

FCC Radio Test Report

FCC ID: QYLWCN3980B41

Report No. Equipment Model Name Brand Name Applicant Address	 BTL-FCCP-8-2202T096 Body Worn Camera BC-4K Getac Getac Technology Corporation 5F., Building A, No.209, Sec.1, Nangang., Rd., Nangang Dist., Taipei City 11568, Taiwan, R.O.C.
Radio Function	: Bluetooth Low Energy (5.0)
FCC Rule Part(s) Measurement Procedure(s)	: FCC CFR Title 47, Part 15, Subpart C (15.247) : ANSI C63.10-2013
Date of Receipt Date of Test Issued Date	: 2022/3/23 : 2022/3/23 ~ 2023/1/18 : 2023/2/9

The above equipment has been tested and found in compliance with the requirement of the above standards by BTL Inc.

Prepared by Eric Lee, Engineer MRA Testing Laborate Approved by 0659 Jerry Chuang, Supervisor BTL Inc. No.18, Ln. 171, Sec. 2, Jiuzong Rd., Neihu Dist., Taipei City 114, Taiwan Tel: +886-2-2657-3299 Fax: +886-2-2657-3331 Web: www.newbtl.com

Declaration

BTL represents to the client that testing is done in accordance with standard procedures as applicable and that test instruments used has been calibrated with standards traceable to international standard(s) and/or national standard(s).

BTL's reports apply only to the specific samples tested under conditions. It is manufacture's responsibility to ensure that additional production units of this model are manufactured with the identical electrical and mechanical components. **BTL** shall have no liability for any declarations, inferences or generalizations drawn by the client or others from **BTL** issued reports.

This report is the confidential property of the client. As a mutual protection to the clients, the public and ourselves, the test report shall not be reproduced, except in full, without our written approval.

BTL's laboratory quality assurance procedures are in compliance with the ISO/IEC 17025 requirements, and accredited by the conformity assessment authorities listed in this test report.

BTL is not responsible for the sampling stage, so the results only apply to the sample as received.

The information, data and test plan are provided by manufacturer which may affect the validity of results, so it is manufacturer's responsibility to ensure that the apparatus meets the essential requirements of applied standards and in all the possible configurations as representative of its intended use.

Limitation

For the use of the authority's logo is limited unless the Test Standard(s)/Scope(s)/Item(s) mentioned in this test report is (are) included in the conformity assessment authorities acceptance respective.

Please note that the measurement uncertainty is provided for informational purpose only and are not use in determining the Pass/Fail results.

CONTENTS

REVIS	SION HISTORY	5
1	SUMMARY OF TEST RESULTS	6
1.1	TEST FACILITY	7
1.2	MEASUREMENT UNCERTAINTY	7
1.3	TEST ENVIRONMENT CONDITIONS	7
1.4	TABLE OF PARAMETERS OF TEXT SOFTWARE SETTING	8
1.5	DUTY CYCLE	8
2	GENERAL INFORMATION	9
2.1	DESCRIPTION OF EUT	9
2.2	TEST MODES	11
2.3	BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED	12
2.4	SUPPORT UNITS	13
3	AC POWER LINE CONDUCTED EMISSIONS TEST	14
3.1	LIMIT	14
3.2	TEST PROCEDURE	14
3.3	DEVIATION FROM TEST STANDARD	14
3.4	TEST SETUP	15
3.5	TEST RESULT	15
4	RADIATED EMISSIONS TEST	16
4.1	LIMIT	16
4.2	TEST PROCEDURE	17
4.3	DEVIATION FROM TEST STANDARD	17
4.4	TEST SETUP	18
4.5	EUT OPERATING CONDITIONS	19
4.6	TEST RESULT – BELOW 30 MHZ	19
4.7	TEST RESULT – 30 MHZ TO 1 GHZ	19
4.8	TEST RESULT – ABOVE 1 GHZ	19
5	BANDWIDTH TEST	20
5.1	APPLIED PROCEDURES / LIMIT	20
5.2	TEST PROCEDURE	20
5.3	DEVIATION FROM STANDARD	20
5.4	TEST SETUP	20
5.5	EUT OPERATION CONDITIONS	20
5.6	TEST RESULTS	20
6	OUTPUT POWER TEST	21
6.1	APPLIED PROCEDURES / LIMIT	21
6.2	TEST PROCEDURE	21
6.3	DEVIATION FROM STANDARD	21
6.4	TEST SETUP	21
6.5	EUT OPERATION CONDITIONS	21
6.6	TEST RESULTS	21
7	POWER SPECTRAL DENSITY TEST	22
7.1	APPLIED PROCEDURES / LIMIT	22
7.2	TEST PROCEDURE	22
7.3	DEVIATION FROM STANDARD	22
7.4	TEST SETUP	22
7.5	EUT OPERATION CONDITIONS	22

7.6	TES	TRESULTS	22
8	ANTEN	INA CONDUCTED SPURIOUS EMISSION	23
8.1	APP	LIED PROCEDURES / LIMIT	23
8.2	TES	T PROCEDURE	23
8.3	DEV	IATION FROM STANDARD	23
8.4	TES	T SETUP	23
8.5	EUT	OPERATION CONDITIONS	23
8.6	TES	TRESULTS	23
9	LIST O	F MEASURING EQUIPMENTS	24
10	EUT TE	EST PHOTO	26
11	EUT PH	HOTOS	26
			07
APPEN		AC POWER LINE CONDUCTED EMISSIONS	27
APPEN	IDIX B	RADIATED EMISSIONS - 30 MHZ TO 1 GHZ	32
APPEN	IDIX C	RADIATED EMISSIONS - ABOVE 1 GHZ	35
APPEN	IDIX D	BANDWIDTH	52
APPEN	IDIX E	OUTPUT POWER	55
APPEN	IDIX F	POWER SPECTRAL DENSITY TEST	57
APPEN	IDIX G	ANTENNA CONDUCTED SPURIOUS EMISSION	60

BIL

REVISION HISTORY

Report No.	Version	Description	Issued Date	Note
BTL-FCCP-8-2202T096	R00	Original Report.	2022/10/3	Invalid
BTL-FCCP-8-2202T096	R01	Revised report to address TAF Audit's	2023/2/9	Valid
		comments.		

SUMMARY OF TEST RESULTS 1

Test procedures according to the technical standards.

Standard(s) Section	Description	Test Result	Judgement	Remark
15.207	AC Power Line Conducted Emissions	APPENDIX A	Pass	
15.205 15.209 15.247(d)	Radiated Emissions	APPENDIX B APPENDIX C	Pass	
15.247(a)(2)	Bandwidth	APPENDIX D	Pass	
15.247(b)(3)	Output Power	APPENDIX E	Pass	
15.247(e)	Power Spectral Density	APPENDIX F	Pass	
15.247(d)	Antenna conducted Spurious Emission	APPENDIX G	Pass	
15.203	Antenna Requirement		Pass	

NOTE:

"N/A" denotes test is not applicable in this Test Report.
 The report format version is TP.1.1.1.

□ CB16

1.1 TEST FACILITY

The test facilities used to collect the test data in this report:

No. 68-1, Ln. 169, Sec. 2, Datong Rd., Xizhi Dist., New Taipei City 221, Taiwan The test sites and facilities are covered under FCC RN: 674415 and DN: TW0659.

SR05

1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $\mathbf{y} \pm \mathbf{U}$, where expanded uncertainty \mathbf{U} is based on a standard uncertainty multiplied by a coverage factor of $\mathbf{k} = 2$, providing a level of confidence of approximately **95**%. The measurement instrumentation uncertainty considerations contained in CISPR 16-4-2. The BTL measurement uncertainty is less than the CISPR 16-4-2 U_{cispr} requirement.

A. AC power line conducted emissions test:

Test Site	Method	Measurement Frequency Range	U (dB)
C05	CISPR	150 kHz ~ 30MHz	3.44

B. Radiated emissions test :

Test Site	Measurement Frequency Range	U,(dB)
	0.03 GHz ~ 0.2 GHz	4.17
	0.2 GHz ~ 1 GHz	4.72
CB21	1 GHz ~ 6 GHz	5.21
CB21	6 GHz ~ 18 GHz	5.51
	18 GHz ~ 26 GHz	3.69
	26 GHz ~ 40 GHz	4.23

C. Conducted test :

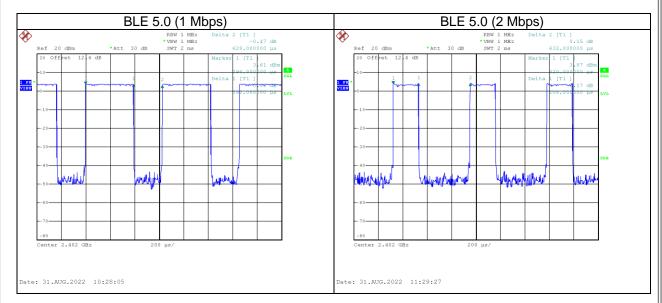
Test Item	U,(dB)
Occupied Bandwidth	0.5334
Output power	0.3669
Power Spectral Density	0.6591
Conducted Spurious emissions	0.5416
Conducted Band edges	0.5348

NOTE:

Unless specifically mentioned, the uncertainty of measurement has not been taken into account to declare the compliance or non-compliance to the specification.

1.3 TEST ENVIRONMENT CONDITIONS

Test Item	Environment Condition	Test Voltage	Tested by
AC Power Line Conducted Emissions	22 °C, 50 %	AC 120V	Jay Tien
Radiated emissions below 1 GHz	23 °C, 59 %	AC 120V	Eddie Lee
Radiated emissions above 1 GHz	24~26 °C, 58~60 %	AC 120V	Eddie Lee
Bandwidth	24.4°C, 55 %	AC 120V	Paul Shen
Output Power	24.4°C, 55 %	AC 120V	Paul Shen
Power Spectral Density	24.4°C, 55 %	AC 120V	Paul Shen
Antenna conducted Spurious Emission	24.4°C, 55 %	AC 120V	Paul Shen


1.4 TABLE OF PARAMETERS OF TEXT SOFTWARE SETTING

Test Software	Qualcomm Radio Control Tool V4.0.00172.0				
Modulation Mode	2402 MHz	2440 MHz	2480 MHz	Data Rate	
BLE 5.0	DEF	DEF	DEF	1 Mbps	
BLE 5.0	DEF	DEF	DEF	2 Mbps	

1.5 DUTY CYCLE

If duty cycle is \geq 98 %, duty factor is not required. If duty cycle is < 98 %, duty factor shall be considered.

Remark	Delta 1			Delta 2	On Time/Period	10 log(1/Duty Cycle)
Mode	ON	Numbers	On Time (B)	Period (ON+OFF)	Duty Cycle	Duty Factor
lvioue	(ms)	(ON)	(ms)	(ms)	(%)	(dB)
BLE 5.0 (1 Mbps)	0.392	1	0.392	0.628	62.42%	2.05
BLE 5.0 (2 Mbps)	0.208	1	0.208	0.632	32.91%	4.83

2 GENERAL INFORMATION

2.1 DESCRIPTION OF EUT

Equipment	Body Worn Ca	mera					
Model Name	BC-4K						
Brand Name	Getac						
Model Difference	N/A						
Power Source		(1) From host system or power adapter.(2) Battery supplied.					
	(1)						
	BC-4K	Cable type	Input Voltage				
	Pogo pins	Magnetic USB type A to pogo Cable	5V /1.5A				
Power Rating	USB type C	Type C To C cable	5V/3A and 9V/2.2A				
	(2) Getac / BP1S1P5000P: Rated Voltage: 3.63 Vdc Rated capacity: 4750 mAh, 17.24 Wh Typical capacity: 5000 mAh, 18.15 Wh						
Products Covered	1 * Adjustable Pocket Mount 1 * Clip Mount 1 * Magnetic Mount 1 * Molle Mount 1 * Dual Magnetic Mount						
Operation Band	2400 MHz ~ 24	483.5 MHz					
Operation Frequency	2402 MHz ~ 24	480 MHz					
Modulation Technology	GFSK						
Transfer Rate	1 Mbps, 2 Mbps						
Output Power Max.	1 Mbps: 5.07 dBm (0.0032 W) 2 Mbps: 5.14 dBm (0.0033 W)						
Test Model	BC-4K	·					
Sample Status	Engineering Sa	ample					
EUT Modification(s)	N/A						

NOTE:

(1) The above EUT information is declared by manufacturer and for more detailed features description, please refers to the manufacturer's specifications or user's manual.

(2) Channel List:

Channel	Frequency (MHz)	Channel	Frequency (MHz)
00	2402	20	2442
01	2404	21	2444
02	2406	22	2446
03	2408	23	2448
04	2410	24	2450
05	2412	25	2452
06	2414	26	2454
07	2416	27	2456
08	2418	28	2458
09	2420	29	2460
10	2422	30	2462
11	2424	31	2464
12	2426	32	2466
13	2428	33	2468
14	2430	34	2470
15	2432	35	2472
16	2434	36	2474
17	2436	37	2476
18	2438	38	2478
19	2440	39	2480

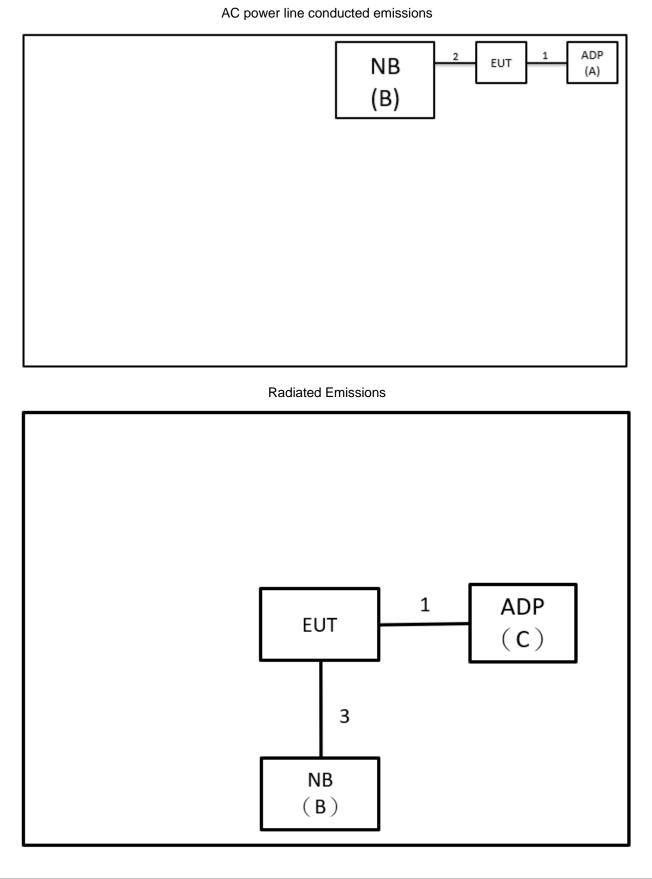
(3) Table for Filed Antenna:

Ant.	Brand Name	Model Name	Туре	Connector	Frequency (MHz)	Gain (dBi)
-	Getac	BC-4K	IFA	N/A	2400-2500	2.02

(4) The above Antenna information are derived from the antenna data sheet provided by manufacturer and for more detailed features description, please refer to the manufacturer's specifications, the laboratory shall not be held responsible.

2.2 TEST MODES

Test Items	Test mode	Channel	Note
AC power line conducted emissions	Normal/Idle	-	-
Transmitter Radiated Emissions (below 1GHz)	1 Mbps	00	-
Transmitter Radiated Emissions	1/2 Mbps	00/39	Bandedge
(above 1GHz)	1/2 Mbps	00/19/39	Harmonic
Bandwidth	1/2 Mbps	00/19/39	-
Output Power	1/2 Mbps	00/19/39	-
Power Spectral Density	1/2 Mbps	00/19/39	-
Antenna conducted Spurious Emission	1/2 Mbps	00/19/39	-


NOTE:

(1) For radiated emission band edge test, both Vertical and Horizontal are evaluated, but only the worst case (Vertical) is recorded.

2.3 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

Equipment letters and Cable numbers refer to item numbers described in the tables of clause 2.4.

2.4 SUPPORT UNITS

Item	Equipment	Brand	Model No.	Series No.	Remarks
А	Adapter	SONY	AC-0051-TW	4017W29100317	Furnished by test lab.
В	NB	ASUS	X555LN-0021B4 210U	N/A	Furnished by test lab.
С	Adapter	SAMSUNG	EP-TA12JWS	N/A	Furnished by test lab.
Item	Shielded	Ferrite Core	Length	Cable Type	Remarks
1	N/A	N/A	1m	Magnetic USB typeA to pogo Cable	Supplied by test requester.
2	N/A	N/A	1.2m	USB Cable	Furnished by test lab.
3	N/A	N/A	1m	Type C to USB	Furnished by test lab.

3 AC POWER LINE CONDUCTED EMISSIONS TEST

3.1 LIMIT

Frequency	Limit (dBµV)		
(MHz)	Quasi-peak	Average	
0.15 - 0.5	66 - 56 *	56 - 46 *	
0.50 - 5.0	56	46	
5.0 - 30.0	60	50	

NOTE:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.
- (3) The test result calculated as following:
 - Measurement Value = Reading Level + Correct Factor
 - Correct Factor = Insertion Loss + Cable Loss + Attenuator Factor (if use)

Margin Level = Measurement Value - Limit Value

Calculation example:

Reading Level		Correct Factor		Measurement Value
38.22	+	3.45	Ш	41.67

Measurement Value		Limit Value		Margin Level
41.67	-	60	Ι	-18.33

The following table is the setting of the receiver.

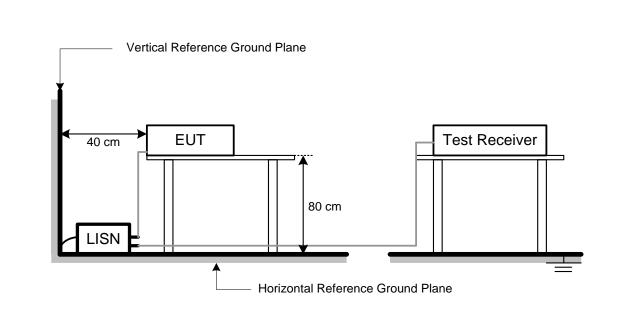
Receiver Parameter	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 KHz

3.2 TEST PROCEDURE

a. The EUT was placed 0.8 m above the horizontal ground plane with the EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipment were powered from an additional LISN(s).

- The LISN provides 50 Ohm/50uH of impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle to keep the cable above 40 cm.
- c. Excess I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable will be terminated, using the correct terminating impedance. The overall length shall not exceed 1 m.
- The LISN is spaced at least 80 cm from the nearest part of the EUT chassis. d.
- e. For the actual test configuration, please refer to the related Item EUT TEST PHOTO.

NOTE:


- (1) In the results, each reading is marked as Peak, QP or AVG per the detector used. BW=9 kHz (6 dB Bandwidth)
- (2) All readings are Peak unless otherwise stated QP or AVG in column of Note. Both the QP and the AVG readings must be less than the limit for compliance.

3.3 DEVIATION FROM TEST STANDARD

No deviation.

3.4 TEST SETUP

3.5 TEST RESULT

Please refer to the **APPENDIX A**.

4 RADIATED EMISSIONS TEST

4.1 LIMIT

In case the emission fall within the restricted band specified on 15.205, then the 15.209 limit in the table below has to be followed.

LIMITS OF RADIATED EMISSIONS MEASUREMENT (9 kHz to 1000 MHz)

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
960~1000	500	3

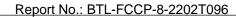
LIMITS OF RADIATED EMISSIONS MEASUREMENT (Above 1000 MHz)

Frequency (MHz)	Radiated I (dBu	Measurement Distance (meters)	
	Peak	Average	(meters)
Above 1000	74	54	3

NOTE:

- (1) The limit for radiated test was performed according to FCC CFR Title 47, Part 15, Subpart C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).
- (4) The test result calculated as following:
 - Measurement Value = Reading Level + Correct Factor
 - Correct Factor = Antenna Factor + Cable Loss Amplifier Gain(if use)

Margin Level = Measurement Value - Limit Value


Calculation example:

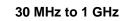
Reading Level		Correct Factor		Measurement Value
41.91	+	-8.36	Ш	33.55

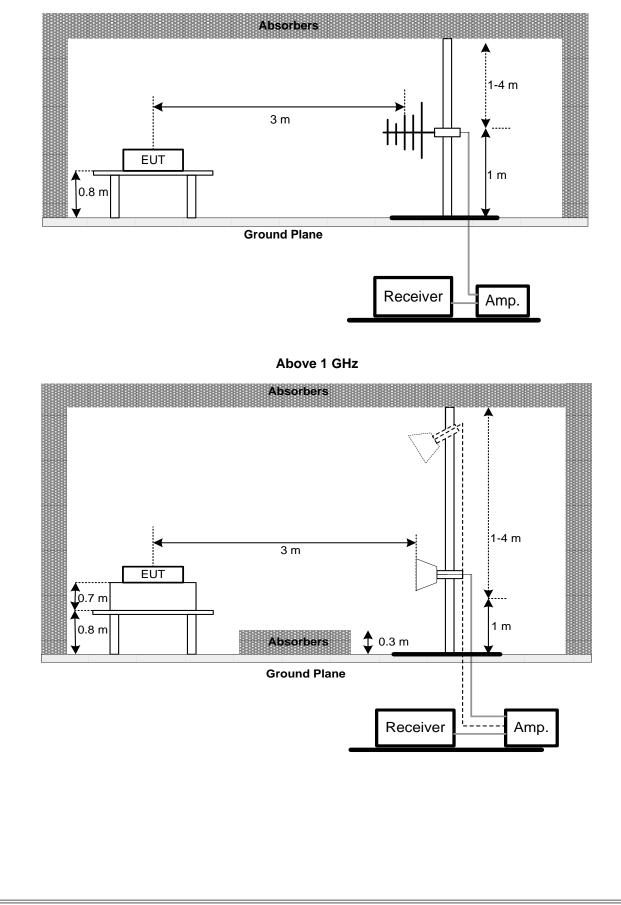
Measurement Value		Limit Value		Margin Level
33.55	-	43.50	=	-9.95

Spectrum Parameter	Setting	
Attenuation	Auto	
Start Frequency	1000 MHz	
Stop Frequency	10th carrier harmonic	
RBW / VBW	1MHz / 3MHz for Peak,	
(Emission in restricted band)	1MHz / 1/T for Average	

Spectrum Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9KHz~90KHz for PK/AVG detector
Start ~ Stop Frequency	90KHz~110KHz for QP detector
Start ~ Stop Frequency	110KHz~490KHz for PK/AVG detector
Start ~ Stop Frequency	490KHz~30MHz for QP detector
Start ~ Stop Frequency	30MHz~1000MHz for QP detector

4.2 TEST PROCEDURE


- a. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(below 1GHz)
- b. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 1.5 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(above 1GHz)
- c. The height of the equipment or of the substitution antenna shall be 0.8 m or 1.5 m, the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights find the maximum reading (used Bore sight function).
- e. The receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1GHz.
- f. The initial step in collecting radiated emission data is a receiver peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- g. All readings are Peak unless otherwise stated QP in column of Note. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform. (below 1GHz)
- All readings are Peak Mode value unless otherwise stated AVG in column of Note. If the Peak Mode Measured value compliance with the Peak Limits and lower than AVG Limits, the EUT shall be deemed to meet both Peak & AVG Limits and then only Peak Mode was measured, but AVG Mode didn't perform. (above 1GHz)
- i. For the actual test configuration, please refer to the related Item EUT TEST PHOTO.


4.3 DEVIATION FROM TEST STANDARD

No deviation.

4.4 TEST SETUP

4.5 EUT OPERATING CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

4.6 TEST RESULT – BELOW 30 MHZ

There were no emissions found below 30 MHz within 20 dB of the limit.

4.7 TEST RESULT – 30 MHZ TO 1 GHZ

Please refer to the APPENDIX B.

4.8 TEST RESULT – ABOVE 1 GHZ

Please refer to the APPENDIX C.

NOTE:

(1) No limit: This is fundamental signal, the judgment is not applicable. For fundamental signal judgment was referred to Peak output test.

5 BANDWIDTH TEST

5.1 APPLIED PROCEDURES / LIMIT

FCC Part15 (15.247), Subpart C					
Section Test Item Limit			Frequency Range (MHz)	Result	
15.247(a)(2)	Bandwidth (6dB band		2400-2483.5	PASS	

5.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting : RBW= 100KHz, VBW=300KHz, Sweep time = 2.5 ms.

5.3 DEVIATION FROM STANDARD

No deviation.

5.4 TEST SETUP

5.5 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

5.6 TEST RESULTS

Please refer to the APPENDIX D.

6 OUTPUT POWER TEST

6.1 APPLIED PROCEDURES / LIMIT

FCC Part15 (15.247), Subpart C					
Section Test Item		Limit Frequency Range (MHz)		Result	
15.247(b)(3)	Maximum Output Power	1 watt or 30dBm 2400-2483.5		PASS	

6.2 TEST PROCEDURE

- a. The EUT was directly connected to the power meter and antenna output port as show in the block diagram below,
- b. The maximum peak conducted output power was performed in accordance with FCC KDB 558074 D01 15.247 Meas Guidance.

6.3 DEVIATION FROM STANDARD

No deviation.

6.4 TEST SETUP

EUT	Power Meter

6.5 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

6.6 TEST RESULTS

Please refer to the APPENDIX E.

7 POWER SPECTRAL DENSITY TEST

7.1 APPLIED PROCEDURES / LIMIT

FCC Part15 (15.247), Subpart C						
Section Test Item		Limit	Frequency Range (MHz)	Result		
15.247(e)	Power Spectral Density	8 dBm (in any 3KHz)	2400-2483.5	PASS		

7.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting: RBW=3KHz, VBW=10 KHz, Sweep time = auto.

7.3 DEVIATION FROM STANDARD

No deviation.

7.4 TEST SETUP

7.5 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

7.6 TEST RESULTS

Please refer to the APPENDIX F.

8 ANTENNA CONDUCTED SPURIOUS EMISSION

8.1 APPLIED PROCEDURES / LIMIT

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits.

8.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting : RBW= 100KHz, VBW=300KHz, Sweep time = 10 ms.

8.3 DEVIATION FROM STANDARD

No deviation.

8.4 TEST SETUP

8.5 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

8.6 TEST RESULTS

Please refer to the APPENDIX G.

9 LIST OF MEASURING EQUIPMENTS

AC Power Line Conducted Emissions						
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until
1	TWO-LINE V-NETWORK	R&S	ENV216	101051	2022/6/15	2023/6/14
2	Test Cable	EMCI	EMCRG58-BM-B M-9000	210501	2022/5/2	2023/5/1
3	EMI Test Receiver	R&S	ESR 7	101433	2021/11/24	2022/11/23
4	Measurement Software	EZ	EZ_EMC (Version NB-03A1-01)	N/A	N/A	N/A

			Radiated Emission	ons		
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until
1	Preamplifier	EMCI	EMC330N	980850	2021/9/23	2022/9/22
	•	-		300030	2022/9/19	2023/9/18
2	Preamplifier	EMCI	EMC118A45SE	980819	2022/3/8	2023/3/7
3	Preamplifier	EMCI	EMC001340	980555	2022/4/6	2023/4/5
4	Test Cable	EMCI	EMC104-SM-SM- 1000	220319	2022/3/15	2023/3/14
5	Test Cable	EMCI	EMC104-SM-SM- 3000	220322	2022/3/15	2023/3/14
6	Test Cable	EMCI	EMC104-SM-SM- 7000	220324	2022/3/15	2023/3/14
7	EXA Signal Analyzer	keysight	N9020A	MY57120120	2022/3/7	2023/3/6
8	Loop Ant	Electro-Metrics	EMCI-LPA600	274	2022/6/28	2023/6/27
9	Horn Antenna	RFSPIN	DRH18-E	211202A18EN	2022/5/18	2023/5/17
10	Horn Ant	Schwarzbeck	BBHA 9170D	1136	2022/5/18	2023/5/17
11	Log-bicon Antenna	Schwarzbeck	VULB9168	1369	2022/5/20	2023/5/19
12	6dB Attenuator	EMCI	EMCI-N-6-06	AT-N0625	2022/5/20	2023/5/19
13	Measurement Software	EZ	EZ_EMC (Version NB-03A1-01)	N/A	N/A	N/A
14	Measurement Software	EZ	EZ_EMC (Version NB-03A1-01)	N/A	N/A	N/A

Bandwidth							
	Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until
	1	Spectrum Analyzer	R&S	FSP38	101139	2022/3/2	2023/3/1

	Output Power						
	Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until
	1	Power Meter	Keysight	8990B	MY51000517	2022/3/18	2023/3/17
IF	2	Power Sensor	Keysight	N1923A	MY58310005	2022/3/18	2023/3/17

Power Spectral Density						
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until
1	Spectrum Analyzer	R&S	FSP38	101139	2022/3/2	2023/3/1

Antenna conducted Spurious Emission						
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until
1	Spectrum Analyzer	R&S	FSP38	101139	2022/3/2	2023/3/1

Remark: "N/A" denotes no model name, no serial no. or no calibration specified. All calibration period of equipment list is one year.

10 EUT TEST PHOTO

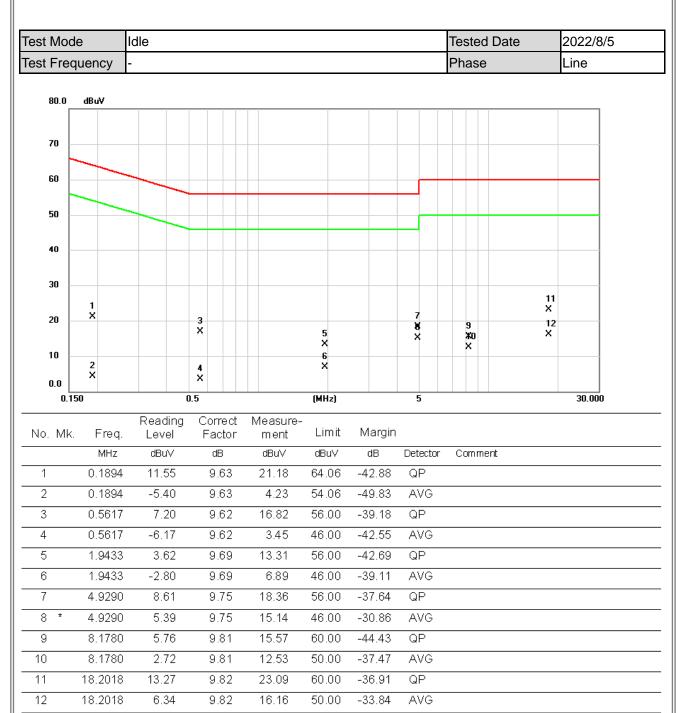
Please refer to document Appendix No.: TP-2202T096-FCCP-1 (APPENDIX-TEST PHOTOS).

11 EUT PHOTOS

Please refer to document Appendix No.: EP-2202T096-3 (APPENDIX-EUT PHOTOS).

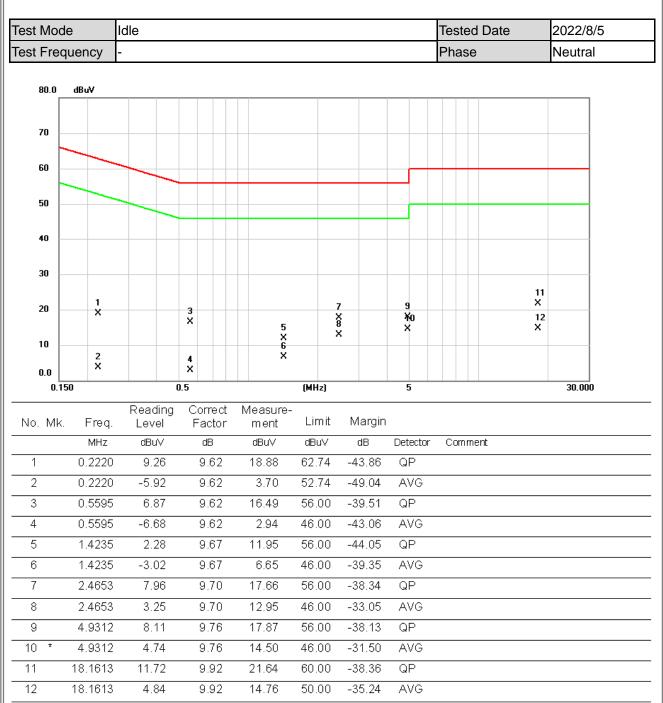
APPENDIX A AC POWER LINE CONDUCTED EMISSIONS

est Mo	de	Normal						Tested Date 2022/8 Phase Line			
est Fre	quency	-							Line		
80.0	dBuV										
70											
60											
50											
40											
30									11		
20	1 X		э Х	E	1	, {	9 X 0		X 12 X		
10	2 ×		4 ×	5 X 6 X	>	<	×				
0.0											
U.	150		.5		(MHz)		5		30.000		
No. Mł		Reading Level	Correct Factor	Measure- ment	Limit	Margin					
1	MHz 0.2130	dBu∨ 10.84	dB 9.63	dBu∨ 20.47	dBu∨ 63.09	dB -42.62	Detector QP	Comment			
2	0.2130	-5.75	9.63	3.88	53.09	-42.02	AVG				
3	0.5640	7.02	9.62	16.64	56.00	-39.36	QP				
4	0.5640	-5.60	9.62	4.02	46.00	-41.98	AVG				
5	1.4235	1.67	9.67	11.34	56.00	-44.66	QP				
6	1.4235	-2.91	9.67	6.76	46.00	-39.24	AVG				
7	2.4653	7.25	9.70	16.95	56.00	-39.05	QP				
8	2.4653	3.14	9.70	12.84	46.00	-33.16	AVG				
9	4.8368	6.25	9.75	16.00	56.00	-40.00	QP				
10 *	4.8368	3.26	9.75	13.01	46.00	-32.99	AVG				
11	18.0307	13.00	9.82	22.82	60.00	-37.18	QP				
12	18.0307	6.11	9.82	15.93	50.00	-34.07	AVG				


(1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value - Limit Value.

est Mo	de	Normal						Tested Date	2022/8/5
est Fre	quency							Phase	Neutral
80.0	dBuV								
70									
60									
50									
40									
30									11
20	1 X		3 X		7		9 ¥0		12 X
10	2 X		4	5 X 6 X	7 × 8 ×		×		
0.0			X	^					
U.	150).5		(MHz)		5		30.000
No. Mł		Reading Level	Correct Factor	Measure- ment	Limit	Margin			
4	MHz	dBu∨	dB	dBuV	dBuV	dB	Detector	Comment	
1	0.2062	10.64 -5.64	9.62	20.26 3.98	63.36 53.36	-43.10 -49.38	QP AVG		
3	0.2002	7.44	9.62	17.06	56.00	-49.50	QP		
4	0.5594	-6.70	9.62	2.92	46.00	-43.08	AVG		
5	0.9622	-1.01	9.66	8.65	56.00	-47.35	QP		
6	0.9622	-6.04	9.66	3.62	46.00	-42.38	AVG		
7	1.9387	1.50	9.69	11.19	56.00	-44.81	QP		
8	1.9387	-4.18	9.69	5.51	46.00	-40.49	AVG		
9	4.8345	6.86	9.76	16.62	56.00	-39.38	QP		
9						-32.70	AVG		
10 *	4.8345	3.54	9.76	13.30	46.00	-32.70	AVG		
	4.8345 18.1072	3.54 11.84	9.76	13.30 21.76	46.00	-38.24	QP		

(1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value - Limit Value.



(1) Measurement Value = Reading Level + Correct Factor.

(2) Margin Level = Measurement Value - Limit Value.

(1) Measurement Value = Reading Level + Correct Factor.

(2) Margin Level = Measurement Value - Limit Value.

APPENDIX B RADIATED EMISSIONS - 30 MHZ TO 1 GHZ

BIL

Test Mode Test Frequency			24	.0 (1 Mbp 02MHz	s)		Test Date Polarizatio			3/1/18 ertical	
Temp			23°C			Hum.	59%				
80.0 dB	uV/m										
70											
60											
50											
40		3		:	4 ×			5 X		ŠX	
30 X											
20											
10											
0.0											
30.000	127.00	224.00	321.00	418.00	515	.00 0	612.00 70	9.00 806	5.00	1000.00 MH;	
No.	Mk.	Freq.	Readin Level	g Corre Facto		easure- ment	Limit	Over			
		MHz	dBuV	dB	d	BuV/m	dBuV/m	dB	Detector	Comment	
1		34.1063	41.12	-12.5		28.62	40.00	-11.38	QP		
2		45.2613	42.57	-11.28		31.29	40.00	-8.71	QP		
3	*	228.3003	54.59	-14.7		39.87	46.00	-6.13	peak		
4		455.3773	43.59	-7.30		36.29	46.00	-9.71	peak		
5		763.0613	37.06	-1.42		35.64	46.00	-10.36	peak		
6		918.4877	35.32	0.36		35.68	46.00	-10.32	peak		

REMARKS:

Measurement Value = Reading Level + Correct Factor.
 Margin Level = Measurement Value - Limit Value.

Test Mode Test Frequency				0 (1 Mbps)		Test Date	-		3/1/18
				2MHz		Polarization	1	Horizontal 59%	
30.0 dB	Temp .0 dBuV/m		2	3°C		Hum.		5	9%
70									
50									
50									
40		^2	3 X			4 ×	5 X		6
30	x X		^						Š.
20									
0									
D.O									
30.000	127.00	224.00	321.00	418.00	515.00 6	12.00 70	9.00 800	6.00	1000.00 MH
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		99.6783	48.17	-16.36	31.81	43.50	-11.69	peak	
2		227.7507	51.41	-14.76	36.65	46.00	-9.35	QP	
3		272.6617	48.68	-12.15	36.53	46.00	-9.47	peak	
4	*	683.3920	42.01	-3.11	38.90	46.00	-7.10	peak	
5		767.1352	38.90	-1.39	37.51	46.00	-8.49	peak	
6		920.6540	34.20	0.39	34.59	46.00	-11.41	peak	

(1) Measurement Value = Reading Level + Correct Factor.
(2) Margin Level = Measurement Value - Limit Value.

APPENDIX C RADIATED EMISSIONS - ABOVE 1 GHZ

	Test Mo	de	BLE 5.0	(1 Mbps)		Test Date		202	2/8/3	
Test Frequency				2MHz		Polarizatior	า	Vertical		
400.0	Temp		2	4°C		Hum.		58%		
130.0	dBu∀/m									
120										
110										
100 —					4					
90 -										
80										
70										
60										
50	1 **	montration	and a sub-stability of the stability of the	adverse motor and a state	und however	and marked and the the the the	w.)	annon all and the street	5	
40	2 X	· · ·							6 X	
30										
20										
10.0										
2302.	.000 2322.0	0 2342.00	2362.00	2382.00	2402.00 2	422.00 24	42.00 246	2.00	2502.00 MH	
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment	
1		2324.800	53.91	-5.86	48.05	74.00	-25.95	peak		
2		2324.800	41.89	-5.86	36.03	54.00	-17.97	AVG		
3	Х	2402.000	103.73	-5.75	97.98	74.00	23.98	peak	NoLimit	
4	*	2402.000	103.11	-5.75	97.36	54.00	43.36	AVG	NoLimit	
5		2490.033	53.22	-5.63	47.59	74.00	-26.41	peak		
6		2490.033	41.90	-5.63	36.27	54.00	-17.73	AVG		

(1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value - Limit Value.

	Test Mo	de	BLE 5.0	(1 Mbps)		Test Date		202	2/8/3
-	Test Frequ			0MHz		Polarizatior	า		tical
	Temp		24	4°C		Hum.		58	3%
130.0	dBu¥/m								
120 -									
110 -									
100 -									
90 -									
BO									
70									
60									
50	nugited to be have	huge many many many	un provinsi dan serie	sunderformentation	show human	openano tetration	anter a supplement	-man Spran	intransferences
40	2 X							X	
20									
10.0									
2380	0.000 2400.0	0 2420.00	2440.00	2460.00	2480.00 2	500.00 252	20.00 254	10.00	2580.00 MH
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		2389.187	52.65	-5.77	46.88	74.00	-27.12	peak	
2		2389.187	42.14	-5.77	36.37	54.00	-17.63	AVG	
3	Х	2480.000	101.09	-5.65	95.44	74.00	21.44	peak	NoLimit
4	*	2480.000	100.54	-5.65	94.89	54.00	40.89	AVG	NoLimit
5		2549.380	53.15	-5.41	47.74	74.00	-26.26	peak	
6		2549.380	43.31	-5.41	37.90	54.00	-16.10	AVG	

	Test Mo	de	BLE 5.() (2 Mbps)		Test Date		202	2/9/2
Т	Test Frequ			2MHz		Polarization			tical
	Temp		2	6°C		Hum.		60)%
130.0	dBuV/m								
120									
110									
100 -					3				
90 -									
80 -									
70									
60 -									
50			nunumationalitication		1	and water to be a fear to			5
40	hanttan ar hadarad	pellowith the there of the	стильники (марти) 2 Х	April Manager - Marke	war Manana	returned the second second	, when the short of the state o	nyneritedfilmlederfilmeleteni	^{քան} կո ^{ւլ, ի} սունդիրուն 10 6 X
30 -									
20									
10.0									
	.000 2322.0 Mk.		2362.00	2382.00		2422.00 24 Limit		52.00	2502.00 MH
No.	IVIK.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		2366.600	53.06	-5.80	47.26	74.00	-26.74	peak	
2		2366.600	42.39	-5.80	36.59	54.00	-17.41	AVG	
3	Х	2402.000	103.29	-5.75	97.54	74.00	23.54	peak	NoLimit
4	*	2402.000	101.48	-5.75	95.73	54.00	41.73	AVG	NoLimit
5		2490.400	53.51	-5.63	47.88	74.00	-26.12	peak	
6		2490.400	42.46	-5.63	36.83	54.00	-17.17	AVG	

	Test	Mod	e		BLE 5.0) (2 N	(bps)			Tes	t Date	1		202	22/9/2	
	Test Fr		-			2MH					rizatio				rtical	
	Te	emp			2	6°C				Н	um.			6	0%	
130.0	0 dBuV/n	n														_
120																
110		_						2	1							
100																_
90																
								(
80																
70																
60																
50	<u> </u>	_						+	<u></u>							-
JU	wether man	Anno production	unnational	And barrents	Manan	hormous	an when	week		manumation	hand	hand	monthly	mannahangthe	mound	MAN .
40	2 X								х							
30																_
20																
10.0																
	L 380.000 24	100.00	2420.0	0 2	140.00	2460	.00	2480	.00 2	2500.00) 25	520.00	254	0.00	2580.00) MH:
No	o. Mł	۲.	Freq.		eading _evel		rrect ictor		asure-	L	imit	Ov	er			
			MHz		BuV		dB		nent BuV/m	dB	uV/m	dE	3	Detector	Comm	ent
1	1		2384.48		52.69		5.78		6.91		4.00	-27.		peak	001111	
2	2		2384.48		2.21		5.78		86.43		4.00	-17.		AVG		
3			2480.00		07.27		65		01.62		4.00	27.		peak	NoLin	
4			2480.00		05.43		.65		9.78		4.00	45.		AVG	NoLin	nit
5			2484.00 2484.00		5.60 3.57		.65 .65		9.95 87.92		4.00 4.00	-24. -16.		peak AVG		
			· / U / / //	w 1 1		5								~~~~		

Та	Test Mo			(1 Mbps)		Test Date			2/8/3
16	est Frequ Temp			<u>2MHz</u> 4°C		Polarization Hum.	1		rtical 8%
130.0 d	Terriµ IBu∀/m)	Z·	40		num.		50	570
		ĺ							
120									
10									
00									
90 –									
30									
'o 🗖									
50									
50									
io 📃		1 X							
30		2 X							
		^							
20									
10.0									
	00 3550.0		8650.00	11200.00				100.00	26500.00 MH
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4804.000	38.21	0.65	38.86	74.00	-35.14	peak	
2	*	4804.000	29.83	0.65	30.48	54.00	-23.52	AVG	

т	Test Mo			(1 Mbps) 2MHz		Test Date Polarizatio	2		2/8/3 zontal
I	est Frequ Temp			4°C		Hum.			<u>2011.ai</u> 3%
130.0	dBuV/m		2	+ 0		TIUIII.		50	5 /0
120									
110									
100 🗕									
90									
80									
70 🗖									
60									
50									
50		-							
40 -		1 X							
30 🗕		2 X							
20									
10.0									
	.000 3550.0		8650.00	11200.00				00.00	26500.00 MH:
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4804.000		0.65	40.65	74.00	-33.35	peak	
2	*	4804.000	30.02	0.65	30.67	54.00	-23.33	AVG	

	Test Mo			(1 Mbps)		Test Date			2/8/3
I	est Frequ			0MHz		Polarization	n		tical
130.0	Temp dBuV/m		2	4°C		Hum.		50	3%
130.0	0004710								
120									
110									
110									
100 -									
90 -									
80									
80									
70									
60									
50									
		1 X							
40									
30 -		2 X							
20									
10.0									
	.000 3550.0	0 6100.00	8650.00	11200.00	13750.00 1	6300.00 18	850.00 214	00.00	26500.00 MHz
No.	Mk.	Freq.	Reading	Correct	Measure-	Limit	Over		
		-	Level	Factor	ment				
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4880.000	40.42	0.92	41.34	74.00	-32.66	peak	
2	*	4880.000	30.63	0.92	31.55	54.00	-22.45	AVG	

Te	Test Mo est Frequ) (1 Mbps) 0MHz		Test Date Polarization	า		2/8/3 zontal
	Temp			4°C		Hum.			3%
130.0 d	Bu¥/m			-					
120									
110									
100									
90 —									
во —									
70									
50									
50									
40		1 X							
30		2 X							
20									
10.0									
	00 3550.0)0 6100.00	8650.00	11200.00	13750.00 1	16300.00 18	850.00 214	100.00	26500.00 MH
No.	Mk.	Freq.	Reading	Correct	Measure-	Limit	Over		
		-	Level	Factor	ment				
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4880.000	40.54	0.92	41.46	74.00	-32.54	peak	
2	*	4880.000	30.12	0.92	31.04	54.00	-22.96	AVG	

	Test Mo			(1 Mbps)		Test Date			2/8/3
	est Frequ			0MHz		Polarization	1 I		tical
130.0	Temp dBuV/m		24	4°C		Hum.		58	3%
130.0	dBu¥/m								
120									
110									
100									
90 -									
80									
70									
60									
50									
40		1 X							
30 -		2 X							
20									
10.0									
	.000 3550.0		8650.00	11200.00				00.00	26500.00 MHz
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4960.000	40.52	1.18	41.70	74.00	-32.30	peak	
2	*	4960.000	30.65	1.18	31.83	54.00	-22.17	AVG	

Te	Test Mo est Frequ) (1 Mbps) 0MHz		Test Date Polarizatior	1		2/8/3 zontal
	Temp			4°C		Hum.			3%
130.0 d	lBuV/m								
120									
110									
100									
90									
80									
70									
60									
50		1 X							
40 30		2 X							
20									
10.0									
	00 3550.0			11200.00				00.00	26500.00 MH
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4960.000	40.36	1.18	41.54	74.00	-32.46	peak	
2	*	4960.000) 30.74	1.18	31.92	54.00	-22.08	AVG	

	Test Mo	de	BLE 5.0	(2 Mbps)		Test Date		202	2/9/2
Т	est Frequ			2MHz		Polarizatio			tical
	Temp		2	6°C		Hum.		6)%
130.0	dBu¥/m								
120									
110									
100									
90									
80									
70									
60									
50									
40 -		1 X							
30		2 X							
20									
10.0									
1000.	.000 3550.0	0 6100.00	8650.00	11200.00	13750.00	16300.00 18	850.00 214	100.00	26500.00 MHz
No.	Mk.	Freq.	Reading	Correct	Measure	- Limit	Over		
		MHz	Level dBuV	Factor dB	ment dBuV/m	dBuV/m	dB	Dotootor	Comment
1		4804.000	39.11	0.65	39.76	74.00	-34.24	Detector peak	Comment
2	*								
2	*	4804.000	29.49	0.65	30.14	54.00	-23.86	AVG	

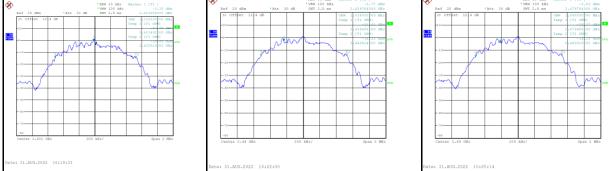
	Test Mo	de	BLE 5.0	(2 Mbps)		Test Date		202	2/9/2
٦	Test Frequ	lency		2MHz		Polarizatio	n	Horiz	zontal
	Temp)	2	6°C		Hum.		60	0%
130.0	dBuV/m					î			
120									
110									
100 -									
90 -									
80 -									
70									
60 —									
50									
40		1 X							
30		2 X							
20									
10.0									
1000	.000 3550.0	0 6100.00	8650.00	11200.00	13750.00	16300.00 18	850.00 214	100.00	26500.00 MHz
No.	Mk.	Freq.	Reading	Correct	Measure-	· Limit	Over		
		MHz	Level dBuV	Factor dB	ment dBuV/m	dPu\//~	dB	Detector	Commont
1		4804.000	39.97	0.65	40.62	dBuV/m 74.00	-33.38	Detector peak	Comment
2	*	4804.000	29.19	0.65	29.84	54.00	-24.16	AVG	

T	Test Mo est Frequ) (2 Mbps) 0MHz		Test Date Polarizatio			2/9/2 tical
16	Temp			6°C		Hum.			110ai 0%
130.0 d	iBuV/m		2			TIUIII.		00	J /0
120									
10									
100									
90 -									
30									
70									
:0									
50									
40 L		1 X							
		2 X							
30		×							
20									
10.0									
1000.0	00 3550.0	0 6100.00	8650.00	11200.00	13750.00	16300.00 18	8850.00 214	400.00	26500.00 MH
No.	Mk.	Freq.	Reading	Correct	Measure-	Limit	Over		
			Level	Factor	ment				
		MHz	dBuV	dB	dBuV/m	dBuV/m		Detector	Comment
1		4880.000		0.92	41.59	74.00	-32.41	peak	
2	*	4880.000	29.55	0.92	30.47	54.00	-23.53	AVG	

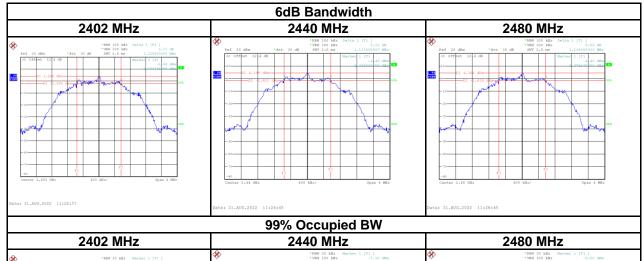
	Test Mo	de	BIE50) (2 Mbps)		Test Date		202	2/9/2
Te	Test Frequency			2440MHz		Polarization	Horizontal		
	Temp		2	6°C		Hum.		60)%
130.0 c	lBuV/m								
120									
110									
100									
90									
80									
70									
60									
50									
40		1 X							
30		2 X							
20									
10.0									
1000.0	00 3550.0	0 6100.00	8650.00	11200.00	13750.00 1	16300.00 18	850.00 214	00.00	26500.00 MHz
No.	Mk.	Freq.	Reading	Correct	Measure-	Limit	Over		
		N 11 I	Level	Factor	ment	dDu\//m	D۲	Detector	Commonst
1		MHz 4880.000	dBuV 40.42	dB 0.92	dBuV/m 41.34	dBuV/m 74.00	dB -32.66	Detector	Comment
2	*	4880.000		0.92	30.40	54.00	-32.60	peak AVG	
۷		4000.000	29.40	0.92	30.40	54.00	-23.00	AVG	

Та	Test Mo) (2 Mbps)		Test Date Polarization			2/9/2
Test Frequency Temp			2480MHz 26°C		Hum.		Vertical 60%		
130.0 d	IBuV/m)	2			num.		0	J 70
120									
10									
00									
90 –									
30									
'o 🗖									
:0									
50									
		1 X							
30		2 X							
		^							
20									
10.0									
)00 3550.0		8650.00	11200.00				400.00	26500.00 MH
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4960.000		1.18	42.12	74.00	-31.88	peak	
2	*	4960.000	30.11	1.18	31.29	54.00	-22.71	AVG	

	Test Mo	de	BLE 5.0	(2 Mbps)		Test Date		202	2/9/2
Т	Test Frequency		2480MHz		Polarization	Horizontal			
	Temp)	2	6°C		Hum.		60)%
130.0	dBuV/m								
120									
110									
100									
90									
80 -									
70									
60									
50									
40		1 X							
30		2 X							
20									
10.0									
	.000 3550.0		8650.00	11200.00				00.00	26500.00 MHz
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4960.000	39.94	1.18	41.12	74.00	-32.88	peak	
2	*	4960.000	29.91	1.18	31.09	54.00	-22.91	AVG	



BIL

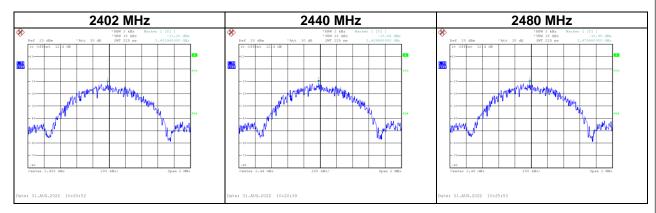

Test Mode: 1Mbps								
Frequency (MHz)	6dB Bandwidth (MHz)	99% Occupied BW (MHz)	Min. Limit (kHz)	Test Result				
2402	0.66	1.03	500	Pass				
2440	0.66	1.04	500	Pass				
2480	0.66	1.04	500	Pass				



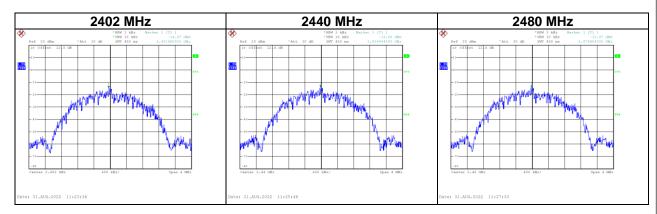
Test Mode: 2Mbps								
Frequency (MHz)	6dB Bandwidth (MHz)	99% Occupied BW (MHz)	Min. Limit (kHz)	Test Result				
2402	1.14	2.04	500	Pass				
2440	1.13	2.04	500	Pass				
2480	1.14	2.05	500	Pass				

BIL

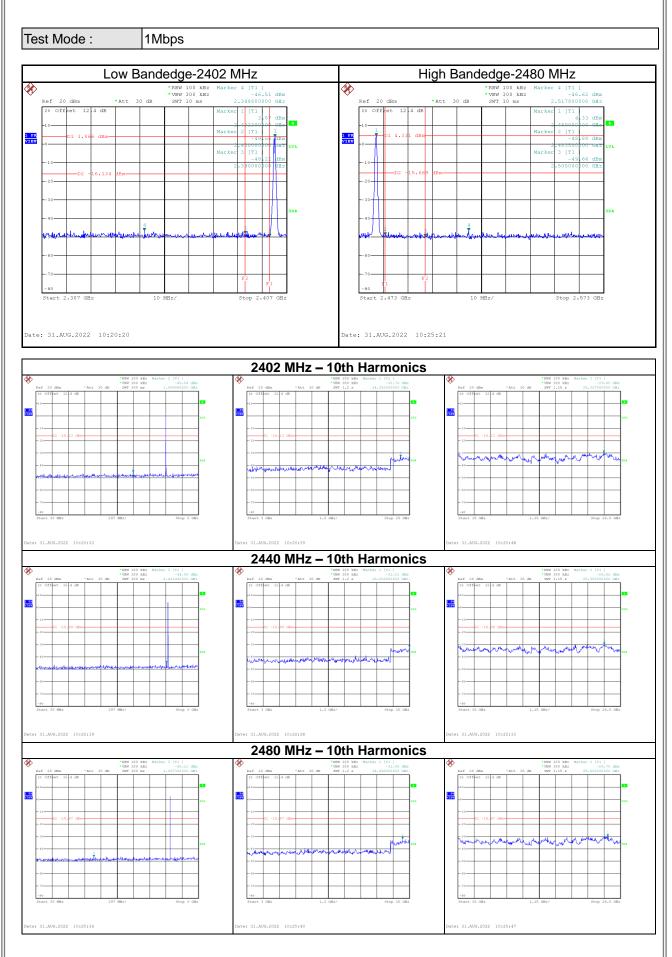
APPENDIX E OUTPUT POWER

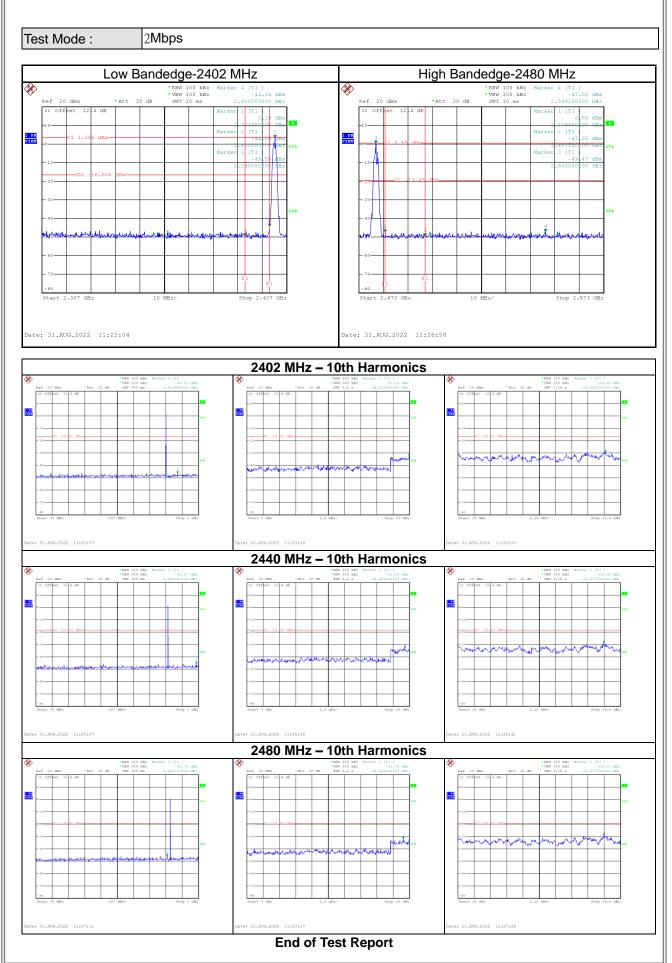

Test Mode :	1Mbps			Tested Date	2022/8/30
Frequency (MHz)	Conducted Power (dBm)	Conducted Power (W)	Max. Limit (dBm)	Max. Limit (W)	Test Result
2402	4.78	0.0030	30.00	1.0000	Pass
2440	5.07	0.0032	30.00	1.0000	Pass
2480	4.93	0.0031	30.00	1.0000	Pass
Test Mode :	2Mbps			Tested Date	2022/8/30
Frequency (MHz)	Conducted Power (dBm)	Conducted Power (W)	Max. Limit (dBm)	Max. Limit (W)	Test Result
2402	4.75	0.0030	30.00	1.0000	Pass
2440	5.14	0.0033	30.00	1.0000	Pass
2480	4.89	0.0031	30.00	1.0000	Pass

APPENDIX F POWER SPECTRAL DENSITY TEST



Test Mode : 1Mbps								
Frequency (MHz)	Power Density (dBm/3kHz)	Max. Limit (dBm/3kHz)	Test Result					
2402	-11.20	8	Pass					
2440	-10.66	8	Pass					
2480	-10.95	8	Pass					


Test Mode : 2Mbps								
Frequency (MHz)	Power Density (dBm/3kHz)	Max. Limit (dBm/3kHz)	Test Result					
2402	-14.47	8	Pass					
2440	-13.86	8	Pass					
2480	-13.97	8	Pass					



APPENDIX G ANTENNA CONDUCTED SPURIOUS EMISSION

