FCC 47 CFR § 2.1093 IEEE Std 1528-2013 ### **SAR EVALUATION REPORT** **FOR** Multi Path Blue Force Tracker **MODEL NUMBER: mBFT17** FCC ID: 2AL3AHDJC-1701 REPORT NUMBER: 4787927807-S1V1 **ISSUE DATE: 6/5/2017** Prepared for HYUNDAI J-COMM. CO., LTD. 27, Sagimakgol-ro 105beon-gil, Jungwon-gu, Seongnam-Si, GYEONGGI-DO, 13201, KOREA Prepared by UL Korea, Ltd. Suwon Laboratory 218 Maeyeong-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16675, Korea TEL: (031) 337-9902 FAX: (031) 213-5433 ## **Revision History** | Rev. | Date | Revisions | Revised By | |------|----------|---------------|--------------| | V1 | 6/5/2017 | Initial Issue | Sunghoon Kim | | | | | | | | | | | | | | | | ## **Table of Contents** | 1. | Attestation of Test Results | 5 | |------|---|----| | 2. | Test Specification, Methods and Procedures | 6 | | 3. | Facilities and Accreditation | 6 | | 4. | SAR Measurement System & Test Equipment | 7 | | 4.1. | | | | 4.2. | | | | 4.3 | . Test Equipment | 10 | | 5. | Measurement Uncertainty | 10 | | 6. | Device Under Test (DUT) Information | 11 | | 6.1. | DUT Description | 11 | | 6.2 | . Wireless Technologies | 11 | | 6.3 | . Nominal and Maximum Output Power from Tune-up Procedure | 12 | | 6.4 | Satellite mode duty cycle Considerations | 13 | | 7. | RF Exposure Conditions (Test Configurations) | 14 | | 7.1. | Standalone SAR Test Exclusion Considerations | 14 | | 7.2 | . Required Test Configurations | 15 | | 8. | Dielectric Property Measurements & System Check | 16 | | 8.1. | Dielectric Property Measurements | 16 | | 8.2. | System Check | 18 | | 9. | Conducted Output Power Measurements | 20 | | 9.1. | . W-CDMA | 20 | | 9.2 | Satellite mode | 25 | | 9.3 | . Bluetooth LE | 25 | | 10. | Measured and Reported (Scaled) SAR Results | 25 | | 10. | 1. W-CDMA Band II | 26 | | 10. | 2. W-CDMA Band IV | 26 | | 10. | 3. W-CDMA Band V | 26 | | 10. | 4. Satellite mode | 26 | | 10. | 5. Bluetooth LE | 26 | | 11. | SAR Measurement Variability | 27 | | 12. | Simultaneous Transmission SAR Analysis | 28 | | 12. | 1. Sum of the SAR for WWAN & Satellite mode & Bluetooth LE in Body | 30 | | 12. | 2. Sum of the SAR for WWAN & Satellite mode & Bluetooth LE in Extremity | 30 | | Appendixes | 31 | |---|----| | 4787927807-S1V1 FCC Report SAR_App A_Photos & Ant. Locations | 31 | | 4787927807-S1V1 FCC Report SAR_App B_Highest SAR Test Plots | 31 | | 4787927807-S1V1 FCC Report SAR_App C_System Check Plots | 31 | | 4787927807-S1V1 FCC Report SAR_App D_SAR Tissue Ingredients | 31 | | 4787927807-S1V1 FCC Report SAR_App E_Probe Cal. Certificates | 31 | | 4787927807-S1V1 FCC Report SAR_App F_Dipole Cal. Certificates | 31 | ## 1. Attestation of Test Results | Applicant Name | | HYUNDAI J-COMM. CO., LTD. | | | | | |--|--------------------------|---|--|------------|-----------|--| | FCC ID | | 2AL3AHDJC-1701 | | | | | | Model Number | | mBFT17 | | | | | | Applicable Standards | | FCC 47 CFR § 2.1093 Published RF exposure KDB procedures IEEE Std 1528-2013 | | | | | | | | | SAR Limit | s (W/Kg) | | | | Exposure Category | | Peak spatial-average(1 | ge(1g of tissue) Extremities (hands, wrists, ank (10g of tissue) | | | | | General population / Uncontrolled exposure | | 1.6 | | | 4.0 | | | DE Evenesium C | Na malitia na | Equipment Class - Highest Reported SAR (W/kg) | | | | | | RF Exposure C | onditions | Licensed | Satellite mode DTS (BLE) | | DTS (BLE) | | | Body 1g SAR | | N/A | | | | | | Extremity (hand | ds) 10g SAR | 1.646 | 0.773 | | | | | Body Simultaneous 1g SAR | | N/A N/A | | N/A | | | | TX | Extremity(hands) 10g SAR | 1.648 | 0.77 | ' 9 | | | | Date Tested | | 4/19/2017 to 4/24/2017 | | | | | | Test Results | | Pass | | | | | | | | | | | | | UL Korea, Ltd. tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL Korea, Ltd. based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report. **Note:** The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL Korea, Ltd. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL Korea, Ltd. will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by IAS, any agency of the Federal Government, or any agency of any government. | Approved & Released By: | Prepared By: | |---------------------------------|---------------------------------| | -flex | 1 Mes | | Justin Park | Sunghoon Kim | | Lead Test Engineer | Associate Test Engineer | | UL Korea, Ltd. Suwon Laboratory | UL Korea, Ltd. Suwon Laboratory | ## 2. Test Specification, Methods and Procedures The tests documented in this report were performed in accordance with FCC 47 CFR § 2.1093, IEEE STD 1528-2013, the following FCC Published RF exposure KDB procedures: - o 447498 D01 General RF Exposure Guidance v06 - o 690783 D01 SAR Listings on Grants v01r03 - o 865664 D01 SAR measurement 100 MHz to 6 GHz v01r04 - o 865664 D02 RF Exposure Reporting v01r02 - o 941225 D01 3G SAR Procedures v03r01 ## 3. Facilities and Accreditation The test sites and measurement facilities used to collect data are located at | Suwon | | |------------|--| | SAR 1 Room | | | SAR 2 Room | | | SAR 3 Room | | UL Korea, Ltd. is accredited by IAS, Laboratory Code TL-637. The full scope of accreditation can be viewed at http://www.iasonline.org/PDF/TL/TL-637.pdf. ## 4. SAR Measurement System & Test Equipment ## 4.1. SAR Measurement System The DASY5 system used for performing compliance tests consists of the following items: - A standard high precision 6-axis robot with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE). - An isotropic Field probe optimized and calibrated for the targeted measurement. - A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC. - The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server. - The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts. - The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning. - A computer running WinXP or Win7 and the DASY5 software. - · Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc. - The phantom, the device holder and other accessories according to the targeted measurement. ### 4.2. SAR Scan Procedures ### **Step 1: Power Reference Measurement** The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. The minimum distance of probe sensors to surface is 2.1 mm. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties. #### Step 2: Area Scan The Area Scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY software can find the maximum locations even in relatively coarse grids. When an Area Scan has measured all reachable points, it computes the field maximal found in the scanned area, within a range of the global maximum. The range (in dB) is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE Standard 1528 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan). If only one Zoom Scan follows the Area Scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of Zoom Scans has to be increased accordingly. Area Scan Parameters extracted from KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz | | ≤3 GHz | > 3 GHz | | |--|--|--|--| | Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface | $5 \pm 1 \text{ mm}$ | $\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5 \text{ mm}$ | | | Maximum probe angle from probe axis to phantom surface normal at the measurement location | 30° ± 1°
| $20^{\circ}\pm1^{\circ}$ | | | | \leq 2 GHz: \leq 15 mm
2 – 3 GHz: \leq 12 mm | $3 - 4 \text{ GHz:} \le 12 \text{ mm}$
$4 - 6 \text{ GHz:} \le 10 \text{ mm}$ | | | Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area} | When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above, the measurement resolution must be \leq the corresponding x or y dimension of the test device with at least one measurement point on the test device. | | | #### Step 3: Zoom Scan Zoom Scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The Zoom Scan measures points (refer to table below) within a cube whose base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the Zoom Scan evaluates the averaged SAR for 1 g and 10 g and displays these values next to the job's label. Zoom Scan Parameters extracted from KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz | | | | ≤3 GHz | > 3 GHz | |---|---------------------------------------|---|--|--| | Maximum zoom scan spatial resolution: Δx_{Zoom} , Δy_{Zoom} | | | \leq 2 GHz: \leq 8 mm
2 – 3 GHz: \leq 5 mm [*] | $3 - 4 \text{ GHz: } \le 5 \text{ mm}^*$
$4 - 6 \text{ GHz: } \le 4 \text{ mm}^*$ | | | uniform grid: $\Delta z_{Zoom}(n)$ | | ≤ 5 mm | $3 - 4 \text{ GHz: } \le 4 \text{ mm}$
$4 - 5 \text{ GHz: } \le 3 \text{ mm}$
$5 - 6 \text{ GHz: } \le 2 \text{ mm}$ | | Maximum zoom scan
spatial resolution,
normal to phantom
surface | graded grid $ \Delta z_{Zoom}(n>1): $ | Δz _{Zoom} (1): between 1 st two points closest to phantom surface | ≤ 4 mm | $3 - 4 \text{ GHz:} \le 3 \text{ mm}$
$4 - 5 \text{ GHz:} \le 2.5 \text{ mm}$
$5 - 6 \text{ GHz:} \le 2 \text{ mm}$ | | surface | | between subsequent | $\leq 1.5 \cdot \Delta z_{\text{Zoom}}(\text{n-1})$ | | | Minimum zoom scan volume x, y, z | | ≥ 30 mm | $3 - 4 \text{ GHz:} \ge 28 \text{ mm}$
$4 - 5 \text{ GHz:} \ge 25 \text{ mm}$
$5 - 6 \text{ GHz:} \ge 22 \text{ mm}$ | | Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details. #### Step 4: Power drift measurement The Power Drift Measurement measures the field at the same location as the most recent power reference measurement within the same procedure, and with the same settings. The Power Drift Measurement gives the field difference in dB from the reading conducted within the last Power Reference Measurement. This allows a user to monitor the power drift of the device under test within a batch process. The measurement procedure is the same as Step 1. #### Step 5: Z-Scan (FCC only) The Z Scan measures points along a vertical straight line. The line runs along the Z-axis of a one-dimensional grid. In order to get a reasonable extrapolation the extrapolated distance should not be larger than the step size in Z-direction. ^{*} When zoom scan is required and the <u>reported</u> SAR from the area scan based *1-g SAR estimation* procedures of KDB 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz. ## 4.3. Test Equipment The measuring equipment used to perform the tests documented in this report has been calibrated in accordance with the manufacturers' recommendations, and is traceable to recognized national standards. **Dielectric Property Measurements** | Name of Equipment | Manufacturer | Type/Model | Serial No. | Cal. Due Date | |---------------------------|--------------|---------------|---------------|---------------| | Network Analyzer | Agilent | E5071C | MY46522054 | 8-18-2017 | | Dielectric Assessment Kit | SPEAG | DAK-3.5 | 1196 | 7-26-2017 | | Shorting block | SPEAG | DAK-3.5 Short | SM DAK 200 BA | N/A | | Thermometer | LKM | DTM3000 | 3424 | 8-17-2017 | | Thermometer | Lutron | MHB-382SD | AH.91478 | 8-10-2017 | **System Check** | Name of Equipment | Manufacturer | Type/Model | Serial No. | Cal. Due Date | |-------------------------------------|--------------|-----------------------|------------|---------------| | MXG Analog Signal Generator | Agilent | N5181A | MY50145882 | 8-16-2017 | | Power Sensor | Agilent | U2000A | MY54260010 | 8-17-2017 | | Power Sensor | Agilent | U2000A | MY54260007 | 8-17-2017 | | Power Amplifier | EXODUS | 1410025-AMP2027-10003 | 10003 | 8-17-2017 | | Directional Coupler | Agilent | 778D | MY52180432 | 8-17-2017 | | Low Pass Filter | MICROLAB | LA-15N | 03943 | 8-17-2017 | | Low Pass Filter | FILTRON | L14012FL | 1410003S | 8-17-2017 | | Attenuator | Agilent | 8491B/003 | MY39269292 | 8-17-2017 | | Attenuator | Agilent | 8491B/010 | MY39269315 | 8-17-2017 | | Attenuator | Agilent | 8491B/020 | MY39269298 | 8-17-2017 | | E-Field Probe (SAR1) | SPEAG | EX3DV4 | 7376 | 8-30-2017 | | E-Field Probe (SAR2) | SPEAG | EX3DV4 | 7313 | 1-30-2018 | | E-Field Probe (SAR3) | SPEAG | EX3DV4 | 7314 | 9-27-2017 | | Data Acquisition Electronics (SAR1) | SPEAG | DAE4 | 1447 | 9-19-2017 | | Data Acquisition Electronics (SAR2) | SPEAG | DAE4 | 1468 | 9-8-2017 | | Data Acquisition Electronics (SAR3) | SPEAG | DAE4 | 1494 | 7-18-2017 | | System Validation Dipole | SPEAG | D835V2 | 4d194 | 7-20-2017 | | System Validation Dipole | SPEAG | D1640V2 | 334 | 3-22-2018 | | System Validation Dipole | SPEAG | D1750V2 | 1125 | 8-26-2017 | | System Validation Dipole | SPEAG | D1900V2 | 5d190 | 9-28-2017 | | Thermometer (SAR1) | Lutron | MHB-382SD | AH.91463 | 8-10-2017 | | Thermometer (SAR2) | Lutron | MHB-382SD | AH.50215 | 8-17-2017 | | Thermometer (SAR3) | Lutron | MHB-382SD | AH.50213 | 8-17-2017 | #### Other | Name of Equipment | Manufacturer | Type/Model | Serial No. | Cal. Due Date | |------------------------|--------------|------------|------------|---------------| | Base Station Simulator | R&S | CMW500 | 150313 | 8-16-2017 | | Base Station Simulator | R&S | CMW500 | 150314 | 8-16-2017 | # 5. Measurement Uncertainty Per KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz, when the highest measured 1-g SAR within a frequency band is < 1.5 W/kg, the extensive SAR measurement uncertainty analysis described in IEEE Std 1528-2013 is not required in SAR reports submitted for equipment approval. ## 6. Device Under Test (DUT) Information ## 6.1. DUT Description | Device Dimension | Refer of 4787927807-S1V1 FCC Report SAR_App A_Photos & Ant. Locations | | | | |---------------------------|---|------|------------------|--| | Back Cover | | | | | | Battery Options | | | | | | Wireless Router (Hotspot) | Hotspot mode is not support | | | | | Test sample information | No. S/N Notes | | | | | | 1 | 0001 | Conduction & SAR | | ## 6.2. Wireless Technologies | Wireless
technologies | Frequency bands | Operating mode | Duty Cycle used for SAR testing | |--------------------------|------------------------------|---|---------------------------------| | Satellite mode | 1616 MHz –
1626 MHz | 9603N | 4.0 % | | W-CDMA (UMTS) | Band II
Band IV
Band V | UMTS Rel. 99 (Voice & Data) HSDPA (Release 7) HSUPA (Release 6) | 100.0 % | | Bluetooth-LE | 2.4 GHz | Version 4.1 LE | 62.0 % | ### Note(s): For 9603N in Satellite mode, Maximum duty cycle is 9.2% but Test mode is operated at 4.0% by S/W. So we performed SAR test at 4.0% and the SAR results is scaled to the Maximum duty cycle. # 6.3. Nominal and Maximum Output Power from Tune-up Procedure KDB 447498 sec.4.1. at the maximum rated output power and within the tune-up tolerance range specified for the product, but not more than 2 dB lower than the maximum tune-up tolerance limit | Upper limit (dB): | -1.5 ~ 0.5 | Max. RF Outpu | t Power (dBm) | |--------------------|------------|---------------|-----------------| | RF Air interface | Mode | Target | Max. tune-up | | Tu 7tii iiitorraoo | Wodo | raigot | tolerance limit | | W-CDMA | R99 | 22.0 | 22.5 | | Band II | HSDPA | 21.5 | 22.0 | | Dand II | HSUPA | 21.5 | 22.0 | | W-CDMA | R99 | 22.0 | 22.5 | | Band IV | HSDPA | 21.5 | 22.0 | | Dana IV | HSUPA | 21.5 | 22.0 | | \A/ CD\AA | R99 | 22.5 | 23.0 | | W-CDMA
Band V | HSDPA | 22.0 | 22.5 | | Dana v | HSUPA | 22.0 | 22.5 | | Upper limit (dB): | ~ 0.5 | Max. RF Output Power (dBm) | | | | | |-------------------|-----------|----------------------------|---------------------------------|--|--|--| | RF Air interface | Mode | Target | Max. tune-up
tolerance limit | | | | | Blue | etooth LE | -4.8 | -4.3 | | | | | Upper limit (dB): | -1.0 ~ 1.0 | Max. RF Output Pow er (dBm) | | | | | | |-------------------|------------|-----------------------------|---------------------------------|---|--|--|--| | RF Air interface | Mode | Target | Max. tune-up
tolerance limit | Time based
avg. Pow er
(Calculated) | | | | | Satellite mode | 9603N | 31.7 | 32.7 | 22.3 | | | | ### Note(s): For Satellite mode, Time based avg. power is calculated from Maximum power with 9.2% duty cycle. ## 6.4. Satellite mode duty cycle Considerations ### **Time domain plots** 1. 9603N mode (Duty Cycle : (8.2 * 4 / 810.0 ms)*100 = 4.0 %) ### Note(s): Satellite mode duty cycle was measured using Test mode(9603N) in the device. ## 7. RF Exposure Conditions (Test Configurations) This device has two user's conditions; - 1. "Condition 1" is
"The device with External 3G modem (WCDMA Bands)" - 2. "Condition 2" is "The device without External 3G modem (WCDMA Bands)" Refer to "SAR Photos and Ant locations" Appendix for the specific details of the antenna-to-antenna and antenna-to-edge(s) distances. ### 7.1. Standalone SAR Test Exclusion Considerations According to the applicant's description, This device can be used only in hand (Hand-held use Device) and does not support any body-worn accessories and voice call. Therefore SAR test exclusion is considered Both Body and Extremity (Hand) exposure conditions. ### 1) Body SAR test exclusion considerations for Condition 1 & 2 The body SAR tests are excluded according to the KDB 447498 as below. (For Satellite mode and Bluetooth LE, Two user's conditions are same distance at Edge 3(Bottom)) When the user uses this device in hand, the Edge 3(Bottom) side can only be touched to user's body. In this case, the user's body shall be separated from the closet edges of the antennas. It refer Appendix A to detail of antenna location in the device. #### **Body SAR Test Exclusion Calculations** | Tx | Fraguenay | Output Power | | Output Power Separation Distances (mm) | | Calculated Threshold Value | |----------------|--------------------|--------------|------|--|-----------------------|----------------------------| | Interface | Frequency
(MHz) | dBm | m W | Edge 3(Bottom) | Edge 3(Bottom) | | | W-CDMA II | 1907.6 | 22.50 | 178 | 128.5 | 893.6 mW
-EXEMPT- | | | W-CDMA IV | 1752.6 | 22.50 | 178 | 128.5 | 898.3 mW
-EXEMPT- | | | W-CDMA V | 848.6 | 23.00 | 200 | 128.5 | -EXEMPT- | | | Satellite mode | 1625.5 | 22.30 | 170 | 189 | 1507.7 mW
-EXEMPT- | | | Bluetooth LE | 2480 | -4.30 | 0.37 | 186 | 1455.3 mW
-EXEMPT- | | #### Note(s): According to KDB 447498, if the calculated Power threshold is less than the output power then SAR testing is required. ## 2) Extremity SAR test exclusion considerations When the user uses this device in hand, the Rear side can be touched to user's hand. In this case, the user's hand shall be separated from the closet edges of the antennas. It refer Appendix A to detail of antenna location in the device. ### **Extremity SAR Test Exclusion Calculations for Condition 1** | Tx | Frequency | Output | Power | Separation Distances (mm) | Calculated Threshold Value | |----------------|-----------|--------|-------|---------------------------|----------------------------| | Interface | (MHz) | dBm | m W | Rear | Rear | | W-CDMA II | 1907.6 | 22.50 | 178 | 0 | 49.2
-MEASURE- | | W-CDMA IV | 1752.6 | 22.50 | 178 | 0 | 47.1
-MEASURE- | | W-CDMA V | 848.6 | 23.00 | 200 | 0 | 36.8
-MEASURE- | | Satellite mode | 1625.5 | 22.30 | 170 | 16 | 13.5
-MEASURE- | | Bluetooth LE | 2480 | -4.30 | 0.37 | 16 | 0
-EXEMPT- | ### **Extremity SAR Test Exclusion Calculations for Condition 2** | Tx Frequency | | Output | Power | Separation Distances (mm) | Calculated Threshold Value | |----------------|--------|--------|-------|---------------------------|----------------------------| | Interface | (MHz) | dBm | mW | Rear | Rear | | Satellite mode | 1625.5 | 22.30 | 170 | 0 | 43.3
-MEASURE- | | Bluetooth LE | 2480 | -4.30 | 0.37 | 0 | 0.1
-EXEMPT- | ### Note(s): According to KDB 447498, if the calculated threshold value is >7.5 then SAR testing is required. ## 7.2. Required Test Configurations The table below identifies both body and extremity test configurations required for this device according to the findings in Section 7.1: | RF Exposure
Conditions | User's conditions | Antenna | Wireless technologies | Ant-to-User
Separation | Test
Position | SAR
Required | |---------------------------|-------------------|---------|-----------------------|---------------------------|------------------|-----------------| | | | | WCDMA Band II | 128.5 mm | Edge 3(Bottom) | No | | | Condition 1 | Ant.1 | WCDMA Band IV | 128.5 mm | Edge 3(Bottom) | No | | Body | & | | WCDMA Band V | 128.5 mm | Edge 3(Bottom) | No | | | Condition 2 | Ant.2 | Satellite mode | 189.0 mm | Edge 3(Bottom) | No | | | | Ant.3 | Bluetooth LE | 186.0 mm | Edge 3(Bottom) | No | | | | | WCDMA Band II | 0 mm | Rear | Yes | | | | Ant.1 | WCDMA Band IV | 0 mm | Rear | Yes | | | Condition 1 | | WCDMA Band V | 0mm | Rear | Yes | | Extremity | | Ant.2 | Satellite mode | 16.0 mm | Rear | Yes | | | | Ant.3 | Bluetooth LE | 16.0 mm | Rear | No | | | Condition 2 | Ant.2 | Satellite mode | 0 mm | Rear | Yes | | | Condition 2 | Ant.3 | Bluetooth LE | 0 mm | Rear | No | ### Note(s): Page 15 of 31 ^{1.} Ant.1 is External Antenna with rotate. So we consider to additional test configuration according to Antenna's rotate. Please refer to Appendix A. ## 8. Dielectric Property Measurements & System Check ## 8.1. Dielectric Property Measurements The temperature of the tissue-equivalent medium used during measurement must also be within 18° C to 25° C and within $\pm 2^{\circ}$ C of the temperature when the tissue parameters are characterized. The dielectric parameters must be measured before the tissue-equivalent medium is used in a series of SAR measurements. The parameters should be re-measured after each 3-4 days of use; or earlier if the dielectric parameters can become out of tolerance; for example, when the parameters are marginal at the beginning of the measurement series. Tissue dielectric parameters were measured at the low, middle and high frequency of each operating frequency range of the test device. #### **Tissue Dielectric Parameters** FCC KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz | Target Frequency (MHz) | Н | ead | Body | | | |----------------------------|-------------------|---------|-------------------|---------|--| | raiget Frequency (IVII IZ) | ε_{r} | σ (S/m) | ε_{r} | σ (S/m) | | | 150 | 52.3 | 0.76 | 61.9 | 0.80 | | | 300 | 45.3 | 0.87 | 58.2 | 0.92 | | | 450 | 43.5 | 0.87 | 56.7 | 0.94 | | | 835 | 41.5 | 0.90 | 55.2 | 0.97 | | | 900 | 41.5 | 0.97 | 55.0 | 1.05 | | | 915 | 41.5 | 0.98 | 55.0 | 1.06 | | | 1450 | 40.5 | 1.20 | 54.0 | 1.30 | | | 1610 | 40.3 | 1.29 | 53.8 | 1.40 | | | 1800 – 2000 | 40.0 | 1.40 | 53.3 | 1.52 | | | 2450 | 39.2 | 1.80 | 52.7 | 1.95 | | | 3000 | 38.5 | 2.40 | 52.0 | 2.73 | | | 5000 | 36.2 | 4.45 | 49.3 | 5.07 | | | 5100 | 36.1 | 4.55 | 49.1 | 5.18 | | | 5200 | 36.0 | 4.66 | 49.0 | 5.30 | | | 5300 | 35.9 | 4.76 | 48.9 | 5.42 | | | 5400 | 35.8 | 4.86 | 48.7 | 5.53 | | | 5500 | 35.6 | 4.96 | 48.6 | 5.65 | | | 5600 | 35.5 | 5.07 | 48.5 | 5.77 | | | 5700 | 35.4 | 5.17 | 48.3 | 5.88 | | | 5800 | 35.3 | 5.27 | 48.2 | 6.00 | | #### IEEE Std 1528-2013 Refer to Table 3 within the IEEE Std 1528-2013 ## **Dielectric Property Measurements Results:** ### SAR 1 Room | Date | Freq. (MHz) | | Liqı | uid Parameters | Measured | Target | Delta (%) | Limit ±(%) | |-----------|-------------|----|---------|--|----------|--------|-----------|------------| | | Body 835 | e' | 53.1300 | Relative Permittivity (ε_r): | 53.13 | 55.20 | -3.75 | 5 | | | Body 633 | e" | 21.8200 | Conductivity (σ): | 1.01 | 0.97 | 4.44 | 5 | | 4-21-2017 | Body 820 | e' | 53.2900 | Relative Permittivity (ε_r): | 53.29 | 55.28 | -3.59 | 5 | | 4-21-2017 | B00y 620 | e" | 21.8900 | Conductivity (σ): | 1.00 | 0.97 | 3.06 | 5 | | | Body 850 | e' | 52.9800 | Relative Permittivity (ε_r): | 52.98 | 55.16 | -3.95 | 5 | | | | e" | 21.7400 | Conductivity (σ): | 1.03 | 0.99 | 4.09 | 5 | ### SAR 2 Room | Date | Freq. (MHz) | | Liq | uid Parameters | Measured | Target | Delta (%) | Limit ±(%) | |---------------------|-------------|---------|-------------------|--|----------|--------|-----------|------------| | | Body 1625 | e' | 53.3800 | Relative Permittivity (ε_r): | 53.38 | 53.76 | -0.71 | 5 | | | B00y 1025 | e" | 15.4900 | Conductivity (σ): | 1.40 | 1.41 | -0.68 | 5 | | 4-19-2017 | Body 1610 | e' | 53.4300 | Relative Permittivity (ε_r): | 53.43 | 53.80 | -0.69 | 5 | | 4-19-2017 | Body 1010 | e" | 15.4600 | Conductivity (σ): | 1.38 | 1.40 | -1.14 | 5 | | | Body 1640 | e' | 53.3200 | Relative Permittivity (ε_r): | 53.32 | 53.72 | -0.75 | 5 | | | B00y 1040 | e" | 15.5000 | Conductivity (σ): | 1.41 | 1.42 | -0.35 | 5 | | | Body 1625 | e' | 52.4400 | Relative Permittivity (ε_r): | 52.44 | 53.76 | -2.46 | 5 | | | Body 1023 | e" | 15.6300 | Conductivity (σ): | 1.41 | 1.41 | 0.21 | 5 | | 4-24-2017 | Body 1610 | e' | 52.5100 | Relative Permittivity (ε_r): | 52.51 | 53.80 | -2.40 | 5 | | 4-24-2017 Body 1010 | e" | 15.6100 | Conductivity (σ): | 1.40 | 1.40 | -0.18 | 5 | | | | Body 1640 | e' | 52.3800 | Relative Permittivity (ε_r): | 52.38 | 53.72 | -2.50 | 5 | | | Body 1040 | e" | 15.6300 | Conductivity (σ): | 1.43 | 1.42 | 0.48 | 5 | ### **SAR 3 Room** | Date | Freq. (MHz) | | Liq | uid Parameters | Measured | Target | Delta (%) | Limit ±(%) | |----------------|-------------|----|---------|--|----------|--------|-----------|------------| | | Body 1750 | e' | 54.8000 | Relative Permittivity (ε_r): | 54.80 | 53.44 | 2.54 | 5 | | | Бойу 1750 | e" | 14.7000 | Conductivity (σ): | 1.43 | 1.49 | -3.75 | 5 | | 4-20-2017 | Body 1710 | e' | 54.8300 | Relative Permittivity (ε_r) : | 54.83 | 53.54 | 2.40 | 5 | | 4-20-2017 | Body 1710 | e" | 14.6500 | Conductivity (σ): | 1.39 | 1.46 | -4.69 | 5 | | | Body 1755 | e' | 54.7900 | Relative Permittivity (ε_r): | 54.79 | 53.43 | 2.55 | 5 | | | Body 1755 | e" | 14.7100 | Conductivity (σ): | 1.44 | 1.49 | -3.61 | 5 | | | Body 1900 | e' | 54.3300 | Relative Permittivity (ε_r): | 54.33 | 53.30 | 1.93 | 5 | | | Body 1900 | e" | 14.9200 | Conductivity (σ): | 1.58 | 1.52 | 3.70 | 5 | | 4-20-2017 | Body 1850 | e' | 54.5200 | Relative Permittivity (
ε_r): | 54.52 | 53.30 | 2.29 | 5 | | 4-20-2017 Body | Body 1650 | e" | 14.8900 | Conductivity (σ): | 1.53 | 1.52 | 0.77 | 5 | | | Body 1910 | e' | 54.3000 | Relative Permittivity (ε_r): | 54.30 | 53.30 | 1.88 | 5 | | | Body 1910 | e" | 14.9200 | Conductivity (σ): | 1.58 | 1.52 | 4.25 | 5 | ## 8.2. System Check SAR system verification is required to confirm measurement accuracy, according to the tissue dielectric media, probe calibration points and other system operating parameters required for measuring the SAR of a test device. The system verification must be performed for each frequency band and within the valid range of each probe calibration point required for testing the device. The same SAR probe(s) and tissue-equivalent media combinations used with each specific SAR system for system verification must be used for device testing. When multiple probe calibration points are required to cover substantially large transmission bands, independent system verifications are required for each probe calibration point. A system verification must be performed before each series of SAR measurements using the same probe calibration point and tissue-equivalent medium. Additional system verification should be considered according to the conditions of the tissue-equivalent medium and measured tissue dielectric parameters, typically every three to four days when the liquid parameters are re-measured or sooner when marginal liquid parameters are used at the beginning of a series of measurements. ### **System Performance Check Measurement Conditions:** - The measurements were performed in the flat section of the TWIN SAM or ELI phantom, shell thickness: 2.0 ±0.2 mm (bottom plate) filled with Body or Head simulating liquid of the following parameters. - The depth of tissue-equivalent liquid in a phantom must be ≥ 15.0 cm for SAR measurements ≤ 3 GHz and ≥ 10.0 cm for measurements > 3 GHz. - The DASY system with an E-Field Probe was used for the measurements. - The dipole was mounted on the small tripod so that the dipole feed point was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 10 mm (above 1 GHz) and 15 mm (below 1 GHz) from dipole center to the simulating liquid surface. - The coarse grid with a grid spacing of 15 mm was aligned with the dipole. For 5 GHz band - The coarse grid with a grid spacing of 10 mm was aligned with the dipole. - Special 7x7x7 (below 3 GHz) and/or 8x8x7 (above 3 GHz) fine cube was chosen for the cube. - Distance between probe sensors and phantom surface was set to 2.5 mm. For 5 GHz band Distance between probe sensors and phantom surface was set to 1.4 mm - The dipole input power (forward power) was 100 mW. - The results are normalized to 1 W input power. #### **Reference Target SAR Values** The reference SAR values can be obtained from the calibration certificate of system validation dipoles | System Dipole | Serial No. | Cal. Date | Freq. (MHz) | Tar | Target SAR Values (W/kg) | | | | | |----------------------------|------------------------------|-----------|------------------|--------|--------------------------|-------|--|--|--| | System Dipole | Serial No. | Cai. Date | 1 16q. (IVII 12) | 1g/10g | Head | Body | | | | | D835V2 | 4d194 | 7-20-2016 | 835 | 1g | 9.52 | 9.65 | | | | | D033 V2 | 40154 | 7-20-2010 | 000 | 10g | 6.22 | 6.28 | | | | | D1640V2 334 3-22-2017 1640 | 1g | 33.10 | 34.00 | | | | | | | | | 334 | 5-22-2017 | 1040 | 10g | 18.10 | 18.60 | | | | | D1750V2 | 1125 | 8-26-2016 | 1750 | 1g | 36.90 | 37.20 | | | | | D1730V2 | 1125 | 0-20-2010 | 1730 | 10g | 19.50 | 19.80 | | | | | D1900V2 | D1900V2 5d190 9-28-2016 1900 | | 1g | 40.00 | 38.80 | | | | | | D1900V2 | 30190 | 9-28-2016 | 1900 | 10g | 21.00 | 20.60 | | | | ### **System Check Results** The 1-g and 10-g SAR measured with a reference dipole, using the required tissue-equivalent medium at the test frequency, must be within 10% of the manufacturer calibrated dipole SAR target. ### SAR 1 Room | | Date Tested | System Dipole | | T 0 | | Measured | d Results | T1 | Dalta | Dist | |--|-------------|---------------|----------|----------------|-----|------------------------|---------------------|------------------------|----------------|-------------| | | | Туре | Serial # | T.S.
Liquid | | Zoom Scan to
100 mW | Normalize
to 1 W | Target
(Ref. Value) | Delta
±10 % | Plot
No. | | | 4-21-2017 | D835V2 | 44194 | 4d194 Body | | 1.02 | 10.20 | 9.65 | 5.70 | 1,2 | | | 4-21-2017 | D03372 | 40134 | Бойу | 10g | 0.67 | 6.71 | 6.28 | 6.85 | 1,2 | ### **SAR 2 Room** | | System Dipole | | Τ.0 | | Measured | d Results | Tanat | D-#- | Dist | |-------------|-----------------------|----------|----------------|-----|------------------------|---------------------|------------------------|----------------|-------------| | Date Tested | Туре | Serial # | T.S.
Liquid | | Zoom Scan to
100 mW | Normalize
to 1 W | Target
(Ref. Value) | Delta
±10 % | Plot
No. | | 4 10 2017 | D1640\/2 | 224 | Body | 1g | 3.38 | 33.80 | 34.00 | -0.59 | | | 4-19-2017 | 4-19-2017 D1640V2 334 | 334 | Войу | 10g | 1.85 | 18.50 | 18.60 | -0.54 | | | 4-24-2017 | D1640V2 | 334 | Body | 1g | 3.43 | 34.30 | 34.00 | 0.88 | 3,4 | | 4-24-2017 | D1040V2 | 334 | Войу | 10g | 1.88 | 18.80 | 18.60 | 1.08 | 3,4 | ### **SAR 3 Room** | | System Dipole | | | | Measured | d Results | Tavast | Delte | Plot | | |-------------|---------------|----------|----------------|-----|------------------------|---------------------|------------------------|----------------|------|--| | Date Tested | Туре | Serial # | T.S.
Liquid | | Zoom Scan to
100 mW | Normalize
to 1 W | Target
(Ref. Value) | Delta
±10 % | No. | | | 4-20-2017 | D1750V2 | 1125 | Body - | 1g | 3.60 | 36.00 | 37.20 | -3.23 | 5,6 | | | 4-20-2017 | D1730V2 | 1125 | | 10g | 1.92 | 19.20 | 19.80 | -3.03 | 3,0 | | | 4 20 2017 | D1900V2 | 5d190 | Body | 1g | 4.07 | 40.70 | 38.80 | 4.90 | 7,8 | | | 4-20-2017 | D1900V2 | 5u 190 | ьоау | 10g | 2.10 | 21.00 | 20.60 | 1.94 | 7,0 | | ## 9. Conducted Output Power Measurements ### 9.1. W-CDMA ### Release 99 Setup Procedures used to establish the test signals The following tests were completed according to the test requirements outlined in section 5.2 of the 3GPP TS34.121-1 specification. The DUT supports power Class 3, which has a nominal maximum output power of 24 dBm (+1.7/-3.7). | Mode | Subtest | Rel99 | |------------------------|-------------------------|--------------| | | Loopback Mode | Test Mode 2 | | WCDMA Conoral Sottings | Rel99 RMC | 12.2kbps RMC | | WCDMA General Settings | Power Control Algorithm | Algorithm2 | | | βc/βd | 8/15 | ### **HSDPA Setup Procedures used to establish the test signals** The following 4 Sub-tests were completed according to Release 5 procedures in section 5.2 of 3GPP TS34.121. A summary of these settings are illustrated below: | | Mode | HSDPA | HSDPA | HSDPA | HSDPA | | | | | |---------------------|--------------------------------------|--------------|-------|-------|-------|--|--|--|--| | | Subtest | 1 | 2 | 3 | 4 | | | | | | | Loopback Mode | Test Mode 1 | | | | | | | | | | Rel99 RMC | 12.2kbps RMC | | | | | | | | | | HSDPA FRC | H-Set 1 | | | | | | | | | \A\ OD\A | Power Control Algorithm | Algorithm 2 | | | | | | | | | W-CDMA | βс | 2/15 | 11/15 | 15/15 | 15/15 | | | | | | General
Settings | βd | 15/15 | 15/15 | 8/15 | 4/15 | | | | | | Settings | Bd (SF) | 64 | | | | | | | | | | βc/βd | 2/15 | 11/15 | 15/8 | 15/4 | | | | | | | βhs | 4/15 | 24/15 | 30/15 | 30/15 | | | | | | | MPR (dB) | 0 | 0 | 0.5 | 0.5 | | | | | | | D _{ACK} | 8 | | | | | | | | | | D _{NAK} | 8 | | | | | | | | | HSDPA | DCQI | 8 | | | | | | | | | Specific | Ack-Nack repetition factor | 3 | | | | | | | | | Settings | CQI Feedback (Table 5.2B.4) | 4ms | | | | | | | | | | CQI Repetition Factor (Table 5.2B.4) | 2 | | | | | | | | | | Ahs=βhs/βc | 30/15 | | | | | | | | ## HSPA (HSDPA & HSUPA) Setup Procedures used to establish the test signals The following 5 Sub-tests were completed according to Release 6 procedures in section 5.2 of 3GPP TS34.121. A summary of these settings are illustrated below: | | Mode | HSPA | | | | | | | | | |--|--------------------------------------|--------------|---------------|-------|-------|-------------|--|--|--|--| | | Subtest | 1 | 2 | 3 | 4 | 5 | | | | | | | Loopback Mode | Test Mode 1 | | | | | | | | | | | Rel99 RMC | 12.2 kbps RM | 12.2 kbps RMC | | | | | | | | | | HSDPA FRC | H-Set 1 | | | | | | | | | | | HSUPA Test | HSPA | | | | | | | | | | | Power Control Algorithm | Algorithm 2 | | | | Algorithm 1 | | | | | | WCDMA | βс | 11/15 | 6/15 | 15/15 | 2/15 | 15/15 | | | | | | General | βd | 15/15 | 15/15 | 9/15 | 15/15 | 0 | | | | | | Settings | βес | 209/225 | 12/15 | 30/15 | 2/15 | 5/15 | | | | | | | βc/βd | 11/15 | 6/15 | 15/9 | 2/15 | 15/1 | | | | | | | βhs | 22/15 | 12/15 | 30/15 | 4/15 | 5/15 | | | | | | | βed | 1309/225 | 94/75 | 47/15 | 56/75 | 47/15 | | | | | | | CM (dB) | 1 | 3 | 2 | 3 | 1 | | | | | | | MPR (dB) | 0 | 2 | 1 | 2 | 0 | | | | | | | DACK | 8 | 8 | | | | | | | | | | DNAK | 8 | 0 | | | | | | | | | WCDMA General Settings HSDPA Specific Settings HSUPA Specific Settings | DCQI | 8 | | | | | | | | | | | Ack-Nack repetition factor | 3 | | | | | | | | | | | CQI Feedback (Table 5.2B.4) | 4ms | | | | | | | | | | | CQI Repetition Factor (Table 5.2B.4) | 2 | | | | | | | | | | | Ahs = βhs/βc | 30/15 | | | | | | | | | | | E-DPDCCH | 6 | 8 | 8 | 5 | 7 | | | | | | | DHARQ | 0 | 0 | 0 | 0 | 0 | | | | | | | AG Index | 20 | 12 | 15 | 17 | 21 | | | | | | | ETFCI (from 34.121 Table C.11.1.3) | 75 | 67 | 92 | 71 | 81 | | | | | | | Associated Max UL Data Rate kbps | 242.1 | 174.9 | 482.8 | 205.8 | 308.9 | | | | | | | Reference E-TFCIs | 5 | 5 | 2 | 5 | 1 | | | | | | | Reference
E-TFCI | 11 | 11 | 11 | 11 | 67 | | | | | | HSUPA | Reference E-TFCI PO | 4 | 4 | 4 | 4 | 18 | | | | | | Specific | Reference E-TFCI | 67 | 67 | 92 | 67 | 67 | | | | | | | Reference E-TFCI PO | 18 | 18 | 18 | 18 | 18 | | | | | | - | Reference E-TFCI | 71 | 71 | 71 | 71 | 71 | | | | | | | Reference E-TFCI PO | 23 | 23 | 23 | 23 | 23 | | | | | | | Reference E-TFCI | 75 | 75 | 75 | 75 | 75 | | | | | | | Reference E-TFCI PO | 26 | 26 | 26 | 26 | 26 | | | | | | | Reference E-TFCI | 81 | 81 | 81 | 81 | 81 | | | | | | | Reference E-TFCI PO | 27 | 27 | 27 | 27 | 27 | | | | | | | Maximum Channelization Codes | 2xSF2 | • | • | | SF4 | | | | | ## W-CDMA Band II Measured Results | Band | | | | From | N | lax. Pwr | |---------|--------|----------------|-----------|----------------|-------------|-------------------| | Band | | Mode | UL Ch No. | Freq.
(MHz) | MPR
(dB) | Avg. Pwr
(dBm) | | | | | 9262 | 1852.4 | 0 | 21.7 | | | Rel 99 | RMC, 12.2 kbps | 9400 | 1880.0 | 0 | 21.7 | | | | | 9538 | 1907.6 | 0 | 21.8 | | | | | 9262 | 1852.4 | 0 | 21.4 | | | | Subtest 1 | 9400 | 1880.0 | 0 | 21.3 | | | | | 9538 | 1907.6 | 0 | 21.3 | | | | | 9262 | 1852.4 | 0 | 20.4 | | | | Subtest 2 | 9400 | 1880.0 | 0 | 20.4 | | | HSDPA | | 9538 | 1907.6 | 0 | 20.4 | | | HODEA | | 9262 | 1852.4 | 0.5 | 20.1 | | | | Subtest 3 | 9400 | 1880.0 | 0.5 | 20.1 | | | | | 9538 | 1907.6 | 0.5 | 20.1 | | | | | 9262 | 1852.4 | 0.5 | 19.9 | | | | Subtest 4 | 9400 | 1880.0 | 0.5 | 19.9 | | W-CDMA | | | 9538 | 1907.6 | 0.5 | 19.9 | | Band II | | | 9262 | 1852.4 | 0 | 20.3 | | | | Subtest 1 | 9400 | 1880.0 | 0 | 20.4 | | | | | 9538 | 1907.6 | 0 | 20.5 | | | | | 9262 | 1852.4 | 2 | 18.3 | | | | Subtest 2 | 9400 | 1880.0 | 2 | 18.3 | | | | | 9538 | 1907.6 | 2 | 18.4 | | | | | 9262 | 1852.4 | 1 | 19.1 | | | HSUPA | Subtest 3 | 9400 | 1880.0 | 1 | 19.1 | | | | | 9538 | 1907.6 | 1 | 19.2 | | | | | 9262 | 1852.4 | 2 | 18.6 | | | | Subtest 4 | 9400 | 1880.0 | 2 | 18.6 | | | | | 9538 | 1907.6 | 2 | 18.8 | | | | | 9262 | 1852.4 | 0 | 20.5 | | | | Subtest 5 | 9400 | 1880.0 | 0 | 20.5 | | | | | 9538 | 1907.6 | 0 | 20.5 | ## W-CDMA Band IV Measured Results | | | sured Results | | Frog | N | lax. Pwr | |---------|--------|----------------|-----------|----------------|-------------|-------------------| | Band | | Mode | UL Ch No. | Freq.
(MHz) | MPR
(dB) | Avg. Pwr
(dBm) | | | | | 1312 | 1712.4 | 0 | 22.4 | | | Rel 99 | RMC, 12.2 kbps | 1413 | 1732.6 | 0 | 22.2 | | | | | 1513 | 1752.6 | 0 | 22.4 | | | | | 1312 | 1712.4 | 0 | 22.0 | | | | Subtest 1 | 1413 | 1732.6 | 0 | 21.8 | | | | | 1513 | 1752.6 | 0 | 21.6 | | | | | 1312 | 1712.4 | 0 | 21.0 | | | | Subtest 2 | 1413 | 1732.6 | 0 | 20.9 | | | HSDPA | | 1513 | 1752.6 | 0 | 20.7 | | | HODEA | | 1312 | 1712.4 | 0.5 | 20.8 | | | | Subtest 3 | 1413 | 1732.6 | 0.5 | 20.6 | | | | | 1513 | 1752.6 | 0.5 | 20.4 | | | | | 1312 | 1712.4 | 0.5 | 20.5 | | | | Subtest 4 | 1413 | 1732.6 | 0.5 | 20.4 | | W-CDMA | | | 1513 | 1752.6 | 0.5 | 20.2 | | Band IV | | | 1312 | 1712.4 | 0 | 21.0 | | | | Subtest 1 | 1413 | 1732.6 | 0 | 20.9 | | | | | 1513 | 1752.6 | 0 | 20.7 | | | | | 1312 | 1712.4 | 2 | 19.0 | | | | Subtest 2 | 1413 | 1732.6 | 2 | 18.7 | | | | | 1513 | 1752.6 | 2 | 18.6 | | | | | 1312 | 1712.4 | 1 | 19.7 | | | HSUPA | Subtest 3 | 1413 | 1732.6 | 1 | 19.6 | | | | | 1513 | 1752.6 | 1 | 19.4 | | | | | 1312 | 1712.4 | 2 | 19.2 | | | | Subtest 4 | 1413 | 1732.6 | 2 | 19.0 | | | | | 1513 | 1752.6 | 2 | 18.9 | | | | | 1312 | 1712.4 | 0 | 21.1 | | | | Subtest 5 | 1413 | 1732.6 | 0 | 21.0 | | | | | 1513 | 1752.6 | 0 | 20.8 | ## W-CDMA Band V Measured Results | | | sured Results | | Frog | N | lax. Pwr | |--------|--------|----------------|-----------|----------------|-------------|-------------------| | Band | | Mode | UL Ch No. | Freq.
(MHz) | MPR
(dB) | Avg. Pwr
(dBm) | | | | | 4132 | 826.4 | 0 | 22.7 | | | Rel 99 | RMC, 12.2 kbps | 4183 | 836.6 | 0 | 22.6 | | | | | 4233 | 846.6 | 0 | 22.5 | | | | | 4132 | 826.4 | 0 | 22.3 | | | | Subtest 1 | 4183 | 836.6 | 0 | 22.1 | | | | | 4233 | 846.6 | 0 | 22.0 | | | | | 4132 | 826.4 | 0 | 21.4 | | | | Subtest 2 | 4183 | 836.6 | 0 | 21.2 | | | HSDPA | | 4233 | 846.6 | 0 | 21.1 | | Hobi | порра | | 4132 | 826.4 | 0.5 | 21.1 | | | | Subtest 3 | 4183 | 836.6 | 0.5 | 20.9 | | | | | 4233 | 846.6 | 0.5 | 20.9 | | | | | 4132 | 826.4 | 0.5 | 20.9 | | | | Subtest 4 | 4183 | 836.6 | 0.5 | 20.7 | | W-CDMA | | | 4233 | 846.6 | 0.5 | 20.7 | | Band V | | | 4132 | 826.4 | 0 | 20.6 | | | | Subtest 1 | 4183 | 836.6 | 0 | 20.6 | | | | | 4233 | 846.6 | 0 | 20.5 | | | | | 4132 | 826.4 | 2 | 19.3 | | | | Subtest 2 | 4183 | 836.6 | 2 | 19.2 | | | | | 4233 | 846.6 | 2 | 19.1 | | | | | 4132 | 826.4 | 1 | 20.1 | | | HSUPA | Subtest 3 | 4183 | 836.6 | 1 | 20.0 | | | | | 4233 | 846.6 | 1 | 20.0 | | | | | 4132 | 826.4 | 2 | 19.5 | | | | Subtest 4 | 4183 | 836.6 | 2 | 19.4 | | | | | 4233 | 846.6 | 2 | 19.4 | | | | | 4132 | 826.4 | 0 | 21.4 | | | | Subtest 5 | 4183 | 836.6 | 0 | 21.3 | | | | | 4233 | 846.6 | 0 | 21.3 | ## 9.2. Satellite mode | Band
(GHz) | Mode | Ch# | Freq.
(MHz) | Slotted. Avg Pwr (dBm) | |---------------|-------|-----|----------------|------------------------| | | | 1 | 1616.0208033 | 31.2 | | 1.6 | 9603N | 121 | 1621.0208033 | 31.3 | | | | 240 | 1625.9791670 | 31.1 | #### 9.3. Bluetooth LE Maximum tune-up tolerance limit is -4.3 dBm from the rated nominal maximum output power. This power level qualifies for exclusion of SAR testing. ## 10. Measured and Reported (Scaled) SAR Results #### SAR Test Reduction criteria are as follows: #### KDB 447498 D01 General RF Exposure Guidance: Testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is: - ≤ 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≤ 100 MHz - ≤ 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz - ≤ 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≥ 200 MHz #### KDB 941225 D01 SAR test for 3G devices: When the maximum output power and tune-up tolerance specified for production units in a secondary mode is $\leq \frac{1}{4}$ dB higher than the primary mode or when the highest reported SAR of the primary mode is scaled by the ratio of specified maximum output power and tune-up tolerance of secondary to primary mode and the adjusted SAR is $\leq 1.2/3.0$ W/kg, 1-g and 10-g respectively, SAR measurement is not required for the secondary mode #### TCB Workshop October, 2016; Page 22,: These types of consumer products are not designed to be worn or used on the user's body; - There is typically at least several cm or more of separation - Such use conditions can easily qualify for SAR test exclusion to support potential portable exposure conditions ## 10.1. W-CDMA Band II | RF Exposure | | Dist.
(mm) | Test Position | Antenna | | Freq.
(MHz) | Power (dBm) | | 10-g SAR (W/kg) | | Plot | |-------------|------------|---------------|---------------|---------|-------|----------------|------------------|-------|-----------------|--------|------| | Conditins | Mode | | | Degree | Ch #. | | Tune-up
limit | Meas. | Meas. | Scaled | No. | | | | | 0 Rear | 0 | 9400 | 1880.0 | 22.5 | 21.7 | 1.230 | 1.475 | 1 | | | | | | 45 | 9400 | 1880.0 | 22.5 | 21.7 | 1.050 | 1.259 | | | Extremity | Rel 99 RMC | 0 | | 90 | 9400 | 1880.0 | 22.5 | 21.7 | 0.929 | 1.114 | | | | | | | 135 | 9400 | 1880.0 | 22.5 | 21.7 | 1.170 | 1.403 | | | | | | | 180 | 9400 | 1880.0 | 22.5 | 21.7 | 1.230 | 1.475 | | ## 10.2. W-CDMA Band IV | RF Exposure | | Dist. | | Antenna | Freq. | | Power | (dBm) 10-g SAR (W/kg) | | | Plot | |-------------|------------|--------------|---------------|---------|-------|-------------|------------------|-----------------------|-------|--------|------| | Conditins | Mode | (mm) | Test Position | Degree | Ch #. | Ch #. (MHz) | Tune-up
limit | Meas. | Meas. | Scaled | No. | | | | Rel 99 RMC 0 | Rear | 0 | 1413 | 1732.6 | 22.5 | 22.2 | 1.370 | 1.465 | | | | | | | 45 | 1413 | 1732.6 | 22.5 | 22.2 | 1.250 | 1.336 | | | Extremity | Rel 99 RMC | | | 90 | 1413 | 1732.6 | 22.5 | 22.2 | 1.240 | 1.326 | | | | | | | 135 | 1413 | 1732.6 | 22.5 | 22.2 | 1.480 | 1.582 | | | | | | | 180 | 1413 | 1732.6 | 22.5 | 22.2 | 1.540 | 1.646 | 2 | ## 10.3. W-CDMA Band V | RF Exposure | | Dist. | | Antenna | Freq. | | Power | (dBm) | dBm) 10-g SAR (W/kg) | | | |-------------|------------|--------------|---------------|---------|-------|-------------|------------------|-------|----------------------|--------|-------------| | Conditins | Mode | (mm) | Test Position | Degree | Ch #. | Ch #. (MHz) | Tune-up
limit | Meas. | Meas. | Scaled | Plot
No. | | | | Rel 99 RMC 0 | Rear | 0 | 4183 | 836.6 | 23.0 | 22.6 | 1.190 | 1.320 | | | | | | | 45 | 4183 | 836.6 | 23.0 | 22.6 | 1.100 | 1.220 | | | Extremity | Rel 99 RMC | | | 90 | 4183 | 836.6 | 23.0 | 22.6 | 1.090 | 1.209 | | | | | | | 135 | 4183 | 836.6 | 23.0 | 22.6 | 1.130 | 1.253 | | | | | | | 180 | 4183 | 836.6 | 23.0 | 22.6 | 1.290 | 1.431 | 3 | ## 10.4. Satellite mode | RE Evnosure | RF Exposure User's | | Dist. | | | | Power | · / | 10-g SAR (W/kg) | | Duty | Scaled | Plot | |-------------|--------------------|------------|-------|---------------|---------|-------------|------------------|-------|-----------------|--------|--------|---------------|------| | Conditions | Mod | Mode | (mm) | Test Position | Ch #. | Freq. (MHz) | Tune-up
limit | Meas. | Meas. | Scaled | factor | SAR
(W/kg) | No. | | | | | | 1 | 1616.02 | 32.7 | 31.2 | 0.031 | 0.045 | 2.3 | 0.102 | | | | | Condition 1 | 9603N | 0 | Rear | 121 | 1621.02 | 32.7 | 31.3 | 0.024 | 0.033 | 2.3 | 0.075 | | | Estromits. | | | | | 240 | 1625.98 | 32.7 | 31.1 | 0.025 | 0.036 | 2.3 | 0.083 | | | Extremity | | on 2 9603N | 0 | Rear | 1 | 1616.02 | 32.7 | 31.2 | 0.175 | 0.249 | 2.3 | 0.572 | | | Condition
2 | Condition 2 | | | | 121 | 1621.02 | 32.7 | 31.3 | 0.205 | 0.280 | 2.3 | 0.645 | | | | | | | 240 | 1625.98 | 32.7 | 31.1 | 0.232 | 0.336 | 2.3 | 0.773 | 4 | | #### Note(s) Duty factor is 9.2%(Maximum duty cycle) / 4.0%(test mode duty cycle). ### 10.5. Bluetooth LE Maximum tune-up tolerance limit is -4.3 dBm from the rated nominal maximum output power. This power level qualifies for exclusion of SAR testing. Page 26 of 31 ## 11. SAR Measurement Variability In accordance with published RF Exposure KDB 865664 D01 SAR measurement 100 MHz to 6 GHz. These additional measurements are repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device should be returned to ambient conditions (normal room temperature) with the battery fully charged before it is re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results. ### 10-g SAR Measurement Variability - 1) Repeated measurement is not required when the original highest measured SAR is < 2.0 W/kg; steps 2) through 4) do not apply. - 2) When the original highest measured SAR is ≥ 2.0 W/kg, repeat that measurement once. - 3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 3.6 W/kg (~ 10% from the 10-g SAR limit). - 4) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥3.75 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20. | Frequency | | | | Repeated | Highest | First
Repeated | | | |---------------|----------------|------------------------|---------------|-----------------|------------------------|---------------------------|-------------------------------------|--| | Band
(MHz) | Air Interface | RF Exposure Conditions | Test Position | SAR
(Yes/No) | Measured
SAR (W/kg) | Measured
SAR
(W/kg) | Largest to
Smallest
SAR Ratio | | | 850 | WCDMA Band V | Extremity | Rear | No | 1.290 | N/A | N/A | | | 1600 | Satellite mode | Extremity | Rear | No | 0.232 | N/A | N/A | | | 1700 | WCDMA Band IV | Extremity | Rear | No | 1.540 | N/A | N/A | | | 1900 | WCDMA Band II | Extremity | Rear | No | 1.230 | N/A | N/A | | #### Note(s): Second Repeated Measurement is not required since the ratio of the largest to smallest SAR for the original and first repeated measurement is not > 1.20. ## 12. Simultaneous Transmission SAR Analysis KDB 447498 D01 General RF Exposure Guidance introduces a new formula for calculating the SAR to Peak Location Ratio (SPLSR) between pairs of simultaneously transmitting antennas: $$SPLSR = (SAR_1 + SAR_2)^{1.5} / Ri$$ Where: **SAR**₁ is the highest measured or estimated SAR for the first of a pair of simultaneous transmitting antennas, in a specific test operating mode and exposure condition **SAR**₂ is the highest measured or estimated SAR for the second of a pair of simultaneous transmitting antennas, in the same test operating mode and exposure condition as the first **Ri** is the separation distance between the pair of simultaneous transmitting antennas. When the SAR is measured, for both antennas in the pair, it is determined by the actual x, y and z coordinates in the 1-g / 10-g SAR for each SAR peak location, based on the extrapolated and interpolated result in the zoom scan measurement, using the formula of $[(x_1-x_2)^2+(y_1-y_2)^2+(z_1-z_2)^2]$ In order for a pair of simultaneous transmitting antennas with the sum of 1-g SAR > 1.6 / 4.0 W/kg, 1-g and 10-g respectively to qualify for exemption from Simultaneous Transmission SAR measurements, it has to satisfy the condition of: $$(SAR_1 + SAR_2)^{1.5} / Ri \le 0.04$$ #### **Simultaneous Transmission Condition** | RF Exposure Condition | Item | Capable Transmit Configurations | | | | | | | | |-----------------------|---|---------------------------------|---|--------------|--|--|--|--|--| | Body & Extremity | 1 | W-CDMA | + | Bluetooth LE | | | | | | | Body & Extremity | 2 | Satellite mode | + | Bluetooth LE | | | | | | | Notes: | Notes: | | | | | | | | | | WCDMA Radio canno | WCDMA Radio cannot transmit simultaneously with Satellite mode Radio. | | | | | | | | | ## **Estimated SAR for Simultaneous Transmission SAR Analysis** #### Considerations for SAR estimation - 1. When standalone SAR test exclusion applies, standalone SAR must also be estimated to determine simultaneous transmission SAR test exclusion. - 2. Dedicated Host Approach criteria for SAR test exclusion is likewise applied to SAR estimation, with certain distinctions between test exclusion and SAR estimation: - o When the separation distance from the antenna to an adjacent edge is ≤ 5 mm, a distance of 5 mm is applied for SAR estimation; this is the same between test exclusion and SAR estimation calculations. - When the separation distance from the antenna to an adjacent edge is > 5 mm but ≤ 50 mm, the actual antenna-to-edge separation distance is applied for SAR estimation. - When the minimum test separation distance is > 50 mm, the estimated SAR value is 0.4 / 1.0 W/kg, 1-g and 10-g respectively. - Please refer to <u>Estimated SAR Tables</u> to see which test positions are inherently compliant as they consist of only estimated SAR values for all applicable transmitters and consequently will always have sum of SAR values < 1.2 W/kg. Simultaneous transmission SAR analysis was therefore not performed for these test positions. ### **Estimated SAR for Body Exposure Condition** | Tx | Frequency Output Power | | Power | Separation Distances (mm) | Estimated 1-g SAR Value (W/kg) | |----------------|------------------------|-------|-------|---------------------------|--------------------------------| | Interface | (MHz) | dBm | mW | Edge 3 (Bottom) | Edge 3 (Bottom) | | W-CDMA II | 1907.6 | 22.50 | 178 | 128.5 | 0.400 | | W-CDMA IV | 1752.6 | 22.50 | 178 | 128.5 | 0.400 | | W-CDMA V | 848.6 | 23.00 | 200 | 128.5 | 0.400 | | Satellite mode | 1625.5 | 21.30 | 135 | 189 | 0.400 | | Bluetooth LE | 2480 | -4.30 | 0.37 | 189 | 0.400 | ### **Estimated SAR for Extremity Exposure Condition** #### 1) Condition 1 | Tx | Frequency | Output Power dBm mW | | Separation Distances (mm) | Estimated 10-g SAR Value (W/kg) | | | |----------------|-----------|---------------------|------|---------------------------|---------------------------------|--|--| | Interface | (MHz) | | | Rear | Rear | | | | W-CDMA II | 1907.6 | 22.50 | 178 | 0 | -MEASURE- | | | | W-CDMA IV | 1752.6 | 22.50 | 178 | 0 | -MEASURE- | | | | W-CDMA V | 848.6 | 23.00 | 200 | 0 | -MEA SURE- | | | | Satellite mode | 1625.5 | 22.30 | 170 | 16 | -MEA SURE- | | | | Bluetooth LE | 2480 | -4.30 | 0.37 | 16 | 0.002 | | | #### 2) Condition 2 | Tx | Frequency | Output | Power | Separation Distances (mm) | Estimated 10-g SAR Value (W/kg) | | |----------------|-----------|--------|-------|---------------------------|---------------------------------|--| | Interface | (MHz) | dBm mW | | Rear | Rear | | | Satellite mode | 1625.5 | 22.30 | 170 | 0 | -MEASURE- | | | Bluetooth LE | 2480 | -4.30 | 0.37 | 0 | 0.006 | | ## 12.1. Sum of the SAR for WWAN & Satellite mode & Bluetooth LE in Body | | Во | dy SAR (W/I | kg) | ∑1-g SAR (W/kg) | | | | |---------------|--------------------|-------------|-------|-----------------|-----------------|--|--| | Test Position | Licenced Satellite | | BLE | Licenced + BLE | Satellite + BLE | | | | | 1 | 2 | 3 | 1 + 2 | 1 + 3 | | | | Edge 3 | 0.400 | 0.400 | 0.400 | 0.800 | 0.800 | | | ## 12.2. Sum of the SAR for WWAN & Satellite mode & Bluetooth LE in Extremity | User condition | Test Position | Extr | emity SAR (W | //kg) | ∑ 10-g SAR (W/kg) | | | |----------------|---------------|----------|---------------|-------|-------------------|-----------------|--| | | | Licenced | Satellite BLE | | Licenced + BLE | Satellite + BLE | | | | | 1 | 2 | 3 | 1 + 2 | 1 + 3 | | | Condition 1 | Rear | 1.646 | 0.102 | 0.002 | 1.648 | 0.104 | | | Condition 2 | Rear | | 0.773 | 0.006 | | 0.779 | | ### Conclusion: Simultaneous transmission SAR measurement (Volume Scan) is not required because the either sum of the 1-g SAR is < 1.6 W/kg(10-g SAR is < 4.0 W/kg) or the 1-g SAR SPLSR is < 0.04 (10-g SAR is < 0.1) for all circumstances that require SPLSR calculation. ## **Appendixes** Refer to separated files for the following appendixes. 4787927807-S1V1 FCC Report SAR_App A_Photos & Ant. Locations 4787927807-S1V1 FCC Report SAR_App B_Highest SAR Test Plots 4787927807-S1V1 FCC Report SAR_App C_System Check Plots 4787927807-S1V1 FCC Report SAR_App D_SAR Tissue Ingredients 4787927807-S1V1 FCC Report SAR_App E_Probe Cal. Certificates 4787927807-S1V1 FCC Report SAR_App F_Dipole Cal. Certificates **END OF REPORT**