FCC and ISED Test Report

GRUNDFOS Holding A/S RA2G4MSR (Multi-Standard Radio) Module

In accordance with FCC 47 CFR Part 15C, ISED RSS-247 and ISED RSS-GEN (2.4 GHz Bluetooth Low Energy)

Prepared for: GRUNDFOS Holding A/S Poul Due Jensens Vej 7 Bjerringbro 8850 DENMARK SUD

Add value. Inspire trust.

FCC ID: OG3-RA2G4MSR IC: 10447A-RA2G4MSR

COMMERCIAL-IN-CONFIDENCE

Document 75958532-02 Issue 02

ENGINEERING STATEMENT

The measurements shown in this report were made in accordance with the procedures described on test pages. All reported testing was carried out on a sample equipment to demonstrate limited compliance with FCC 47 CFR Part 15C and ISED RSS-247 and ISED RSS-GEN. The sample tested was found to comply with the requirements defined in the applied rules.

RESPONSIBLE FOR	NAME	DATE	SIGNATURE
	Aakash Rawal	06 March 2024	Adnof
Testing	Neil Rousell	06 March 2024	Jahm
	Thomas Biddlecombe	06 March 2024	Î
FCC Accreditation	ISED Accredit	ation	7

492497/UK2010 Octagon House, Fareham Test Laboratory 12669A Octagon House, Fareham Test Laboratory

EXECUTIVE SUMMARY

A sample of this product was tested and found to be compliant with FCC 47 CFR Part 15C (2022), ISED RSS-247 Issue 3 (08-2023) and ISED RSS-GEN Issue 5 (04-2018) + A2 (02-2021) for the tests detailed in section 1.3.

DISCLAIMER AND COPYRIGHT

This non-binding report has been prepared by TÜV SÜD with all reasonable skill and care. The document is confidential to the potential Client and TÜV SÜD. No part of this document may be reproduced without the prior written approval of TÜV SÜD. © 2024 TÜV SÜD. This report relates only to the actual item/items tested.

ACCREDITATION

Our UKAS Accreditation does not cover opinions and interpretations and any expressed are outside the scope of our UKAS Accreditation. Results of tests not covered by our UKAS Accreditation Schedule are marked NUA (Not UKAS Accredited).

TÜV SÜD

is a trading name of TUV SUD Ltd Registered in Scotland at East Kilbride, Glasgow G75 0QF, United Kingdom Registered number: SC215164 TUV SUD Ltd is a TÜV SÜD Group Company Phone: +44 (0) 1489 558100 Fax: +44 (0) 1489 558101 <u>www.tuvsud.com/en</u> TÜV SÜD Octagon House Concorde Way Fareham Hampshire PO15 5RL United Kingdom

Contents

1	Report Summary	2
1.1	Report Modification Record	2
1.2	Introduction	2
1.3	Brief Summary of Results	
1.4	Application Form	4
1.5	Product Information	7
1.6	Deviations from the Standard	7
1.7	EUT Modification Record	7
1.8	Test Location	8
2	Test Details	9
2.1	Power Spectral Density	
2.2	Maximum Conducted Output Power	
2.3	Restricted Band Edges	
2.4	Authorised Band Edges	
2.5	Emission Bandwidth	
3	Measurement Uncertainty	

1 Report Summary

1.1 Report Modification Record

Alterations and additions to this report will be issued to the holders of each copy in the form of a complete document.

Issue	Description of Change	Date of Issue
1	First Issue	23-August-2023
2	Additional test results	06-March-2024

Table 1

1.2 Introduction

Applicant	GRUNDFOS Holding A/S
Manufacturer	GRUNDFOS Holding A/S
Model Number(s)	RA2G4MSR - Multi-Standard Radio
Serial Number(s)	01217
Hardware Version(s)	R02
Software Version(s)	xxxModule_CC2652Rx_V06.00.02.xxxxx
Number of Samples Tested	1
Test Specification/Issue/Date	FCC 47 CFR Part 15C (2022) ISED RSS-247 Issue 3 (08-2023) ISED RSS-GEN Issue 5 (04-2018) + A2 (02-2021)
Order Number	4515414087
Date	15-May-2023
Date of Receipt of EUT	05-May-2023
Start of Test	22-May-2023
Finish of Test	07-February-2024
Name of Engineer(s)	Aakash Rawal, Neil Rousell, Thomas Biddlecombe
Related Document(s)	ANSI C63.10 (2020) ANSI C63.10 (2013)

1.3 Brief Summary of Results

A brief summary of the tests carried out in accordance with FCC 47 CFR Part 15C, ISED RSS-247 and ISED RSS-GEN is shown below.

Castion	Spec	ification Clause		Test Description Result Commente/Rese Sta		Commonte/Doog Standard
Section	Part 15C	RSS-247	RSS-GEN	Test Description	Result	Comments/Base Standard
Configurat	tion and Mode: 2.4 GHz BI	uetooth Low Ener	gy			
2.1	15.247 (e)	5.2	6.12	Power Spectral Density	Pass	
2.2	15.247 (b)	5.4	6.12	Maximum Conducted Output Power	Pass	
2.3	15.205	3.3	8.10	Restricted Band Edges	Pass	
2.4	15.247 (d)	5.5	N/A	Authorised Band Edges	Pass	

Table 2

A gap analysis between ISED RSS-247 Issue 2 to ISED RSS-247 Issue 3 was performed and it was confirmed there were no changes to the requirements related to the testing performed prior to the release of ISED RSS-247 Issue 3.

1.4 Application Form

Equipment Description

Technical Description: (Please provide a brief description of the intended use of the equipment including the technologies the product supports)	The MSR module can be used in products for different types of wireless connectivity. The Bluetooth function can be used for smart devices and 802.15.4 based protocols e.g. Thread, GLoWPAN, etc. for monitoring, control or cloud services		
Manufacturer:	Grundfos Holdi	ng A/S	
Model:	RA2G4MSR -	– MSR Multi-standard radio	
Part Number: BLE Module 92		12542810 ; MSR Module 92542811	
Hardware Version: R02			
Software Version: xxxModule_CC			
FCC ID of the product under test – see guidance here		OG3-RA2G4MSR	
IC ID of the product under test – see guidance here		10447A-RA2G4MSR	

Table 3

Intentional Radiators

Technology	BLE			
Frequency Range (MHz to MHz)	2400 – 2483.5 MHz			
Conducted Declared Output Power (dBm)	4			
Antenna Gain (dBi)	2.15			
Supported Bandwidth(s) (MHz) (e.g 1 MHz, 20 MHz, 40 MHz)	1 & 2MHz			
Modulation Scheme(s) (e.g GFSK, QPSK etc)	GFSK			
ITU Emission Designator (see guidance here) (not mandatory for Part 15 devices)	1M00WDX			
Bottom Frequency (MHz)	2400 MHz			
Middle Frequency (MHz)				
Top Frequency (MHz)	2483.5 MHz			

Table 4

Un-intentional Radiators

Highest frequency generated or used in the device or on which the device operates or tunes	
Lowest frequency generated or used in the device or on which the device operates or tunes	
Class A Digital Device (Use in commercial, industrial or business environment) \Box	
Class B Digital Device (Use in residential environment only) \Box	

AC Power Source

AC supply frequency:	Hz
Voltage	V
Max current:	A
Single Phase Three Phase	

Table 6

DC Power Source

Nominal voltage:	3.3	V
Extreme upper voltage:	3.8	V
Extreme lower voltage:	2.0	V
Max current:	100 m	A

Table 7

Battery Power Source

Voltage:			V
End-point voltage:			V (Point at which the battery will terminate)
Alkaline Leclanche Lithium Nicke	l Cadmium 🗆 Lead A	cid* \Box *(Vehicle reg	ulated)
Other	Please detail:		

Table 8

Charging

Can the EUT transmit whilst being charged	Yes 🛛 No 🗆
---	------------

Table 9

Temperature

Minimum temperature:	-10	°C
Maximum temperature:	+70	°C

Table 10

Cable Loss

Adapter Cable Loss (Conducted sample)	1.0	dB
--	-----	----

Antenna Characteristics

Antenna connector \Box			State impedance		Ohm
Temporary antenna conne	ector 🗆		State impedance		Ohm
Integral antenna 🛛	Type:		Gain	2.15	dBi
External antenna 🗆	Type:		Gain		dBi
For external antenna only	<i>/</i> :				
Standard Antenna Jack 🗆 If yes, describe how user is prohibited from changing antenna (if not professional installed):					stalled):
Equipment is only ever professionally installed \Box					
Non-standard Antenna Jack 🗆					

Table 12

Ancillaries (if applicable)

Manufacturer:	Part Number:	
Model:	Country of Origin:	

Table 13

I hereby declare that the information supplied is correct and complete.

Name: Jianyang Liu Position held: Senior Digital Compliance Specialist Date: 18-May-2023

1.5 Product Information

1.5.1 Technical Description

The MSR module can be used in products for different types of wireless connectivity. The Bluetooth function can be used for smart devices and 802.15.4 based protocols e.g. Thread, GLoWPAN, etc. for monitoring, control or cloud services.

The MSR module has been previously assessed for LE1M. The results are contained within 75951634, Report 01. The current report covers the additional testing for LE2M.

1.5.2 Additional Information

The LE2M mode does not support the advertising channels on 2480 MHz, therefore restricted band edges have been tested on 2402 MHz & 2478 MHz.

1.6 Deviations from the Standard

No deviations from the applicable test standard were made during testing.

1.7 EUT Modification Record

The table below details modifications made to the EUT during the test programme.

The modifications incorporated during each test are recorded on the appropriate test pages.

Modification State Description of Modification still fitted to EUT		Modification Fitted By	Date Modification Fitted			
Model: RA2G4MSR	Model: RA2G4MSR - MSR, Serial Number: 01217					
0	As supplied by the customer	Not Applicable	Not Applicable			

1.8 Test Location

TÜV SÜD conducted the following tests at our Octagon House Test Laboratory.

Test Name	Name of Engineer(s)	Accreditation		
Configuration and Mode: 2.4 GHz Bluetooth Low Energy				
Power Spectral Density	Aakash Rawal	UKAS		
Maximum Conducted Output Power	Aakash Rawal	UKAS		
Restricted Band Edges	Neil Rousell	UKAS		
Authorised Band Edges	Aakash Rawal & Tom Biddlecombe	UKAS		
Emissions Bandwidth	Aakash Rawal	UKAS		

Table 15

TÜV SÜD Octagon House Concorde Way Fareham Hampshire PO15 5RL United Kingdom

Office Address:

2 Test Details

2.1 Power Spectral Density

2.1.1 Specification Reference

FCC 47 CFR Part 15C, Clause 15.247 (e) ISED RSS-247, Clause 5.2 ISED RSS-GEN, Clause 6.12

2.1.2 Equipment Under Test and Modification State

RA2G4MSR - MSR, S/N: 01217- Modification State 0

2.1.3 Date of Test

24-May-2023

2.1.4 Test Method

This test was performed in accordance with ANSI C63.10, clause 11.10.2.

2.1.5 Environmental Conditions

Ambient Temperature	22.3 °C
Relative Humidity	44.2 %

2.1.6 Test Results

Test Configuration						
Frequency Range:	2400-2483.5 MHz	Band:	2.4 GHz			
Limit Clause(s):	15.247 (e) RSS-247 5.2 b)	Test Method(s):	C63.10 11.10.2			
Additional Reference(s):	-					

DUT Configuration							
Mode:	BLE GFSK (LE 2M)	Duty Cycle (%):	100.0				
Antenna Configuration:	SISO	DCCF (dB):	-				
Active Port(s):	A (A)	Peak Antenna Gain (dBi):	-				

Test Frequency	RBW	PSD (dBm/RBW)				Limit	Margin	
	(KПZ)	А	В	С	D	Σ	(dBIII/3 kHz)	(ub)
2402	3.0	-8.50	-	-	-	-	8.00	-16.50
2440	3.0	-10.21	-	-	-	-	8.00	-18.21
2480	3.0	-9.48	-	-	-	-	8.00	-17.48

Table 16 - Maximum Power Spectral Density Results

FCC 47 CFR Part 15, Limit Clause 15.247 (e)

The power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

ISED RSS-247, Limit Clause 5.2(b)

The transmitter power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

2.1.7 Test Location and Test Equipment Used

This test was carried out in RF Laboratory 2.

Instrument	Manufacturer	Туре No	TE No	Calibration Period (months)	Calibration Expires
Hygrometer	Rotronic	I-1000	3220	12	15-Nov-2023
Signal Conditioning Unit	TUV SUD	SPECTRUM_SCU0 01	5759	12	05-Jul-2023
Frequency Standard	Spectracom	SecureSync 1200- 0408-0601	4393	6	13-Jul-2023
MXA Signal Analyser	Keysight Technologies	N9020B	5528	24	21-Mar-2024
Meter	ETI Ltd	Therma Elite	6326	12	27-Mar-2024

2.2 Maximum Conducted Output Power

2.2.1 Specification Reference

FCC 47 CFR Part 15C, Clause 15.247 (b) ISED RSS-247, Clause 5.4 ISED RSS-GEN, Clause 6.12

2.2.2 Equipment Under Test and Modification State

RA2G4MSR - MSR, S/N: 01217- Modification State 0

2.2.3 Date of Test

24-May-2023

2.2.4 Test Method

The test was performed in accordance with ANSI C63.10 clause 11.9.1.2 Method PKPM1.

2.2.5 Environmental Conditions

Ambient Temperature22.3 °CRelative Humidity44.5 %

2.2.6 Test Results

Test Configuration							
Frequency Range:	2400-2483.5 MHz	Band:	2.4 GHz				
Limit Clause(s):	15.247 (b)(3) RSS-247 5.4 d)	Test Method(s):	C63.10 11.9.1.2				
Additional Reference(s):	-						

DUT Configuration											
Mode:	BLE GFSK (LE 2M)	Duty Cycle (%):	100.0								
Antenna Configuration:	SISO	DCCF (dB):	-								
Active Port(s):	A (A)	Peak Antenna Gain (dBi):	2.15								

Test Frequency	Ν	/laximum Con)	Limit	Margin			
(MHZ)	А	В	С	D	Σ	(dBm)	(aB)	
2402	4.55	-	-	-	-	30.00	-25.45	
2440	4.43	-	-	-	-	30.00	-25.57	
2480	4.15	-	-	-	-	30.00	-25.85	

Table 18 - FCC Maximum Conducted (peak) Output Power Results

Test Frequency	Maximum Conducted Output Power (dBm)					Limit	Margin	EIRP	EIRP	EIRP
(MHz)	А	В	С	D	Σ	(dBm)	(dB)	(dBm)	Limit (dBm)	Margin (dB)
2402	4.55	-	-	-	-	30.00	-25.45	6.70	36.00	-29.30
2440	4.43	-	-	-	-	30.00	-25.57	6.58	36.00	-29.42
2480	4.15	-	-	-	-	30.00	-25.85	6.30	36.00	-29.70

Table 19 - ISED Maximum Conducted (peak) Output Power Results

FCC 47 CFR Part 15, Limit Clause 15.247 (b)(1)

For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.

ISED RSS-247, Limit Clause 5.4 (b)

For FHSs operating in the band 2400-2483.5 MHz, the maximum peak conducted output power shall not exceed 1.0 W if the hopset uses 75 or more hopping channel; the maximum peak conducted output power shall not exceed 0.125 W if the hopset uses less than 75 hopping channel. The e.i.r.p. shall not exceed 4 W except as provided in section 5.4(e) of the specification.

2.2.7 Test Location and Test Equipment Used

This test was carried out in RF Laboratory 1 and RF Laboratory 2.

Instrument	Manufacturer	Туре No	TE No	Calibration Period (months)	Calibration Expires
Hygrometer	Rotronic	I-1000	3220	12	15-Nov-2023
Signal Conditioning Unit	TUV SUD	SPECTRUM_SCU0 01	5759	12	05-Jul-2023
USB Power Sensor	Boonton	RTP5008	5830	12	07-Jul-2023
Meter	ETI Ltd	Therma Elite	6326	12	27-Mar-2024

2.3 Restricted Band Edges

2.3.1 Specification Reference

FCC 47 CFR Part 15C, Clause 15.205 ISED RSS-247, Clause 3.3 ISED RSS-GEN, Clause 8.10

2.3.2 Equipment Under Test and Modification State

RA2G4MSR - MSR, S/N: 01217- Modification State 0

2.3.3 Date of Test

21-July-2023

2.3.4 Test Method

This test was performed in accordance with ANSI C63.10, clause 6.10.5 and 11.12.1.

The plots for average measurements were taken in accordance with ANSI C63.10, clause 11.12.2.5.1.

The following conversion can be applied to convert from $dB\mu V/m$ to $\mu V/m$:

10^{(Field Strength in dBµV/m/20).}

2.3.5 Environmental Conditions

Ambient Temperature21.4 °CRelative Humidity57.1 %

2.3.6 Test Results

Modulation	Frequency (MHz)	Band Edge Frequency (MHz)	Peak Level (dBµV/m)	Average Level (dBµV/m)
GFSK LE2M	2404	2390	50.9	30.4
GFSK LE2M	2478	2483.5	52.2	38.1

PI	trum Analyze	r - Swept SA		CENCE	EXT COURCE OFF	ALICN AUTO	1	10:44:00 AM 3:421
NL .	K/F	20.32 DC		SENSE	EXT SOURCE OFF		e: RMS	TRACE 1 2 3
			NFE F	PNO:Fast ↔ T Gain:Low A	rig: Free Run .tten: 6 dB	Avg Hol	d: 3000/3000	
dP/diu	Ref Offs	et 30.1 de	3					Mkr1 2.390 0 G
g 🔽	Ref 20.				Ť			
.0								
0								
0								$+ \cdots + \wedge$
0								
0								JL1-21
0								1
	And have been take	they also areas	et atta en Arson malastraturke		ontronomic anti-stanto	checketeries naterio che	יין אילעל אין אינער אין אינאראיין איינאראיי	DL2-41.2
_							· ·	2
°	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ارومسموالمس				ward and a star warded	well come and the main and the main and the second se	
art 2.310	00 GHz							Stop 2.41000
es BW 1	.0 MHz			#VBW 3	.0 MHz*		Swee	p 1.000 ms (1001
R MODE TRO	SCL	3	x	Y	FUNCTION	FUNCTION WIDTH	1	FUNCTION VALUE
N 1	f		2.390 0 GHz 2.390 0 GHz	-44.298 dBn -64.789 dBn	1			
N 2								
N 2								
N 2								
N 2								
N 2								
N 2								
N 2								

Figure 1 - GFSK LE2M - 2404 MHz - Band Edge Frequency 2390 MHz

Figure 2 - GFSK LE2M - 2478 MHz - Band Edge Frequency 2483.5 MHz

FCC 47 CFR Part 15, Limit Clause 15.209

Frequency (MHz)	Field Strength (μV/m at 3 m)
30 to 88	100
88 to 216	150
216 to 960	200
Above 960	500

Table 22

ISED RSS-GEN, Limit Clause 8.9

Frequency (MHz)	Field Strength (µV/m at 3 m)
30 to 88	100
88 to 216	150
216 to 960	200
Above 960*	500

Table 23

*Unless otherwise specified, for all frequencies greater than 1 GHz, the radiated emission limits for licence-exempt radio apparatus stated in applicable RSSs (including RSS-Gen) are based on measurements using a linear average detector function having a minimum resolution bandwidth of 1 MHz. If an average limit is specified for the EUT, then the peak emission shall also be measured with instrumentation properly adjusted for such factors as pulse desensitization to ensure the peak emission is less than 20 dB above the average limit.

2.3.7 Test Location and Test Equipment Used

This test was carried out in RF Laboratory 2.

Instrument	Manufacturer	Type No	TE No	Calibration Period (months)	Calibration Expires
HygroPalm	Rotronic	HygroPalm 0	3484	12	30-Aug-2023
Network Analyser	Rohde & Schwarz	ZVA 40	3548	12	06-Mar-2024
Calibration Unit	Rohde & Schwarz	ZV-Z54	4368	12	06-Mar-2024
Frequency Standard	Spectracom	SecureSync 1200- 0408-0601	4393	6	08-Feb-2024
PXA Signal Analyser	Keysight Technologies	N9030A	4654	12	16-Jan-2024
Attenuator 5W 30dB DC- 18GHz	Aaren	AT40A-4041-D18- 30	5502	12	14-Jun-2024

Table 24

2.4 Authorised Band Edges

2.4.1 Specification Reference

FCC 47 CFR Part 15C, Clause 15.247 (d) ISED RSS-247, Clause 5.5

2.4.2 Equipment Under Test and Modification State

RA2G4MSR - MSR, S/N: 01217- Modification State 0

2.4.3 Date of Test

05-June-2023 and 07-February-2024

2.4.4 Test Method

The test was performed in accordance with ANSI C63.10, clause 6.10.4.

2.4.5 Environmental Conditions

Ambient Temperature	20.9 - 21.0 °C
Relative Humidity	40.4 % - 40.5 %

2.4.6 Test Results

Modulation	Frequency (MHz)	Band Edge Frequency (MHz)	Level (dBc)
GFSK	2402	2400	-33.20
GFSK	2440	2400	-61.56
GFSK	2440	2483.5	-62.06
GFSK	2480	2483.5	-57.47

Figure 3 - GFSK, 2402 MHz - Band Edge Frequency 2400 MHz

Spect Swep	rum Anal <u>y</u> t SA	/zer 1			• +									
KEY	'SIGHT .≁	Input: F Couplir Align: A	RF ng: AC Auto	inj Co Fr	put Z: 50 Ω prr CCorr eq Ref: Ext (S)	Atten: 10 d Preamp: O	lB Iff	PNO: Fast Gate: Off IF Gain: Lo Sig Track:	ow Off	Avg Type: I Avg Hold: 1 Trig: Free F	_og-Power 1000/1000 Run	1 2 3 4 5 6 M₩₩₩₩₩₩ P N N N N N		
1 Spe	ctrum		•					Ref Lvi Off	set 2	0.40 dB			Mkr1 2.44) 497 2 GHz
Scale	e/Div 10 c	В						Ref Level 2	20.00	dBm				1.73 dBm
10.0	FL1	2.4000 GI	Hz						_ 1				FL2 2.4835 GHz	
0.00									N					
-10.0									\square					DL1 -18.27 dBm
-20.0														
-30.0								ň	Ą					
-40.0			30					- All		N				201
-60.0	alasta narishi		Alaman		مرودي والمتراجع ومعرفهم والمعاومة ومعاومه	فالمعيد أكراد الماجين		and the second second		" "Michardination	here was the state	terstend determined groups of the		والالا والديد المارية مراجع المحمد ومدا
-70.0														
Start #Res	2.38700 (BW 100	GHz KHz						Video B	N 300) kHz			Sweep 10.7	top 2.49600 GHz / ms (10001 pts)
5 Mar	ker Table		•											
	Mode	Trace	Scale		Х			Y		Function	F	unction Width	Functio	n Value
1	N	1	f	(4)	2.440 4	97 2 GHz	• •	1.73	dBm					
2	Δ1 Λ1	1 1	f	(Δ) (Δ)	43.0 -40.4	02 8 MHZ () 97 2 MHz ()	Δ) Δ)	-61.5 -62.0	6 dB					
4				(=)	10.1		-)	02.0	0 00					
5														
6														
	5	6		? [eb 07, 2024 2:55:56 PM									

Figure 4 - GFSK, 2440 MHz - Band Edge Frequency 2400 MHz & 2483.5 MHz

Figure 5 - GFSK, 2480 MHz - Band Edge Frequency 2483.5 MHz

FCC 47 CFR Part 15, Limit Clause 15.247 (d)

20 dB below the fundamental measured in a 100 kHz bandwidth using a peak detector. If the transmitter complies with the conducted power limits, based on the use of RMS averaging over a time interval, the attenuation required shall be 30 dB below the fundamental instead of 20 dB.

ISED RSS-247, Limit Clause 5.5

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under Section 5.4(4), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.

2.4.7 Test Location and Test Equipment Used

This test was carried out in EMC Chamber 5 and RF Lab 1

Instrument	Manufacturer	Туре No	TE No	Calibration Period (months)	Calibration Expires
3m Semi-Anechoic Chamber	Rainford	RF Chamber 5	1545	36	15-Apr-2024
Turntable Controller	Inn-Co GmbH	CO1000	1606	-	TU
Hyrgropalm Temperature and Humidity Meter	Rotronic	HP21	4410	12	08-Aug-2024
Mast Controller	Maturo Gmbh	NCD	4810	-	TU
Tilt Antenna Mast	Maturo Gmbh	TAM 4.0-P	4811	-	TU
Cable (40 GHz)	Rosenberger	LU1-001-1000	5022	12	29-Jan-2024
Emissions Software	TUV SUD	EmX V3.1.12	5125	-	Software
Attenuator 5W 10dB DC- 18GHz	Aaren	AT40A-4041-D18- 10	5492	12	18-Apr-2024
Cable (SMA to SMA 1m)	Junkosha	MWX221- 01000AMSAMS/A	5514	12	21-May-2024
Cable (SMA to SMA, 2 m)	Junkosha	MWX221- 02000AMSAMS/A	5517	12	21-May-2024
MXA Signal Analyser	Keysight Technologies	N9020B	5528	24	18-Sep-2025
EMI Test Receiver	Rohde & Schwarz	ESW44	5911	12	05-May-2024

2.5 Emission Bandwidth

2.5.1 Specification Reference

FCC 47 CFR Part 15C, Clause 15.247 (a)(2) ISED RSS-247, Clause 5.2 ISED RSS-GEN, Clause 6.7

2.5.2 Equipment Under Test and Modification State

RA2G4MSR - MSR, S/N: 01217- Modification State 0

2.5.3 Date of Test

24-May-2023

2.5.4 Test Method

This test was performed in accordance with ANSI C63.10, clause 11.8.1 for 6 dB BW and 6.9.3 for 99% occupied bandwidth measurements.

2.5.5 Environmental Conditions

Ambient Temperature22.3 °CRelative Humidity44.2 %

2.5.6 Test Results

Test Configuration			
Frequency Range:	2400-2483.5 MHz	Band:	2.4 GHz
Limit Clause(s):	15.247 (a)(2) RSS-247 5.2 a)	Test Method(s):	C63.10 6.9.3 C63.10 11.8.1
Additional Reference(s):	-		

DUT Configuration			
Mode:	BLE GFSK (LE 2M)	Duty Cycle (%):	-
Antenna Configuration:	SISO	DCCF (dB):	-
Active Port(s):	A (A)	Peak Antenna Gain (dBi):	-

Test Frequency		Limit			
(MHZ)	А	В	С	D	(KHZ)
2402	1.360	-	-	-	≥500.0
2440	1.392	-	-	-	≥500.0
2480	1.392	-	-	-	≥500.0

Table 27 - 6 dB Bandwidth Results

Test Frequency		Limit			
(MHZ)	А	В	С	D	(KHZ)
2402	2.064	-	-	-	-
2440	2.072	-	-	-	-
2480	2.080	-	-	-	-

Table 28 - 99% Bandwidth Results

Figure 7 - A (A) 2402 MHz (CH37) 6 dB Bandwidth

Figure 9 - A (A) 2440 MHz (CH17) 6 dB Bandwidth

Figure 10 - A (A) 2480 MHz (CH39) 99% Bandwidth

Figure 11 - A (A) 2480 MHz (CH39) 6 dB Bandwidth

FCC 47 CFR Part 15, Limit Clause 15.247(a)(2) and ISED RSS-247, Clause 5.2(a)

The minimum 6 dB Bandwidth shall be at least 500 kHz.

2.5.7 Test Location and Test Equipment Used

This test was carried out in RF Laboratory 1.

Instrument	Manufacturer	Type No	TE No	Calibration Period (months)	Calibration Expires
Hygrometer	Rotronic	I-1000	3220	12	28-Nov-2024
Frequency Standard	Spectracom	SecureSync 1200- 0408-0601	4393	6	08-Feb-2024
MXA Signal Analyser	Keysight Technologies	N9020B	5528	24	18-Sep-2025
Signal Conditioning Unit	TUV SUD	SPECTRUM_SCU0 01	5759	12	05-Jul-2023

3 Measurement Uncertainty

For a 95% confidence level, the measurement uncertainties for defined systems are:

Test Name	Measurement Uncertainty
Power Spectral Density	± 1.49 dB
Maximum Conducted Output Power	± 1.38 dB
Restricted Band Edges	30 MHz to 1 GHz: ± 5.2 dB 1 GHz to 40 GHz: ± 6.3 dB
Authorised Band Edges	30 MHz to 1 GHz: ± 5.2 dB 1 GHz to 40 GHz: ± 6.3 dB
Emission Bandwidth	± 42.87 kHz

Table 30

Measurement Uncertainty Decision Rule - Accuracy Method

Determination of conformity with the specification limits is based on the decision rule according to IEC Guide 115:2021, Clause 4.4.3 (Procedure 2). The measurement results are directly compared with the test limit to determine conformance with the requirements of the standard.

Risk: The uncertainty of measurement about the measured result is negligible with regard to the final pass/fail decision. The measurement result can be directly compared with the test limit to determine conformance with the requirement (compare IEC Guide 115). The level of risk to falsely accept and falsely reject items is further described in ILAC-G8.