5.4    | Power Spectral Density                   | . 79 |
|   | ;    | 3.5.5    | 100 kHz Bandwidth of Frequency Band Edge | 80   |
|   | ;    | 3.5.6    | Duty Cycle                               | . 80 |
| 4 | Test | Setup F  | Photo                                    | . 89 |
| 5 | FIIT | Photo    |                                          | ٩n   |



### 1 General Information

### 1.1 Client Information

| Applicant:    | Huizhou speed wireless technology co.,ltd                                                                                    |
|---------------|------------------------------------------------------------------------------------------------------------------------------|
| Address:      | No.138 Huize Road, Hi-Tech Industrial Park of East River, Zhongkai Hi-tech District, Huizhou City, Guangdong Province, China |
| Manufacturer: | Huizhou speed wireless technology co.,ltd                                                                                    |
| Address:      | No.138 Huize Road, Hi-Tech Industrial Park of East River, Zhongkai Hi-tech District, Huizhou City, Guangdong Province, China |

## 1.2 Product Description of EUT

The EUT is WiFi+BT Module that contains BT, BLE, 2.4G and 5G WLAN radios, this report covers the full testing of the BLE radio.

| Sample Serial Number                   | 2XWU-1(BT path 1) for CE test,<br>2XWU-2(BT path 1), 2XWU-4(BT path 2), 2XWU-5 (BT path 3) for RE<br>test&RF test(assigned by WATC) |
|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| Sample Received Date                   | 2025-01-22                                                                                                                          |
| Sample Status                          | Good Condition                                                                                                                      |
| Frequency Range                        | 2402MHz - 2480MHz(BLE1M/2M)                                                                                                         |
| Maximum Conducted<br>Peak Output Power | 7.24dBm                                                                                                                             |
| Modulation Technology                  | GFSK                                                                                                                                |
| Spatial Streams                        | SISO (1TX, 1RX)                                                                                                                     |
| Antenna Gain#                          | 5.85dBi                                                                                                                             |
| Power Supply                           | DC 3.3V                                                                                                                             |
| Adapter Information                    | N/A                                                                                                                                 |
| Modification                           | Sample No Modification by the test lab                                                                                              |

#### 1.3 Antenna information

#### 15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

#### **Device Antenna information:**

The BLE antenna is an external antenna with I-PEX connect, please see product external photos for details.



## 1.4 Related Submittal(s)/Grant(s)

FCC Part 15, Subpart C, Equipment Class: DSS, FCC ID: 2BBLK-WL6376B FCC Part 15, Subpart E, Equipment Class: NII, FCC ID: 2BBLK-WL6376B

1.5 Measurement Uncertainty

| Para                   | meter          | Expanded Uncertainty (Confidence of 95%(U = 2Uc(y))) |
|------------------------|----------------|------------------------------------------------------|
| AC Power Lines Conduc  | cted Emissions | ±3.14dB                                              |
|                        | Below 30MHz    | ±2.78dB                                              |
| Emissions, Radiated    | Below 1GHz     | ±4.84dB                                              |
|                        | Above 1GHz     | ±5.44dB                                              |
| Emissions, Conducted   |                | 1.75dB                                               |
| Conducted Power        |                | 0.74dB                                               |
| Frequency Error        |                | 150Hz                                                |
| Bandwidth              |                | 0.34%                                                |
| Power Spectral Density |                | 0.74dB                                               |

**Note:** The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor K with the 95% confidence interval. Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty.

## 1.6 Laboratory Location

World Alliance Testing & Certification (Shenzhen) Co., Ltd

No. 1002, East Block, Laobing Building, Xingye Road 3012, Xixiang street, Bao'an District, Shenzhen, Guangdong, People's Republic of China

Tel: +86-755-29691511, Email: qa@watc.com.cn

The lab has been recognized as the FCC accredited lab under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No. : 463912, the FCC Designation No. : CN5040.

The lab has been recognized by Innovation, Science and Economic Development Canada to test to Canadian radio equipment requirements, the CAB identifier: CN0160.

## 1.7 Test Methodology

FCC CFR 47 Part 2

FCC CFR 47 Part 15

KDB 558074 D01 15.247 Meas Guidance v05r02

ANSI C63.10-2013

Unless otherwise stated there are no any additions to, deviations, or exclusions from the method

Report Template: TR-4-E-008/V1.2 Page 5 of 90



## 2 Description of Measurement

### 2.1 Test Configuration

| Operating ch | Operating channels: |             |                    |             |                    |  |  |  |  |
|--------------|---------------------|-------------|--------------------|-------------|--------------------|--|--|--|--|
| Channel No.  | Frequency<br>(MHz)  | Channel No. | Frequency<br>(MHz) | Channel No. | Frequency<br>(MHz) |  |  |  |  |
| 0            | 2402                | 19          | 2440               | 38          | 2478               |  |  |  |  |
| 1            | 2404                | 20          | 2442               | 39          | 2480               |  |  |  |  |
|              |                     |             |                    | /           | /                  |  |  |  |  |
| 18           | 2438                |             |                    | /           | /                  |  |  |  |  |

According to ANSI C63.10-2013 chapter 5.6.1 Table 11 requirement, select lowest channel, middle channel, and highest channel in the frequency range in which device operates for testing. The detailed frequency points are as follows:

| Lowest channel              |      | Middle channel              |      | Highest channel |                    |
|-----------------------------|------|-----------------------------|------|-----------------|--------------------|
| Channel No. Frequency (MHz) |      | Channel No. Frequency (MHz) |      | Channel No.     | Frequency<br>(MHz) |
| 0                           | 2402 | 19                          | 2440 | 39              | 2480               |

| Test Mode:                                      |                    |                                                                                    |                |              |  |  |  |
|-------------------------------------------------|--------------------|------------------------------------------------------------------------------------|----------------|--------------|--|--|--|
| Transmitting mode:                              | ng with modulation | ·                                                                                  |                |              |  |  |  |
| Exercise software <sup>#</sup> : WCN Combo Tool |                    |                                                                                    |                |              |  |  |  |
|                                                 | _                  | Power Level Setting <sup>#</sup>                                                   |                |              |  |  |  |
| Mode                                            | Data rate          | Low Channel                                                                        | Middle Channel | High Channel |  |  |  |
| BLE 1M                                          | 1Mbps              | Default                                                                            | Default        | Default      |  |  |  |
| BLE 2M                                          | 2Mbps              | Default                                                                            | Default        | Default      |  |  |  |
|                                                 |                    | The exercise software and the maximum power setting that provided by manufacturer. |                |              |  |  |  |

#### **Worst-Case Configuration:**

For radiated emissions, EUT was investigated in three orthogonal orientation, the worst-case orientation was recorded in report

The device have three antenna path designs, all the path signals is from same input, each path can be selected to activate/deactivate by connect/disconnect a  $0\Omega$  resistance, detail please refer the EUT photo, only one path will be selected to use at a time.

For RF conducted test, three path output power was tested, full test was performed on the path which has maximum output power

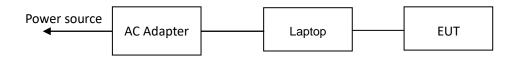
For AC power line conducted emission and radiated emission 9kHz-1GHz were performed with the EUT transmits at the channel with highest output power among the three paths as worst-case scenario.

For radiated emission above 18GHz was performed with the EUT transmits at the channel with highest output power of each path as worst-case scenario.

For radiated emissions below 30MHz, three antenna orientations (parallel, perpendicular, gound-parallel) were tested, only record the worse case test data in report.

Report Template: TR-4-E-008/V1.2 Page 6 of 90




2.2 Test Auxiliary Equipment

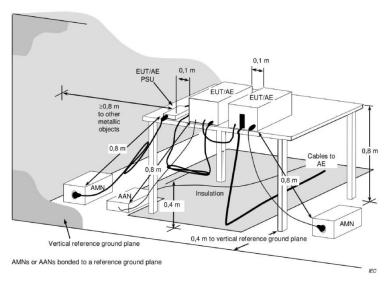
| Manufacturer | Description     | Model | Serial Number |  |
|--------------|-----------------|-------|---------------|--|
| Dell         | Dell Laptop     |       | unknown       |  |
| Dell         | Dell AC Adapter |       | unknown       |  |

2.3 Interconnecting Cables

| Manufacturer | Description         | Length(m)                  | From       | То         |  |
|--------------|---------------------|----------------------------|------------|------------|--|
| unknown      | USB extension cable | 1.0                        | Laptop     | EUT        |  |
| Dell         | AC Power Cable      | AC Power Cable 1.5 Power s |            | AC Adapter |  |
| Dell         | DC Power Cable      | 1.5                        | AC Adapter | Laptop     |  |

## 2.4 Block Diagram of Connection between EUT and AE

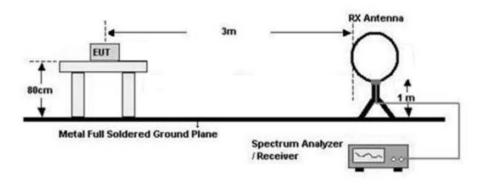



Note: for reference only, the actual connection setup used for testing please refer to the test photos.

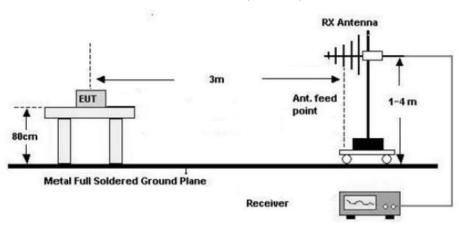
Report Template: TR-4-E-008/V1.2 Page 7 of 90



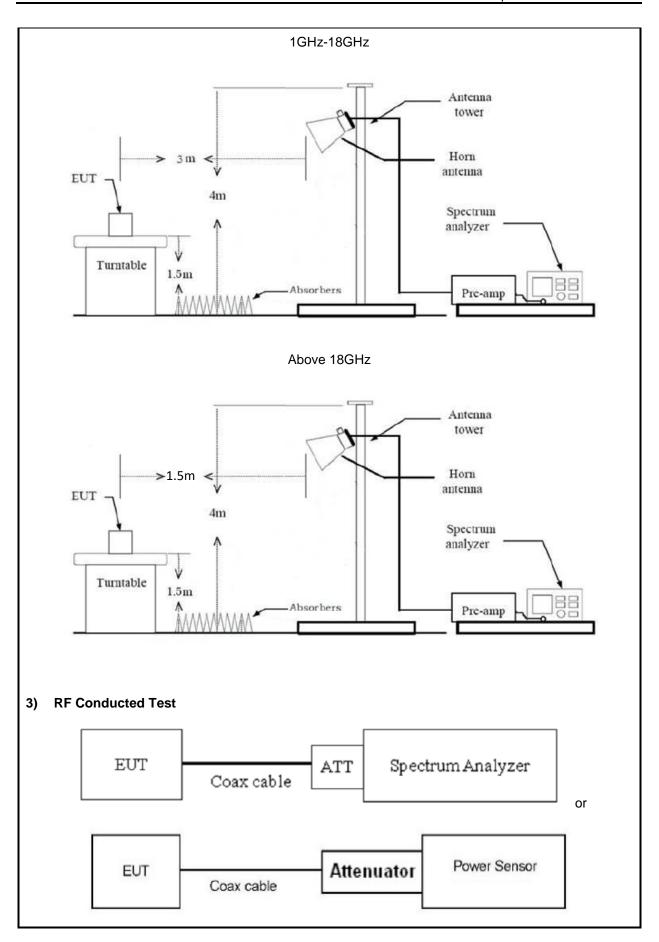
## 2.5 Test Setup


#### 1) Conducted emission measurement:




**Note:** The 0.8 m distance specified between EUT/AE/PSU and AMN/AAN, is applicable only to the EUT being measured. If the device is AE then it shall be >0.8 m.

#### 2) Radiated emission measurement:


Below 30MHz (3m SAC)



30MHz-1GHz (3m SAC)









### 2.6 Test Procedure

#### Conducted emission:

- 1. The E.U.T is placed on a non-conducting table 40cm from the vertical ground plane and 80cm above the horizontal ground plane (Please refer to the block diagram of the test setup and photographs).
- Both sides of A.C. line are checked for maximum conducted interference. In order to find the
  maximum emission, the relative positions of equipment and all of the interface cables must be
  changed according to ANSI C63.10 on conducted measurement.
- 3. Line conducted data is recorded for both Line and Neutral

#### **Radiated Emission Procedure:**

#### a) For below 30MHz

- 1. All measurements were made at a test distance of 3 m. The measured data was extrapolated from the test distance (3m) to the specification distance (300 m from 9-490 kHz and 30 m from 490 kHz- 30 MHz) to clearly show the relative levels of fundamental and spurious emissions and demonstrate compliance with the requirement that the level of any spurious emissions be below the level of the intentionally transmitted signal. The extrapolation factor for the limits were 40\*Log (test distance / specification distance).
- 2. Loop antenna use, investigation was done on the three antenna orientations (parallel, perpendicular, gound-parallel)
- 3. The RBW/VBW of receiver is set to 200Hz/1kHz for 9kHz to 150kHz range, to 9kHz/30kHz for 150kHz to 30MHz range for scan Peak emission, 200Hz/9kHz IF BW was used for final measurement in the Quasi-peak or average detection mode for frequency range 9~150kHz/150kHz~30MHz respectively.
- 4. If the Peak emission complies with the QP limit, then perform final measurement is optional.

#### b) For 30MHz-1GHz:

- 1. The EUT was placed on the tabletop of a rotating table 0.8 m the ground at a 3 m semi anechoic chamber. The measurement distance from the EUT to the receiving antenna is 3 m.
- 2. EUT works in each mode of operation that needs to be tested. The highest signal levels relative to the limit shall be determined by rotating the EUT from 0° to 360° and with varying the measurement antenna height between 1 m and 4 m in vertical and horizontal polarizations.
- 3. The RBW/VBW of receiver is set to 100kHz/300kHz for scan Peak emission, 120kHz IF BW was used for final measurement in the Quasi-peak detection mode.
- 4. If the Peak emission complies with the QP limit, then perform final measurement is optional.

#### c) For above 1GHz:

- The EUT was placed on the tabletop of a rotating table 1.5 m the ground at a 3 m fully anechoic room.
   The measurement distance from the EUT to the receiving antenna is 3 m (1-18GHz) and 1.5 m (above 18GHz).
- 2. EUT works in each mode of operation that needs to be tested, and having the EUT continuously working. The highest signal levels relative to the limit shall be determined by rotating the EUT from 0° to 360° and with varying the measurement antenna height between 1 m and 4 m in vertical and horizontal

Report Template: TR-4-E-008/V1.2 Page 10 of 90



polarizations.

- 3. The RBW/VBW of spectrum analyzer is set to 1MHz/3MHz for scan Peak emission, for measured average emission, reduce the VBW to 10Hz(for duty cycle≥98%), or ≥1/T(for duty cycle<98%). T is minimum transmission duration. (Note: a high VBW (for example 1kHz, not less than 1/T) may used to scan average emissions to avoid long sweep time.)
- 4. If the Peak emission complies with the Average limit, then perform average measurement is optional.
- 5. Open the test software to control the test antenna and test turntable. Perform the test, save the test results, and export the test data.
- 6. Base on FCC 15.31 (f) (2): measurements may be performed at a distance closer than that specified in the regulations; however, an attempt should be made to avoid making measurements in the near field.

#### **RF Conducted Test:**

- The antenna port of EUT was connected to the RF port of the test equipment (Power Meter or Spectrum analyzer) through Attenuator and RF cable.
- 2. The cable assembly insertion loss of 8.0dB (including 6.0 dB Attenuator and 2.0dB cable) was entered as an offset in the power meter. Note: Actual cable loss was unavailable at the time of testing, therefore a loss of 2.0dB was assumed as worst case. This was later verified to be true by laboratory. ( if the RF cable provided by client, the cable loss declared by client)
- 3. The EUT is keeping in continuous transmission mode and tested in all modulation modes.

#### 2.7 Measurement Method

| Description of Test                     | Measurement Method                     |  |
|-----------------------------------------|----------------------------------------|--|
| AC Line Conducted Emissions             | ANSI C63.10-2013 Section 6.2           |  |
| Maximum Conducted Output Power          | ANSI C63.10-2013 Section 11.9.1.1      |  |
| Power Spectral Density                  | ANSI C63.10-2013 Section 11.10.2       |  |
| 6 dB Emission Bandwidth                 | ANSI C63.10-2013 Section 11.8.1        |  |
| 99% Occupied Bandwidth                  | ANSI C63.10-2013 Section 6.9.3         |  |
| 100kHz Bandwidth of Frequency Band Edge | ANSI C63.10-2013 Section 6.10          |  |
| Radiated emission                       | ANSI C63.10-2013 Section 11.11&11.12.1 |  |
| Duty Cycle                              | ANSI C63.10-2013 Section 11.6          |  |

Report Template: TR-4-E-008/V1.2 Page 11 of 90



## 2.8 Measurement Equipment

| SCHWARZ   RECEIVER   R&S   LISN   ENV216   101748   2024/6/4   2021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Manufacturer                    | Description          | Model             | Management<br>No. | Calibration<br>Date | Calibration<br>Due Date |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|----------------------|-------------------|-------------------|---------------------|-------------------------|--|--|
| SCHWARZ   RECEIVER   ESR   101817   2024/6/4   2021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | AC Line Conducted Emission Test |                      |                   |                   |                     |                         |  |  |
| N/A   Coaxial Cable   NO.12   N/A   2024/6/4   2021   Farad   Test Software   EZ-EMC   Ver.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                      | ESR               | 101817            | 2024/6/4            | 2025/6/3                |  |  |
| Farad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | R&S                             | LISN                 | ENV216            | 101748            | 2024/6/4            | 2025/6/3                |  |  |
| Farad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | N/A                             | Coaxial Cable        | NO.12             | N/A               | 2024/6/4            | 2025/6/3                |  |  |
| R&S         EMI test receiver         ESR3         102758         2024/6/4         2028/6/4           ROHDE& SCHWARZ         SPECTRUM ANALYZER         FSV40-N         101608         2024/6/4         2028/6/4           SONOMA ILOW frequency INSTRUMENT         amplifier         310         186014         2024/6/4         2028/6/4           A.H. Systems         PREAMPLIFIER         PAM-0118P         531         2024/6/4         2028/6/4           COM-POWER         Amplifier         PAM-840A         461306         2024/8/7         2028/6/4           BACL         Loop Antenna         1313-1A         4010611         2024/2/7         2028/6/4           SCHWARZBECK         Log - periodic wideband antenna         VULB 9163         9163-872         2023/7/7         2026/6/2           Astro Antenna Ltd         Horn antenna         AHA-118S         3015         2023/7/6         2024/6/6         2024/6/6         2024/6/6         2024/6/6         2024/6/4         2026/6/2         2026/6/2         2024/6/4         2026/6/2         2026/6/2         2024/6/4         2026/6/2         2026/6/2         2024/6/4         2026/6/2         2024/6/4         2026/6/2         2026/6/2         2024/6/4         2026/6/2         2026/6/2         2026/6/2         2026/6/2         2026 | Farad                           | Test Software        | EZ-EMC            |                   | /                   | /                       |  |  |
| ROHDE& SCHWARZ         SPECTRUM ANALYZER         FSV40-N         101608         2024/6/4         2021/6/4           SONOMA INSTRUMENT         Low frequency amplifier         310         186014         2024/6/4         2021/6/4           A.H. Systems         PREAMPLIFIER         PAM-0118P         531         2024/6/4         2021/6/4           COM-POWER         Amplifier         PAM-840A         461306         2024/8/7         2021/7           BACL         Loop Antenna         1313-1A         4010611         2024/2/7         2021/7           SCHWARZBECK         Log - periodic wideband antenna         VULB 9163         9163-872         2023/7/7         2026           Astro Antenna Ltd         Horn antenna         AHA-118S         3015         2023/7/10         2026           Ducommun technologies         Horn Antenna         ARH-4223-02         1007726-03         2023/7/10         2026           Oulitong         Band Reject Filter         OBSF-2400-248         0E02103119         2024/6/4         2025           Unknown         6.7G High Pass Filter         Unknown         6.7G         2024/6/4         2025           Unknown         10dB tenuator         10dB 10-1         2024/6/4         2025           N/A         Coaxial Cab                                 |                                 |                      | Radiated Emission | n Test            |                     |                         |  |  |
| SCHWARZ         ANALYZER         FSV40-N         101608         2024/6/4         2023           SONOMA INSTRUMENT         Low frequency amplifier         310         186014         2024/6/4         2024           A.H. Systems         PREAMPLIFIER         PAM-0118P         531         2024/6/4         2023           COM-POWER         Amplifier         PAM-840A         461306         2024/8/7         2023           BACL         Loop Antenna         1313-1A         4010611         2024/2/7         2021           SCHWARZBECK         Log - periodic wideband antenna         VULB 9163         9163-872         2023/7/7         2021           Astro Antenna Ltd         Horn antenna         AHA-118S         3015         2023/7/6         2024           Ducommun technologies         Horn Antenna         ARH-4223-02         1007726-03         2023/7/10         2024           Oulitong         Band Reject Filter         OBSF-2400-248         0E02103119         2024/6/4         2024           Unknown         6.7G High Pass Filter         Unknown         6.7G         2024/6/4         2024           Unknown         10dB 10-1         2024/6/4         2024           N/A         Coaxial Cable         NO.9         N/A         2                                                   | R&S                             | EMI test receiver    | ESR3              | 102758            | 2024/6/4            | 2025/6/3                |  |  |
| INSTRUMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                 |                      | FSV40-N           | 101608            | 2024/6/4            | 2025/6/3                |  |  |
| COM-POWER         Amplifier         PAM-840A         461306         2024/8/7         2025/8           BACL         Loop Antenna         1313-1A         4010611         2024/2/7         2027/7           SCHWARZBECK         Log - periodic wideband antenna         VULB 9163         9163-872         2023/7/7         2026/7           Astro Antenna Ltd         Horn antenna         AHA-118S         3015         2023/7/6         2026/7           Ducommun technologies         Horn Antenna         ARH-4223-02         1007726-03         2023/7/10         2026/7           Oulitong         Band Reject Filter         OBSF-2400-248/3.5-50N         OE02103119         2024/6/4         2025/7           Unknown         6.7G High Pass Filter         Unknown         6.7G         2024/6/4         2025/7           Unknown         10dB attenuator         10dB         10-1         2024/6/4         2025/7           N/A         Coaxial Cable         NO.9         N/A         2024/6/4         2025/7           N/A         Coaxial Cable         NO.13         N/A         2024/6/4         2025/7           N/A         Coaxial Cable         NO.15         N/A         2024/6/4         2025/7           N/A         Coaxial Cable         NO.16<                                                   |                                 |                      | 310               | 186014            | 2024/6/4            | 2025/6/3                |  |  |
| BACL         Loop Antenna         1313-1A         4010611         2024/2/7         202           SCHWARZBECK         Log - periodic wideband antenna         VULB 9163         9163-872         2023/7/7         202t           Astro Antenna Ltd         Horn antenna         AHA-118S         3015         2023/7/6         202t           Ducommun technologies         Horn Antenna         ARH-4223-02         1007726-03         2023/7/10         202t           Oulitong         Band Reject Filter         OBSF-2400-248 3.5-50N         OE02103119         2024/6/4         202t           Unknown         6.7G High Pass Filter         Unknown         6.7G         2024/6/4         202t           Unknown         10dB attenuator         10dB         10-1         2024/6/4         202t           N/A         Coaxial Cable         NO.9         N/A         2024/6/4         202t           N/A         Coaxial Cable         NO.13         N/A         2024/6/4         202t           N/A         Coaxial Cable         NO.15         N/A         2024/6/4         202t           N/A         Coaxial Cable         NO.16         N/A         2024/6/4         202t           N/A         Coaxial Cable         NO.17         N/A                                                                       | A.H. Systems                    | PREAMPLIFIER         | PAM-0118P         | 531               | 2024/6/4            | 2025/6/3                |  |  |
| SCHWARZBECK         Log - periodic wideband antenna         VULB 9163         9163-872         2023/7/7         2026/7/7           Astro Antenna Ltd         Horn antenna         AHA-118S         3015         2023/7/6         2021/7/6           Ducommun technologies         Horn Antenna         ARH-4223-02         1007726-03         2023/7/10         2021/7/10           Oulitong         Band Reject Filter         OBSF-2400-248 3.5-50N         OE02103119         2024/6/4         2025/7/10           Unknown         6.7G High Pass Filter         Unknown         6.7G         2024/6/4         2025/7/10           Unknown         10dB attenuator         10dB         10-1         2024/6/4         2025/7/10           N/A         Coaxial Cable         NO.9         N/A         2024/6/4         2025/7/10           N/A         Coaxial Cable         NO.13         N/A         2024/6/4         2025/7/10           N/A         Coaxial Cable         NO.15         N/A         2024/6/4         2025/7/10           N/A         Coaxial Cable         NO.15         N/A         2024/6/4         2025/7/10           N/A         Coaxial Cable         NO.16         N/A         2024/6/4         2025/7/10           N/A         Coaxial Cable                                                 | COM-POWER                       | Amplifier            | PAM-840A          | 461306            | 2024/8/7            | 2025/8/6                |  |  |
| Astro Antenna Ltd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | BACL                            | Loop Antenna         | 1313-1A           | 4010611           | 2024/2/7            | 2027/2/6                |  |  |
| Ducommun technologies         Horn Antenna         ARH-4223-02         1007726-03         2023/7/10         2026           Oulitong         Band Reject Filter         OBSF-2400-248 3.5-50N         OE02103119         2024/6/4         2029           Unknown         6.7G High Pass Filter         Unknown         6.7G         2024/6/4         2029           Unknown         10dB attenuator         10dB         10-1         2024/6/4         2029           N/A         Coaxial Cable         NO.9         N/A         2024/6/4         2029           N/A         Coaxial Cable         NO.13         N/A         2024/6/4         2029           N/A         Coaxial Cable         NO.15         N/A         2024/6/4         2029           N/A         Coaxial Cable         NO.16         N/A         2024/6/4         2029           N/A         Coaxial Cable         NO.16         N/A         2024/6/4         2029           N/A         Coaxial Cable         NO.17         N/A         2024/6/4         2029           Audix         Test Software         E3         191218 V9         /         7                                                                                                                                                                                                   | SCHWARZBECK                     |                      | VULB 9163         | 9163-872          | 2023/7/7            | 2026/7/6                |  |  |
| technologies         Horn Antenna         ARH-4223-02         1007726-03         2023/7/10         2026           Oulitong         Band Reject Filter         OBSF-2400-248<br>3.5-50N         OE02103119         2024/6/4         2029           Unknown         6.7G High Pass<br>Filter         Unknown         6.7G         2024/6/4         2029           Unknown         10dB attenuator         10dB         10-1         2024/6/4         2029           N/A         Coaxial Cable         NO.9         N/A         2024/6/4         2029           N/A         Coaxial Cable         NO.13         N/A         2024/6/4         2029           N/A         Coaxial Cable         NO.15         N/A         2024/6/4         2029           N/A         Coaxial Cable         NO.16         N/A         2024/6/4         2029           N/A         Coaxial Cable         NO.17         N/A         2024/6/4         2029           N/A         Coaxial Cable         NO.17         N/A         2024/6/4         2029           Audix         Test Software         E3         191218 V9         /                                                                                                                                                                                                                | stro Antenna Ltd                | Horn antenna         | AHA-118S          | 3015              | 2023/7/6            | 2026/7/5                |  |  |
| Oulitong         Band Reject Filter         3.5-50N         OE02103119         2024/6/4         2028/4           Unknown         6.7G High Pass Filter         Unknown         6.7G         2024/6/4         2028/4           Unknown         10dB attenuator         10dB         10-1         2024/6/4         2028/4           N/A         Coaxial Cable         NO.9         N/A         2024/6/4         2028/4           N/A         Coaxial Cable         NO.13         N/A         2024/6/4         2028/4           N/A         Coaxial Cable         NO.15         N/A         2024/6/4         2028/4           N/A         Coaxial Cable         NO.16         N/A         2024/6/4         2028/4           N/A         Coaxial Cable         NO.17         N/A         2024/6/4         2028/4           Audix         Test Software         E3         191218 V9         /                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                 | Horn Antenna         | ARH-4223-02       | 1007726-03        | 2023/7/10           | 2026/7/9                |  |  |
| Unknown         Filter         Unknown         6.7G         2024/6/4         2028/4           Unknown         10dB attenuator         10dB         10-1         2024/6/4         2028/4           N/A         Coaxial Cable         NO.9         N/A         2024/6/4         2028/4           N/A         Coaxial Cable         NO.13         N/A         2024/8/7         2028/4           N/A         Coaxial Cable         NO.15         N/A         2024/6/4         2028/4           N/A         Coaxial Cable         NO.16         N/A         2024/6/4         2028/4           N/A         Coaxial Cable         NO.17         N/A         2024/6/4         2028/4           Audix         Test Software         E3         191218 V9         /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Oulitong                        | Band Reject Filter   |                   | OE02103119        | 2024/6/4            | 2025/6/3                |  |  |
| N/A         Coaxial Cable         NO.9         N/A         2024/6/4         2025           N/A         Coaxial Cable         NO.13         N/A         2024/8/7         2025           N/A         Coaxial Cable         NO.15         N/A         2024/6/4         2025           N/A         Coaxial Cable         NO.16         N/A         2024/6/4         2025           N/A         Coaxial Cable         NO.17         N/A         2024/6/4         2025           Audix         Test Software         E3         191218 V9         /           RF Conducted Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Unknown                         | -                    | Unknown           | 6.7G              | 2024/6/4            | 2025/6/3                |  |  |
| N/A         Coaxial Cable         NO.13         N/A         2024/8/7         2025           N/A         Coaxial Cable         NO.15         N/A         2024/6/4         2025           N/A         Coaxial Cable         NO.16         N/A         2024/6/4         2025           N/A         Coaxial Cable         NO.17         N/A         2024/6/4         2025           Audix         Test Software         E3         191218 V9         /           RF Conducted Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Unknown                         | 10dB attenuator      | 10dB              | 10-1              | 2024/6/4            | 2025/6/3                |  |  |
| N/A         Coaxial Cable         NO.15         N/A         2024/6/4         2025           N/A         Coaxial Cable         NO.16         N/A         2024/6/4         2025           N/A         Coaxial Cable         NO.17         N/A         2024/6/4         2025           Audix         Test Software         E3         191218 V9         /           RF Conducted Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | N/A                             | Coaxial Cable        | NO.9              | N/A               | 2024/6/4            | 2025/6/3                |  |  |
| N/A         Coaxial Cable         NO.16         N/A         2024/6/4         2025           N/A         Coaxial Cable         NO.17         N/A         2024/6/4         2025           Audix         Test Software         E3         191218 V9         /           RF Conducted Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | N/A                             | Coaxial Cable        | NO.13             | N/A               | 2024/8/7            | 2025/8/6                |  |  |
| N/A         Coaxial Cable         NO.17         N/A         2024/6/4         2025           Audix         Test Software         E3         191218 V9         /           RF Conducted Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | N/A                             | Coaxial Cable        | NO.15             | N/A               | 2024/6/4            | 2025/6/3                |  |  |
| Audix Test Software E3 191218 V9 /  RF Conducted Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | N/A                             | Coaxial Cable        | NO.16             | N/A               | 2024/6/4            | 2025/6/3                |  |  |
| RF Conducted Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | N/A                             | Coaxial Cable        | NO.17             | N/A               | 2024/6/4            | 2025/6/3                |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Audix                           | Test Software        | E3                | 191218 V9         | /                   | /                       |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                 |                      | RF Conducted      | Test              |                     |                         |  |  |
| ROHDE&         SPECTRUM         FSV40         101419         2024/6/4         2025           SCHWARZ         ANALYZER         ANALYZER         ANALYZER         101419         2024/6/4         2025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ROHDE&<br>SCHWARZ               | SPECTRUM<br>ANALYZER | FSV40             | 101419            | 2024/6/4            | 2025/6/3                |  |  |
| narda 6dB attenuator 603-06-1 N/A 2024/6/4 2025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | narda                           | 6dB attenuator       | 603-06-1          | N/A               | 2024/6/4            | 2025/6/3                |  |  |

Note: All equipment is calibrated with valid calibrations. Each measurement data is traceable to the national or International standards.



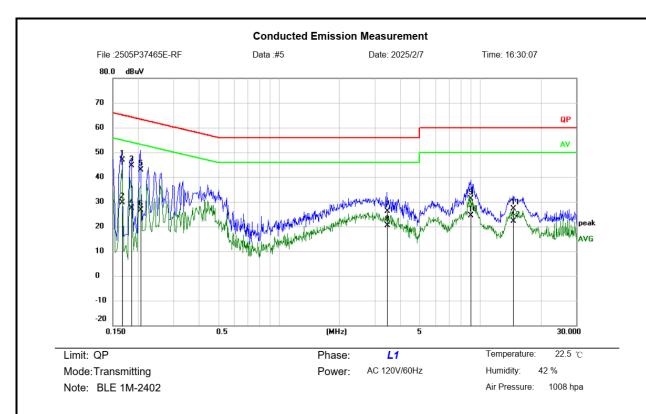
## 3 Test Results

## 3.1 Test Summary

| FCC Rules                    | Description of Test                     | Result      |
|------------------------------|-----------------------------------------|-------------|
| §15.203                      | Antenna Requirement                     | Compliance  |
| §15.207 (a)                  | AC Line Conducted Emissions             | Compliance  |
| §15.247(b)(3)                | Maximum Conducted Output Power          | Compliance  |
| §15.247(e)                   | Power Spectral Density                  | Compliance  |
| §15.247 (a)(2)               | 6 dB Emission Bandwidth                 | Compliance  |
| -                            | 99% Occupied Bandwidth                  | Report only |
| §15.247(d)                   | 100kHz Bandwidth of Frequency Band Edge | Compliance  |
| §15.205, §15.209, §15.247(d) | Radiated emission                       | Compliance  |
| -                            | Duty Cycle                              | Report only |





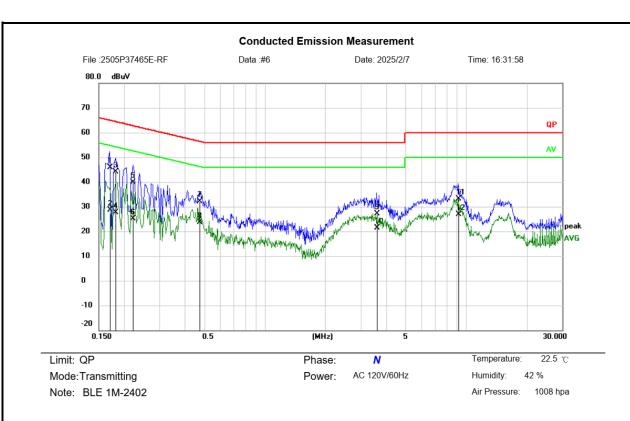

## 3.2 Limit

| Test items                                                        | Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AC Line Conducted Emissions                                       | See details §15.207 (a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Conducted Output Power                                            | For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 6dB Emission Bandwidth                                            | The minimum 6 dB bandwidth shall be at least 500 kHz.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Power Spectral Density                                            | For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Spurious Emissions,<br>100kHz Bandwidth of Frequency<br>Band Edge | In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). |



### 3.3 AC Line Conducted Emissions Test Data

| Test Date:             | 2025-02-07                    | Test By:             | Ryan Zhang       |
|------------------------|-------------------------------|----------------------|------------------|
| Environment condition: | Temperature: 22.5°C; Relative | Humidity:42%; ATM Pr | essure: 100.8kPa |




Receiver Setting: 0.15~30MHz: Pre-scan: RBW: 9kHz, DET: PK/AV; Final measure: RBW: 9kHz, DET: QP/AV

| No. | Mk. | Freq.   | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit | Over<br>Limit |          |         |
|-----|-----|---------|------------------|-------------------|------------------|-------|---------------|----------|---------|
|     |     | MHz     | dBuV             | dB                | dBuV             | dBuV  | dB            | Detector | Comment |
| 1   | *   | 0.1660  | 36.39            | 10.58             | 46.97            | 65.16 | -18.19        | QP       |         |
| 2   |     | 0.1660  | 19.07            | 10.58             | 29.65            | 55.16 | -25.51        | AVG      |         |
| 3   |     | 0.1860  | 34.06            | 10.63             | 44.69            | 64.21 | -19.52        | QP       |         |
| 4   |     | 0.1860  | 16.84            | 10.63             | 27.47            | 54.21 | -26.74        | AVG      |         |
| 5   |     | 0.2060  | 32.30            | 10.66             | 42.96            | 63.37 | -20.41        | QP       |         |
| 6   |     | 0.2060  | 16.05            | 10.66             | 26.71            | 53.37 | -26.66        | AVG      |         |
| 7   |     | 3.4420  | 15.51            | 10.55             | 26.06            | 56.00 | -29.94        | QP       |         |
| 8   |     | 3.4420  | 9.90             | 10.55             | 20.45            | 46.00 | -25.55        | AVG      |         |
| 9   |     | 8.9940  | 20.55            | 10.51             | 31.06            | 60.00 | -28.94        | QP       |         |
| 10  |     | 8.9940  | 13.95            | 10.51             | 24.46            | 50.00 | -25.54        | AVG      |         |
| 11  |     | 14.5460 | 16.64            | 10.49             | 27.13            | 60.00 | -32.87        | QP       |         |
| 12  |     | 14.5460 | 11.54            | 10.49             | 22.03            | 50.00 | -27.97        | AVG      |         |

\*:Maximum data x:Over limit !:over margin Engineer Signature: Ryan





Receiver Setting: 0.15~30MHz: Pre-scan: RBW: 9kHz, DET: PK/AV; Final measure: RBW: 9kHz, DET: QP/AV

| No. | Mk. | Freq.  | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit | Over<br>Limit |          |         |
|-----|-----|--------|------------------|-------------------|------------------|-------|---------------|----------|---------|
|     |     | MHz    | dBuV             | dB                | dBuV             | dBuV  | dB            | Detector | Comment |
| 1   | *   | 0.1700 | 35.51            | 10.45             | 45.96            | 64.96 | -19.00        | QP       |         |
| 2   |     | 0.1700 | 18.28            | 10.45             | 28.73            | 54.96 | -26.23        | AVG      |         |
| 3   |     | 0.1819 | 33.66            | 10.46             | 44.12            | 64.40 | -20.28        | QP       |         |
| 4   |     | 0.1819 | 17.15            | 10.46             | 27.61            | 54.40 | -26.79        | AVG      |         |
| 5   |     | 0.2220 | 29.27            | 10.49             | 39.76            | 62.74 | -22.98        | QP       |         |
| 6   |     | 0.2220 | 14.66            | 10.49             | 25.15            | 52.74 | -27.59        | AVG      |         |
| 7   |     | 0.4740 | 21.47            | 10.76             | 32.23            | 56.44 | -24.21        | QP       |         |
| 8   |     | 0.4740 | 12.86            | 10.76             | 23.62            | 46.44 | -22.82        | AVG      |         |
| 9   |     | 3.5940 | 16.77            | 10.46             | 27.23            | 56.00 | -28.77        | QP       |         |
| 10  |     | 3.5940 | 10.93            | 10.46             | 21.39            | 46.00 | -24.61        | AVG      |         |
| 11  |     | 9.1100 | 22.50            | 10.56             | 33.06            | 60.00 | -26.94        | QP       |         |
| 12  |     | 9.1100 | 16.44            | 10.56             | 27.00            | 50.00 | -23.00        | AVG      |         |

#### Remark:

Measurement (dBuV)= Reading Level (dBuV) + Correct Factor(dB)

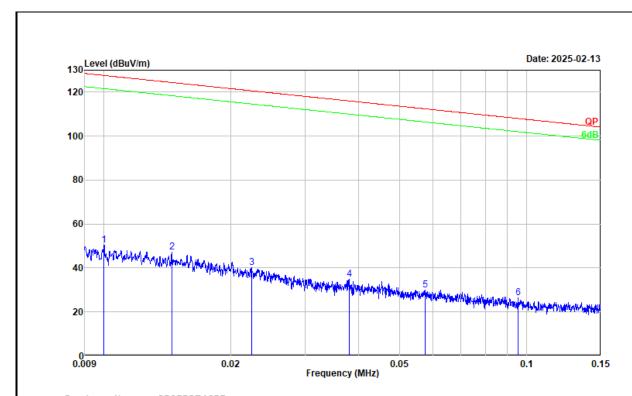
x:Over limit

Correct Factor(dB)= LISN Voltage Division Factor (dB)+ Cable loss(dB)

!:over margin

Over Limit= Measurement - Limit

\*:Maximum data


Engineer Signature: Ryan



### 3.4 Radiated emission Test Data

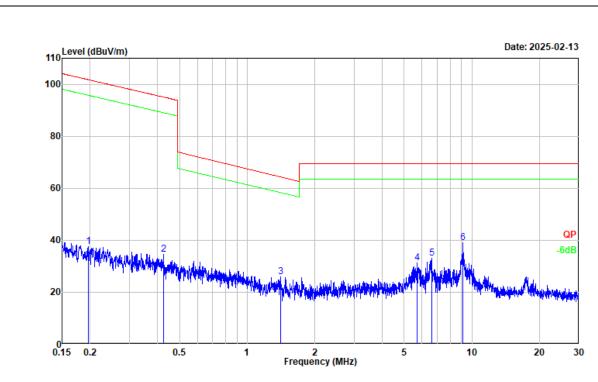
#### 9 kHz-30MHz:

| Test Date:             | 2025-02-13                    | Test By:             | Bard Huang       |
|------------------------|-------------------------------|----------------------|------------------|
| Environment condition: | Temperature: 21.4°C; Relative | Humidity:45%; ATM Pr | essure: 101.2kPa |



Project No. : 2505P37465E Test Mode : Transmitting Test Voltage : AC 120V/60Hz

Environment :  $21.4^{\circ}$ C/45%R.H./101.2kPa


Tested by : Bard Huang Polarization : PARALLEL Remark : BLE 1M 2402

| No. | Frequency<br>(MHz) | Reading<br>(dBμV) | Factor<br>(dB/m) | Result<br>(dBμV/m) | Limit<br>(dBμV/m) | Over Limit<br>(dB) | Detector |
|-----|--------------------|-------------------|------------------|--------------------|-------------------|--------------------|----------|
|     |                    |                   |                  |                    |                   |                    |          |
| 1   | 0.010              | 13.33             | 37.21            | 50.54              | 127.59            | -77.05             | Peak     |
| 2   | 0.014              | 12.78             | 34.37            | 47.15              | 124.39            | -77.24             | Peak     |
| 3   | 0.022              | 10.82             | 29.38            | 40.20              | 120.62            | -80.42             | Peak     |
| 4   | 0.038              | 11.89             | 22.86            | 34.75              | 115.99            | -81.24             | Peak     |
| 5   | 0.058              | 10.55             | 19.37            | 29.92              | 112.40            | -82.48             | Peak     |
| 6   | 0.095              | 11.22             | 15.28            | 26.50              | 108.02            | -81.52             | Peak     |

Remarks: Factor = Antenna factor + Cable loss - Preamp gain Result = Reading + Factor

Result = Reading + Factor Over Limit = Result - Limit SA setting: RBW/VBW: 200Hz/1kHz, DET: PK



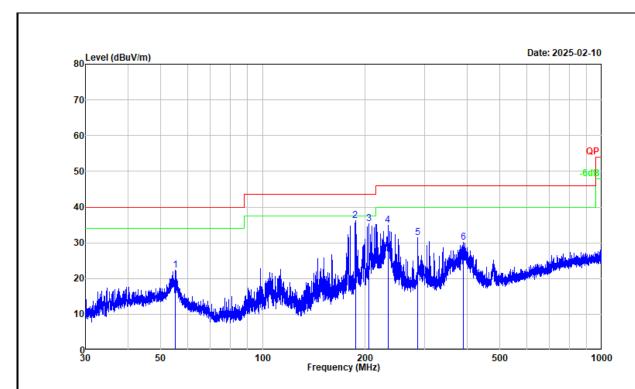


Project No. : 2505P37465E Test Mode : Transmitting Test Voltage : AC 120V/60Hz

Environment : 21.4℃/45%R.H./101.2kPa

Tested by : Bard Huang Polarization : PARALLEL Remark : BLE 1M 2402

| No. | Frequency<br>(MHz) | Reading<br>(dBμV) | Factor<br>(dB/m) | Result<br>(dBμV/m) | Limit<br>(dBμV/m) | Over Limit<br>(dB) | Detector |
|-----|--------------------|-------------------|------------------|--------------------|-------------------|--------------------|----------|
|     |                    |                   |                  |                    |                   |                    |          |
| 1   | 0.196              | 25.16             | 12.28            | 37.44              | 101.77            | -64.33             | Peak     |
| 2   | 0.424              | 27.49             | 7.02             | 34.51              | 95.06             | -60.55             | Peak     |
| 3   | 1.412              | 26.73             | -0.79            | 25.94              | 64.41             | -38.47             | Peak     |
| 4   | 5.720              | 35.34             | -4.05            | 31.29              | 69.54             | -38.25             | Peak     |
| 5   | 6.624              | 37.05             | -4.03            | 33.02              | 69.54             | -36.52             | Peak     |
| 6   | 9.120              | 42.83             | -3.65            | 39.18              | 69.54             | -30.36             | Peak     |


Remarks: Factor = Antenna factor + Cable loss - Preamp gain Result = Reading + Factor

Over Limit = Result - Limit
SA setting: RBW/VBW: 9kHz/30kHz, DET: PK



#### 30MHz-1GHz:

| Test Date:             | 2025-02-10                    | Test By:               | Luke Li         |
|------------------------|-------------------------------|------------------------|-----------------|
| Environment condition: | Temperature: 20.4°C; Relative | Humidity:36%; ATM Pres | ssure: 101.6kPa |



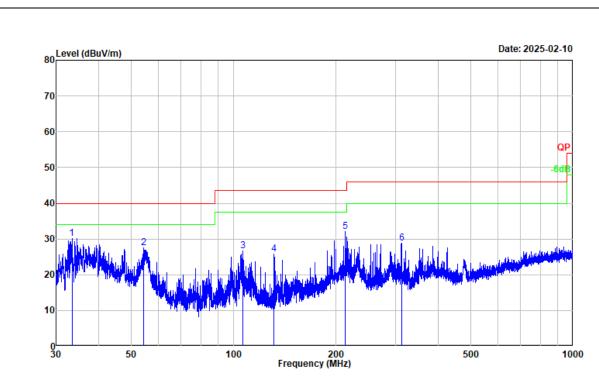
Project No. : 2505P37465E Test Mode : Transmitting Test Voltage : AC 120V/60Hz

Environment :  $20.4^{\circ}\text{C}/36\%\text{R.H.}/101.6\text{kPa}$ 

Tested by : Luke Li Polarization : horizontal Remark : BLE 1M 2402

| No. | Frequency<br>(MHz) | Reading<br>(dBµV) | Factor<br>(dB/m) | Result<br>(dBμV/m) | Limit<br>(dBμV/m) | Over Limit<br>(dB) | Detector | _ |
|-----|--------------------|-------------------|------------------|--------------------|-------------------|--------------------|----------|---|
|     |                    |                   |                  |                    |                   |                    |          |   |
| 1   | 55.342             | 35.13             | -12.69           | 22.44              | 40.00             | -17.56             | Peak     |   |
| 2   | 187.424            | 51.12             | -14.83           | 36.29              | 43.50             | -7.21              | Peak     |   |
| 3   | 205.405            | 49.04             | -13.73           | 35.31              | 43.50             | -8.19              | Peak     |   |
| 4   | 233.758            | 47.80             | -12.80           | 35.00              | 46.00             | -11.00             | Peak     |   |
| 5   | 286.103            | 43.08             | -11.58           | 31.50              | 46.00             | -14.50             | Peak     |   |
| 6   | 390.894            | 39.02             | -8.87            | 30.15              | 46.00             | -15.85             | Peak     |   |
| 6   | 390.894            | 39.02             | -8.87            | 30.15              | 46.00             | -15.85             | Peak     |   |

Remarks: Factor = Antenna factor + Cable loss - Preamp gain


Result = Reading + Factor

Over Limit = Result - Limit

SA setting: Pre-scan: RBW/VBW: 100kHz/300kHz, DET: PK

Final measure: RBW: 120kHz, DET: QP





Project No. : 2505P37465E Test Mode : Transmitting Test Voltage : AC 120V/60Hz

Environment : 20.4℃/36%R.H./101.6kPa

Tested by : Luke Li Polarization : vertical Remark : BLE 1M 2402

| No. | Frequency<br>(MHz) | Reading<br>(dBμV) | Factor<br>(dB/m) | Result<br>(dBμV/m) | Limit<br>(dBμV/m) | Over Limit<br>(dB) | Detector |
|-----|--------------------|-------------------|------------------|--------------------|-------------------|--------------------|----------|
|     |                    |                   |                  |                    |                   |                    |          |
| 1   | 33.416             | 45.12             | -15.00           | 30.12              | 40.00             | -9.88              | Peak     |
| 2   | 54.309             | 40.05             | -12.47           | 27.58              | 40.00             | -12.42             | Peak     |
| 3   | 106.712            | 40.45             | -13.88           | 26.57              | 43.50             | -16.93             | Peak     |
| 4   | 131.758            | 42.97             | -17.23           | 25.74              | 43.50             | -17.76             | Peak     |
| 5   | 212.829            | 45.93             | -13.77           | 32.16              | 43.50             | -11.34             | Peak     |
| 6   | 312.316            | 39.93             | -11.00           | 28.93              | 46.00             | -17.07             | Peak     |

Remarks: Factor = Antenna factor + Cable loss - Preamp gain Result = Reading + Factor

Result = Reading + Factor

Over Limit = Result - Limit

SA setting: Pre-scan: RBW/VBW: 100kHz/300kHz, DET: PK Final measure: RBW: 120kHz, DET: QP





#### Above 1GHz:

#### Path 1:

| Test Date:             | 2025-02-17                    | Test By:              | Bard Huang      |
|------------------------|-------------------------------|-----------------------|-----------------|
| Environment condition: | Temperature: 23°C; Relative H | umidity:62%; ATM Pres | ssure: 101.5kPa |

| Frequency<br>(MHz) | Reading<br>level<br>(dBµV) | Polar      | Corrected<br>Factor<br>(dB/m) | Corrected<br>Amplitude<br>(dBµV/m) | Limit<br>(dBµV/m) | Margin<br>(dB) | Remark |  |  |
|--------------------|----------------------------|------------|-------------------------------|------------------------------------|-------------------|----------------|--------|--|--|
|                    |                            |            | BLE                           | 1M                                 |                   |                |        |  |  |
| Low Channel        |                            |            |                               |                                    |                   |                |        |  |  |
| 4804.000           | 47.83                      | horizontal | -2.42                         | 45.41                              | 74.00             | -28.59         | Peak   |  |  |
| 4804.000           | 48.32                      | vertical   | -2.42                         | 45.90                              | 74.00             | -28.10         | Peak   |  |  |
| Middle Channel     |                            |            |                               |                                    |                   |                |        |  |  |
| 4880.000           | 47.38                      | horizontal | -1.88                         | 45.50                              | 74.00             | -28.50         | Peak   |  |  |
| 4880.000           | 48.36                      | vertical   | -1.88                         | 46.48                              | 74.00             | -27.52         | Peak   |  |  |
| High Channel       |                            |            |                               |                                    |                   |                |        |  |  |
| 4960.000           | 47.58                      | horizontal | -1.70                         | 45.88                              | 74.00             | -28.12         | Peak   |  |  |
| 4960.000           | 47.90                      | vertical   | -1.70                         | 46.20                              | 74.00             | -27.80         | Peak   |  |  |
|                    |                            |            | BLE 2                         | 2M                                 |                   |                |        |  |  |
|                    |                            |            | Low Cha                       | annel                              |                   |                |        |  |  |
| 4804.000           | 47.75                      | horizontal | -2.42                         | 45.33                              | 74.00             | -28.67         | Peak   |  |  |
| 4804.000           | 48.63                      | vertical   | -2.42                         | 46.21                              | 74.00             | -27.79         | Peak   |  |  |
| Middle Channel     |                            |            |                               |                                    |                   |                |        |  |  |
| 4880.000           | 47.51                      | horizontal | -1.88                         | 45.63                              | 74.00             | -28.37         | Peak   |  |  |
| 4880.000           | 50.34                      | vertical   | -1.88                         | 48.46                              | 74.00             | -25.54         | Peak   |  |  |
| High Channel       |                            |            |                               |                                    |                   |                |        |  |  |
| 4960.000           | 49.12                      | horizontal | -1.70                         | 47.42                              | 74.00             | -26.58         | Peak   |  |  |
| 4960.000           | 48.19                      | vertical   | -1.70                         | 46.49                              | 74.00             | -27.51         | Peak   |  |  |

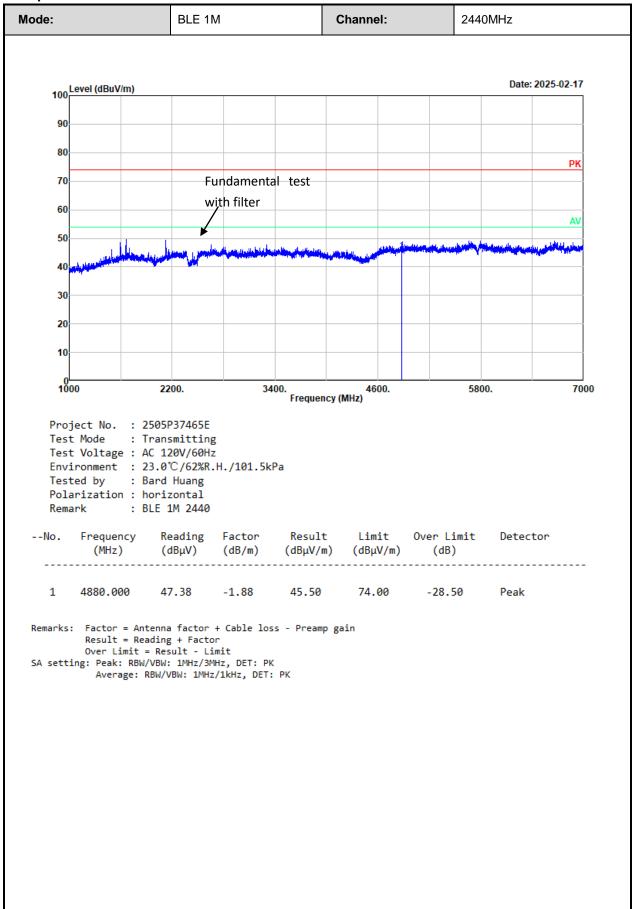
#### Remark:

Corrected Amplitude= Reading level + corrected Factor

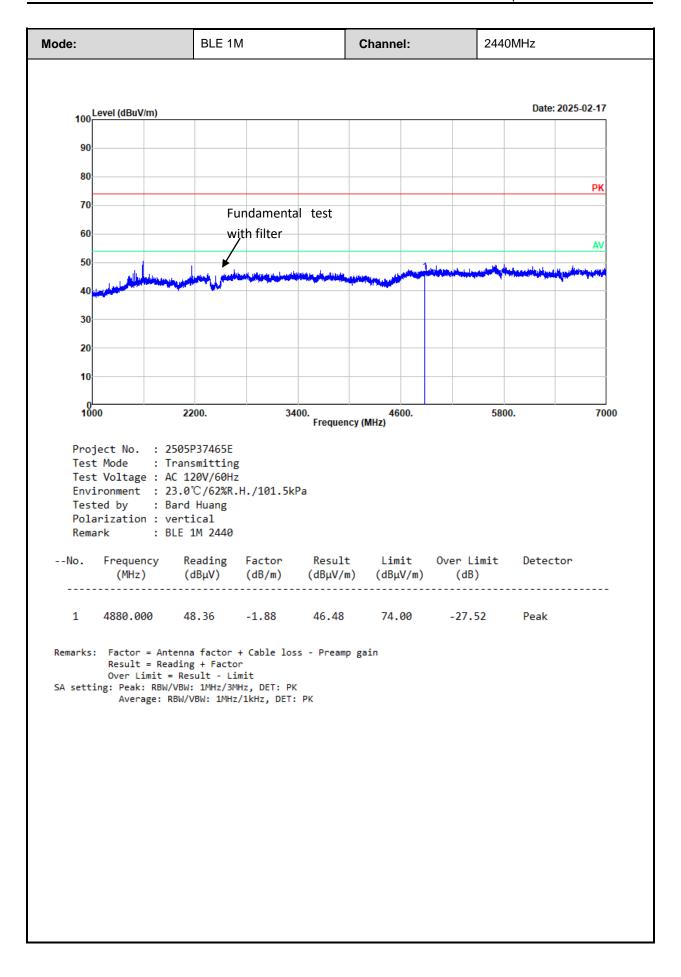
Corrected Factor = Antenna factor + Cable loss – Amplifier gain

Margin = Corrected Amplitude - Limit

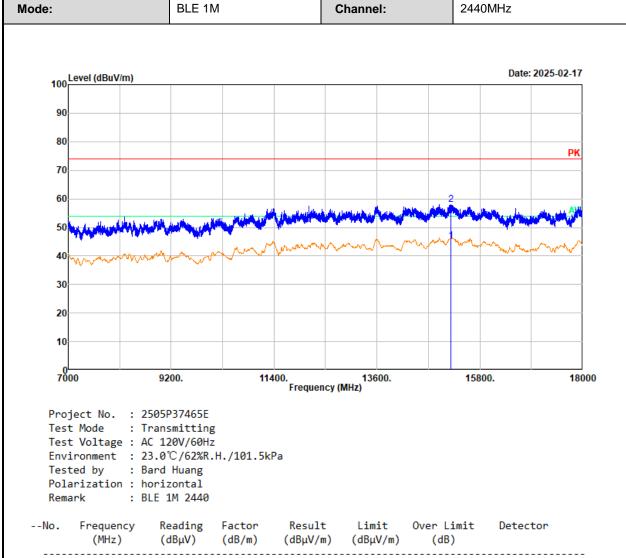
For the test result of Peak below the Peak limit more than 20dB, which can compliance with the average limit, just the Peak level was recorded.


The emission levels of other frequencies that were lower than the limit 20dB not show in test report.

For emissions in 18GHz-25GHz range, all emissions were investigated and in the noise floor level.


Report Template: TR-4-E-008/V1.2 Page 21 of 90




#### Test plot for worst case as below:

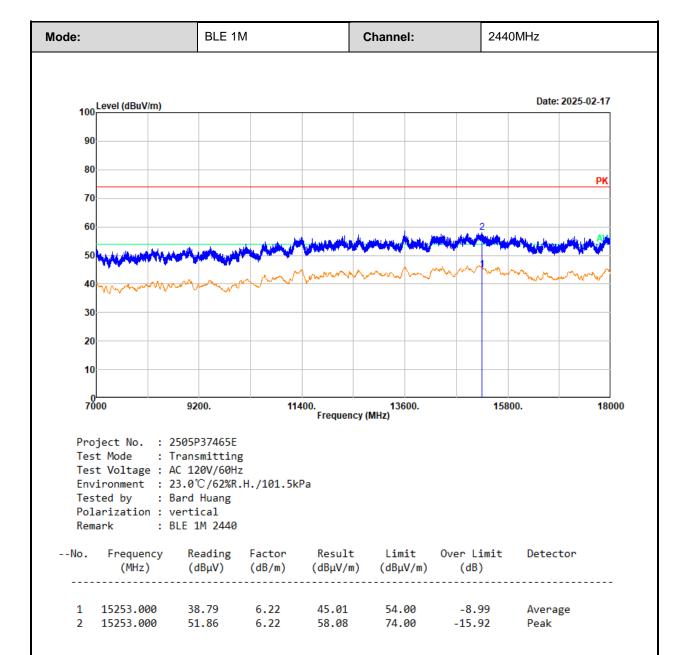








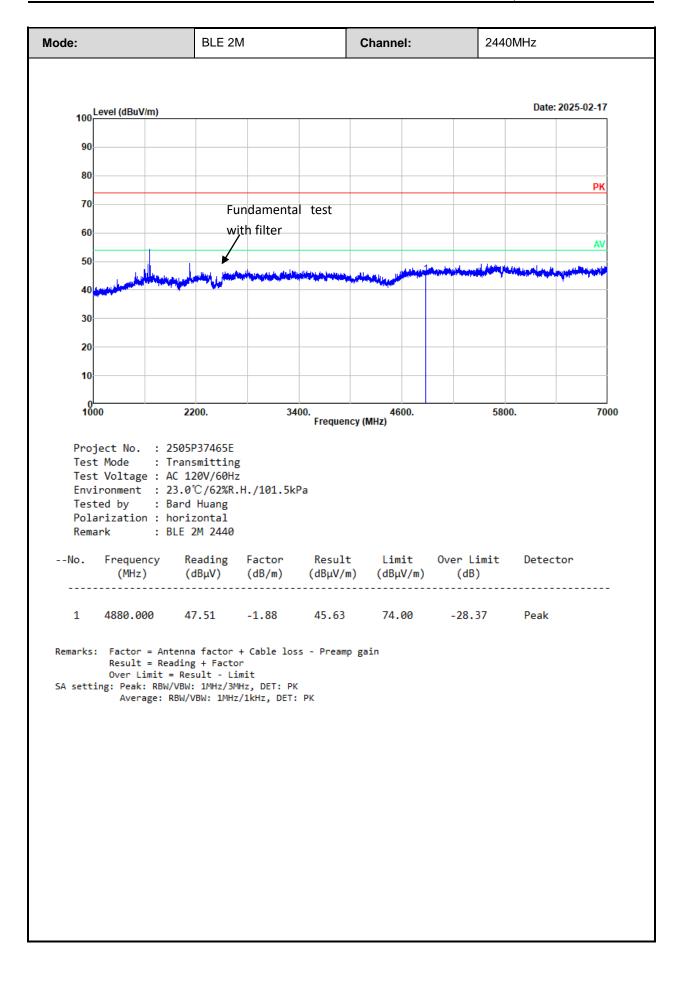



(MHz) (dBµV) (dB/m) (dBµV/m) (dBµV/m) (dB)

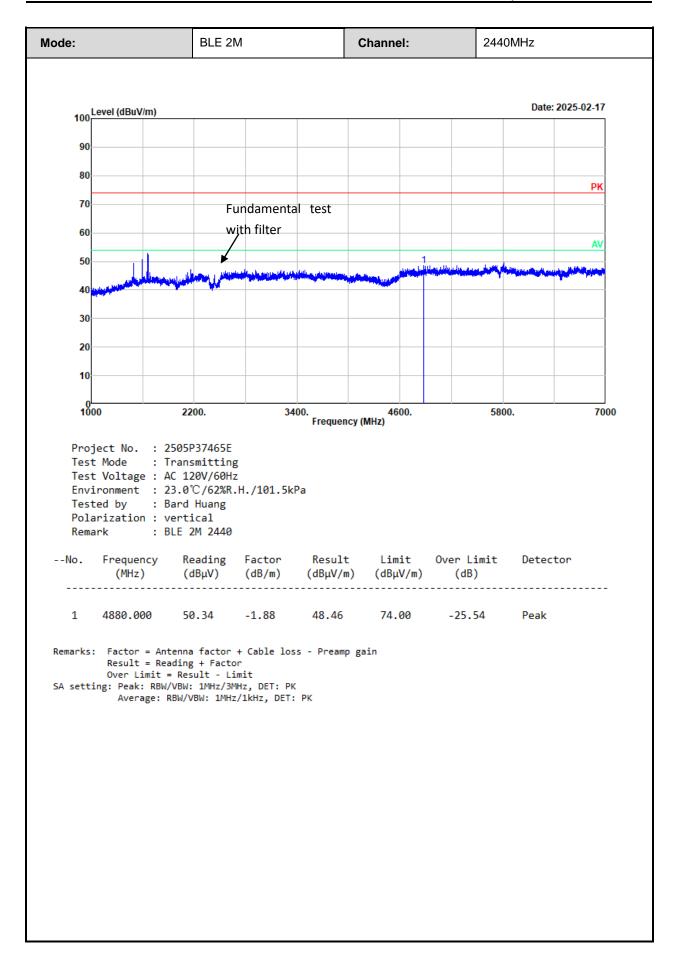
1 15177.000 38.98 6.27 45.25 54.00 -8.75 Average
2 15177.000 51.60 6.27 57.87 74.00 -16.13 Peak

Remarks: Factor = Antenna factor + Cable loss - Preamp gain

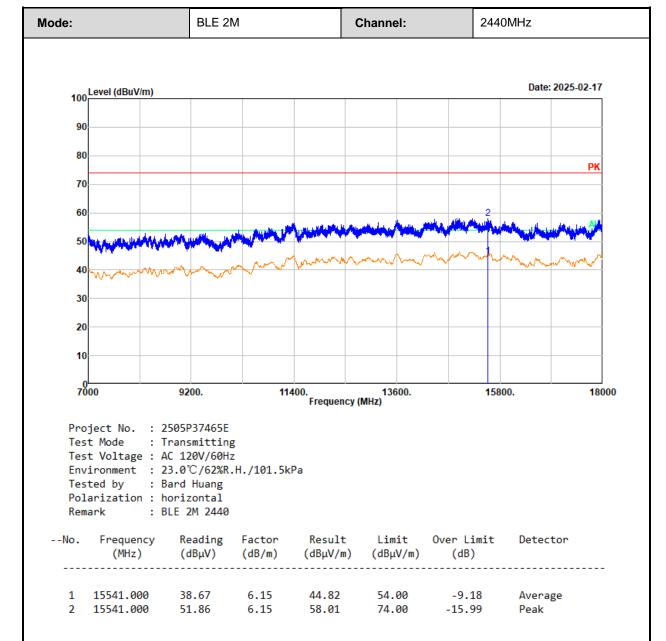
Result = Reading + Factor Over Limit = Result - Limit







Remarks: Factor = Antenna factor + Cable loss - Preamp gain

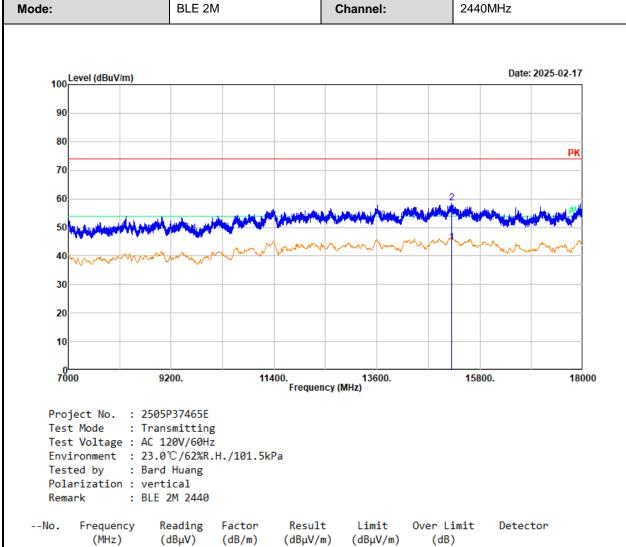
Result = Reading + Factor Over Limit = Result - Limit









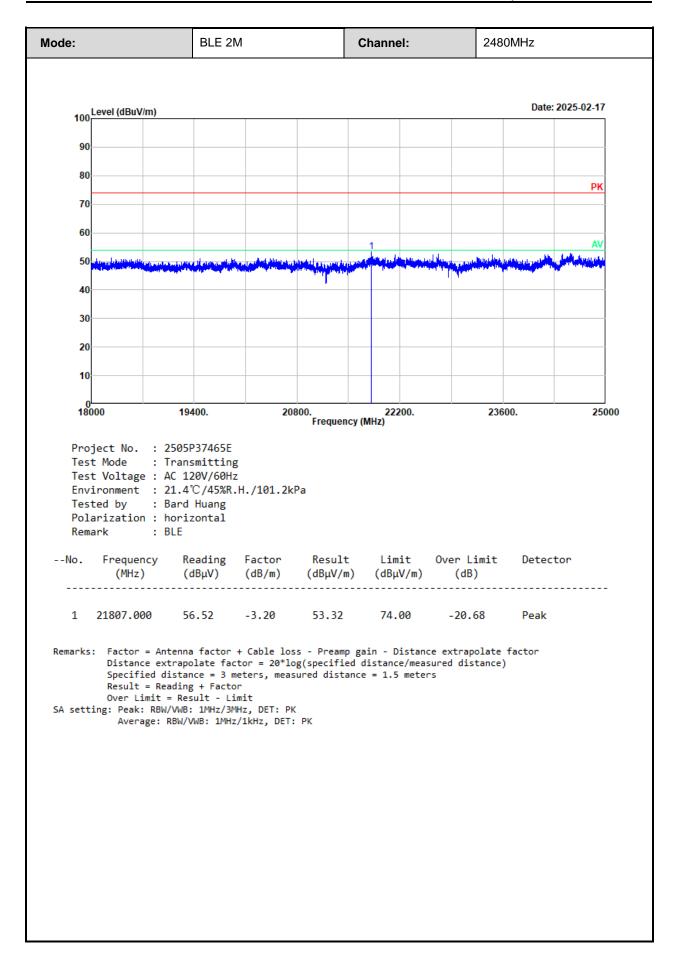



Remarks: Factor = Antenna factor + Cable loss - Preamp gain

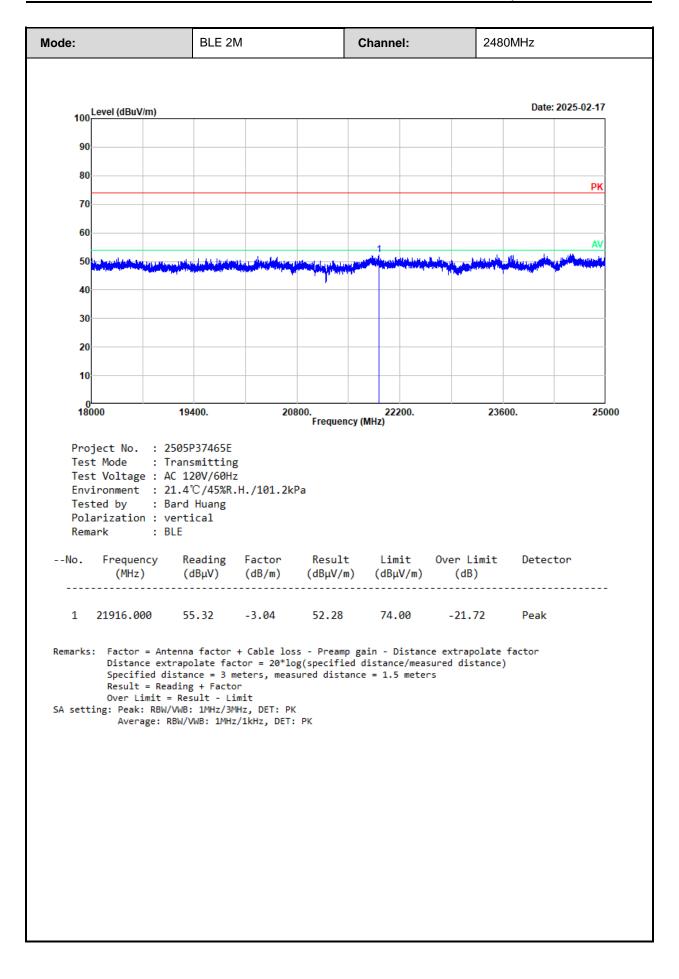
Result = Reading + Factor Over Limit = Result - Limit



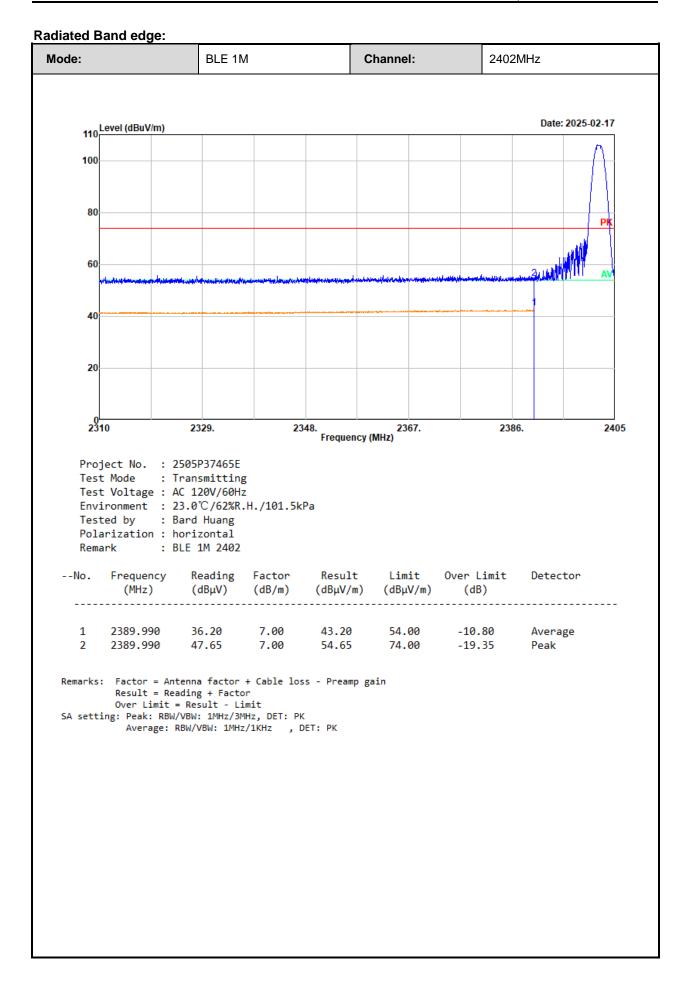



(MHz) (dBμV) (dB/m) (dBμV/m) (dBμV/m) (dB)

1 15195.000 38.45 6.30 44.75 54.00 -9.25 Average
2 15195.000 52.18 6.30 58.48 74.00 -15.52 Peak

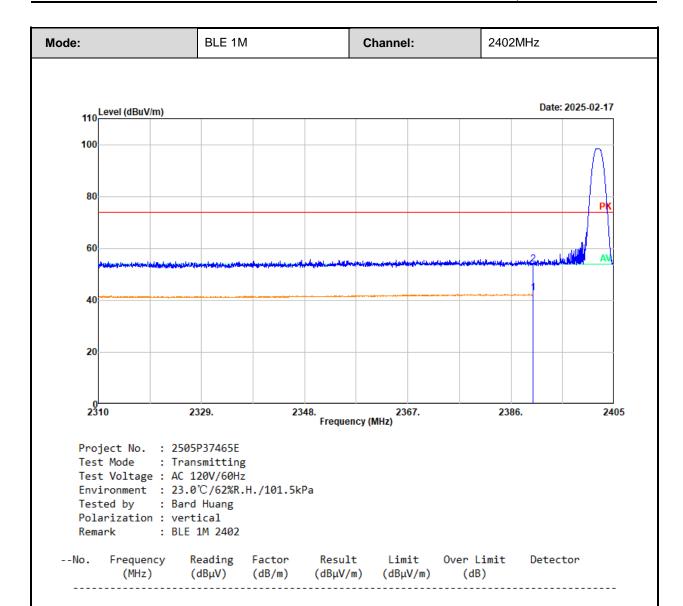

Remarks: Factor = Antenna factor + Cable loss - Preamp gain
Result = Reading + Factor

Result = Reading + Factor
Over Limit = Result - Limit











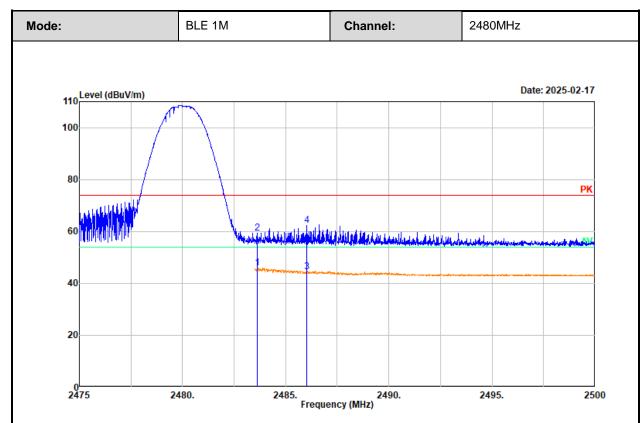

Average Peak





Remarks: Factor = Antenna factor + Cable loss - Preamp gain Result = Reading + Factor

Over Limit = Result - Limit
SA setting: Peak: RBW/VBW: 1MHz/3MHz, DET: PK
Average: RBW/VBW: 1MHz/1KHz , DET: PK


2389.990 36.05 7.00 2389.990 46.97 7.00

1

2

43.05 54.00 -10.95 53.97 74.00 -20.03

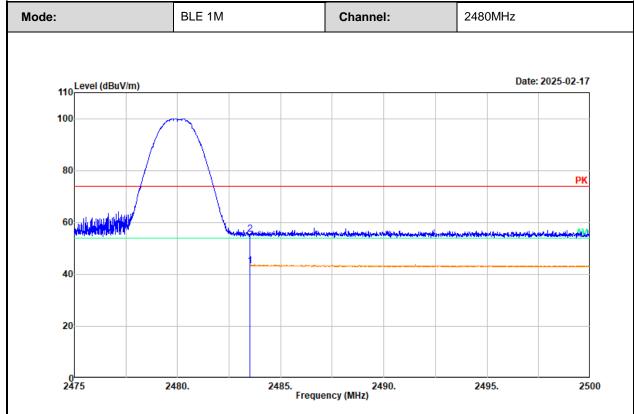




Project No. : 2505P37465E Test Mode : Transmitting Test Voltage : AC 120V/60Hz

Environment :  $23.0\,^{\circ}\text{C}/62\%\text{R.H.}/101.5\text{kPa}$ 

Tested by : Bard Huang Polarization : horizontal Remark : BLE 1M 2480


| No. | Frequency<br>(MHz) | Reading<br>(dBμV) | Factor<br>(dB/m) | Result<br>(dBμV/m) | Limit<br>(dBµV/m) | Over Limit<br>(dB) | Detector |
|-----|--------------------|-------------------|------------------|--------------------|-------------------|--------------------|----------|
| 1   | 2483.613           | 38.57             | 7.20             | 45.77              | 54.00             | -8.23              | Average  |
| 2   | 2483.613           | 52.25             | 7.20             | 59.45              | 74.00             | -14.55             | Peak     |
| 3   | 2486.038           | 37.18             | 7.20             | 44.38              | 54.00             | -9.62              | Average  |
| 4   | 2486.038           | 55.06             | 7.20             | 62.26              | 74.00             | -11.74             | Peak     |

Remarks: Factor = Antenna factor + Cable loss - Preamp gain

Result = Reading + Factor

Over Limit = Result - Limit
SA setting: Peak: RBW/VBW: 1MHz/3MHz, DET: PK Average: RBW/VBW: 1MHz/1KHz , DET: PK





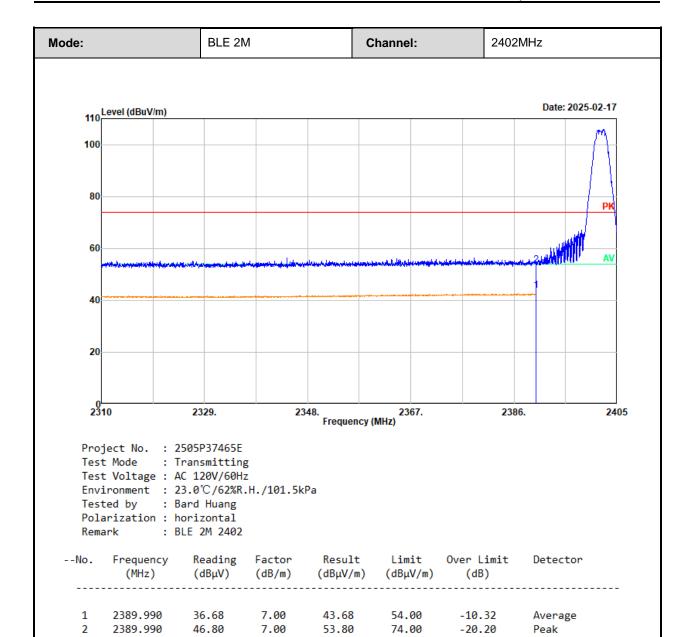
Project No. : 2505P37465E Test Mode : Transmitting Test Voltage : AC 120V/60Hz

Environment : 23.0℃/62%R.H./101.5kPa Tested by : Bard Huang

Polarization : vertical : BLE 1M 2480 Remark

| No. | Frequency<br>(MHz) | Reading<br>(dBμV) | Factor (dB/m) | Result<br>(dBµV/m) | Limit<br>(dBμV/m) | Over Limit<br>(dB) | Detector |  |
|-----|--------------------|-------------------|---------------|--------------------|-------------------|--------------------|----------|--|
| 1   | 2483.500           | 36.09             | 7.20          | 43.29              | 54.00             | -10.71             | Average  |  |
| 2   | 2483.500           | 48.11             | 7.20          | 55.31              | 74.00             | -18.69             | Peak     |  |

Remarks: Factor = Antenna factor + Cable loss - Preamp gain


Result = Reading + Factor

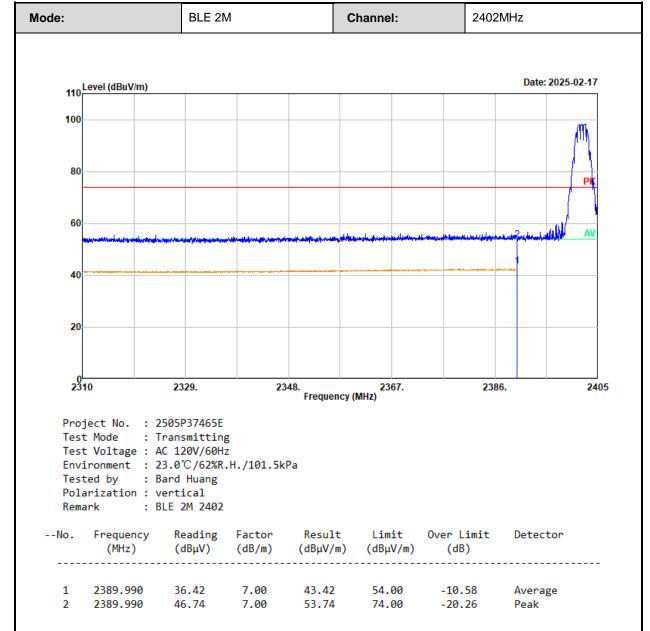
Over Limit = Result - Limit

SA setting: Peak: RBW/VBW: 1MHz/3MHz, DET: PK

Average: RBW/VBW: 1MHz/1KHz , DET: PK





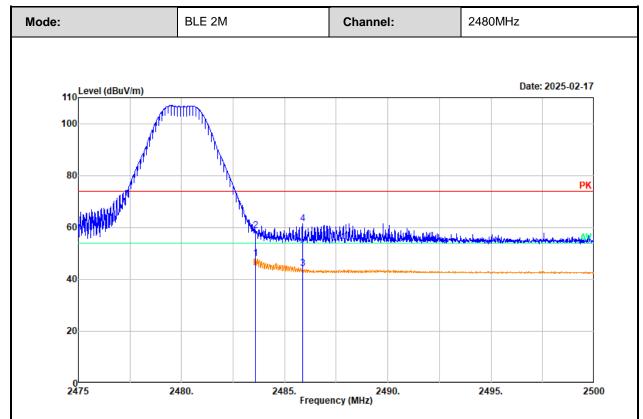

Remarks: Factor = Antenna factor + Cable loss - Preamp gain

Result = Reading + Factor Over Limit = Result - Limit

SA setting: Peak: RBW/VBW: 1MHz/3MHz, DET: PK

Average: RBW/VBW: 1MHz/1KHz , DET: PK





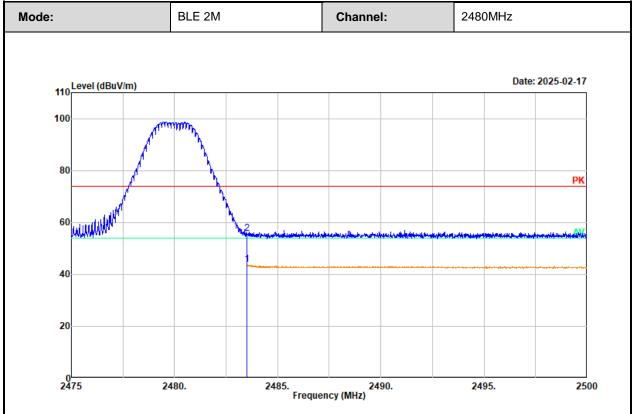

Result = Reading + Factor Over Limit = Result - Limit

SA setting: Peak: RBW/VBW: 1MHz/3MHz, DET: PK

Average: RBW/VBW: 1MHz/1KHz , DET: PK






Environment : 23.0℃/62%R.H./101.5kPa Tested by : Bard Huang

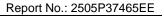
Polarization : horizontal : BLE 2M 2480

| No. | Frequency<br>(MHz) | Reading<br>(dBμV) | Factor<br>(dB/m) | Result<br>(dBμV/m) | Limit<br>(dBμV/m) | Over Limit<br>(dB) | Detector |
|-----|--------------------|-------------------|------------------|--------------------|-------------------|--------------------|----------|
| 1   | 2483.575           | 40.73             | 7.20             | 47.93              | 54.00             | -6.07              | Average  |
| 2   | 2483.575           | 51.61             | 7.20             | 58.81              | 74.00             | -15.19             | Peak     |
| 3   | 2485.875           | 36.87             | 7.20             | 44.07              | 54.00             | -9.93              | Average  |
| 4   | 2485.875           | 54.15             | 7.20             | 61.35              | 74.00             | -12.65             | Peak     |

Remarks: Factor = Antenna factor + Cable loss - Preamp gain
Result = Reading + Factor






Environment : 23.0℃/62%R.H./101.5kPa Tested by : Bard Huang

Polarization : vertical : BLE 2M 2480 Remark

| No. | Frequency<br>(MHz) | Reading<br>(dBµV) | Factor<br>(dB/m) | Result<br>(dBµV/m) | Limit<br>(dBμV/m) | Over Limit<br>(dB) | Detector |
|-----|--------------------|-------------------|------------------|--------------------|-------------------|--------------------|----------|
| 1   | 2483.500           | 36.53             | 7.20             | 43.73              | 54.00             | -10.27             | Average  |
| 2   | 2483.500           | 48.45             | 7.20             | 55.65              | 74.00             | -18.35             | Peak     |

Remarks: Factor = Antenna factor + Cable loss - Preamp gain

Result = Reading + Factor





## Path 2

| Test Date:             | 2025-02-13~2025-02-17                          | Test By:              | Bard Huang    |
|------------------------|------------------------------------------------|-----------------------|---------------|
| Environment condition: | Temperature: 20.9~23°C; Rela<br>101.2~101.5kPa | tive Humidity:56~62%; | ATM Pressure: |

| Frequency<br>(MHz) | Reading<br>level<br>(dBµV) | Polar        | Corrected<br>Factor<br>(dB/m) | Corrected<br>Amplitude<br>(dBµV/m) | Limit<br>(dBµV/m) | Margin<br>(dB) | Remark |  |  |  |  |  |
|--------------------|----------------------------|--------------|-------------------------------|------------------------------------|-------------------|----------------|--------|--|--|--|--|--|
| BLE 1M             |                            |              |                               |                                    |                   |                |        |  |  |  |  |  |
| Low Channel        |                            |              |                               |                                    |                   |                |        |  |  |  |  |  |
| 4804.000           | 47.28                      | horizontal   | 44.86                         | 74.00                              | -29.14            | Peak           |        |  |  |  |  |  |
| 4804.000           | 48.94                      | vertical     | -2.42                         | 46.52                              | 74.00             | -27.48         | Peak   |  |  |  |  |  |
|                    |                            |              | Middle C                      | hannel                             |                   |                |        |  |  |  |  |  |
| 4880.000           | 48.24                      | horizontal   | -1.88                         | 46.36                              | 74.00             | -27.64         | Peak   |  |  |  |  |  |
| 4880.000           | 47.88                      | vertical     | -1.88                         | 46.00                              | 74.00             | -28.00         | Peak   |  |  |  |  |  |
|                    |                            |              | High Ch                       | annel                              |                   |                |        |  |  |  |  |  |
| 4960.000           | 49.57                      | horizontal   | -1.70                         | 47.87                              | 74.00             | -26.13         | Peak   |  |  |  |  |  |
| 4960.000           | 50.17                      | vertical     | -1.70                         | 48.47                              | 74.00             | -25.53         | Peak   |  |  |  |  |  |
|                    |                            |              | BLE 2                         | 2M                                 |                   |                |        |  |  |  |  |  |
|                    |                            |              | Low Cha                       | annel                              |                   |                |        |  |  |  |  |  |
| 4804.000           | 47.96                      | horizontal   | -2.42                         | 45.54                              | 74.00             | -28.46         | Peak   |  |  |  |  |  |
| 4804.000           | 47.33                      | vertical     | -2.42                         | 44.91                              | 74.00             | -29.09         | Peak   |  |  |  |  |  |
|                    |                            |              | Middle Cl                     | hannel                             |                   |                |        |  |  |  |  |  |
| 4880.000           | 47.49                      | horizontal   | -1.88                         | 45.61                              | 74.00             | -28.39         | Peak   |  |  |  |  |  |
| 4880.000           | 48.91                      | vertical     | -1.88                         | 47.03                              | 74.00             | -26.97         | Peak   |  |  |  |  |  |
|                    |                            | <del>,</del> | High Ch                       | annel                              |                   |                |        |  |  |  |  |  |
| 4960.000           | 48.03                      | horizontal   | -1.70                         | 46.33                              | 74.00             | -27.67         | Peak   |  |  |  |  |  |
| 4960.000           | 48.64                      | vertical     | -1.70                         | 46.94                              | 74.00             | -27.06         | Peak   |  |  |  |  |  |

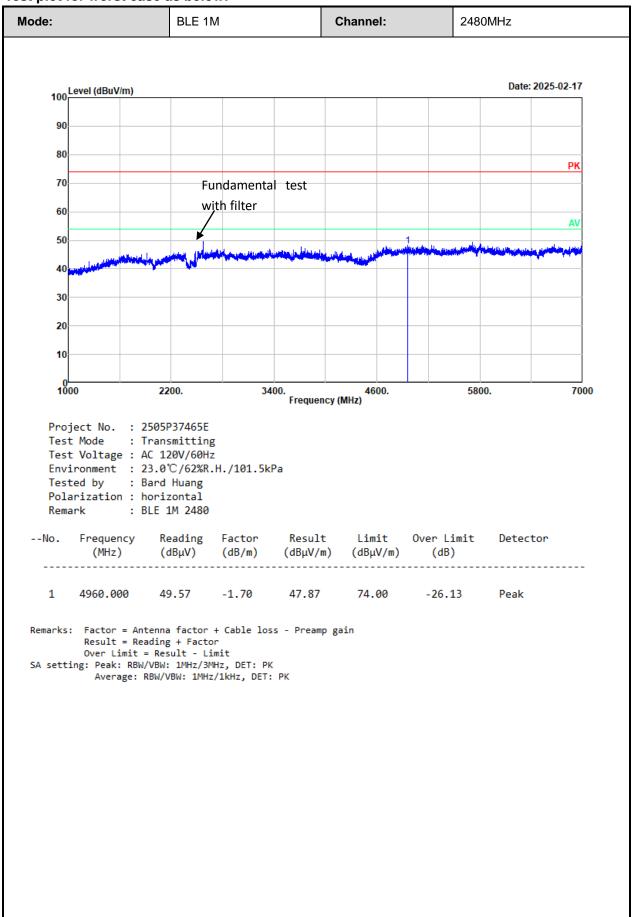
### Remark:

Corrected Amplitude= Reading level + corrected Factor

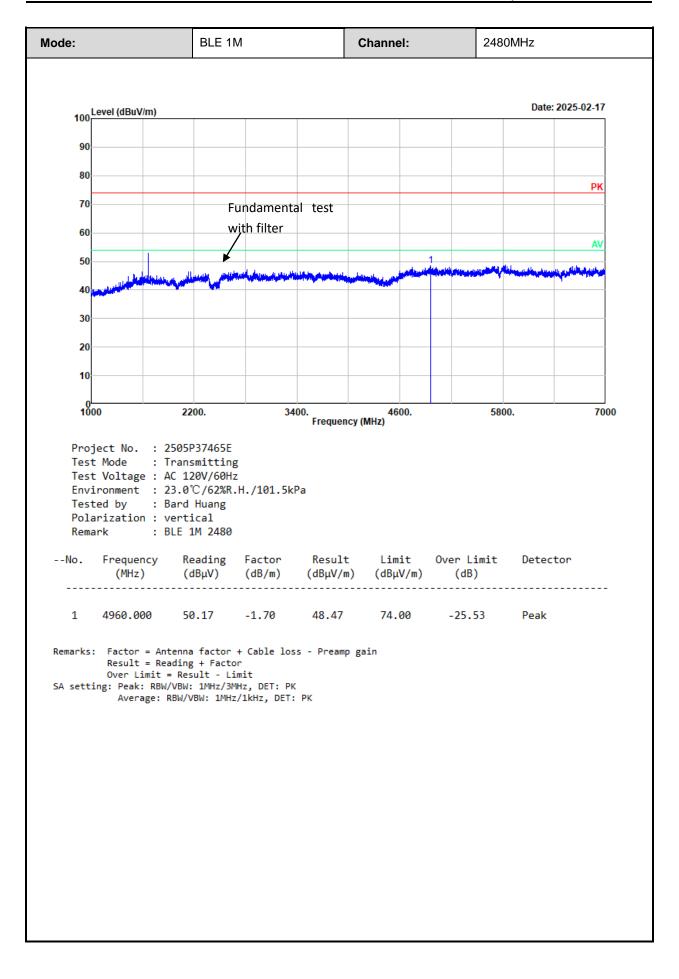
Corrected Factor = Antenna factor + Cable loss – Amplifier gain

Margin = Corrected Amplitude - Limit

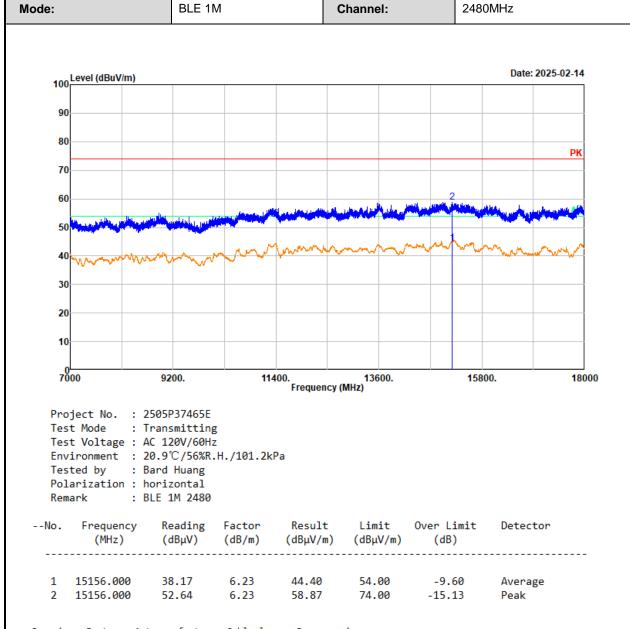
For the test result of Peak below the Peak limit more than 20dB, which can compliance with the average limit, just the Peak level was recorded.


The emission levels of other frequencies that were lower than the limit 20dB not show in test report.

For emissions in 18GHz-25GHz range, all emissions were investigated and in the noise floor level.


Report Template: TR-4-E-008/V1.2 Page 40 of 90

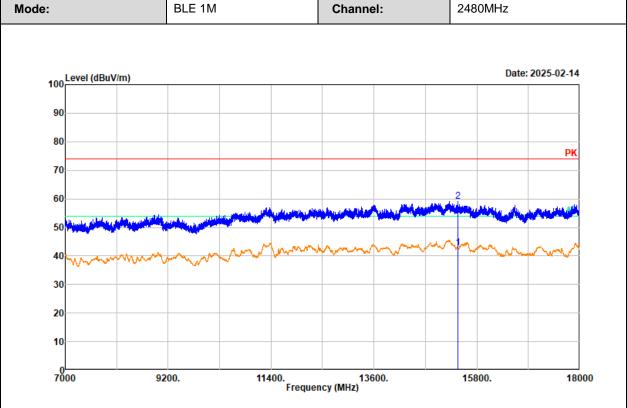



# Test plot for worst case as below:











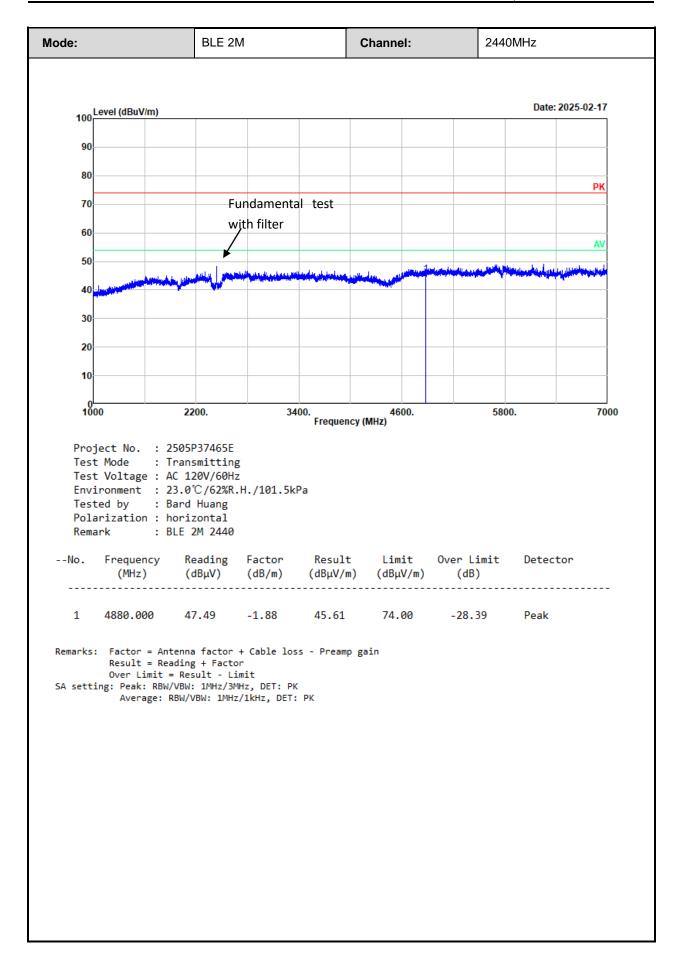

Result = Reading + Factor
Over Limit = Result - Limit

SA setting: Peak: RBW/VBW: 1MHz/3MHz, DET: PK
Average: RBW/VBW: 1MHz/1kHz, DET: PK

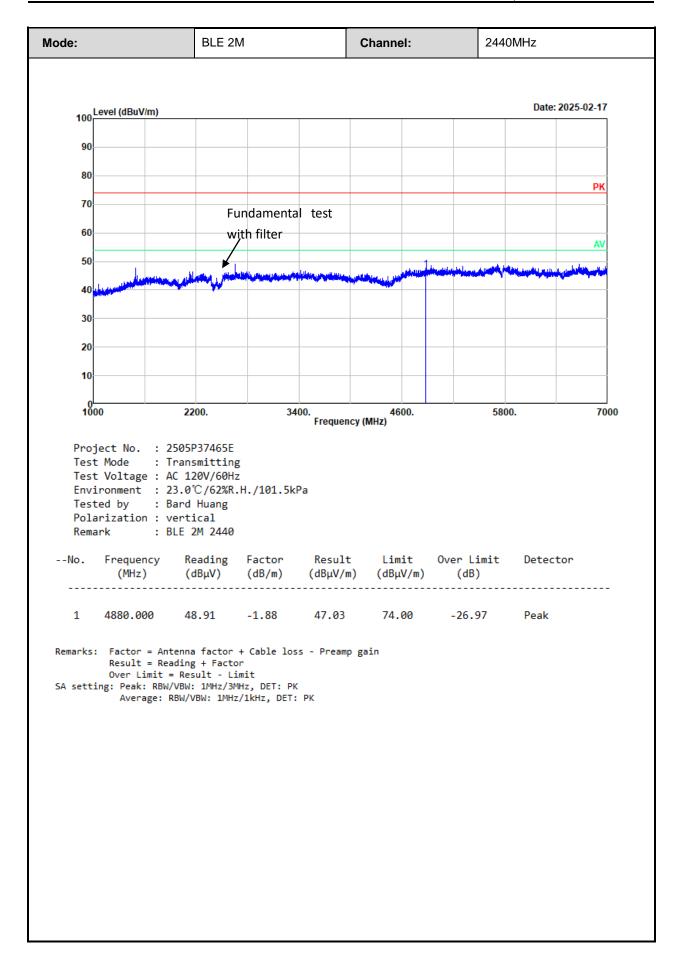




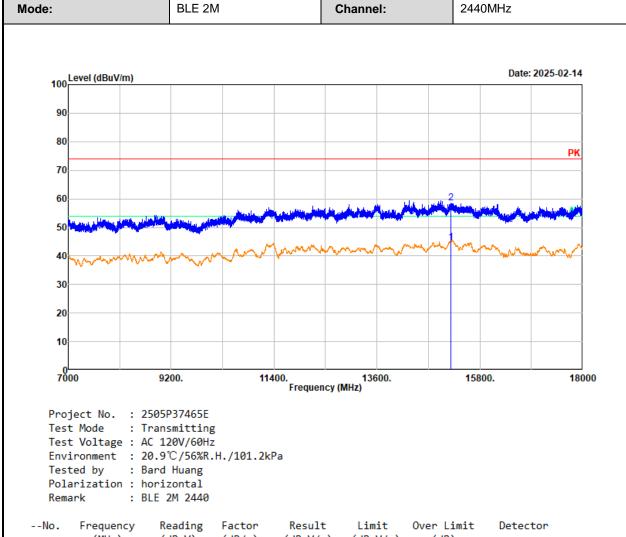
Environment :  $20.9^{\circ}$ C/56%R.H./101.2kPa


Tested by : Bard Huang Polarization : vertical Remark : BLE 1M 2480

| No. | Frequency<br>(MHz) | Reading<br>(dBµV) | Factor<br>(dB/m) | Result<br>(dBµV/m) | Limit<br>(dBμV/m) | Over Limit<br>(dB) | Detector |
|-----|--------------------|-------------------|------------------|--------------------|-------------------|--------------------|----------|
| 1   | 15396.000          | 36.04             | 6.68             | 42.72              | 54.00             | -11.28             | Average  |
| 2   | 15396.000          | 52.40             | 6.68             | 59.08              | 74.00             | -14.92             | Peak     |


Remarks: Factor = Antenna factor + Cable loss - Preamp gain

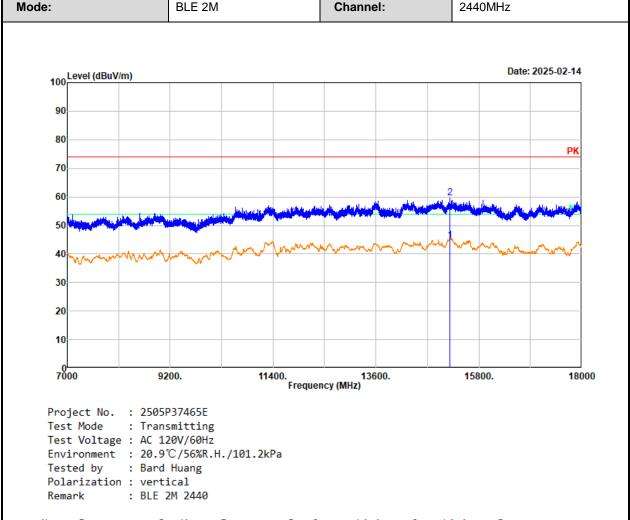
Result = Reading + Factor









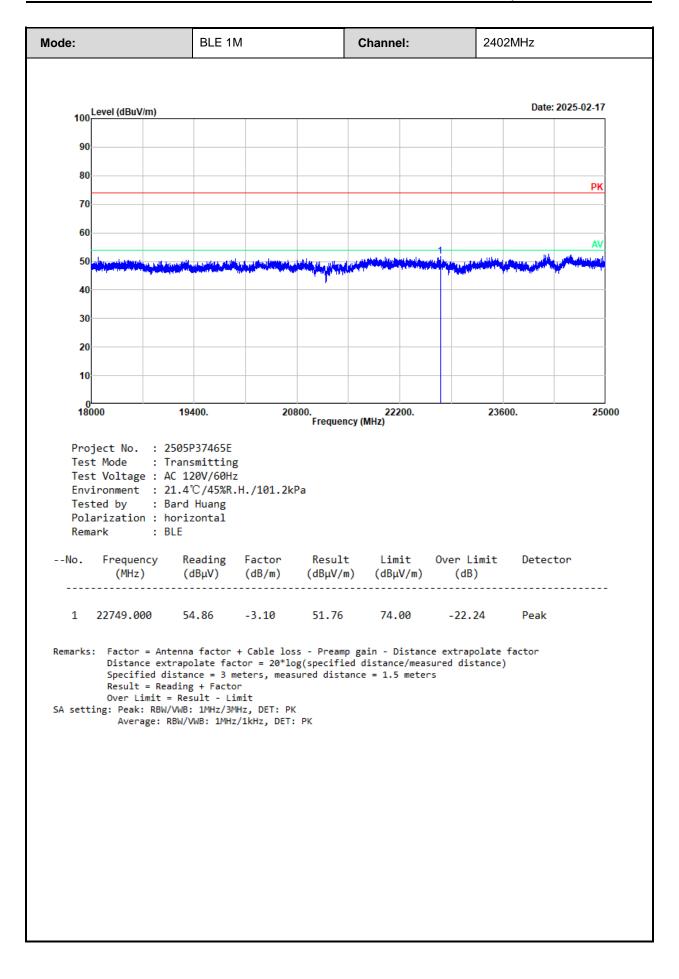



| No. | Frequency<br>(MHz)     | Reading<br>(dBμV) | Factor<br>(dB/m) | Result<br>(dBµV/m) | Limit<br>(dBμV/m) | Over Limit<br>(dB) | Detector        |  |
|-----|------------------------|-------------------|------------------|--------------------|-------------------|--------------------|-----------------|--|
| 1 2 | 15185.000<br>15185.000 | 38.56<br>52.18    | 6.28<br>6.28     | 44.84<br>58.46     | 54.00<br>74.00    | -9.16<br>-15.54    | Average<br>Peak |  |

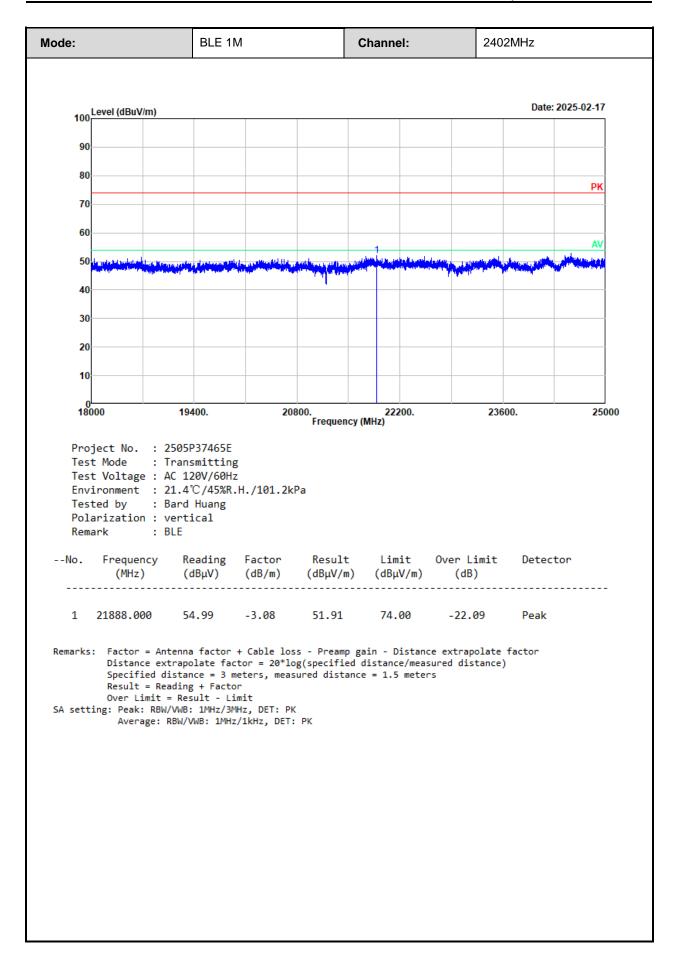
Result = Reading + Factor





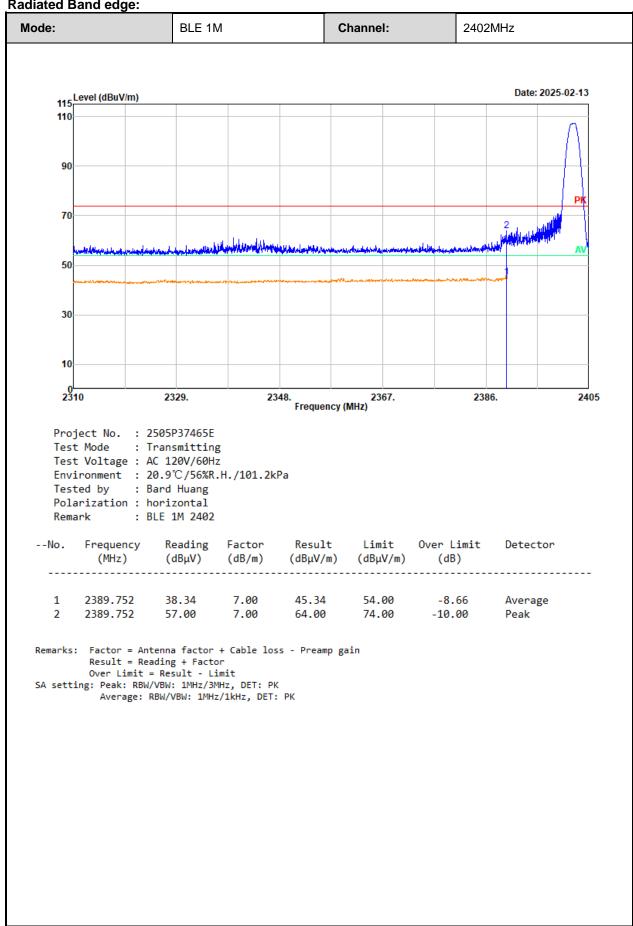

--No. Frequency Reading Factor Result Limit Over Limit Detector
(MHz) (dBμV) (dB/m) (dBμV/m) (dBμV/m) (dB)

1 15187.000 38.51 6.28 44.79 54.00 -9.21 Average
2 15187.000 53.31 6.28 59.59 74.00 -14.41 Peak

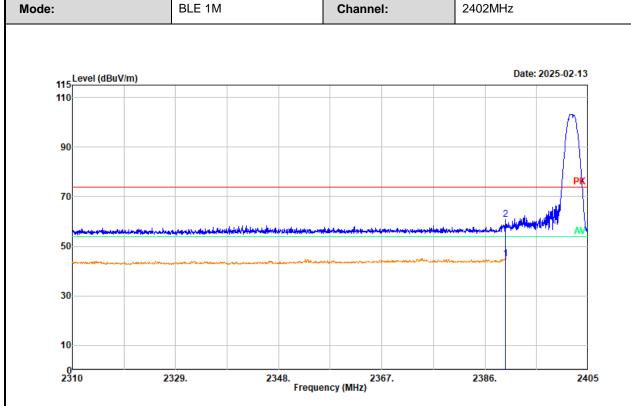

Remarks: Factor = Antenna factor + Cable loss - Preamp gain Result = Reading + Factor Over Limit = Result - Limit

SA setting: Peak: RBW/VBW: 1MHz/3MHz, DET: PK Average: RBW/VBW: 1MHz/1kHz, DET: PK









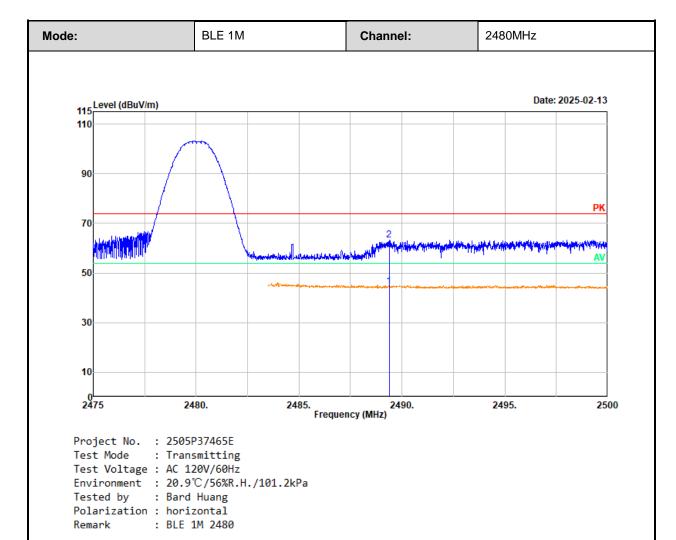

Radiated Band edge:







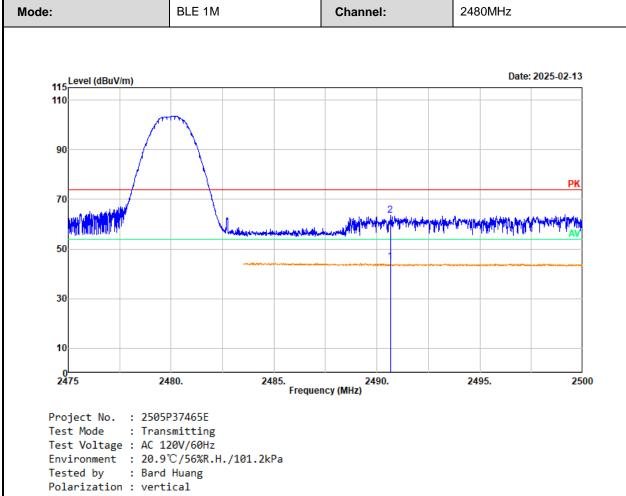
Environment :  $20.9^{\circ}$ C/56%R.H./101.2kPa


Tested by : Bard Huang Polarization : vertical Remark : BLE 1M 2402

| No. | Frequency<br>(MHz) | Reading<br>(dBμV) | Factor<br>(dB/m) | Result<br>(dBμV/m) | Limit<br>(dBμV/m) | Over Limit<br>(dB) | Detector |   |
|-----|--------------------|-------------------|------------------|--------------------|-------------------|--------------------|----------|---|
| 1   | 2389.705           | 37.95             | 7.00             | 44.95              | 54.00             | -9.05              | Average  | _ |
| 2   | 2389.705           | 53.65             | 7.00             | 60.65              | 74.00             | -13.35             | Peak     |   |

Remarks: Factor = Antenna factor + Cable loss - Preamp gain

Result = Reading + Factor






| No. | Frequency<br>(MHz) | Reading<br>(dBμV) | Factor<br>(dB/m) | Result<br>(dBμV/m) | Limit<br>(dBμV/m) | Over Limit<br>(dB) | Detector |
|-----|--------------------|-------------------|------------------|--------------------|-------------------|--------------------|----------|
| 1 2 | 2489.375           | 37.30             | 7.21             | 44.51              | 54.00             | -9.49              | Average  |
|     | 2489.375           | 56.10             | 7.21             | 63.31              | 74.00             | -10.69             | Peak     |

Result = Reading + Factor





Remark : BLE 1M 2480


| No. | Frequency<br>(MHz) | Reading<br>(dBµV) | Factor (dB/m) | Result<br>(dBμV/m) | Limit<br>(dBμV/m) | Over Limit<br>(dB) | Detector |  |
|-----|--------------------|-------------------|---------------|--------------------|-------------------|--------------------|----------|--|
| 1   | 2490.650           | 37.79             | 7.22          | 45.01              | 54.00             | -8.99              | Average  |  |
| 2   | 2490.650           | 56.23             | 7.22          | 63.45              | 74.00             | -10.55             | Peak     |  |

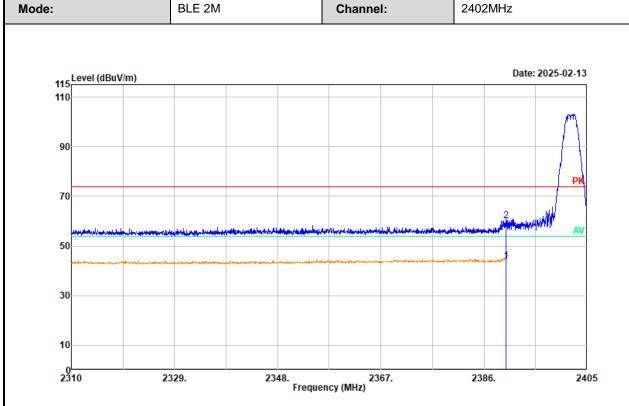
Remarks: Factor = Antenna factor + Cable loss - Preamp gain

Result = Reading + Factor

Detector






|     | ark :              |                   |                    |                 |  |
|-----|--------------------|-------------------|--------------------|-----------------|--|
| No. | Frequency<br>(MHz) | Reading<br>(dBμV) | Result<br>(dBµV/m) | Over Limit (dB) |  |

| 1 | 2389.990 | 37.53 | 7.00 | 44.53 | 54.00 | -9.47  | Average |
|---|----------|-------|------|-------|-------|--------|---------|
| 2 | 2389.990 | 52.11 | 7.00 | 59.11 | 74.00 | -14.89 | Peak    |

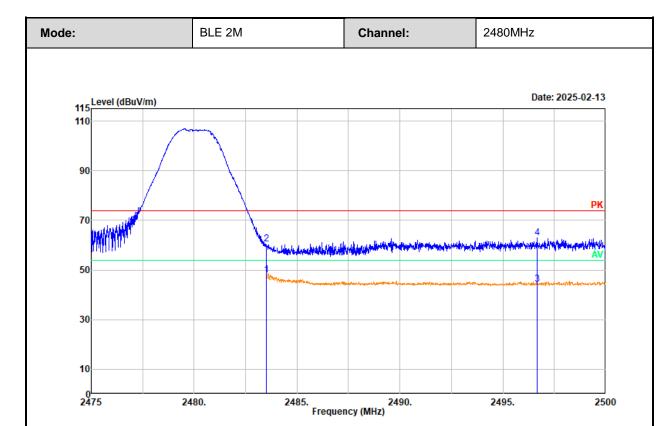
Remarks: Factor = Antenna factor + Cable loss - Preamp gain

Result = Reading + Factor





Environment :  $20.9^{\circ}$ C/56%R.H./101.2kPa


Tested by : Bard Huang Polarization : vertical Remark : BLE 2M 2402

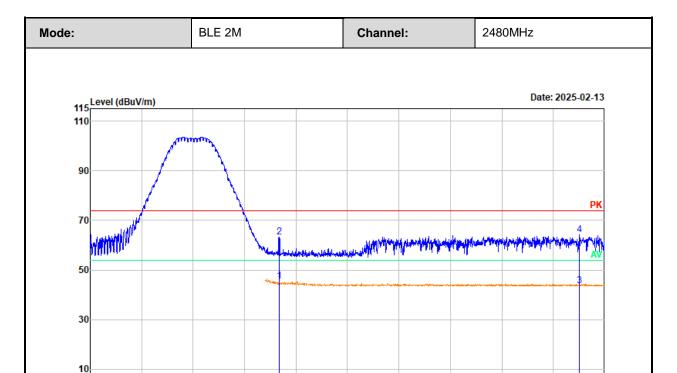
| No. | Frequency<br>(MHz) | Reading<br>(dBµV) | Factor (dB/m) | Result<br>(dBμV/m) | Limit<br>(dBμV/m) | Over Limit<br>(dB) | Detector |  |
|-----|--------------------|-------------------|---------------|--------------------|-------------------|--------------------|----------|--|
| 1   | 2389.990           | 37.09             | 7.00          | 44.09              | 54.00             | -9.91              | Average  |  |
| 2   | 2389.990           | 53.15             | 7.00          | 60.15              | 74.00             | -13.85             | Peak     |  |

Remarks: Factor = Antenna factor + Cable loss - Preamp gain

Result = Reading + Factor






Environment :  $20.9^{\circ}$ C/56%R.H./101.2kPa

Tested by : Bard Huang Polarization : horizontal Remark : BLE 2M 2480

| No. | Frequency<br>(MHz) | Reading<br>(dBµV) | Factor<br>(dB/m) | Result<br>(dBµV/m) | Limit<br>(dBµV/m) | Over Limit<br>(dB) | Detector |
|-----|--------------------|-------------------|------------------|--------------------|-------------------|--------------------|----------|
| 1   | 2483.500           | 40.67             | 7.20             | 47.87              | 54.00             | -6.13              | Average  |
| 2   | 2483.500           | 53.29             | 7.20             | 60.49              | 74.00             | -13.51             | Peak     |
| 3   | 2496.650           | 37.00             | 7.23             | 44.23              | 54.00             | -9.77              | Average  |
| 4   | 2496.650           | 55.76             | 7.23             | 62.99              | 74.00             | -11.01             | Peak     |

Remarks: Factor = Antenna factor + Cable loss - Preamp gain Result = Reading + Factor





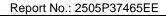
2475

Environment :  $20.9^{\circ}$ C/56%R.H./101.2kPa

2480.

Tested by : Bard Huang Polarization : vertical Remark : BLE 2M 2480

| No. | Frequency<br>(MHz) | Reading<br>(dBμV) | Factor<br>(dB/m) | Result<br>(dBμV/m) | Limit<br>(dBμV/m) | Over Limit (dB) | Detector |
|-----|--------------------|-------------------|------------------|--------------------|-------------------|-----------------|----------|
| 1   | 2484.175           | 38.43             | 7.20             | 45.63              | 54.00             | -8.37           | Average  |
| 2   | 2484.175           | 55.96             | 7.20             | 63.16              | 74.00             | -10.84          | Peak     |
| 3   | 2498.762           | 36.30             | 7.25             | 43.55              | 54.00             | -10.45          | Average  |
| 4   | 2498.762           | 56.83             | 7.25             | 64.08              | 74.00             | -9.92           | Peak     |


2485. Frequency (MHz)

2490.

2495.

2500

Remarks: Factor = Antenna factor + Cable loss - Preamp gain Result = Reading + Factor





## Path 3:

| Test Date:             | 2025-02-13~2025-02-17 <b>Test By:</b>          |                       | Bard Huang    |  |
|------------------------|------------------------------------------------|-----------------------|---------------|--|
| Environment condition: | Temperature: 20.9~23°C; Rela<br>101.2~101.5kPa | tive Humidity:56~62%; | ATM Pressure: |  |

| Frequency<br>(MHz) | Reading<br>level<br>(dBµV) | Polar      | Corrected<br>Factor<br>(dB/m) | Corrected<br>Amplitude<br>(dBµV/m) | Limit<br>(dBµV/m) | Margin<br>(dB) | Remark |  |  |  |  |
|--------------------|----------------------------|------------|-------------------------------|------------------------------------|-------------------|----------------|--------|--|--|--|--|
| BLE 1M             |                            |            |                               |                                    |                   |                |        |  |  |  |  |
| Low Channel        |                            |            |                               |                                    |                   |                |        |  |  |  |  |
| 4804.000           | 47.54                      | horizontal | -2.42                         | 45.12                              | 74.00             | -28.88         | Peak   |  |  |  |  |
| 4804.000           | 48.59                      | vertical   | -2.42                         | 46.17                              | 74.00             | -27.83         | Peak   |  |  |  |  |
|                    |                            |            | Middle C                      | hannel                             |                   |                |        |  |  |  |  |
| 4880.000           | 47.37                      | horizontal | -1.88                         | 45.49                              | 74.00             | -28.51         | Peak   |  |  |  |  |
| 4880.000           | 47.18                      | vertical   | -1.88                         | 45.30                              | 74.00             | -28.70         | Peak   |  |  |  |  |
|                    |                            |            | High Ch                       | annel                              |                   |                |        |  |  |  |  |
| 4960.000           | 47.86                      | horizontal | -1.70                         | 46.16                              | 74.00             | -27.84         | Peak   |  |  |  |  |
| 4960.000           | 47.56                      | vertical   | -1.70                         | 45.86                              | 74.00             | -28.14         | Peak   |  |  |  |  |
|                    |                            |            | BLE 2                         | 2M                                 |                   |                |        |  |  |  |  |
|                    |                            |            | Low Ch                        | annel                              |                   |                |        |  |  |  |  |
| 4804.000           | 47.90                      | horizontal | -2.42                         | 45.48                              | 74.00             | -28.52         | Peak   |  |  |  |  |
| 4804.000           | 48.02                      | vertical   | -2.42                         | 45.60                              | 74.00             | -28.40         | Peak   |  |  |  |  |
|                    |                            |            | Middle C                      | hannel                             |                   |                |        |  |  |  |  |
| 4880.000           | 48.27                      | horizontal | -1.88                         | 46.39                              | 74.00             | -27.61         | Peak   |  |  |  |  |
| 4880.000           | 48.18                      | vertical   | -1.88                         | 46.30                              | 74.00             | -27.70         | Peak   |  |  |  |  |
| High Channel       |                            |            |                               |                                    |                   |                |        |  |  |  |  |
| 4960.000           | 47.25                      | horizontal | -1.70                         | 45.55                              | 74.00             | -28.45         | Peak   |  |  |  |  |
| 4960.000           | 48.08                      | vertical   | -1.70                         | 46.38                              | 74.00             | -27.62         | Peak   |  |  |  |  |

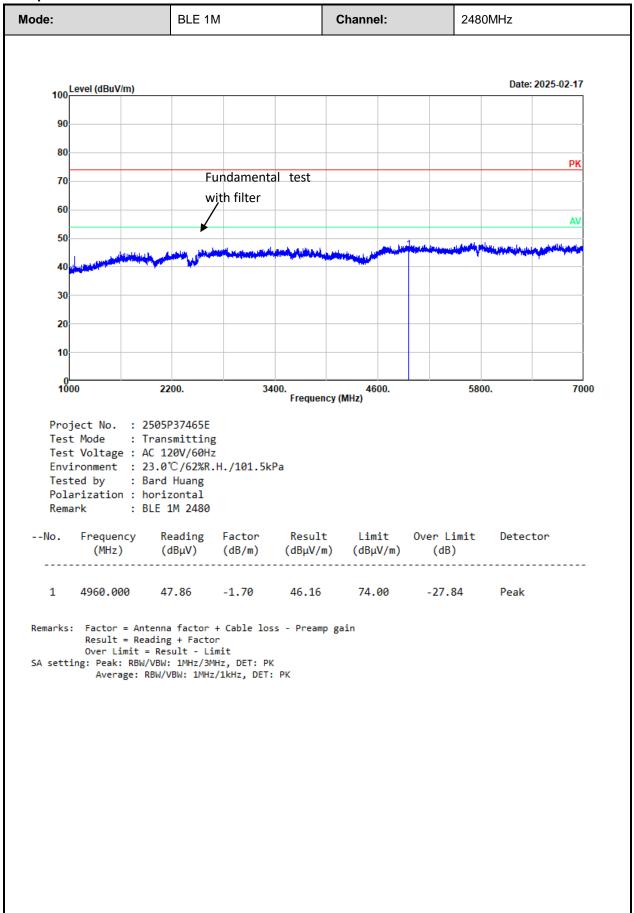
### Remark:

Corrected Amplitude= Reading level + corrected Factor

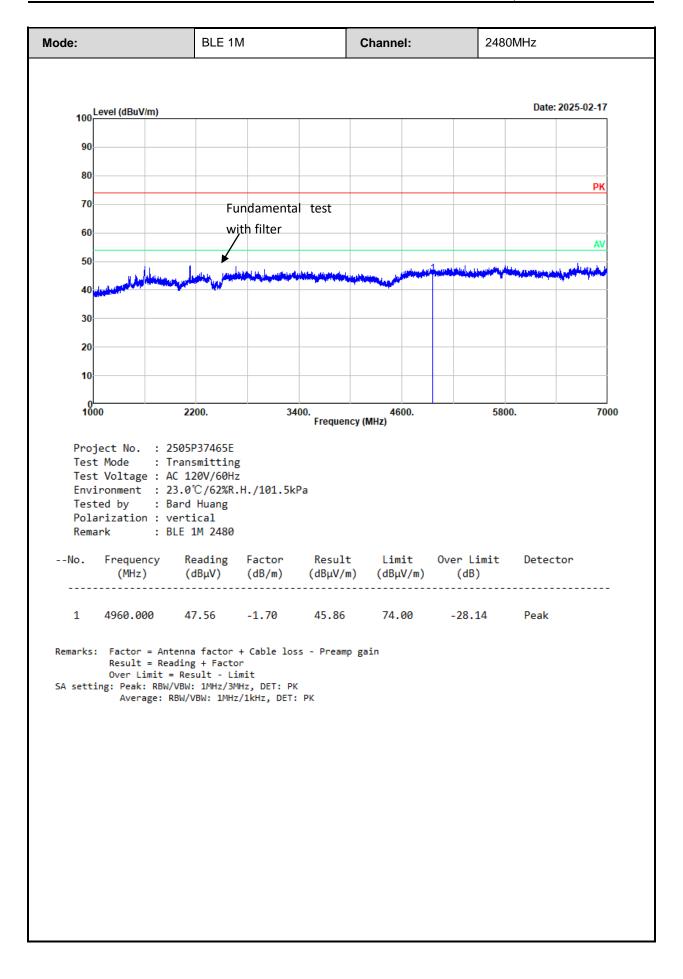
Corrected Factor = Antenna factor + Cable loss – Amplifier gain

Margin = Corrected Amplitude - Limit

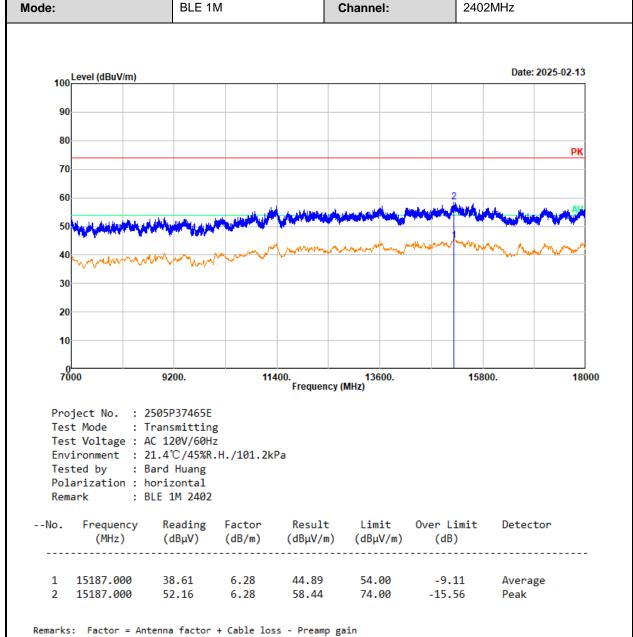
For the test result of Peak below the Peak limit more than 20dB, which can compliance with the average limit, just the Peak level was recorded.


The emission levels of other frequencies that were lower than the limit 20dB not show in test report.

For emissions in 18GHz-25GHz range, all emissions were investigated and in the noise floor level.


Report Template: TR-4-E-008/V1.2 Page 59 of 90

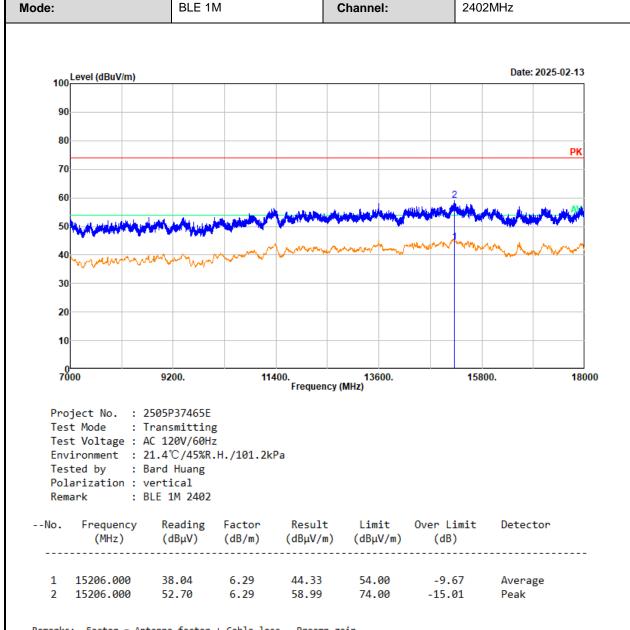



# Test plot for worst case as below:





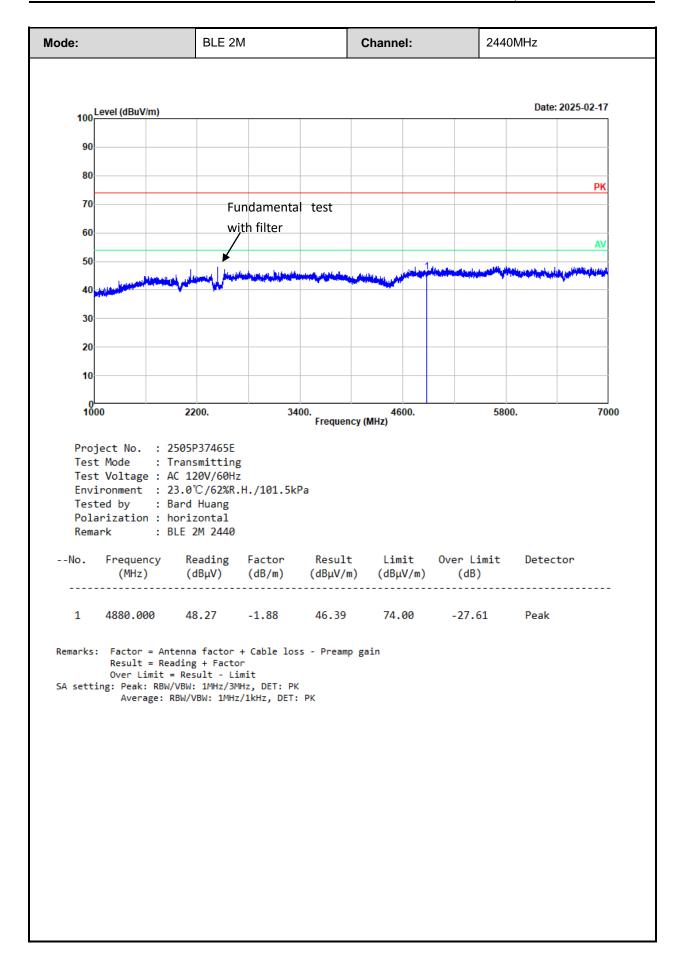




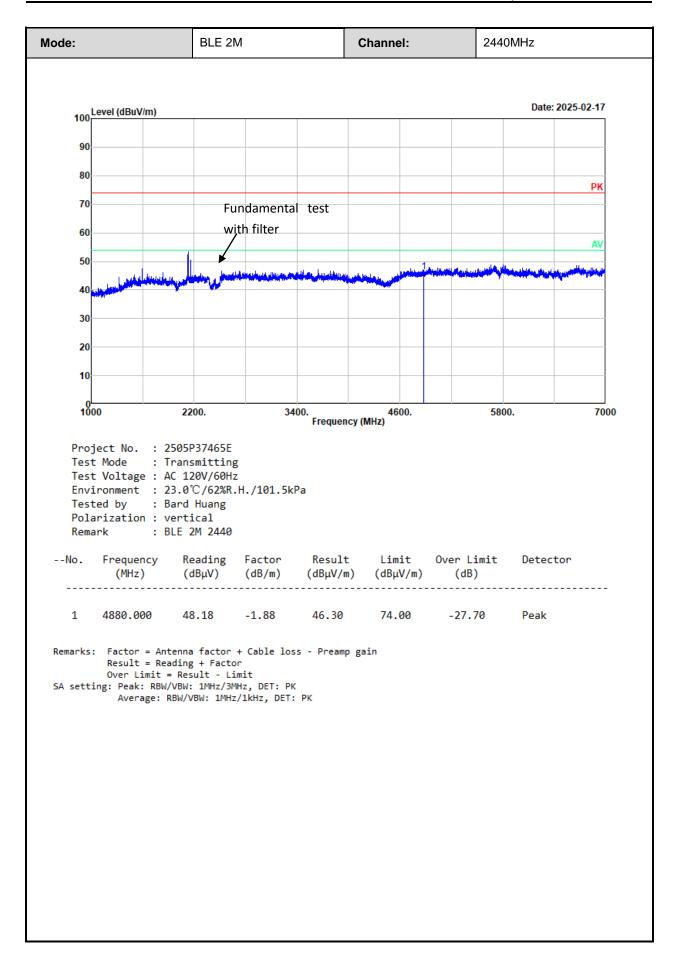



Result = Reading + Factor Over Limit = Result - Limit

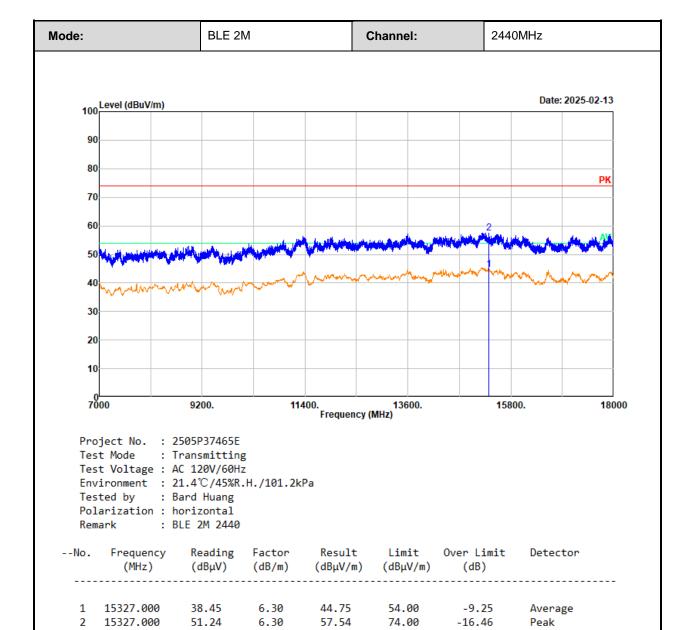
SA setting: Peak: RBW/VWB: 1MHz/3MHz, DET: PK Average: RBW/VWB: 1MHz/1kHz, DET: PK







Result = Reading + Factor Over Limit = Result - Limit

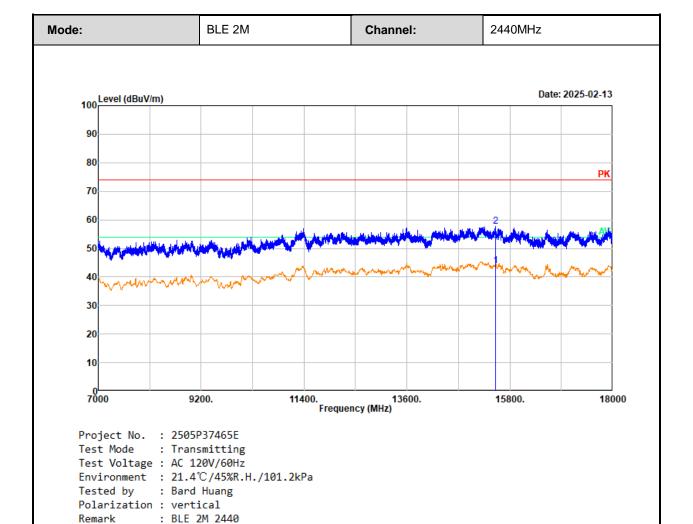
SA setting: Peak: RBW/VWB: 1MHz/3MHz, DET: PK
Average: RBW/VWB: 1MHz/1kHz, DET: PK







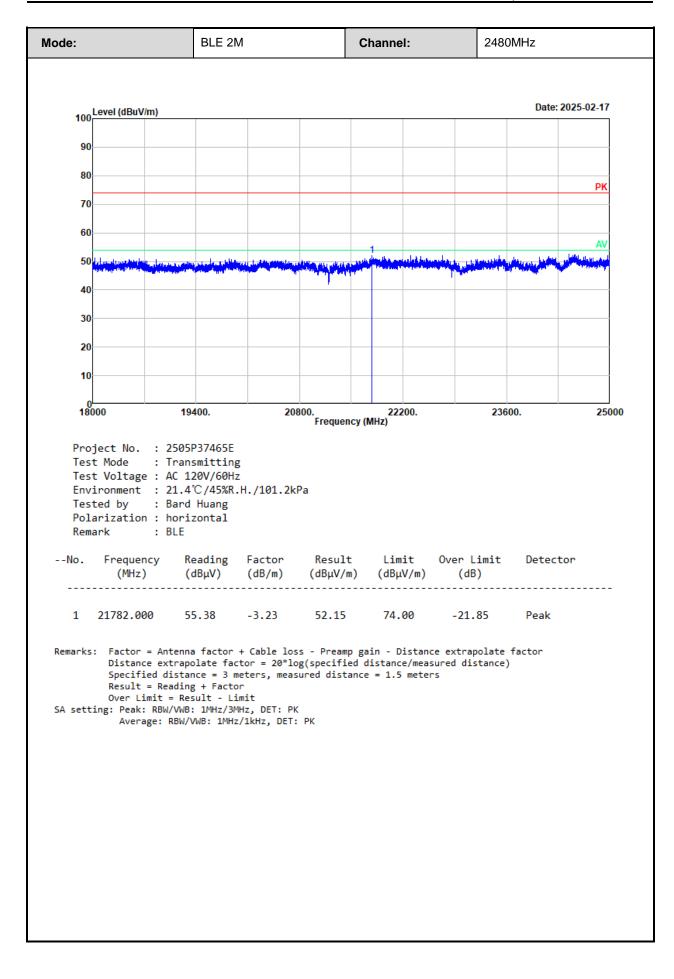


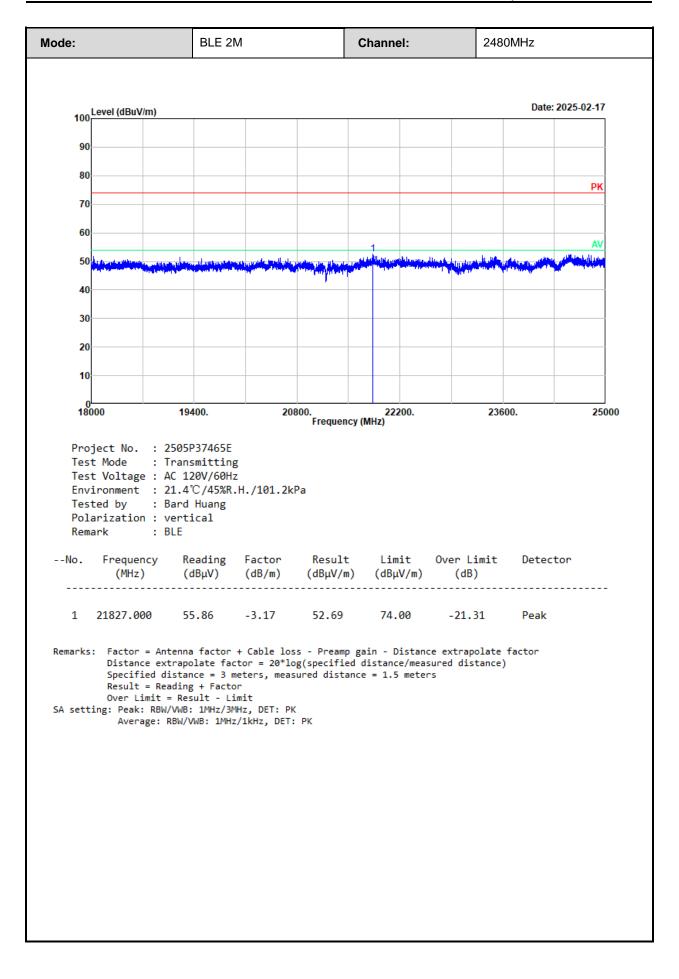



Result = Reading + Factor Over Limit = Result - Limit

SA setting: Peak: RBW/VWB: 1MHz/3MHz, DET: PK
Average: RBW/VWB: 1MHz/1kHz, DET: PK

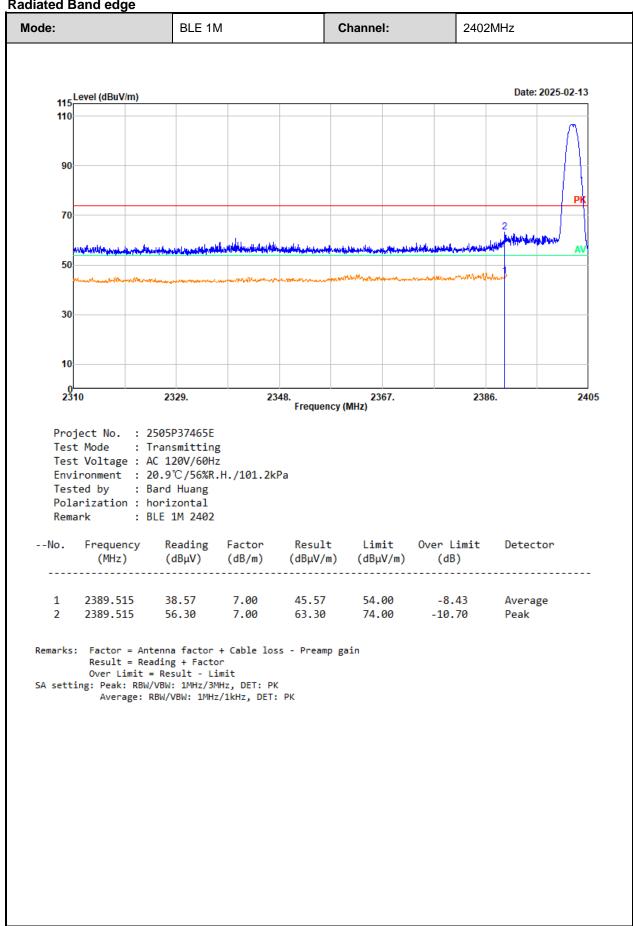




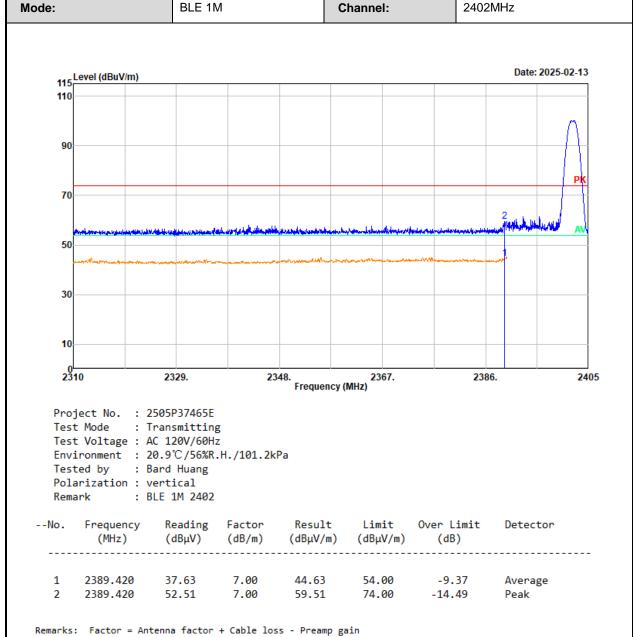


| No. | Frequency<br>(MHz) | Reading<br>(dBμV) | Factor<br>(dB/m) | Result<br>(dBμV/m) | Limit<br>(dBμV/m) | Over Limit<br>(dB) | Detector |
|-----|--------------------|-------------------|------------------|--------------------|-------------------|--------------------|----------|
| 1 2 | 15492.000          | 37.65             | 6.25             | 43.90              | 54.00             | -10.10             | Average  |
|     | 15492.000          | 51.40             | 6.25             | 57.65              | 74.00             | -16.35             | Peak     |

Result = Reading + Factor





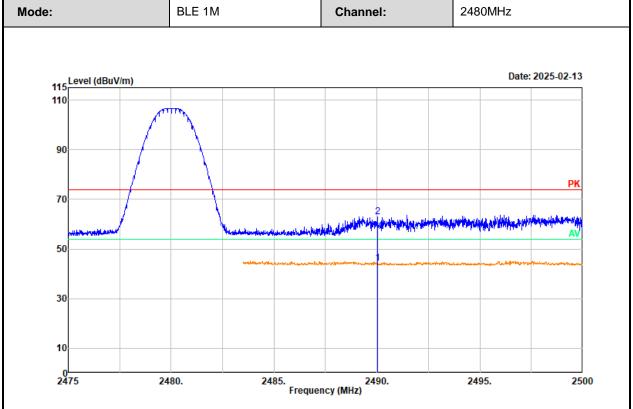





Radiated Band edge







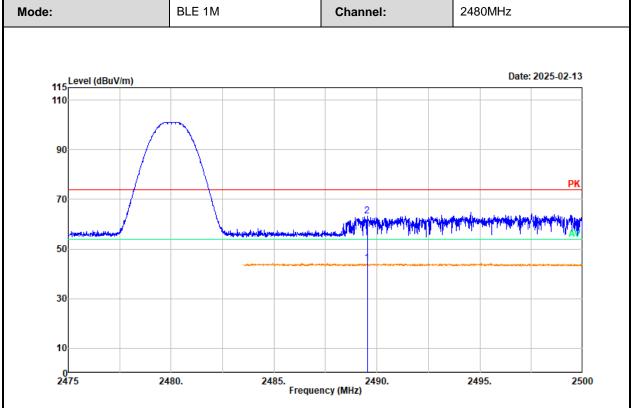

Result = Reading + Factor Over Limit = Result - Limit

SA setting: Peak: RBW/VBW: 1MHz/3MHz, DET: PK Average: RBW/VBW: 1MHz/1kHz, DET: PK





Environment :  $20.9^{\circ}$ C/56%R.H./101.2kPa


Tested by : Bard Huang Polarization : horizontal Remark : BLE 1M 2480

| No. | Frequency<br>(MHz) | Reading<br>(dBμV) | Factor (dB/m) | Result<br>(dBµV/m) | Limit<br>(dBμV/m) | Over Limit<br>(dB) | Detector |  |
|-----|--------------------|-------------------|---------------|--------------------|-------------------|--------------------|----------|--|
| 1   | 2490.025           | 37.13             | 7.22          | 44.35              | 54.00             | -9.65              | Average  |  |
| 2   | 2490.025           | 55.63             | 7.22          | 62.85              | 74.00             | -11.15             | Peak     |  |

Remarks: Factor = Antenna factor + Cable loss - Preamp gain

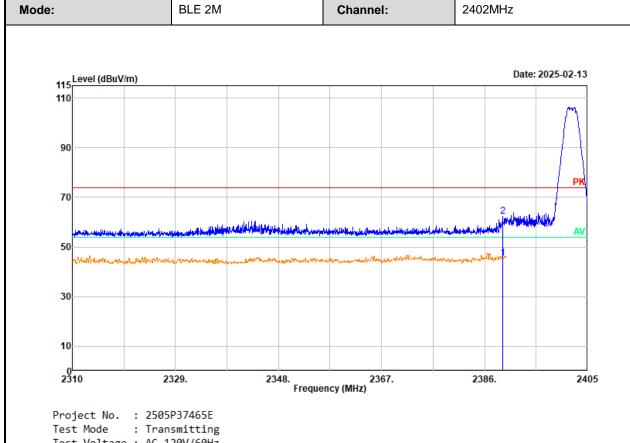
Result = Reading + Factor





Project No. : 2505P37465E Test Mode : Transmitting Test Voltage : AC 120V/60Hz

Environment :  $20.9^{\circ}$ C/56%R.H./101.2kPa


Tested by : Bard Huang Polarization : vertical Remark : BLE 1M 2480

| No. | Frequency<br>(MHz) | Reading<br>(dBμV) | Factor<br>(dB/m) | Result<br>(dBµV/m) | Limit<br>(dBμV/m) | Over Limit<br>(dB) | Detector |
|-----|--------------------|-------------------|------------------|--------------------|-------------------|--------------------|----------|
| 1   | 2489.525           | 37.06             | 7.21             | 44.27              | 54.00             | -9.73              | Average  |
| 2   | 2489.525           | 56.02             | 7.21             | 63.23              | 74.00             | -10.77             | Peak     |

Remarks: Factor = Antenna factor + Cable loss - Preamp gain

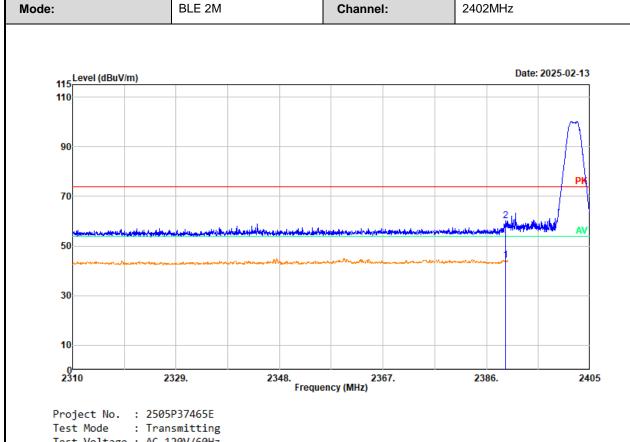
Result = Reading + Factor





Test Voltage : AC 120V/60Hz

Environment :  $20.9^{\circ}/56\%R.H./101.2kPa$ 


Tested by : Bard Huang Polarization : horizontal Remark : BLE 2M 2402

| No. | Frequency<br>(MHz) | Reading<br>(dBμV) | Factor (dB/m) | Result<br>(dBμV/m) | Limit<br>(dBμV/m) | Over Limit<br>(dB) | Detector |  |
|-----|--------------------|-------------------|---------------|--------------------|-------------------|--------------------|----------|--|
| 1   | 2389.325           | 38.54             | 7.00          | 45.54              | 54.00             | -8.46              | Average  |  |
| 2   | 2389.325           | 55.40             | 7.00          | 62.40              | 74.00             | -11.60             | Peak     |  |

Remarks: Factor = Antenna factor + Cable loss - Preamp gain

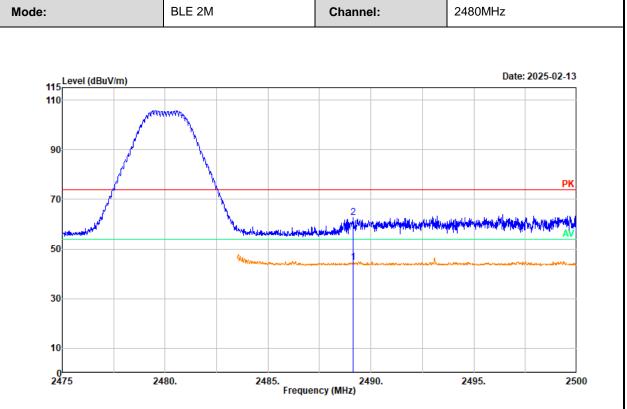
Result = Reading + Factor





Test Voltage : AC 120V/60Hz

Environment :  $20.9^{\circ}$ C/56%R.H./101.2kPa


Tested by : Bard Huang Polarization : vertical : BLE 2M 2402 Remark

| No. | Frequency<br>(MHz) | Reading<br>(dBµV) | Factor<br>(dB/m) | Result<br>(dBµV/m) | Limit<br>(dBμV/m) | Over Limit<br>(dB) | Detector |
|-----|--------------------|-------------------|------------------|--------------------|-------------------|--------------------|----------|
| 1   | 2389.468           | 37.22             | 7.00             | 44.22              | 54.00             | -9.78              | Average  |
| 2   | 2389.468           | 53.03             | 7.00             | 60.03              | 74.00             | -13.97             | Peak     |

Remarks: Factor = Antenna factor + Cable loss - Preamp gain

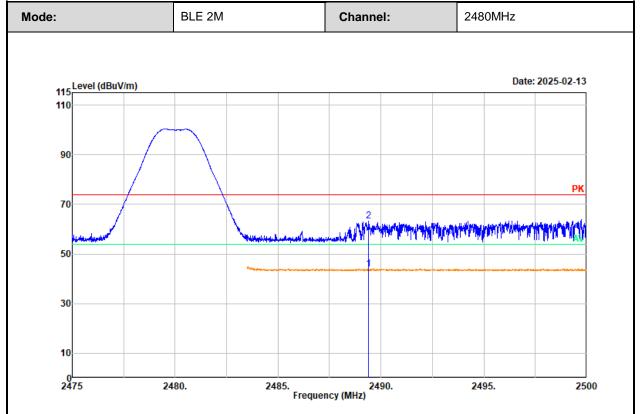
Result = Reading + Factor





Project No. : 2505P37465E Test Mode : Transmitting Test Voltage : AC 120V/60Hz

Environment :  $20.9^{\circ}$ C/56%R.H./101.2kPa


Tested by : Bard Huang Polarization : horizontal Remark : BLE 2M 2480

| No. | Frequency<br>(MHz) | Reading<br>(dBμV) | Factor<br>(dB/m) | Result<br>(dBµV/m) | Limit<br>(dBμV/m) | Over Limit<br>(dB) | Detector |  |
|-----|--------------------|-------------------|------------------|--------------------|-------------------|--------------------|----------|--|
| 1   | 2489.137           | 37.27             | 7.21             | 44.48              | 54.00             | -9.52              | Average  |  |
| 2   | 2489.137           | 55.39             | 7.21             | 62.60              | 74.00             | -11.40             | Peak     |  |

Remarks: Factor = Antenna factor + Cable loss - Preamp gain

Result = Reading + Factor





Project No. : 2505P37465E Test Mode : Transmitting Test Voltage : AC 120V/60Hz

Environment :  $20.9^{\circ}$ C/56%R.H./101.2kPa

Tested by : Bard Huang Polarization : vertical Remark : BLE 2M 2480

| No. | Frequency<br>(MHz) | Reading<br>(dBμV) | Factor (dB/m) | Result<br>(dBμV/m) | Limit<br>(dBμV/m) | Over Limit<br>(dB) | Detector |  |
|-----|--------------------|-------------------|---------------|--------------------|-------------------|--------------------|----------|--|
| 1   | 2489.400           | 36.68             | 7.21          | 43.89              | 54.00             | -10.11             | Average  |  |
| 2   | 2489.400           | 55.92             | 7.21          | 63.13              | 74.00             | -10.87             | Peak     |  |

Remarks: Factor = Antenna factor + Cable loss - Preamp gain

Result = Reading + Factor



# 3.5 RF Conducted Test Data

| Test Date:             | 2025-02-25~2025-03-05 <b>Test By:</b> Ryan Zhang |                         |               |  |
|------------------------|--------------------------------------------------|-------------------------|---------------|--|
| Environment condition: | Temperature: 23.7~23.9°C;Rel<br>100.4~101.3kPa   | ativeHumidity:51~57%; / | ATM Pressure: |  |

# 3.5.1 6 dB Emission Bandwidth

#### **BLE 1M**

| Channel | Result<br>(MHz) | Limit<br>(MHz) | Verdict |
|---------|-----------------|----------------|---------|
| Low     | 0.689           | ≥0.5           | Pass    |
| Middle  | 0.677           | ≥0.5           | Pass    |
| High    | 0.681           | ≥0.5           | Pass    |

## BLE 2M

| Channel | Result<br>(MHz) | Limit<br>(MHz) | Verdict |
|---------|-----------------|----------------|---------|
| Low     | 1.249           | ≥0.5           | Pass    |
| Middle  | 1.261           | ≥0.5           | Pass    |
| High    | 1.267           | ≥0.5           | Pass    |

# 3.5.2 99% Occupied Bandwidth

#### **BLE 1M**

| Channel | 99% OBW<br>(MHz) |
|---------|------------------|
| Low     | 1.036            |
| Middle  | 1.040            |
| High    | 1.052            |

## BLE 2M

| Channel | 99% OBW<br>(MHz) |
|---------|------------------|
| Low     | 2.088            |
| Middle  | 2.088            |
| High    | 2.070            |

Report Template: TR-4-E-008/V1.2 Page 78 of 90



# 3.5.3 Maximum Conducted Peak Output Power

## **BLE 1M**

| Channel |        | (dBm)  | Limit  |       |         |
|---------|--------|--------|--------|-------|---------|
|         | Path 1 | Path 2 | Path 3 | (dBm) | Verdict |
| Low     | 6.65   | 7.24   | 5.51   | 30.00 | Pass    |
| Middle  | 6.87   | 6.77   | 5.65   | 30.00 | Pass    |
| High    | 6.57   | 6.60   | 5.54   | 30.00 | Pass    |

## BLE 2M

| Channel |        | (dBm)  | Limit  |       |         |
|---------|--------|--------|--------|-------|---------|
|         | Path 1 | Path 2 | Path 3 | (dBm) | Verdict |
| Low     | 6.65   | 6.89   | 5.43   | 30.00 | Pass    |
| Middle  | 7.01   | 6.79   | 5.66   | 30.00 | Pass    |
| High    | 7.06   | 6.64   | 5.89   | 30.00 | Pass    |

# 3.5.4 Power Spectral Density

## BLE 1M

| Channel | Result<br>(dBm/3kHz) | Limit<br>(dBm/3kHz) | Verdict |  |
|---------|----------------------|---------------------|---------|--|
| Low     | -10.44               | 8                   | Pass    |  |
| Middle  | -10.34               | 8                   | Pass    |  |
| High    | -10.47               | 8                   | Pass    |  |

#### BLE 2M

| Channel | Result<br>(dBm/3kHz) | Limit<br>(dBm/3kHz) | Verdict |  |
|---------|----------------------|---------------------|---------|--|
| Low     | -12.99               | 8                   | Pass    |  |
| Middle  | -13.11               | 8                   | Pass    |  |
| High    | -12.52               | 8                   | Pass    |  |

Report Template: TR-4-E-008/V1.2 Page 79 of 90



# 3.5.5 100 kHz Bandwidth of Frequency Band Edge

## **BLE 1M**

| Channel | Result<br>(dB) | Limit<br>(dB) | Verdict |
|---------|----------------|---------------|---------|
| Low     | 52.21          | 20            | Pass    |
| High    | 56.66          | 20            | Pass    |

## BLE 2M

| Channel | Result<br>(dB) | Limit<br>(dB) | Verdict |
|---------|----------------|---------------|---------|
| Low     | 31.98          | 20            | Pass    |
| High    | 54.78          | 20            | Pass    |

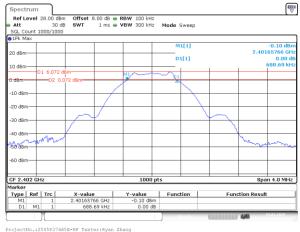
# 3.5.6 Duty Cycle

## BLE 1M

| Channel | Ton<br>(ms) | Ton+Toff<br>(ms) | Duty Cycle<br>(%) | Duty Cycle<br>Factor(dB) | 1/Ton<br>(Hz) | VBW Setting (kHz) |
|---------|-------------|------------------|-------------------|--------------------------|---------------|-------------------|
| Middle  | 2.122       | 2.502            | 84.81             | 0.72                     | 471           | 0.500             |

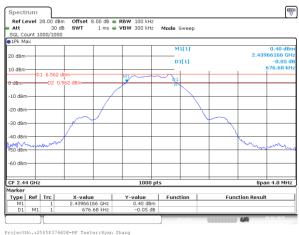
# BLE 2M

| Channel | Ton<br>(ms) | Ton+Toff<br>(ms) | Duty Cycle<br>(%) | Duty Cycle<br>Factor(dB) | 1/Ton<br>(Hz) | VBW Setting (kHz) |
|---------|-------------|------------------|-------------------|--------------------------|---------------|-------------------|
| Middle  | 1.064       | 1.875            | 56.75             | 2.46                     | 940           | 1                 |

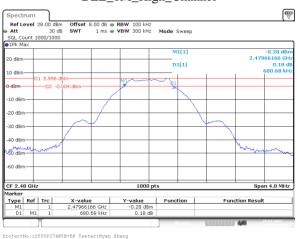



#### **Test Plots:**

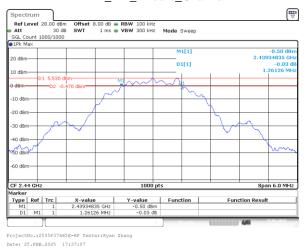
#### 6 dB Emission Bandwidth:


#### BLE 1M

BLE\_1M\_Low\_Channel




Date: 25.FEB.2025 17:27:30

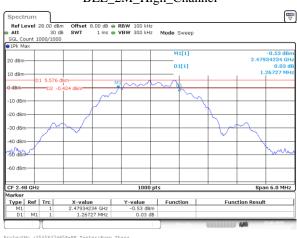

# BLE\_1M\_Middle\_Channel



## BLE\_1M\_High\_Channel



BLE\_2M\_Middle\_Channel




BLE 2M

#### BLE\_2M\_Low\_Channel



BLE\_2M\_High\_Channel



ProjectNo.:2505P37465E-RF Tester:Ryan Zhang


Date: 25.FEB.2025 17:39:55



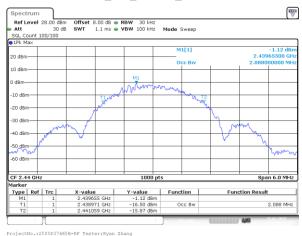
#### 99% Occupied Bandwidth:

#### BLE 1M

BLE\_1M\_Low\_Channel



ProjectNo.:2505P37465E-RF Tester:Ryan Zhang


Date: 25.FEB.2025 17:27:40

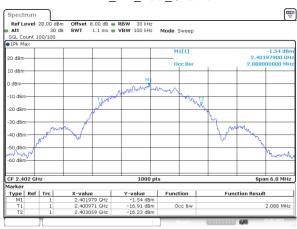
#### BLE\_1M\_High\_Channel



Date: 25.FEB.2025 17:32:00

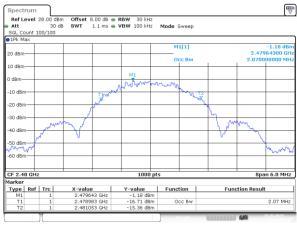
#### BLE\_2M\_Middle\_Channel




#### BLE\_1M\_Middle\_Channel



ProjectNo.:2505P37465E-RF Tester:Ryan Zhang


#### BLE 2M

#### BLE\_2M\_Low\_Channel

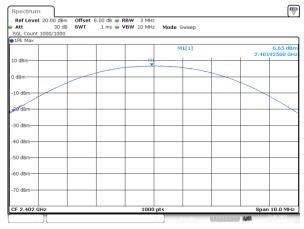


Date: 25.FEB.2025 17:34:54

BLE\_2M\_High\_Channel

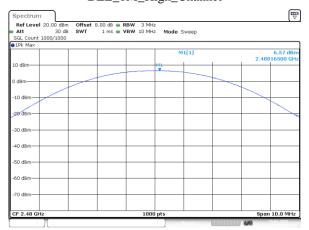


ProjectNo.:2505P37465E-RF Tester:Ryan Zhang



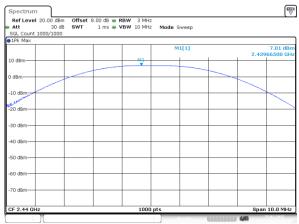



#### **Maximum Conducted Peak Output Power:**


# Path 1: **BLE 1M**

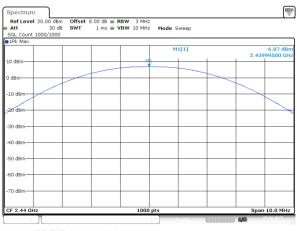
BLE\_1M\_Low\_Channel




Date: 25.FEB.2025 17:27:56

## BLE\_1M\_High\_Channel

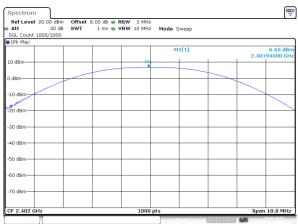



ProjectNo.:2505P37465E-RF Tester:Ryan Zhang Date: 25.FEB.2025 17:32:17

### BLE\_2M\_Middle\_Channel

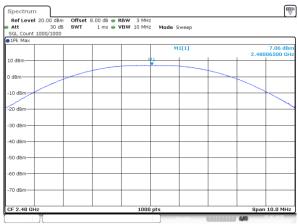


Date: 25.FEB.2025 17:37:32

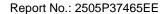

BLE\_1M\_Middle\_Channel



ProjectNo.:2505P37465E-RF Tester:Ryan Zhang Date: 25.FEB.2025 17:29:54


#### BLE 2M

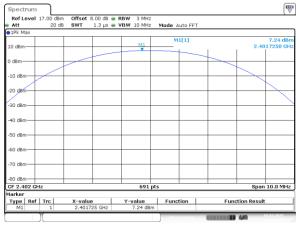
#### BLE\_2M\_Low\_Channel




ProjectNo.:2505F37465E-RF Tester:Ryan Zhang Date: 25.FEB.2025 17:35:10

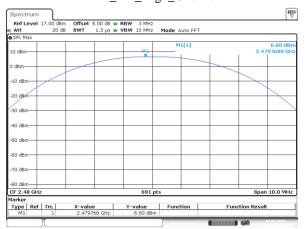
#### BLE\_2M\_High\_Channel



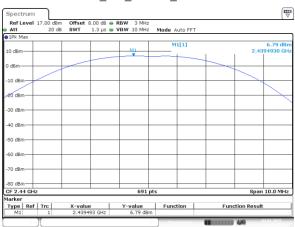

Date: 25.FEB.2025 17:40:21





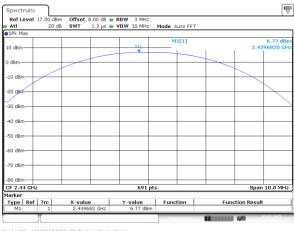

# Path 2: BLE 1M

BLE\_1M\_Low\_Channel




ProjectNo.: 2505P37465E-RF Tester: Rvan Zhang

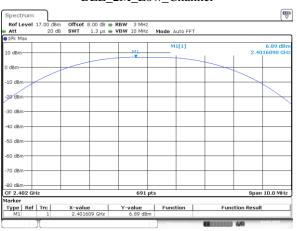
#### BLE\_1M\_High\_Channel



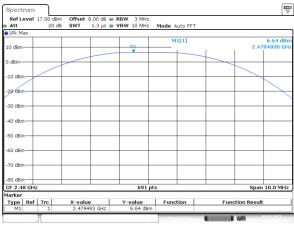

#### BLE\_2M\_Middle\_Channel

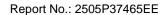


ProjectNo.:2505P37465E-RF Tester:Ryan Zhang


BLE\_1M\_Middle\_Channel



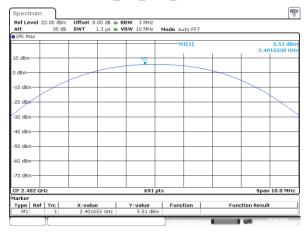

ProjectNo.: 2505P37465E-RF Tester: Rvan Zhang


#### BLE 2M

#### BLE\_2M\_Low\_Channel



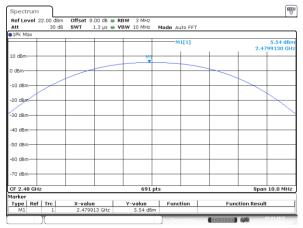
#### BLE\_2M\_High\_Channel





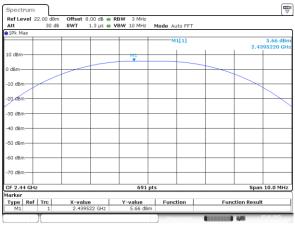



# Path 3: BLE 1M


BLE\_1M\_Low\_Channel

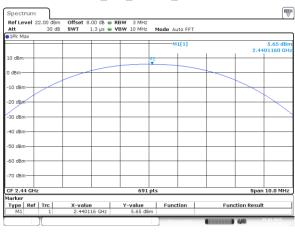


ProjectNo.:2505P37465E-RF Tester:Ryan Zhang


Date: 5.MAR.2025 13:27:43

### BLE\_1M\_High\_Channel

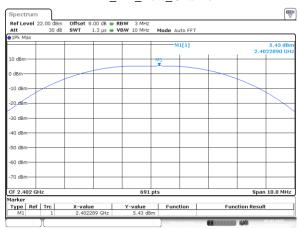



ProjectNo.:2505P37465E-RF Tester:Ryan Zhang

#### BLE\_2M\_Middle\_Channel

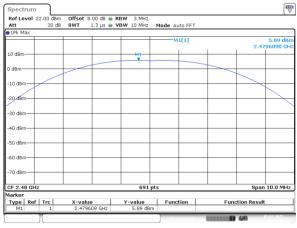


ProjectNo.:2505P37465E-RF Tester:Ryan Zhang


BLE\_1M\_Middle\_Channel



ProjectNo.:2505P37465E-RF Tester:Ryan Zhang


#### BLE 2M

#### BLE\_2M\_Low\_Channel

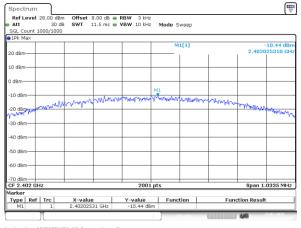


ProjectNo.:2505P37465E-RF Tester:Ryan Zhane Data: 5.Mag.2025 13:28:23

#### BLE\_2M\_High\_Channel

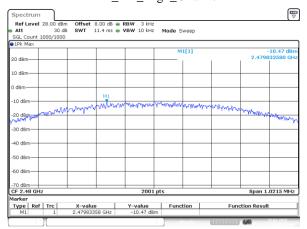


ProjectNo.:2505P37465E-RF Tester:Ryan Zhang


ProjectNo.:2505P37465E-RF Date: 5.MAR.2025 13:31:44

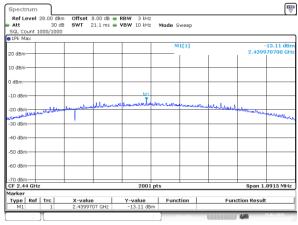


#### **Power Spectral Density:**


#### BLE 1M

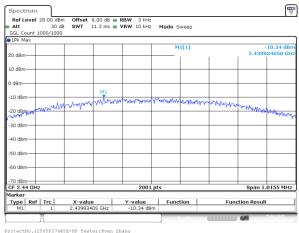
BLE\_1M\_Low\_Channel




ProjectNo.:2505P37465E-RF Tester:Ryan Zhang Date: 25.FEB.2025 17:28:53

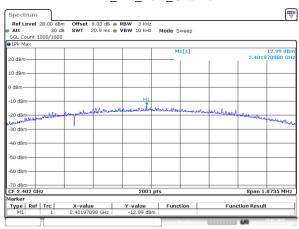
#### BLE\_1M\_High\_Channel




Date: 25.FEB.2025 17:33:14

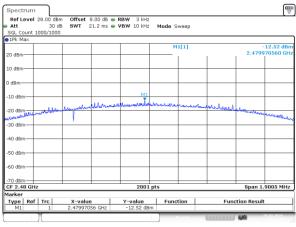
#### BLE\_2M\_Middle\_Channel




ProjectNo.:2505P37465E-RF Tester:Ryan Zhang Date: 25.FEB.2025 17:38:42

#### BLE\_1M\_Middle\_Channel




## BLE 2M

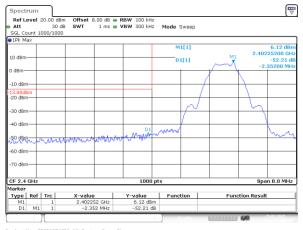
#### BLE\_2M\_Low\_Channel



Date: 25.FEB.2025 17:36:20

#### BLE\_2M\_High\_Channel

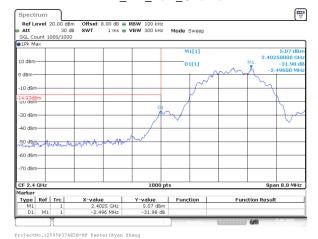



ProjectNo.:2505P37465E-RF Tester:Ryan Zhang

Date: 25.FEB.2025 17:41:32

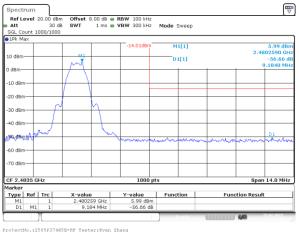


# 100kHz Bandwidth of Frequency Band Edge: BLE 1M


BLE\_1M\_Low\_Channel

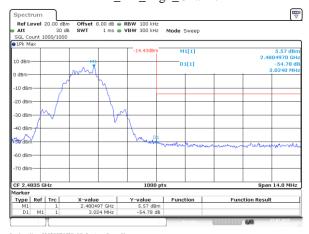


ProjectNo.:2505P37465E-RF Tester:Ryan Zhang

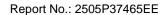

#### BLE 2M

BLE\_2M\_Low\_Channel




Date: 25.FEB.2025 17:34:24

#### BLE\_1M\_High\_Channel

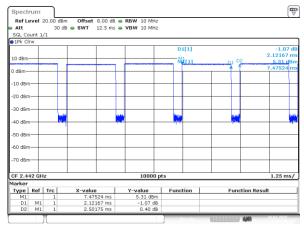



Date: 25.FEB.2025 17:31:31

#### BLE\_2M\_High\_Channel



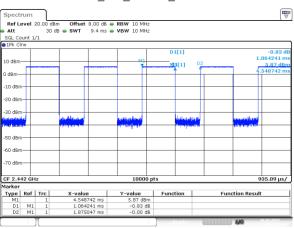
Date: 25.FEB.2025 17:39:36






## **Duty cycle:**

## BLE 1M


#### BLE\_1M\_Middle\_Channel



ProjectNo.:2505p37465E-RF Tester:Ryan Zhang Date: 26.FEB.2025 17:00:59

#### BLE 2M

#### $BLE\_2M\_Middle\_Channel$



ProjectNo.:2505P37465E-RF Tester:Ryan Zhang

Doto: 26 FFB 2025 17:01:55



# 4 Test Setup Photo

Please refer to the attachment 2505P37465EC Test Setup photo.



# 5 E.U.T Photo

Please refer to the attachment 2505P37465E External photo and 2505P37465E Internal photo.

---End of Report---