

RADIO TEST REPORT

S T S

Report No.: STS2107141W03

Issued for

Telit Communications S.p.A.

Viale Stazione di Prosecco 5/b Trieste 34010 Italy

Product Name:	SE150A4-NA	
Brand Name:	Telit	
Model Name:	SE150A4-NA	
Series Model:	N/A	
FCC ID:	RI7SE150A4NA	
Test Standard:	FCC Part 15.247	

Any reproduction of this document must be done in full. No single part of this document may be reproduced without permission from STS, all test data presented in this report is only applicable to presented test sample.

Shenzhen STS Test Services Co., Ltd. A 1/F, Building B, Zhuoke Science Park, No.190 Chongqing Road, HepingShequ, Fuyong Sub-District, Bao'an District, Shenzhen, Guang Dong, China TEL: +86-755 3688 6288 FAX: +86-755 3688 6277 E-mail:sts@stsapp.com

TEST RESULT CERTIFICATION

Applicant's Name:	Telit Communications S.p.A.
Address	Viale Stazione di Prosecco 5/b Trieste 34010 Italy
Manufacturer's Name	Telit Communications S.p.A.
Address	Viale Stazione di Prosecco 5/b Trieste 34010 Italy
Product Description	
Product Name	SE150A4-NA
Brand Name	Telit
Model Name	SE150A4-NA
Series Model	N/A
Test Standards	FCC Part15.247
Test Procedure:	ANSI C63.10-2013

This device described above has been tested by STS, the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of STS, this document may be altered or revised by STS, personal only, and shall be noted in the revision of the document.

Date of Issue 09 Aug. 2021

Test Result Pass

Testing Engineer (Chris Chen) **Technical Manager** (Sean she) Authorized Signatory :

(Vita Li)

Page 3 of 75 Report No.: STS2107141W03

Table of Contents	Page
1. SUMMARY OF TEST RESULTS	6
1.1 TEST FACTORY	7
1.2 MEASUREMENT UNCERTAINTY	7
2. GENERAL INFORMATION	8
2.1 GENERAL DESCRIPTION OF THE EUT	8
2.2 DESCRIPTION OF THE TEST MODES	10
2.3 FREQUENCY HOPPING SYSTEM REQUIREMENTS	10
2.4 TABLE OF PARAMETERS OF TEST SOFTWARE SETTING	12
2.5 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED) 12
2.6 DESCRIPTION OF NECESSARY ACCESSORIES AND SUPPORT UNITS	13
2.7 EQUIPMENTS LIST	14
3. EMC EMISSION TEST	16
3.1 CONDUCTED EMISSION MEASUREMENT	16
3.2 RADIATED EMISSION MEASUREMENT	20
4. CONDUCTED SPURIOUS & BAND EDGE EMISSION	32
4.1 LIMIT	32
4.2 TEST PROCEDURE	32
4.3 TEST SETUP	33
4.4 EUT OPERATION CONDITIONS	33
4.5 TEST RESULTS	34
5. NUMBER OF HOPPING CHANNEL	49
5.1 LIMIT	49
5.2 TEST PROCEDURE	49
5.3 TEST SETUP	49
5.4 EUT OPERATION CONDITIONS	49
5.5 TEST RESULTS	50
6. AVERAGE TIME OF OCCUPANCY	51
6.1 LIMIT	51
6.2 TEST PROCEDURE	51
6.3 TEST SETUP	51
6.4 EUT OPERATION CONDITIONS	51
6.5 TEST RESULTS	52
7. HOPPING CHANNEL SEPARATION MEASUREMENT	58

7. HOPPING CHANNEL SEPARATION MEASUREMENT

Page 4 of 75 Report No.: STS2107141W03

Table of Contents	Page
7.1 LIMIT	58
7.2 TEST PROCEDURE	58
7.3 TEST SETUP	58
7.4 EUT OPERATION CONDITIONS	58
7.5 TEST RESULTS	59
8. BANDWIDTH TEST	65
8.1 LIMIT	65
8.2 TEST PROCEDURE	65
8.3 TEST SETUP	65
8.4 EUT OPERATION CONDITIONS	65
8.5 TEST RESULTS	66
9. OUTPUT POWER TEST	72
9.1 LIMIT	72
9.2 TEST PROCEDURE	72
9.3 TEST SETUP	72
9.4 EUT OPERATION CONDITIONS	72
9.5 TEST RESULTS	73
10. ANTENNA REQUIREMENT	74
10.1 STANDARD REQUIREMENT	74
10.2 EUT ANTENNA	74

Page 5 of 75 Report No.: STS2107141W03

Revision History

Rev.	Issue Date	Report NO.	Effect Page	Contents
00	09 Aug. 2021	STS2107141W03	ALL	Initial Issue

Shenzhen STS Test Services Co., Ltd.

1. SUMMARY OF TEST RESULTS

Test procedures according to the technical standards: KDB 558074 D01 15.247 Meas Guidance v05r02.

	FCC Part 15.247,Subpart C				
Standard Section	Test Item	Judgment	Remark		
15.207	Conducted Emission	PASS			
15.247(a)(1)	Hopping Channel Separation	PASS			
15.247(a)(1)&(b)(1)	Output Power	PASS			
15.209	Radiated Spurious Emission	PASS			
15.247(d)	Conducted Spurious & Band Edge Emission	PASS			
15.247(a)(1)(iii)	Number of Hopping Frequency	PASS			
15.247(a)(1)(iii)	Dwell Time	PASS			
15.247(a)(1)	Bandwidth	PASS			
15.205	Restricted bands of operation PASS				
Part 15.247(d)/part 15.209(a)	Band Edge Emission PASS				
15.203	Antenna Requirement PASS				

NOTE:

(1) 'N/A' denotes test is not applicable in this Test Report.

(2) All tests are according to ANSI C63.10-2013.

1.1 TEST FACTORY

SHENZHEN STS TEST SERVICES CO., LTD Add. : A 1/F, Building B, Zhuoke Science Park, No.190 Chongqing Road, HepingShequ, Fuyong Sub-District, Bao'an District, Shenzhen, Guang Dong, China FCC test Firm Registration Number: 625569 IC test Firm Registration Number: 12108A A2LA Certificate No.: 4338.01

1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	Uncertainty
1	RF output power, conducted	±0.68dB
2	Unwanted Emissions, conducted	±2.988dB
3	All emissions, radiated 9K-30MHz	±2.84dB
4	All emissions, radiated 30M-1GHz	±4.39dB
5	All emissions, radiated 1G-6GHz	±5.10dB
6	All emissions, radiated>6G	±5.48dB
7	Conducted Emission (9KHz-150KHz)	±2.79dB
8	Conducted Emission (150KHz-30MHz)	±2.80dB

Shenzhen STS Test Services Co., Ltd.

2. GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF THE EUT

Product Name	SE150A4-NA
Trade Name	Telit
Model Name	SE150A4-NA
Series Model	N/A
Model Difference	N/A
Channel List	Please refer to the Note 2.
Bluetooth	Frequency:2402 – 2480 MHz Modulation: GFSK(1Mbps), π/4-DQPSK(2Mbps), 8DPSK(3Mbps)
Bluetooth Version	4.2
Bluetooth Configuration	BR+EDR
Antenna Type	Please refer to the Note 3.
Rating	Input: 3.8V
Hardware version number	V1.01
Software version number	M0M.100001
Connecting I/O Port(s)	Please refer to the Note 1.

Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the User Manual.

2.

		Chanr	nel List		
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
00	2402	27	2429	54	2456
01	2403	28	2430	55	2457
02	2404	29	2431	56	2458
03	2405	30	2432	57	2459
04	2406	31	2433	58	2460
05	2407	32	2434	59	2461
06	2408	33	2435	60	2462
07	2409	34	2436	61	2463
08	2410	35	2437	62	2464
09	2411	36	2438	63	2465
10	2412	37	2439	64	2466
11	2413	38	2440	65	2467
12	2414	39	2441	66	2468
13	2415	40	2442	67	2469
14	2416	41	2443	68	2470
15	2417	42	2444	69	2471
16	2418	43	2445	70	2472
17	2419	44	2446	71	2473
18	2420	45	2447	72	2474
19	2421	46	2448	73	2475
20	2422	47	2449	74	2476
21	2423	48	2450	75	2477
22	2424	49	2451	76	2478
23	2425	50	2452	77	2479
24	2426	51	2453	78	2480
25	2427	52	2454		
26	2428	53	2455		

3. Table for Filed Antenna

Ant.	Brand	Model Name	Antenna Type	Connector	Gain (dBi)	NOTE
1	Telit	SE150A4-NA	External	N/A	3.39 dBi	BT Antenna

Note: The antenna information refer the manufacturer provide report, applicable only to the tested sample identified in the report.

П

2.2 DESCRIPTION OF THE TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Worst Mode	Description	Data Rate/Modulation
Mode 1	TX CH00	1Mbps/GFSK
Mode 2	TX CH39	1Mbps/GFSK
Mode 3	TX CH78	1Mbps/GFSK
Mode 4	TX CH00	2 Mbps/π/4-DQPSK
Mode 5	TX CH39	2 Mbps/π/4-DQPSK
Mode 6	TX CH78	2 Mbps/π/4-DQPSK
Mode7	TX CH00	3 Mbps/8DPSK
Mode 8	TX CH39	3 Mbps/8DPSK
Mode 9	TX CH78	3 Mbps/8DPSK
Mode 10	Hopping	GFSK
Mode 11	Hopping	π/4-DQPSK
Mode 12	Hopping 8DPSK	

Note:

(1) The measurements are performed at all Bit Rate of Transmitter, the worst data was reported.

(2) We tested for all available U.S. voltage and frequencies (For 120V, 50/60Hz and 240V, 50/60Hz) for which the device is capable of operation, and the worst case of 120V/ 60Hz is shown in the report.

(3) The battery is fully-charged during the radiated and RF conducted test.

For AC Conducted Emission

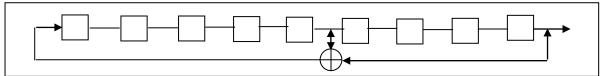
Test Case		
AC Conducted Emission	Mode 13 : Keeping BT TX	

2.3 FREQUENCY HOPPING SYSTEM REQUIREMENTS

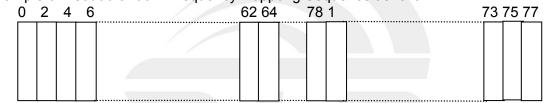
(1)Standard and Limit

According to FCC Part 15.247(a)(1), The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmitter be presented with a continuous data (or information) stream. In addition, a system employing short transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmissions over the minimum number of hopping channels specified in this section.


Page 11 of 75 Report No.: STS2107141W03

The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hop sets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.


(2)The Pseudorandom sequence may be generated in a nin-stage shift register whose 5^{th} and 9^{th} stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first one of 9 consecutive ones: i.e. the shift register is initialized with nine ones.

Numver of shift register stages:9

Length of pseudo-random sequence:2⁹-1=511bits Longest sequence of zeros: 8(non-inverted signal)

Liner Feedback Shift Register for Generator of the PRBS sequence An example of Pseudorandom Frequency Hoppong Sequence as follow:

Each frequency used equally on the average by each transmitter. The system receivers have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies ini synchronization with the transmitted signals.

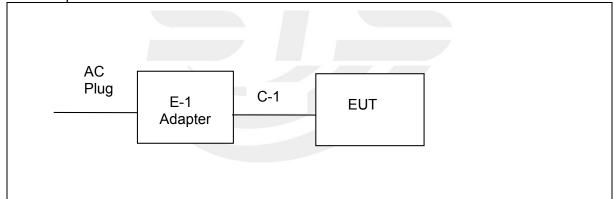
(3)Frequency Hopping System

This transmitter device is frequency hopping device, and complies with FCC part 15.247 rule.

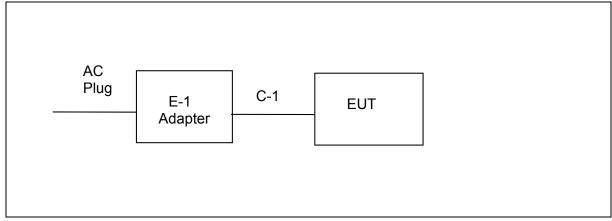
This device uses Bluetooth radio which operates in 2400-2483.5 MHz band. Bluetooth uses a radio technology called frequency-hopping spread spectrum, which chops up the data being sent and transmits chunks of it on up to 79 bands (1 MHz each; centred from 2402 to 2480 MHz) in the range 2,400-2,483.5MHz. The transmitter switches hop frequencies 1,600 times per second to assure a high degree of data security. All Bluetooth devices participating in a given piconet are synchronized to the frequency-hopping channel for the piconet. The frequency hopping sequence is determined by the master's device address and the phase of the hopping sequence (the frequency to hop at a specific time) is determined by the master's internal clock. Therefore, all slaves in a piconet must know the master's device address and must synchronize their clocks with the master's clock.

Adaptive Frequency Hopping (AFH) was introduced in the Bluetooth specification to provide an effective way for a Bluetooth radio to counteract normal interference. AFH identifies "bad" channels, where either other wireless devices are interfering with the Bluetooth signal or the Bluetooth signal is interfering with another device. The AFH-enabled Bluetooth device will then communicate with other devices within its piconet to share details of any identified bad channels. The devices will then switch to alternative available "good" channels, away from the areas of interference, thus having no impact on the bandwidth used.

This device was tested with a bluetooth system receiver to check that the device maintained hopping synchronization, and the device complied with these requirements FCC Part 15.247 rule.


2.4 TABLE OF PARAMETERS OF TEST SOFTWARE SETTING

During testing channel & power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of FHSS.


Test software Version	Test program: Bluetooth			
(Power control software) Parameters(1/2/3Mbps)	Power class: DH1 rate:4:27 2DH1 rate:20:54 3DH1 rate:24:83	Power class: DH3 rate:11:183 2DH3 rate:26:367 3DH3 rate:27:552	Power class: DH5 rate:15:339 2DH5 rate:30:679 3DH5 rate:31:1021	

RF Function	Туре	Mode Or Modulation type	ANT Gain(dBi)	Power Class	Software For Testing
		GFSK	3.39	8	
BT	BR+EDR	π/4-DQPSK	3.39	8	QRCT
		8DPSK	3.39	8	

2.5 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED Radiated Spurious Emission Test

Conducted Emission Test

2.6 DESCRIPTION OF NECESSARY ACCESSORIES AND SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand	Model/Type No.	Length	Note
N/A	N/A	N/A	N/A	N/A	N/A

Support units

Item	Equipment	Mfr/Brand	Model/Type No.	Length	Note
E-1	Adapter	HUAWEI	HW-050450C00	N/A	N/A
C-1	DC Cable	N/A	N/A	30cm	NO

Note:

- (1) For detachable type I/O cable should be specified the length in cm in ^CLength₂ column.
- (2) "YES" is means "with core"; "NO" is means "without core".

2.7 EQUIPMENTS LIST

Radiation Test equipment

Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	
Test Receiver	R&S	ESCI	101427	2020.10.12	2021.10.11	
Signal Analyzer	R&S	FSV 40-N	101823	2020.10.10	2021.10.09	
Active loop Antenna	ZHINAN	ZN30900C	16035	2021.04.11	2022.04.10	
Bilog Antenna	TESEQ	CBL6111D	34678	2020.10.12	2022.10.11	
Horn Antenna	SCHWARZBECK	BBHA 9120D	02014	2019.10.15	2021.10.14	
SHF-EHF Horn Antenna (18G-40GHz)	A-INFO	LB-180400-KF	J211020657	2020.10.12	2022.10.11	
Pre-Amplifier (0.1M-3GHz)	EM	EM330	060665	2020.10.12	2021.10.11	
Pre-Amplifier (1G-18GHz)	SKET	LNPA-01018G-45	SK2018080901	2020.10.12	2021.10.11	
Pre-Amplifier (18G-40GHz)	SKET	LNPA-1840-50	SK2018101801	2020.10.10	2021.10.09	
Temperature & Humidity	HH660	Mieo	N/A	2020.10.13	2021.10.12	
Turn table	EM	SC100_1	60531	N/A	N/A	
Antenna mast	EM	SC100	N/A	N/A	N/A	
Test SW	FARAD	EZ-EMC(Ver.STSLAB-03A1 RE)				

Conduction Test equipment

Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until
Test Receiver	R&S	ESCI	101427	2020.10.12	2021.10.11
LISN	R&S	ENV216	101242	2020.10.12	2021.10.11
LISN	EMCO	3810/2NM	23625	2020.10.12	2021.10.11
Temperature & Humidity	HH660	Mieo	N/A	2020.10.13	2021.10.12
Test SW	FARAD	EZ-EMC(Ver.STSLAB-03A1 RE)			

Page 15 of 75 Report No.: STS2107141W03

RF Connected Test

Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until
			MY55520005	2020.10.10	2021.10.09
Power Sensor	Kovoicht	U2021XA -	MY55520006	2020.10.10	2021.10.09
Power Sensor	Keysight		MY56120038	2020.10.10	2021.10.09
			MY56280002	2020.10.10	2021.10.09
Signal Analyzer	Agilent	N9020A	MY51110105	2021.03.04	2022.03.03
Temperature & Humidity	HH660	Mieo	N/A	2020.10.13	2021.10.12
Test SW	FARAD	EZ-EMC(Ver.STSLAB-03A1 RE)			

Shenzhen STS Test Services Co., Ltd.

П

3. EMC EMISSION TEST

3.1 CONDUCTED EMISSION MEASUREMENT

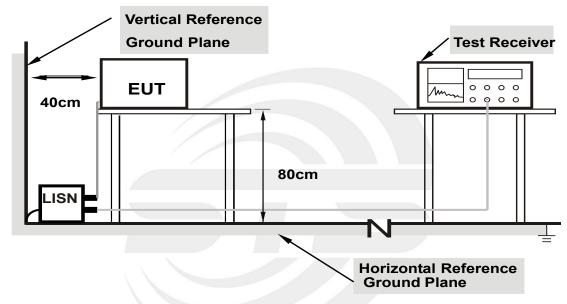
3.1.1 POWER LINE CONDUCTED EMISSION LIMITS

The radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table.

	Conducted Emissionlimit (dBuV)		
FREQUENCY (MHz)	Quasi-peak	Average	
0.15 -0.5	66 - 56 *	56 - 46 *	
0.50 -5.0	56.00	46.00	
5.0 -30.0	60.00	50.00	

Note:

- (1) The tighter limit applies at the band edges.
- (2) The limit of "*" marked band means the limitation decreases linearly with the logarithm of the frequency in the range.


The following table is the setting of the receiver

Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 kHz

3.1.2 TEST PROCEDURE

- a. The EUT is 0.8 m from the horizontal ground plane and 0.4 m from the vertical ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments are powered from additional LISN(s). The LISN provides 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN is at least 80 cm from the nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item -EUT Test Photos.

3.1.3 TEST SETUP

Note: 1. Support units were connected to second LISN.

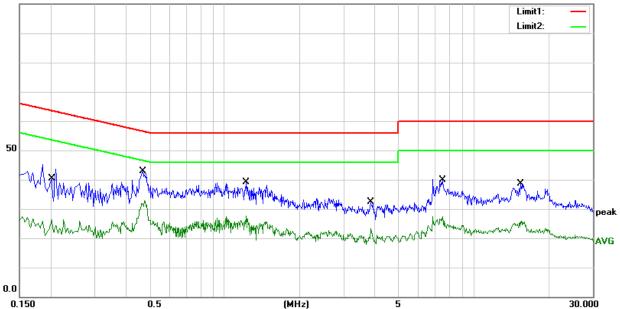
2. Both of LISNs (AMN) are 80 cm from EUT and at least 80 cm from other units and other metal planes support units.

3.1.4 EUT OPERATING CONDITIONS

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

3.1.5 TEST RESULT

Temperature:	26.5(C)	Relative Humidity:	54%RH
Test Voltage:	AC 120V/60Hz	Phase:	L
Test Mode:	Mode 13		


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB)	(dBuV)	(dBuV)	(dB)	
1	0.2020	20.10	20.32	40.42	63.53	-23.11	QP
2	0.2020	6.03	20.32	26.35	53.53	-27.18	AVG
3	0.4700	22.31	20.54	42.85	56.51	-13.66	QP
4	0.4700	12.30	20.54	32.84	46.51	-13.67	AVG
5	1.2220	18.90	20.30	39.20	56.00	-16.80	QP
6	1.2220	7.33	20.30	27.63	46.00	-18.37	AVG
7	3.8500	12.07	20.40	32.47	56.00	-23.53	QP
8	3.8500	2.98	20.40	23.38	46.00	-22.62	AVG
9	7.4900	19.30	20.68	39.98	60.00	-20.02	QP
10	7.4900	6.64	20.68	27.32	50.00	-22.68	AVG
11	15.4420	16.88	21.84	38.72	60.00	-21.28	QP
12	15.4420	3.95	21.84	25.79	50.00	-24.21	AVG

Remark:

1. All readings are Quasi-Peak and Average values

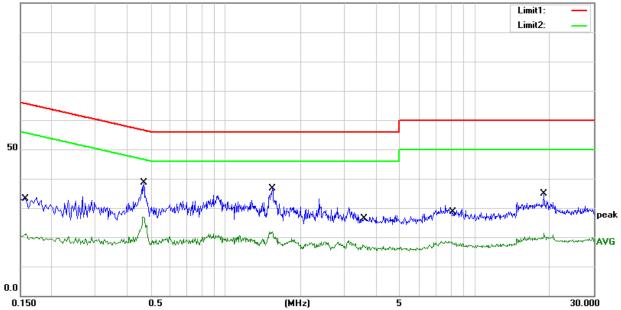
2. Margin = Result (Result = Reading + Factor)-Limit

3. Factor=LISN factor+Cable loss+Limiter (10dB)

Shenzhen STS Test Services Co., Ltd.

Page 19 of 75 Report No.: STS2107141W03

Temperature:	26.5(C)	Relative Humidity:	54%RH
Test Voltage:	AC 120V/60Hz	Phase:	Ν
Test Mode:	Mode 13		


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB)	(dBuV)	(dBuV)	(dB)	
1	0.1580	12.91	20.33	33.24	65.57	-32.33	QP
2	0.1580	0.87	20.33	21.20	55.57	-34.37	AVG
3	0.4660	18.10	20.54	38.64	56.58	-17.94	QP
4	0.4660	6.42	20.54	26.96	46.58	-19.62	AVG
5	1.5420	16.24	20.30	36.54	56.00	-19.46	QP
6	1.5420	1.61	20.30	21.91	46.00	-24.09	AVG
7	3.5780	6.06	20.38	26.44	56.00	-29.56	QP
8	3.5780	-3.18	20.38	17.20	46.00	-28.80	AVG
9	8.2540	7.08	20.84	27.92	60.00	-32.08	QP
10	8.2540	-2.75	20.84	18.09	50.00	-31.91	AVG
11	18.8900	12.32	22.64	34.96	60.00	-25.04	QP
12	18.8900	-1.14	22.64	21.50	50.00	-28.50	AVG

Remark:

1. All readings are Quasi-Peak and Average values

3. Factor=LISN factor+Cable loss+Limiter (10dB)

100.0 dBuV

^{2.} Margin = Result (Result = Reading + Factor)–Limit

3.2 RADIATED EMISSION MEASUREMENT

3.2.1 RADIATED EMISSION LIMITS

In any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the Restricted band specified on Part15.205 (a)&209(a) limit in the table and according to ANSI C63.10-2013 below has to be followed.

LIMITS OF RADIATED EMISSION MEASUREMENT (0.009MHz - 1000MHz)

Frequencies	Field Strength	Measurement Distance
(MHz)	(micorvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

LIMITS OF RADIATED EMISSION MEASUREMENT (1GHz-25 GHz)

FREQUENCY (MHz)	(dBuV/m) (at 3M)				
	PEAK	AVERAGE			
Above 1000	74	54			

Notes:

(1) The limit for radiated test was performed according to FCC PART 15C.

- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).

LIMITS OF RESTRICTED FREQUENCY BANDS

FREQUENCY (MHz)	FREQUENCY (MHz)	FREQUENCY (MHz)	FREQUENCY (GHz)
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	Above 38.6
13.36-13.41			
13.36-13.41			

Shenzhen STS Test Services Co., Ltd.

For Radiated Emission

Spectrum Parameter	Setting		
Attenuation	Auto		
Detector	Peak/QP/AV		
Start Frequency	9 KHz/150KHz(Peak/QP/AV)		
Stop Frequency	150KHz/30MHz(Peak/QP/AV)		
	200Hz (From 9kHz to 0.15MHz)/		
RB / VB (emission in restricted	9KHz (From 0.15MHz to 30MHz);		
band)	200Hz (From 9kHz to 0.15MHz)/		
	9KHz (From 0.15MHz to 30MHz)		

Spectrum Parameter	Setting		
Attenuation	Auto		
Detector	Peak/QP		
Start Frequency	30 MHz(Peak/QP)		
Stop Frequency	1000 MHz (Peak/QP)		
RB / VB (emission in restricted	120 KHz / 300 KHz		
band)			

Spectrum Parameter	Setting		
Attenuation	Auto		
Detector	Peak/AV		
Start Frequency	1000 MHz(Peak/AV)		
Stop Frequency	10th carrier hamonic(Peak/AV)		
RB / VB (emission in restricted	1 MHz / 3 MHz(Peak)		
band)	1 MHz/1/T MHz(AVG)		

For Restricted band

Spectrum Parameter	Setting		
Detector	Peak/AV		
Start/Stan Fraguanay	Lower Band Edge: 2310 to 2410 MHz		
Start/Stop Frequency	Upper Band Edge: 2476 to 2500 MHz		
	1 MHz / 3 MHz(Peak)		
RB / VB	1 MHz/1/T MHz(AVG)		

Shenzhen STS Test Services Co., Ltd.

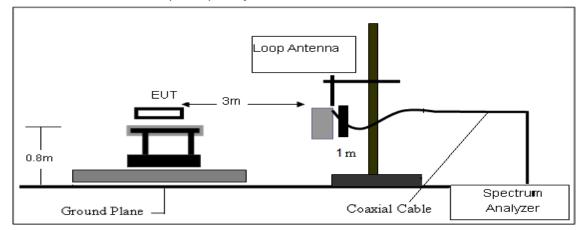
Page 22 of 75 Report No.: STS2107141W03

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~90kHz / RB 200Hz for PK & AV
Start ~ Stop Frequency	90kHz~110kHz / RB 200Hz for QP
Start ~ Stop Frequency	110kHz~490kHz / RB 200Hz for PK & AV
Start ~ Stop Frequency	490kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

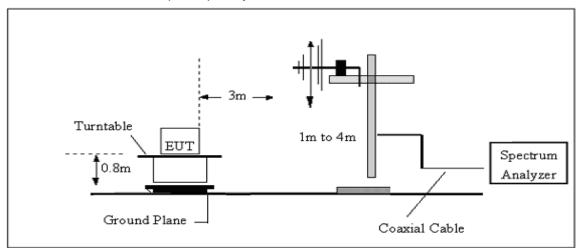
3.2.2 TEST PROCEDURE

- a. The measuring distance at 3 m shall be used for measurements at frequency 0.009MHz up to 1GHz, and above 1GHz.
- b. The EUT was placed on the top of a rotating table 0.8 m (above 1GHz is 1.5 m) above the ground at a 3 m anechoic chamber test site. The table was rotated 360 degree to determine the position of the highest radiation.
- c. The height of the equipment shall be 0.8 m (above 1GHz is 1.5 m); the height of the test antenna shall vary between 1 m to 4 m. Horizontal and vertical polarization of the antenna are set to make the measurement.
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and QuasiPeak detector mode will be re-measured.
- e. If the Peak Mode measured value is compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and no additional QP Mode measurement was performed.
- f. For the actual test configuration, please refer to the related Item –EUT Test Photos. Note:

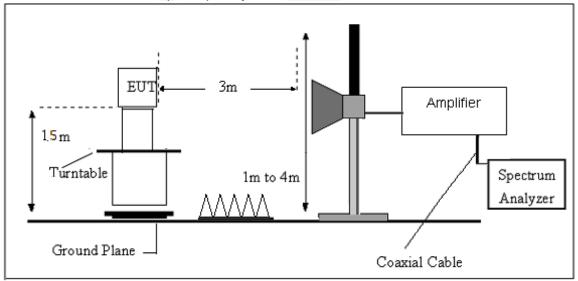
Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported.

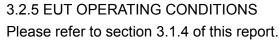

3.2.3 DEVIATION FROM TEST STANDARD

No deviation.



3.2.4 TESTSETUP


(A) Radiated Emission Test-Up Frequency Below 30MHz



(B) Radiated Emission Test-Up Frequency 30MHz~1GHz

(C) Radiated Emission Test-Up Frequency Above 1GHz

3.2.6 FIELD STRENGTH CALCULATION

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor (if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AG Where FS = Field Strength CL = Cable Attenuation Factor (Cable Loss) RA = Reading Amplitude AG = Amplifier Gain AF = Antenna Factor

For example

Frequency	FS	RA	AF	CL	AG	Factor
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(dB)	(dB)	(dB)
300	40	58.1	12.2	1.6	31.9	-18.1

Factor=AF+CL-AG

Shenzhen STS Test Services Co., Ltd.

3.2.7 TEST RESULTS

(9KHz-30MHz)

Temperature:	23.1(C)	Relative Humidity:	60%RH
Test Voltage:	DC 3.8V	Test Mode:	TX Mode

Freq.	Reading	Limit	Margin	State	Toot Dooult	
(MHz)	(dBuV/m)	(dBuV/m)	(dB)	P/F	Test Result	
					PASS	
					PASS	

Note:

The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Distance extrapolation factor =40 log (specific distance/test distance)(dB); Limit line = specific limits (dBuv) + distance extrapolation factor.

Shenzhen STS Test Services Co., Ltd.

(30MHz-1000MHz)

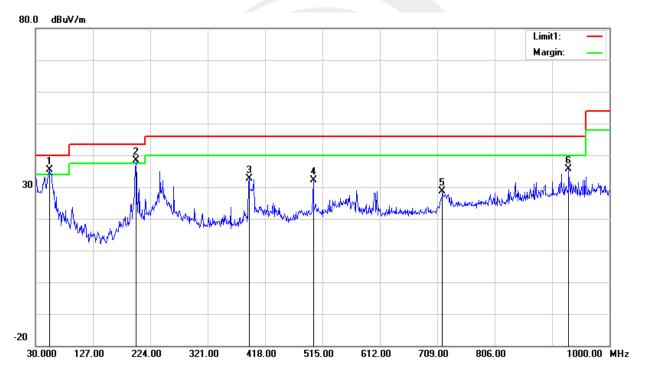
Temperature:	23.1(C)	Relative Humidity:	60%RH		
Test Voltage:	DC 3.8V	Phase:	Horizontal		
Test Mode:	Mode 1/2/3/4/5/6/7/8/9(Mode 7 worst mode)				

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	54.2500	55.01	-24.75	30.26	40.00	-9.74	QP
2	199.7500	61.38	-21.11	40.27	43.50	-3.23	QP
3	390.8400	45.28	-11.54	33.74	46.00	-12.26	QP
4	532.4600	39.92	-7.31	32.61	46.00	-13.39	QP
5	720.6400	42.02	-3.20	38.82	46.00	-7.18	QP
6	930.1600	31.46	0.56	32.02	46.00	-13.98	QP

Remark:

- 1. Margin = Result (Result = Reading + Factor)-Limit
- 2. Factor= Antenna factor+Cable attenuation factor(cable loss)-Amplifier gain

Page 27 of 75Report No.: STS2107141W03


Temperature:	23.1(C)	Relative Humidity:	60%RH		
Test Voltage:	DC 3.8V	Phase:	Vertical		
Test Mode:	Mode 1/2/3/4/5/6/7/8/9(Mode 7 worst mode)				

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	53.2800	59.92	-24.47	35.45	40.00	-4.55	QP
2	199.7500	59.45	-21.11	38.34	43.50	-5.16	QP
3	390.8400	44.08	-11.54	32.54	46.00	-13.46	QP
4	499.4800	40.23	-8.02	32.21	46.00	-13.79	QP
5	717.7300	32.10	-3.38	28.72	46.00	-17.28	QP
6	931.1300	34.96	0.64	35.60	46.00	-10.40	QP

Remark:

1. Margin = Result (Result = Reading + Factor)–Limit

2. Factor= Antenna factor+Cable attenuation factor(cable loss)-Amplifier gain

Page 28 of 75 Report No.: STS2107141W03

(1GHz~25GHz) Spurious emission Requirements

Frequency	Meter Reading	Amplifier	Loss	Antenna Factor	Corrected Factor	Emission Level	Limits	Margin	Detector	Comment
(MHz)	(dBµV)	(dB)	(dB)	(dB/m)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	
				Low Ch	annel (8DPSK/	2402 MHz)				
3264.68	61.90	44.70	6.70	28.20	-9.80	52.10	74.00	-21.90	PK	Vertical
3264.68	50.31	44.70	6.70	28.20	-9.80	40.51	54.00	-13.49	AV	Vertical
3264.79	60.95	44.70	6.70	28.20	-9.80	51.15	74.00	-22.85	PK	Horizontal
3264.79	49.93	44.70	6.70	28.20	-9.80	40.13	54.00	-13.87	AV	Horizontal
4804.36	58.27	44.20	9.04	31.60	-3.56	54.71	74.00	-19.29	PK	Vertical
4804.36	49.43	44.20	9.04	31.60	-3.56	45.87	54.00	-8.13	AV	Vertical
4804.54	59.54	44.20	9.04	31.60	-3.56	55.98	74.00	-18.02	PK	Horizontal
4804.54	49.67	44.20	9.04	31.60	-3.56	46.11	54.00	-7.89	AV	Horizontal
5359.73	49.33	44.20	9.86	32.00	-2.34	46.99	74.00	-27.01	PK	Vertical
5359.73	38.96	44.20	9.86	32.00	-2.34	36.62	54.00	-17.38	AV	Vertical
5359.70	47.60	44.20	9.86	32.00	-2.34	45.26	74.00	-28.74	PK	Horizontal
5359.70	38.94	44.20	9.86	32.00	-2.34	36.60	54.00	-17.40	AV	Horizontal
7205.71	53.54	43.50	11.40	35.50	3.40	56.94	74.00	-17.06	PK	Vertical
7205.71	44.57	43.50	11.40	35.50	3.40	47.97	54.00	-6.03	AV	Vertical
7205.69	54.40	43.50	11.40	35.50	3.40	57.80	74.00	-16.20	PK	Horizontal
7205.69	44.50	43.50	11.40	35.50	3.40	47.90	54.00	-6.10	AV	Horizontal
				Middle C	hannel (8DPSk	(/2441 MHz)				
3264.90	61.34	44.70	6.70	28.20	-9.80	51.54	74.00	-22.46	PK	Vertical
3264.90	51.49	44.70	6.70	28.20	-9.80	41.69	54.00	-12.31	AV	Vertical
3264.85	62.14	44.70	6.70	28.20	-9.80	52.34	74.00	-21.66	PK	Horizontal
3264.85	51.11	44.70	6.70	28.20	-9.80	41.31	54.00	-12.69	AV	Horizontal
4882.57	58.91	44.20	9.04	31.60	-3.56	55.35	74.00	-18.65	PK	Vertical
4882.57	49.57	44.20	9.04	31.60	-3.56	46.01	54.00	-7.99	AV	Vertical
4882.40	58.37	44.20	9.04	31.60	-3.56	54.81	74.00	-19.19	PK	Horizontal
4882.40	50.01	44.20	9.04	31.60	-3.56	46.45	54.00	-7.55	AV	Horizontal
5359.79	48.42	44.20	9.86	32.00	-2.34	46.08	74.00	-27.92	PK	Vertical
5359.79	39.97	44.20	9.86	32.00	-2.34	37.63	54.00	-16.37	AV	Vertical
5359.58	47.21	44.20	9.86	32.00	-2.34	44.87	74.00	-29.13	PK	Horizontal
5359.58	38.67	44.20	9.86	32.00	-2.34	36.33	54.00	-17.67	AV	Horizontal
7323.72	53.88	43.50	11.40	35.50	3.40	57.28	74.00	-16.72	PK	Vertical
7323.72	43.67	43.50	11.40	35.50	3.40	47.07	54.00	-6.93	AV	Vertical
7323.74	53.74	43.50	11.40	35.50	3.40	57.14	74.00	-16.86	PK	Horizontal
7323.74	44.18	43.50	11.40	35.50	3.40	47.58	54.00	-6.42	AV	Horizontal

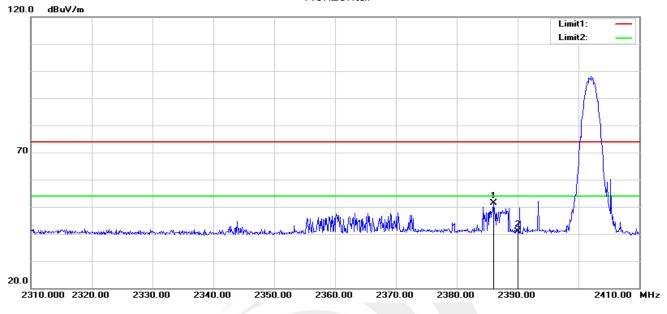
Page 29 of 75 Report No.: STS2107141W03

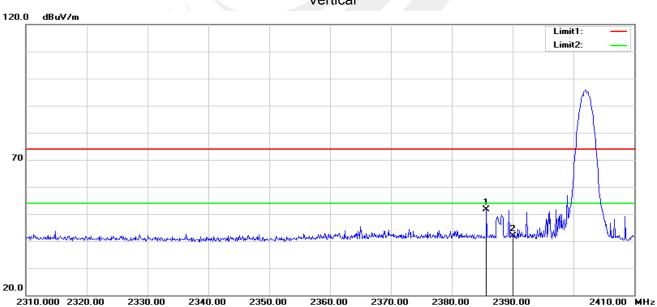
				High Chan	nel (8DPSK	/2480 MHz)				
3264.79	62.09	44.70	6.70	28.20	-9.80	52.29	74.00	-21.71	PK	Vertical
3264.79	51.37	44.70	6.70	28.20	-9.80	41.57	54.00	-12.43	AV	Vertical
3264.78	60.98	44.70	6.70	28.20	-9.80	51.18	74.00	-22.82	PK	Horizontal
3264.78	50.82	44.70	6.70	28.20	-9.80	41.02	54.00	-12.98	AV	Horizontal
4960.35	58.77	44.20	9.04	31.60	-3.56	55.21	74.00	-18.79	PK	Vertical
4960.35	50.39	44.20	9.04	31.60	-3.56	46.83	54.00	-7.17	AV	Vertical
4960.32	58.73	44.20	9.04	31.60	-3.56	55.17	74.00	-18.83	PK	Horizontal
4960.32	50.43	44.20	9.04	31.60	-3.56	46.87	54.00	-7.13	AV	Horizontal
5359.76	49.25	44.20	9.86	32.00	-2.34	46.91	74.00	-27.09	PK	Vertical
5359.76	39.65	44.20	9.86	32.00	-2.34	37.31	54.00	-16.69	AV	Vertical
5359.71	48.18	44.20	9.86	32.00	-2.34	45.84	74.00	-28.16	PK	Horizontal
5359.71	38.38	44.20	9.86	32.00	-2.34	36.04	54.00	-17.96	AV	Horizontal
7439.78	53.75	43.50	11.40	35.50	3.40	57.15	74.00	-16.85	PK	Vertical
7439.78	43.89	43.50	11.40	35.50	3.40	47.29	54.00	-6.71	AV	Vertical
7439.76	54.32	43.50	11.40	35.50	3.40	57.72	74.00	-16.28	PK	Horizontal
7439.76	44.31	43.50	11.40	35.50	3.40	47.71	54.00	-6.29	AV	Horizontal

Note:

- 1) Scan with GFSK, π /4-DQPSK, 8DPSK, the worst case is 8DPSK Mode.
- 2) Factor = Antenna Factor + Cable Loss Pre-amplifier.

Emission Level = Reading + Factor


3) The frequency emission of peak points that did not show above the forms are at least 20dB below the limit, the frequency emission is mainly from the environment noise.



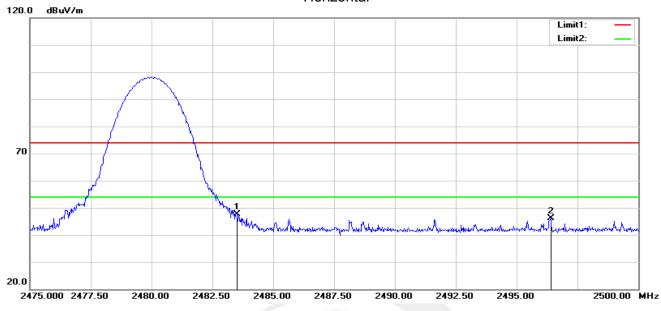
Restricted band Requirements

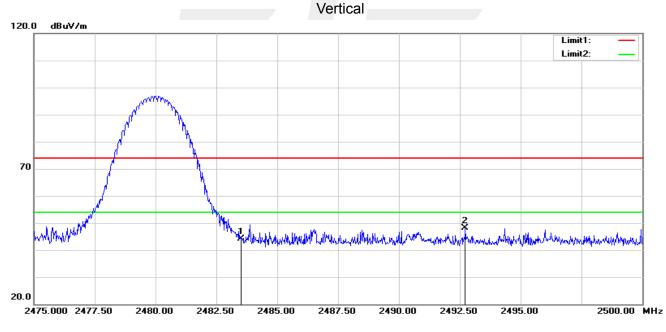
8DPSK-Low Horizontal

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2386.000	46.98	4.28	51.26	74.00	-22.74	peak
2	2390.000	36.61	4.34	40.95	74.00	-33.05	peak

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2385.700	47.24	4.27	51.51	74.00	-22.49	peak
2	2390.000	37.48	4.34	41.82	74.00	-32.18	peak

Vertical


Shenzhen STS Test Services Co., Ltd.


Page 31 of 75

Report No.: STS2107141W03

8DPSK-High Horizontal

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	43.00	4.60	47.60	74.00	-26.40	peak
2	2496.400	41.38	4.64	46.02	74.00	-27.98	peak

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	39.42	4.60	44.02	74.00	-29.98	peak
2	2492.725	43.54	4.64	48.18	74.00	-25.82	peak

Note: GFSK, π /4-DQPSK, 8DPSK of the nohopping and hopping mode all have been test, the worst case is 8DPSK of the nohopping mode, this report only show the worst case.

Shenzhen STS Test Services Co., Ltd.

4. CONDUCTED SPURIOUS & BAND EDGE EMISSION

4.1 LIMIT

According to FCC section 15.247(d), in any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

4.2 TEST PROCEDURE

Spectrum Parameter	Setting
Detector	Peak
Start/Stop Frequency	30 MHz to 10th carrier harmonic
RB / VB (emission in restricted band)	100 KHz/300 KHz
Trace-Mode:	Max hold

For Band edge


Spectrum Parameter	Setting
Detector	Peak
Start/Stop Frequency	Lower Band Edge: 2300 – 2407 MHz
Start/Stop Frequency	Upper Band Edge: 2475 – 2500 MHz
RB / VB (emission in restricted band)	100 KHz/300 KHz
Trace-Mode:	Max hold

For Hopping Band edge

Spectrum Parameter	Setting				
Detector	Peak				
Start/Stap Eraguanav	Lower Band Edge: 2300– 2403 MHz				
Start/Stop Frequency	Upper Band Edge: 2479 – 2500 MHz				
RB / VB (emission in restricted band)	100 KHz/300 KHz				
Trace-Mode:	Max hold				

The EUT is connected to the Spectrum Analyzer; the RF load attached to the EUT antenna terminal is 50Ohm; the path loss as the factor is calibrated to correct the reading. Tune the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. In order to make an accurate measurement, the span is set to be greater than RBW.

4.4 EUT OPERATION CONDITIONS

Please refer to section 3.1.4 of this report.

Shenzhen STS Test Services Co., Ltd.

4.5 TEST RESULTS

Temperature:	25 ℃	Relative Humidity:	50%
Test Mode:	GFSK(1Mbps)-00/39/78 CH	Test Voltage:	DC 3.8V

00 CH

RL		RF	50 Ω AC		S	ENSE:PULSE		ALIGN AUTO		08:45:3	39 AM Aug 02, 203
enter	· Fre	q 12.5	15000		PNO: Fast 🕞 FGain:Low	⊃ Trig: Free #Atten: 30	Run dB	Avg Type	: Log-Pwr		TYPE MWWWW DET P P P F
) dB/di			et 0.5 dB 80 dBn								2.402 GH .804 dBr
29 .80		1									
.20		_									
4.2											-14.15 dE
4.2											
4.2											
1.2		$\langle \rangle^2$		\Diamond^3					mandmus	and a service and	marganet
1.2	للميجودييهم	malian	www.ehen	and the second	d warmand and	I want you worked	man M	www.wath	Ţ		
4.2											
art 3 Res B		lz D0 kHz			#VE	300 kHz			Sw	Stop eep 2.386	o 25.00 GH s (1001 pt
R MODI	1	SCL f		× 2.402 GHz		1 dBm	CTION	FUNCTION WIDTH		FUNCTION VALUE	
2 N 3 N	1	f f		2.652 GHz 5.923 GHz	-56.480	dBm					
4 N	1	f		24.226 GHz	-47.956	6 dBm					
5											
5 7 3 9											
5 7 3											>

39 CH

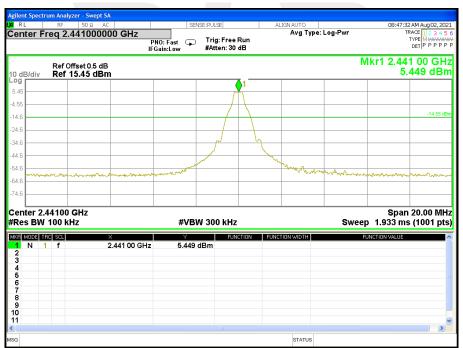
Agiler	nt Spe	ectru	n Ana	alyzer - Swept	SA						
LXI R	L		RF	50 Ω /	AC	SENSE:PU	ILSE	ALIGN AUTO		08:48:02	AM Aug 02, 2021
Cer	iter	Fre	ed ,	12.515000		IO: Fast 🖵 Tr iain:Low #A	ig: Free Run tten: 30 dB	Avg Typ	e: Log-Pwr		TYPE MWWWWW DET P P P P P
10 d	B/di			Offset 0.5 d 14.90 dB							.452 GHz 897 dBm
Log 4.90			(1							
-5.10	⊢										
-15.1	⊢										-14.55 dBr
-25.1	⊢										
-35.1 -45.1											
-45.1				$\langle \rangle^2$	$\langle \rangle^3$			how all a second and have	and the second		materia
-65.1		enter	للمحطي	My Margar	watermalahra	manners Andrews	when	and the second			
-75.1	⊢										
Stai #Re				kHz		#VBW 3	00 kHz		Sw	Stop veep 2.386 s	25.00 GHz (1001 pts
MKR 1	MODE N	TRO	SCL f		× 2.452 GHz	4.897 dBm	FUNCTION	FUNCTION WIDTH		FUNCTION VALUE	~
2	N	1	f f		3.301 GHz 5.448 GHz	-56.778 dBm -56.882 dBm					
4	N	1	f		24.276 GHz	-47.293 dBm					
6 7											
8											
10 11											
<											
//SG								STATUS			

Shenzhen STS Test Services Co., Ltd.

78 CH

nt Spectrum Analyzer - Swe L RF 50 Q		SENSE:PULSE	Δι	IGNAUTO		08:51:34 A	Μ Διμή Π2. 3
nter Freq 12.5150	000000 GHz	D: Fast Trig: Fre iin:Low #Atten:	ee Run	Avg Type: Lo	og-Pwr	TRA T)	CE 1 2 3 PE MWAAA DET P P P I
Ref Offset 0.5						Mkr1 2.4 3.5	177 G 49 dE
5							
5							-15.26
5 2							
5 manually walling	who man and a more	Mary mark mark	make why how had	santing the show when	whether the states of the stat	wynew mae	and the second sec
rt 30 MHz es BW 100 kHz		#VBW 300 kł	łz		Swee	stop 2 p 2.386 s	25.00 G (1001 p
MODE TRC SCL N 1 f N 1 f N 1 f N 1 f	× 2.477 GHz 3.276 GHz 5.748 GHz 24.301 GHz	3.549 dBm -56.625 dBm -56.210 dBm -47.326 dBm	UNCTION FUNCT	ION WIDTH	FU	NCTION VALUE	
				STATUS			

Shenzhen STS Test Services Co., Ltd.



For Band edge(it's also the reference level for conducted spurious emission)

		ctrun		lyzer - Swept S/	l								
Cent		Fre	RF	50 Q AC		SE	NSE:PULSE		AL	IGNAUTO Avg Typ	e: Log-Pwr	08:4	5:09 AM Aug 02, 2021 TRACE 1 2 3 4 5 6
Con		110	<u>4</u> -		F	PNO: Fast 😱 Gain:Low	Trig: Free #Atten: 30			• //	J		DET P P P P P
10 dE	3/div			Offset 0.5 dB 15.85 dBm	ı							Mkr1 2.4	401 97 GHz 5.853 dBm
Log 5.85													1
-4.15													
-14.2													-14,15 dBm
-24.2													
-34.2													
-44.2													4
-54.2					2								^°_ \
-64.2	-hiller	JP-W-c-h	Wrate	Construction	and a star and the second s	manulant	manneran	all meanstrained	un an	mondun	whenhanned	Mara and mara addressed	enter an
-74.2													
Star #Re:						#VB	W 300 kH	z			Swe		2.40700 GHz ms (1001 pts)
MKR N	MODE N	TRC	SCL f		× 2.401 97 GHz	Y 5.853		NCTION	FUNC	ION WIDTH		FUNCTION VALU	JE
2	Ν	1	f	:	2.321 19 GHz	-58.116	dBm						
4	N N	1	f f		2.399 40 GHz 2.400 05 GHz	-55.490 -50.145							
5 6													
5 6 7 8 9													
9 10													
11													<u> </u>
MSG										STATUS			>
										5.A103			

00 CH

39 CH

78 CH

RL	rum Analyz RF	zer - Swept SA 50 Ω AC		SE	NSE:PULSE	ALI	GNAUTO		08:51:0	5 AM Aug 02, 203
enter F	req 2.4	8750000		PNO: Fast 🖵 FGain:Low	Trig: Free Ru #Atten: 30 dB	1	Avg Type:	Log-Pwr	т	RACE 1 2 3 4 5 TYPE MWMMM DET P P P P F
) dB/div		fset 0.5 dB 4.74 dBm						M	kr1 2.480 4.	000 GH 735 dBr
.74			1							
26										-15.26 d
5.3										
i.3		/	<u> </u>							
i.3		and a second	1 North Contraction of the second sec	²				\Diamond^4		
	worden			- manuman	mound	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ᡊᡣᡊᡁᠾ᠇ ᡊ ᡁ᠆ᠺ᠘ᢧᢛ᠆ᢣᢑᢣ	han	mmunphan	๛๗๚๛๛๛
5.3										
art 2.47	2500 CL							Swoo	Stop 2 p 2.400 ms	.50000 GH
				#VB	W 300 kHz					
Res BW	100 kH	Iz	×	#VB	W 300 kHz	N FUNCTI	ION WIDTH		UNCTION VALUE	5 (1001 pt
Res BW 1 N 1 2 N 1 3 N 1 4 N 1 5	100 kH F f f	Iz 2. 2. 2.	× 480 000 GHz 483 500 GHz 487 225 GHz 493 025 GHz	4.735 -57.863 -57.744	dBm dBm dBm	N FUNCTI	ON WIDTH		•	
Res BW R MODE 11 N 1 1 2 N 1 3 N 1 4 N 1 5 7 3 3 0 3	100 kH F f f	Iz 2. 2. 2.	.480 000 GHz .483 500 GHz .487 225 GHz	4.735 -57.863 -57.744	dBm dBm dBm	N FUNCTI	ON WIDTH		•	
Res BW MODE 11 N 1 N 1 N 1 N 1 N 1 N 1	100 kH F f f	Iz 2. 2. 2.	.480 000 GHz .483 500 GHz .487 225 GHz	4.735 -57.863 -57.744	dBm dBm dBm	N FUNCTI	DN WIDTH		•	

Shenzhen STS Test Services Co., Ltd.

For Hopping Band edge

GFSK

	pectr		alyzer - Sw						_				
ente	er Fi	req 2	50 Ω 2.35150		Р	NO: Fast G Gain:Low		Free Run n: 30 dB	AL	IGN AUTO Avg Type		1	7 AM Aug 02, 202 RACE 1 2 3 4 5 TYPE MWAAWAA DET P P P P P
dB/d	div		Offset 0.6								IV	1kr1 2.402 5	. 794 GH .892 dBr
°g 5.89													
11 -													-14.11 dB
1.1 1.1													
1.1													1
4.1												^2	
1.1 🗸	waxay.	روم می هدامتر ا	and and the spectra second	un and	and the second	₩¹₩₩~25~73.48 46~		en an an an	george of the second	Banto manana da	ann an	elalar and the	manand
4.1													
		000 100				#V	BW 300	kHz		1	Swe	Stop 2 ep 9.867 m	.40300 GH s (1001 pts
EMO 1 N 2 N 3 N	1 1 1 1	f		2.390 0	794 GHz 022 GHz 013 GHz	-58.59	2 dBm 6 dBm 9 dBm	FUNCTION	FUNC	TION WIDTH		FUNCTION VALUE	
1													
5 7 3													
)													
													>
										STATUS			

RL RF	50 Ω AC		SENS	E:PULSE	ALIGNAUTO Avg Type:	Log Dug	09:09:18 AM TRACE	
iter Freq 2	2.4895000	PI	IO: Fast 😱 iain:Low	Trig: Free Run #Atten: 30 dB	Avg type.	Log-Fwi	TVP	PPPP
	Offset 0.5 dB f 14.89 dBn					М	kr1 2.479 00 4.88	00 GH 9 dB
1								
<u>\</u>								
								-15.11 c
\vdash								
\vdash	1							
	h	2				3		
	- Maria	2 - Charles	Unterner	handren	~~~~~~~	manne		
<u> </u>								
rt 2.47900							Stop 2.50	000 GI
s BW 100	kHz		#VBW	300 kHz		Swee	p 2.067 ms (1	001 p
MODE TRC SCL N 1 f N 1 f N 1 f	2	× 479 000 GHz 483 515 GHz 494 267 GHz	4.889 d -58.444 d -56.405 d	Bm	FUNCTION WIDTH		FUNCTION VALUE	

A 1/F, Building B, Zhuoke Science Park, No.190 Chongqing Road, HepingShequ, Fuyong Sub-District, Bao'an District, Shenzhen, Guang Dong, China Tel: +86-755 3688 6288 Fax:+86-755 3688 6277 Http://www.stsapp.com E-mail: sts@stsapp.com

Shenzhen STS Test Services Co., Ltd.