

Project No.: ZHT-230919001E-1 Page 1 of 34

FCC TEST REPORT FCC ID:2BB7B-A16

Report Number.: ZHT-230919001E-1

Date of Test...... Sept. 20, 2023 to Oct. 12, 2023

Date of issue: Oct. 12, 2023

Test Result: PASS

Testing Laboratory.....: Guangdong Zhonghan Testing Technology Co., Ltd.

Address Room 104, Building 1, Yibaolai Industrial Park, Qiaotou Community,

Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

Applicant's name: Shenzhen Qingfen Tingxiu Information Technology Co., Ltd

Address 2405-06, Baotai Building, 182 Design Park, 182 Bulan Road, Lilang

Community, Nanwan Street, Longgang District, Shenzhen

District Shanghai, China

Manufacturer's name: Shenzhen Qingfen Tingxiu Information Technology Co., Ltd

Address 2405-06, Baotai Building, 182 Design Park, 182 Bulan Road, Lilang

Community, Nanwan Street, Longgang District, Shenzhen

District Shanghai, China

Test specification:

Standard: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Test procedure.....: KDB558074 D01 15.247 Meas Guidance v05r02

KDB662911D01MultipleTransmitterOutputv02r01

ANSI C63.10:2013

Non-standard test method: N/A

This devicedescribed above has been tested by ZHT, and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of ZHT, this document may be altered or revised by ZHT, personal only, and shall be noted in the revision of the document.

Product name: Notebook

Trademark: : /

A16

U5, U5E, U6, U6B, U6C, A14, A15, A16, B4, B5, B6, 14PRO,

16PRO, 16K, G16

Adapter:

Model: BSG-100W2005000

Ratings.....: Input:100-240V 2A ,Max50/60Hz

Output: 20V 5.0A

Battery: DC15.4V 5400mAh

admin@zht-lab.cn, http://www.zht-lab.cn

Project No.: ZHT-230919001E-1 Page 2 of 34

			i age z ui s
Testing procedure and testi	ng location:		· ·
Testing Laboratory	:	Guangdong Zhonghan T	esting Technology Co., Ltd.
Address	:		aolai Industrial Park, Qiaotou Bao'an District, Shenzhen,
		15	Leon Li
Tested by (name + signature	e):	Leon Li	
Reviewer (name + signature)::	Baret Wu	Bax. Wu
Approved (name + signature	s):	Levi Lee	Peila

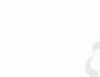


Table of Contents

		Page
1. VERSION		5
2. SUMMARY OF TEST RESULTS		6
2.1 TEST FACILITY		7
2.2 MEASUREMENT UNCERTAINTY.	(J)	7
3. GENERAL INFORMATION		8
3.1 GENERAL DESCRIPTION OF EUT	Т	8
3.2 DESCRIPTION OF TEST MODES.		9
3.3 BLOCK DIGRAM SHOWING THE	CONFIGURATION OF SYSTEM	TESTED10
3.4 DESCRIPTION OF SUPPORT UNI	ITS(CONDUCTED MODE)	10
3.5EQUIPMENTS LIST FOR ALL TES	OT ITEMS	11
4. EMC EMISSION TEST		13
4.1 CONDUCTED EMISSION MEASU		
4.2 RADIATED EMISSION MEASURE		
5. RADIATED BAND EMISSIONMEASUR	FMFNT	23
5.1 TEST REQUIREMENT:		7.00
5.2 TEST PROCEDURE		
5.3 DEVIATION FROM TEST STANDA		
5.4 TEST SETUP		24
5.5 EUT OPERATING CONDITIONS		24
5.6 TEST RESULT	(4)	25
6. POWER SPECTRAL DENSITY TEST		27
6.1 APPLIED PROCEDURES / LIMIT .		27
6.2 TEST PROCEDURE		27
6.3 DEVIATION FROM STANDARD	(4)	27
6.4 TEST SETUP		27
6.5 EUT OPERATION CONDITIONS		27
6.6 TEST RESULT		
7. CHANNEL BANDWIDTH	// /	29
7.1 APPLIED PROCEDURES / LIMIT .		29
7.2 TEST PROCEDURE		29
7.3 DEVIATION FROM STANDARD		29
7.4 TEST SETUP		
7.5 EUT OPERATION CONDITIONS		29
7.6 TEST RESULT		30
9 DEAK OUTDUT DOWED TEST		24

8.1 APPLIED PROCEDURES/LIMIT	31
8.2 TEST PROCEDURE	
8.3 DEVIATION FROM STANDARD	31
8.4 TEST SETUP	31
8.5 EUT OPERATION CONDITIONS	31
8.6 TEST RESULT	31
2. CONDUCTED BAND EDGE AND SPURIOUS EMISSION	32
9.1 APPLICABLE STANDARD	32
9.2 TEST PROCEDURE	32
9.3 DEVIATION FROM STANDARD	
9.4 TEST SETUP	
9.5 EUT OPERATION CONDITIONS	32
9.6 TEST RESULTS	32
10. ANTENNA REQUIREMENT	33
11. TEST SETUP PHOTO	34
12. EUT CONSTRUCTIONAL DETAILS	34

Project No.: ZHT-230919001E-1 Page 5 of 34

VERSION

Report No.	Version	Description	Approved
ZHT-230919001E-1	Rev.01	Initial issue of report	Oct. 12, 2023
15	15	15)	150

Project No.: ZHT-230919001E-1 Page 6 of 34

SUMMARY OF TEST RESULTS

Test procedures according to the technical standards:

FCC Part15 (15.247) , Subpart C					
Standard Section	Test Item	Result	Remark		
FCC part 15.203/15.247 (b)(4)	Antenna requirement	PASS			
FCC part 15.207	AC Power Line Conducted Emission	PASS			
FCC part 15.247 (b)(3)	Conducted Peak Output Power	PASS			
FCC part 15.247 (a)(2)	Channel Bandwidth	PASS			
FCC part 15.247 (e)	Power Spectral Density	PASS			
FCC part 15.247(d)	Band Edge	PASS	15		
FCC part 15.205/15.209	Spurious Emission	PASS	(D)		

NOTE:

(1) " N/A" denotes test is not applicable in this Test Report

Project No.: ZHT-230919001E-1 Page 7 of 34

2.1 TEST FACILITY

Guangdong Zhonghan Testing Technology Co., Ltd.

Add.: Room 104, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

FCC Registration Number:255941 Designation Number: CN0325 IC Registered No.: 29832 CAB identifier: CN0143

2.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2 · providing a level of confidence of approximately 95 %。

No.	Item	Uncertainty	
1	Conducted Emission Test	±1.38dB	
2	RF powerconducted	±0.16dB	
3	Spurious emissionsconducted	±0.21dB	
4	All emissions radiated(9k-30MHz)	±4.68dB	
5	All emissionsradiated(<1G)	±4.68dB	
6	All emissionsradiated(>1G)	±4.89dB	
7	Temperature	±0.5°C	
8	Humidity	±2%	
9	Occupied Bandwidth	±4.96dB	

Project No.: ZHT-230919001E-1 Page 8 of 34

GENERAL INFORMATION

3.1 GENERAL DESCRIPTION OF EUT

Product Name:	Notebook		
Model No.:	A16 T5A, T5C, T5E, T5G, T5K, T5KD, T6A, T6AD, T9C, U4, U4B, U4C, U5, U5E, U6, U6B, U6C, A14, A15, A16, B4, B5, B6, 14PRO, 16PRO, 16K, G16		
Difference describe	All the models are the same circuit and RF module. Only the model names are different. The model A16 is the tested sample.		
Hardware Version:	V1.0		
Software Version:	V1.0		
Sample(s) Status:	Engineer sample		
Channel numbers:	802.11b/802.11g /802.11n(HT20):11, /802.11n(HT40):7		
Operation Frequency:	802.11b/802.11g /802.11n(HT20): 2412-2462MHz/802.11n(HT40): 2422-2452MHz		
Channel separation:	5MHz		
Modulation technology:	IEEE 802.11b: DQPSK/DBPSK/DSSS/CCK IEEE 802.11g: QPSK/BPSK/16QAM/64QAM/OFDM IEEE 802.11n: QPSK/BPSK/16QAM/64QAM/OFDM		
Antenna Type:	Internal Antenna		
Antenna gain:	Ant 1:3.46dBi, Ant 2:2.16dBi		
Power supply:	Adapter: Model: BSG-100W2005000 Input:100-240V 2A ,Max50/60Hz Output:20V 5.0A Battery:DC15.4V		

Note: The device supports SISO in all modes, and MIMO 2T2R in 802.11n modes. Directional gain(MIMO) =10 log(10^{G1/10}+10^{G2/10}) dBi=5.87dBi

Project No.: ZHT-230919001E-1

Page 9 of 34

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz
3	2422MHz	6	2437MHz	9	2452MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Test channel	Frequency (MHz)		
rest Chainlei	802.11b/802.11g/802.11n(HT20)		
Lowest channel	2412MHz		
Middle channel	2437MHz		
Highest channel	2462MHz		

Test channel	Frequency (MHz)		
rest channel	802.11n(HT40)		
Lowest channel	2422MHz		
Middle channel	2437MHz		
Highest channel	2452MHz		

3.2 DESCRIPTION OF TEST MODES

Transmitting mode	Keep the EUT in continuously transmitting mode
	battery during the test,the dutycycle >98%, the test voltage was tuned from ninal rated supply voltage, and found that the worst case was under the

nominal rated supply condition. So the report just shows that condition's data.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Pre-scan all kind o	f data rate in lo	owest channel, and	found the follow	list which it was worst case.
---------------------	-------------------	--------------------	------------------	-------------------------------

Mode	802.11b	802.11g	802.11n(HT20)	802.11n(HT40)	
Data rate	1Mbps	6Mbps	6.5Mbps	13.5Mbps	

Project No.: ZHT-230919001E-1 Page 10 of 34

3.3 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

Radiated Emission

Conducted Spurious

A 1 = 1 = 1	1	FUT
Adapter		EUI

3.4 DESCRIPTION OF SUPPORT UNITS(CONDUCTED MODE)

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand	Model/Type No.	Series No.	Note
	/		/	1	
	45		15	115	
		<i>b.</i>			

Item	Shielded Type	Ferrite Core	Length	No	ote
115		110		15)	7.0

Note:

- The support equipment was authorized by Declaration of Confirmation. (1)
- (2) For detachable type I/O cable should be specified the length in cm in <code>FLength_l</code> column.



Project No.: ZHT-230919001E-1 Page 11 of 34

3.5EQUIPMENTS LIST FOR ALL TEST ITEMS

Radiation Test equipment

Item	Equipment	Manufacturer	Model	Last Cal.	Next Cal.
1	Receiver	R&S	ESCI	May 12, 2023	May 11, 2024
2	Loop antenna	EMCI	LAP600	May 12, 2023	May 11, 2024
3	3 Amplifier Schw		BBV 9743 B	May 12, 2023	May 11, 2024
4	Amplifier	Schwarzbeck	BBV 9718 B	May 12, 2023	May 11, 2024
5	Bilog Antenna	Schwarzbeck	VULB9162	May 17, 2023	May 16, 2024
6	Horn Antenna	Schwarzbeck	BBHA9120D	May 17, 2023	May 16, 2024
7	Horn Antenna	A.H.SYSTEMS	SAS574	May 12, 2023	May 11, 2024
8	Amplifier	AEROFLEX	100KHz-40GHz	May 12, 2023	May 11, 2024
9	Spectrum Analyzer	R&S	FSV40	May 12, 2023	May 11, 2024
10	CDNE	Schwarzbeck	CDNE M2 + CDNE M3	May 12, 2023	May 11, 2024
11	966 Anechoic Chamber	EMToni	9m6m6m	Nov. 25, 2021	Nov. 24, 2024
12	Spectrum Analyzer	KEYSIGHT	N9020A	May 12, 2023	May 11, 2024
13	WIDBAND		CMW500	May 12, 2023	May 11, 2024
14	Single Generator	Agilent	N5182A	May 12, 2023	May 11, 2024
15	Power Sensor	MWRFtest	MW100-RFCB	May 12, 2023	May 11, 2024
16	Audio analyzer	R&S	UPL	May 12, 2023	May 11, 2024
17	Single Generator	R&S	SMB100A	May 12, 2023	May 11, 2024
18	Power Amplifier Shielding Room	EMToni	2m3m3m	Nov. 25, 2021	Nov. 24, 2024

Project No.: ZHT-230919001E-1 Page 12 of 34

Conduction Test equipment

Equipment	Manufacturer	Model	Last Cal.	Next Cal.
Receiver	R&S	ESCI	May 12, 2023	May 11, 2024
LISN	R&S	ENV216	May 12, 2023	May 11, 2024
ISN CAT 6	Schwarzbeck	NTFM 8158	May 12, 2023	May 11, 2024
ISN CAT 5	Schwarzbeck	CAT5 8158	May 12, 2023	May 11, 2024
Capacitive Voltage Probe	Schwarzbeck	CVP 9222 C	May 12, 2023	May 11, 2024
Current Transformer Clamp	Schwarzbeck	SW 9605	May 12, 2023	May 11, 2024
CE Shielding Room	EMToni	9m4m3m	Nov. 25, 2021	Nov. 24, 2024

Project No.: ZHT-230919001E-1 Page 13 of 34

EMC EMISSION TEST

4.1 CONDUCTED EMISSION MEASUREMENT

Test Requirement:	FCC Part15 C Section 15.207
Test Method:	ANSI C63.10:2013
Test Frequency Range:	150KHz to 30MHz
Receiver setup:	RBW=9KHz, VBW=30KHz, Sweep time=auto

4.1.1 POWER LINE CONDUCTED EMISSION Limits

FREQUENCY (MHz)	Limit (Ctondord		
PREQUENCT (MHZ)	Quasi-peak	Average	Standard	
0.15 -0.5	66 - 56 *	56 - 46 *	FCC	
0.50 -5.0	56.00	46.00	FCC	
5.0 -30.0	60.00	50.00	FCC	

Note:

(1) *Decreases with the logarithm of the frequency.

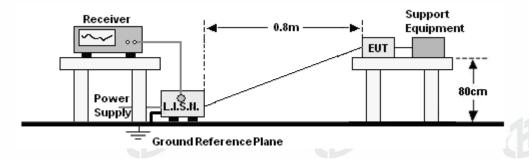
4.1.2 TEST PROCEDURE

- a. The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item -EUT Test Photos.

4.1.3 DEVIATION FROM TEST STANDARD

No deviation

□ admin@zht-lab.cn,

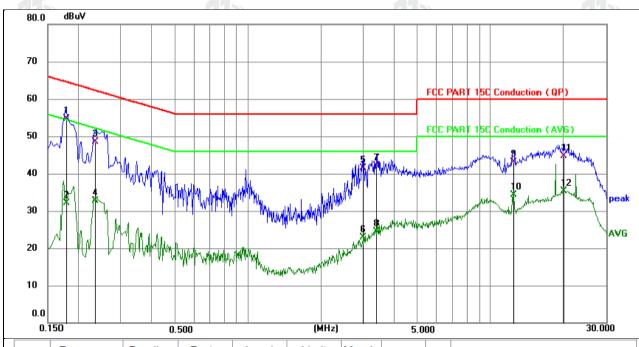


Project No.: ZHT-230919001E-1 Page 14 of 34

4.1.4 TEST SETUP

4.1.5 EUT OPERATING CONDITIONS

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.



Project No.: ZHT-230919001E-1 Page 15 of 34

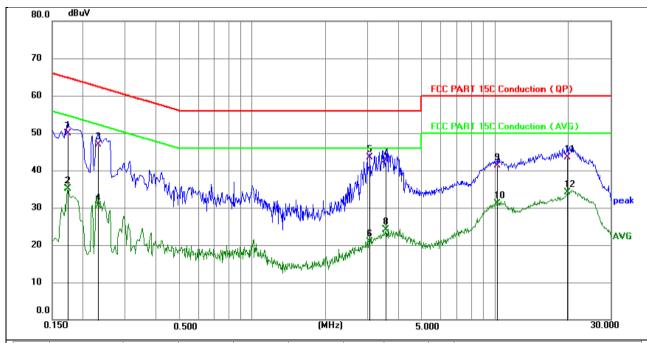
4.1.6 test result

Temperature:	24.3°C	Relative Humidity:	50%
Pressure:	101kPa	Phase :	L
Test Voltage:	AC 120V/60Hz		

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV)	Limit (dBu∀)	Margin (dB)	Detector	P/F	Remark
1 *	0.1770	44.71	9.90	54.61	64.63	-10.02	QP	Р	
2	0.1770	22.27	9.90	32.17	54.63	-22.46	AVG	Р	
3	0.2353	38.67	9.92	48.59	62.26	-13.67	QP	Р	
4	0.2353	22.72	9.92	32.64	52.26	-19.62	AVG	Р	
5	3.0030	31.41	10.07	41.48	56.00	-14.52	QP	Р	
6	3.0030	12.82	10.07	22.89	46.00	-23.11	AVG	Р	
7	3.4125	31.97	10.08	42.05	56.00	-13.95	QP	Р	
8	3.4125	14.36	10.08	24.44	46.00	-21.56	AVG	Р	
9	12.5023	33.10	10.09	43.19	60.00	-16.81	QP	Р	
10	12.5023	24.22	10.09	34.31	50.00	-15.69	AVG	Р	
11	20.1299	34.69	10.11	44.80	60.00	-15.20	QP	Р	
12	20.1299	25.10	10.11	35.21	50.00	-14.79	AVG	Р	

Notes:

- 1.An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3.Mesurement Level = Reading level + Correct Factor
- 4. The test data shows only the worst case 802.11b mode (Low Channel: 2412MHz).



Project No.: ZHT-230919001E-1 Page 16 of 34

Temperature:	24.3°C	Relative Humidity:	50%
Pressure:	101kPa	Phase :	N
Test Voltage:	AC 120V/60Hz		

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV)	Limit (dBu∀)	Margin (dB)	Detector	P/F	Remark
1	0.1724	39.99	9.90	49.89	64.84	-14.95	QP	Р	
2	0.1724	25.15	9.90	35.05	54.84	-19.79	AVG	Р	
3	0.2310	36.95	9.92	46.87	62.41	-15.54	QP	Р	
4	0.2310	20.54	9.92	30.46	52.41	-21.95	AVG	Р	
5 *	3.0660	33.44	10.07	43.51	56.00	-12.49	QP	Р	
6	3.0660	10.79	10.07	20.86	46.00	-25.14	AVG	Р	
7	3.5474	32.68	10.08	42.76	56.00	-13.24	QP	Р	
8	3.5474	13.98	10.08	24.06	46.00	-21.94	AVG	Р	
9	10.2345	31.30	10.08	41.38	60.00	-18.62	QP	Р	
10	10.2345	20.95	10.08	31.03	50.00	-18.97	AVG	Р	
11	19.8960	33.40	10.11	43.51	60.00	-16.49	QP	Р	
12	19.8960	24.03	10.11	34.14	50.00	-15.86	AVG	Р	

Notes:

- 1.An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3.Mesurement Level = Reading level + Correct Factor
- 4. The test data shows only the worst case 802.11b mode (Low Channel:2412MHz).

Project No.: ZHT-230919001E-1 Page 17 of 34

4.2 RADIATED EMISSION MEASUREMENT

Test Requirement:	FCC Part15 C Section 15.209								
Test Method:	ANSI C63.10:2013								
Test Frequency Range:	9kHz to 25GHz								
Test site:	Measurement Distance: 3m								
Receiver setup:	Frequency	Detector	RBW	VBW	Value				
	9KHz-150KHz	Quasi-peak	200Hz	600Hz	Quasi-peak				
	150KHz-30MHz	Quasi-peak	9KHz	30KHz	Quasi-peak				
	30MHz-1GHz	Quasi-peak	100KHz	300KHz	Quasi-peak				
	Above 4CU-	Peak	1MHz	3MHz	Peak				
	Above 1GHz	Peak	1MHz	10Hz	Average				

4.2.1 RADIATED EMISSION LIMITS

Frequencies	Field Strength	Measurement Distance		
(MHz)	(micorvolts/meter)	(meters)		
0.009~0.490	2400/F(KHz)	300		
0.490~1.705	24000/F(KHz)	30		
1.705~30.0	30	30		
30~88	100	3		
88~216	150	3		
216~960	200	3		
Above 960	500	3		

LIMITS OF RADIATED EMISSION MEASUREMENT

	Limit (dBuV/m) (at 3M)					
FREQUENCY (MHz)	PEAK	AVERAGE				
Above 1000	74	54				

Notes:

- (1) The limit for radiated test was performed according to FCC PART 15C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).

4.2.2 TEST PROCEDURE

Below 1GHz test procedure as below:

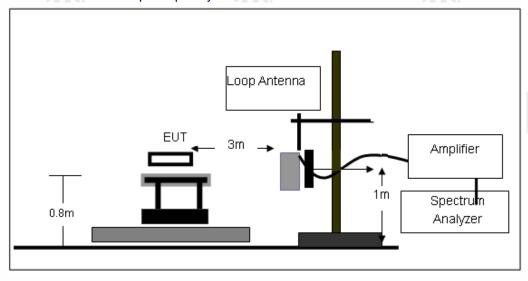
- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoiccamber. The table was rotated 360 degrees to determine the position of the highest
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of avariable-height antenna tower.

matter://www.zht-lab.cn

- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum valueof the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned toheights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could bestopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dBmargin would be re-tested one by one using peak, quasi-peak or average method as specified and then reportedin a data sheet.

Above 1GHz test procedure as below:

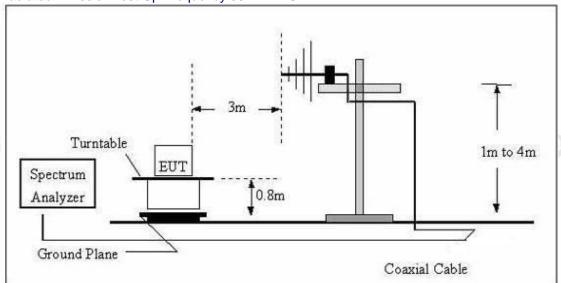
- q. Different between above is the test site, change from Semi-Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter (Above 18GHz the distance is 1 meter and table
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel

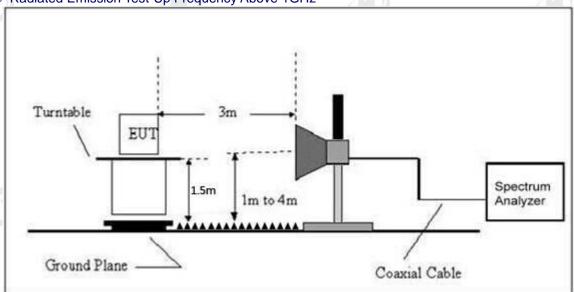

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

4.2.3 DEVIATION FROM TEST STANDARD

No deviation

4.2.4 TEST SETUP


(A) Radiated Emission Test-Up Frequency Below 30MHz



Project No.: ZHT-230919001E-1 Page 19 of 34

(B) Radiated Emission Test-Up Frequency 30MHz~1GHz

(C) Radiated Emission Test-Up Frequency Above 1GHz

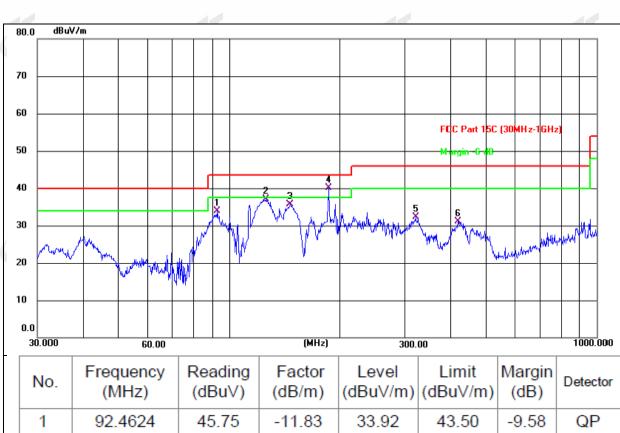
4.2.5 EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

4.2.6 TEST RESULTS

Between 9KHz - 30MHz

The emission from 9 kHz to 30MHz was pre-tested and found the result was 20dB lower than the limit, and according to 15.31(o) & RSS-Gen 6.13, the test result no need to reported.

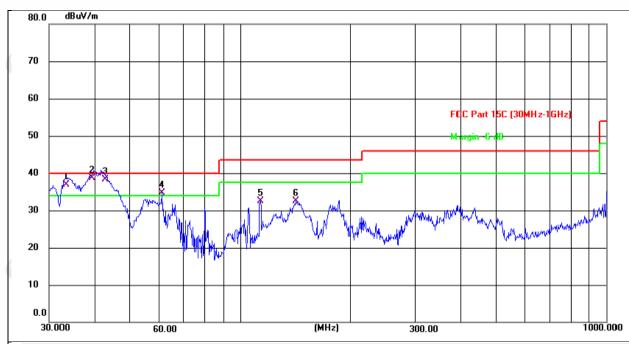


Project No.: ZHT-230919001E-1 Page 20 of 34

Between 30MHz - 1GHz

Temperature :	25.1°C	Relative Humidity :	50%
Pressure :	101kPa	Polarization :	Horizontal
Test Voltage :	DC 20V		

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	92.4624	45.75	-11.83	33.92	43.50	-9.58	QP
2	125.8864	49.94	-12.93	37.01	43.50	-6.49	QP
3	145.8611	49.53	-13.74	35.79	43.50	-7.71	QP
4 *	186.4409	51.66	-11.50	40.16	43.50	-3.34	QP
5	321.0608	39.64	-7.34	32.30	46.00	-13.70	QP
6	417.6411	36.65	-5.53	31.12	46.00	-14.88	QP



Project No.: ZHT-230919001E-1 Page 21 of 34

Temperature :	25.1°C	Relative Humidity :	50%
Pressure :	101kPa	Polarization :	Vertical
Test Voltage :	DC 20V		

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1 !	33.3279	46.96	-10.11	36.85	40.00	-3.15	QP
2 *	39.4256	48.04	-9.24	38.80	40.00	-1.20	QP
3 !	42.6554	47.19	-8.96	38.23	40.00	-1.77	QP
4 !	60.9176	44.25	-9.51	34.74	40.00	-5.26	QP
5	113.3163	44.48	-11.96	32.52	43.50	-10.98	QP
6	141.8262	46.03	-13.58	32.45	43.50	-11.05	QP

Remarks:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 3. The test data shows only the worst case 802.11b mode (Low Channel:2412MHz).

Project No.: ZHT-230919001E-1 Page 22 of 34

1GHz~25GHz

10112~	200112	172			1.00		691		
Polar	Frequency	Meter Reading	Pre-ampl ifier	Cable Loss	Antenna Factor	Emission Level	Limits	Margin	Detect
(H/V)	(MHz)	(dBuV)	(dB)	(dB)	(dB)	(dBuV/m)	(dBuV/ m)	(dB)	or Type
		•		80	2.11b		,		
			L	ow Chan	nel:2412MH	z			
V	4824.00	46.39	30.55	5.77	24.66	46.27	74.00	-27.73	PK
H	4824.00	47.27	30.55	5.77	24.66	47.15	74.00	-26.85	PK
					nnel:2437M				
V	4874.00	48.42	30.55	5.77	24.66	48.30	74.00	-25.70	PK
Н	4874.00	46.86	30.55	5.77	24.66	46.74	74.00	-27.26	PK
	1				nel:2462MH		T	T	•
V	4924.00	46.21	30.55	5.77	24.66	46.09	74.00	-27.91	PK
Н	4924.00	46.76	30.55	5.77	24.66	46.64	74.00	-27.36	PK
					2.11g				
					nel:2412MH			T	
V	4824.00	48.57	30.55	5.77	24.66	48.45	74.00	-25.55	PK
Н	4824.00	46.05	30.55	5.77	24.66	45.93	74.00	-28.07	PK
		1			nnel:2437M		I	T	
V	4874.00	47.24	30.55	5.77	24.66	47.12	74.00	-26.88	PK
H	4874.00	46.82	30.55	5.77	24.66	46.70	74.00	-27.30	PK
	1				nel:2462MF		T		
V	4924.00	48.67	30.55	5.77	24.66	48.55	74.00	-24.91	PK
Н	4924.00	47.53	30.55	5.77	24.66	47.41	74.00	-28.09	PK
					11n 20				
		1			nel:2412MH		_45		
V	4824.00	47.47	30.55	5.77	24.66	47.35	74.00	-26.65	PK
H	4824.00	48.11	30.55	5.77	24.66	47.99	74.00	-26.01	PK
	10=100	T			nnel:2437M		· · · · · · · · · · · · · · · · · · ·		
V	4874.00	48.77	30.55	5.77	24.66	48.65	74.00	-25.35	PK
Н	4874.00	48.08	30.55	5.77	24.66	47.96	74.00	-26.04	PK
-44	To	1			nel:2462MF				11
V	4924.00	47.74	30.55	5.77	24.66	47.62	74.00	-26.38	PK
Н	4924.00	47.88	30.55	5.77	24.66	47.76	74.00	-26.24	PK
					11n 40				
	T	T			nel:2422MH	,	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
V	4844.00	47.28	30.55	5.77	24.66	47.16	74.00	-26.84	PK
Н	4844.00	48.51	30.55	5.77	24.66	48.39	74.00	-25.61	PK
\/	4074.00	10.05			nnel:2437M		74.00	07.47	DIZ
	4874.00	46.95	30.55	5.77	24.66	46.83	74.00	-27.17	PK
Н	4874.00	48.91	30.55	5.77	24.66	48.79	74.00	-25.21	PK
	100:55	10:5		_	nel:2452MH			00.00	
<u>V</u>	4904.00	48.10	30.55	5.77	24.66	47.98	74.00	-26.02	PK
Н	4904.00	47.00	30.55	5.77	24.66	46.88	74.00	-27.12	PK

Remark:

- 1. Emission Level = Meter Reading + Antenna Factor + Cable Loss Pre-amplifier, Margin= Emission Level - Limit
- 2. If peak below the average limit, the average emission was no test.
- 3. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.
- 4. For above 1GHz, the test result of peak was 20dB below to the limit of peak, which can be compliant to the average limit, so just peak value was recorded.

RADIATED BAND EMISSIONMEASUREMENT

5.1 TEST REQUIREMENT:

Test Requirement:	FCC Part15 C	Section 15.209	and 15.205					
Test Method:	ANSI C63.10: 2	ANSI C63.10: 2013						
Test Frequency Range:	/ L(D)	all of the restrict bands were tested, only the worst band's (2310MHz to 500MHz) data was showed.						
Test site:	Measurement I	Measurement Distance: 3m						
Receiver setup:	Frequency	Detector	RBW	VBW	Value			
	Above	Peak	1MHz	3MHz	Peak			
	1GHz	Average	1MHz	3MHz	Average			

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

	EDEOLIENCY (MLI-)	Class B (dBuV/m) (at 3M)					
9	FREQUENCY (MHz)	PEAK	AVERAGE				
	Above 1000	74	54				

Notes:

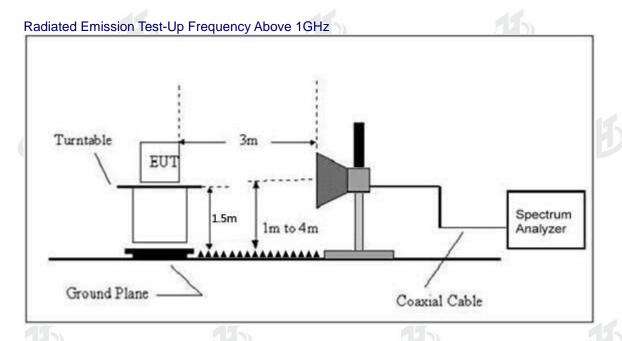
- (1) The limit for radiated test was performed according to FCC PART 15C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).

5.2 TEST PROCEDURE

Above 1GHz test procedure as below:

- a. 1. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could bestopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dBmargin would be re-tested one by one using peak, quasi-peak or average method as specified and then reportedin a data sheet.
- g. Test the EUT in the lowest channel, the Highest channel

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported


5.3 DEVIATION FROM TEST STANDARD

No deviation


Project No.: ZHT-230919001E-1 Page 24 of 34

5.4 TEST SETUP

5.5 EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.

Project No.: ZHT-230919001E-1 Page 25 of 34

5.6 TEST RESULT

		Frequenc	Meter	Pre-	Cable	Antenna	Emission	Limit	Margi	Detec	
	Polar	У	Reading	amplifier	Loss	Factor	level	(dBuV	n	tor	Result
	(H/V)	(MHz)	(dBuV)	(dB)	(dB)	(dB/m)	(dBuV/m)	(m)	(dB)	Type	
		(**************************************	(===,	` ,	, ,	l 2412MHz	(5.2 5. 7.7.7)	,,,,	(5.2)	.) [-	
	Н	2390.00	60.68	30.22	4.85	23.98	59.29	74.00	-14.71	PK	PASS
	TH.	2390.00	48.31	30.22	4.85	23.98	46.92	54.00	-7.08	AV	PASS
7	H	2400.00	62.41	30.22	4.85	23.98	61.02	74.00	-12.98	PK	PASS
	H	2400.00	48.81	30.22	4.85	23.98	47.42	54.00	-6.58	AV	PASS
	V	2390.00	62.53	30.22	4.85	23.98	61.14	74.00	-12.86	PK	PASS
	V	2390.00	48.66	30.22	4.85	23.98	47.27	54.00	-6.73	AV	PASS
	V	2400.00	62.20	30.22	4.85	23.98	60.81	74.00	-13.19	PK	PASS
1	V	2400.00	48.13	30.22	4.85	23.98	46.74	54.00	-7.26	AV	PASS
802.11b	V	2400.00	40.13			23.96 el 2462MHz		34.00	-7.20	AV	1 700
	Н	2483.50	60.93	30.22	4.85	23.98	59.54	74.00	-14.46	PK	PASS
		2483.50	48.77	30.22	4.85	23.98	47.38	54.00	-6.62	AV	PASS
		2500.00	61.96	30.22	4.85	23.98	60.57	74.00	-13.43	PK	PASS
	Н	2500.00	47.56	30.22	4.85	23.98	46.17	54.00	-7.83	AV	PASS
	V	2483.50	60.47	30.22	4.85	23.98	59.08	74.00	-14.92	PK	PASS
	V	2483.50	47.53	30.22	4.85	23.98	46.14	54.00	-7.86	AV	PASS
	V	2500.00	61.65	30.22	4.85	23.98	60.26	74.00	-13.74	PK	PASS
	V	2500.00	46.58	30.22	4.85	23.98	45.19	54.00	-8.81	AV	PASS
	•	2000.00	40.00			23.90 I 2412MHz		34.00	-0.01	ΛV	1 700
	Н	2390.00	60.70	30.22	4.85	23.98	59.31	74.00	-14.69	PK	PASS
	H	2390.00	48.85	30.22	4.85	23.98	47.46	54.00	-6.54	AV	PASS
30	H	2400.00	59.56	30.22	4.85	23.98	58.17	74.00	-15.83	PK	PASS
	Н	2400.00	48.35	30.22	4.85	23.98	46.96	54.00	-7.04	AV	PASS
	V	2390.00	60.15	30.22	4.85	23.98	58.76	74.00	-15.24	PK	PASS
	V	2390.00	46.97	30.22	4.85	23.98	45.58	54.00	-8.42	AV	PASS
	V	2400.00	62.07	30.22	4.85	23.98	60.68	74.00	-13.32	PK	PASS
000.44	V	2400.00	46.75	30.22	4.85	23.98	45.36	54.00	-8.64	AV	PASS
802.11g	To					el 2462MHz					
	JН	2483.50	59.60	30.22	4.85	23.98	58.21	74.00	-15.79	PK	PASS
	Н	2483.50	47.19	30.22	4.85	23.98	45.80	54.00	-8.20	AV	PASS
	Н	2500.00	61.46	30.22	4.85	23.98	60.07	74.00	-13.93	PK	PASS
	Н	2500.00	48.32	30.22	4.85	23.98	46.93	54.00	-7.07	AV	PASS
	V	2483.50	61.36	30.22	4.85	23.98	59.97	74.00	-14.03	PK	PASS
	V	2483.50	46.52	30.22	4.85	23.98	45.13	54.00	-8.87	AV	PASS
)	V	2500.00	60.62	30.22	4.85	23.98	59.23	74.00	-14.77	PK	PASS
	V	2500.00	46.21	30.22	4.85	23.98	44.82	54.00	-9.18	AV	PASS
						l 2412MHz					
	Н	2390.00	62.11	30.22	4.85	23.98	60.72	74.00	-13.28	PK	PASS
	Н	2390.00	48.83	30.22	4.85	23.98	47.44	54.00	-6.56	AV	PASS
	Н	2400.00	59.97	30.22	4.85	23.98	58.58	74.00	-15.42	PK	PASS
	H	2400.00	46.61	30.22	4.85	23.98	45.22	54.00	-8.78	AV	PASS
	V	2390.00	62.47	30.22	4.85	23.98	61.08	74.00	-12.92	PK	PASS
	V	2390.00	48.01	30.22	4.85	23.98	46.62	54.00	-7.38	AV	PASS
802.11n2	V	2400.00	59.76	30.22	4.85	23.98	58.37	74.00	-15.63	PK	PASS
0	V	2400.00	47.52	30.22	4.85	23.98	46.13	54.00	-7.87	AV	PASS
		0.100 = 0	010:			el 2462MHz		44	44.4-	DIC	DAGG
	H	2483.50	61.24	30.22	4.85	23.98	59.85	74.00	-14.15	PK	PASS
	Н	2483.50	47.99	30.22	4.85	23.98	46.60	54.00	-7.40	AV	PASS
	H	2500.00	59.68	30.22	4.85	23.98	58.29	74.00	-15.71	PK	PASS
	H	2500.00	47.16	30.22	4.85	23.98	45.77	54.00	-8.23	AV	PASS
	V	2483.50	59.42	30.22	4.85	23.98	58.03	74.00	-15.97	PK	PASS
	V	2483.50	48.93	30.22	4.85	23.98	47.54	54.00	-6.46	AV	PASS

Project No.: ZHT-230919001E-1 Page 26 of 34

	V	2500.00	60.32	30.22	4.85	23.98	58.93	74.00	-15.07	PK	PASS
	V	2500.00	48.75	30.22	4.85	23.98	47.36	54.00	-6.64	AV	PASS
		17		Lov	v Channe	el 2422MHz	7	11			
2	Н	2390.00	60.13	30.22	4.85	23.98	58.74	74.00	-15.26	PK	PASS
	Н	2390.00	46.38	30.22	4.85	23.98	44.99	54.00	-9.01	AV	PASS
	Н	2400.00	62.59	30.22	4.85	23.98	61.20	74.00	-12.80	PK	PASS
	Н	2400.00	46.11	30.22	4.85	23.98	44.72	54.00	-9.28	AV	PASS
	V	2390.00	59.51	30.22	4.85	23.98	58.12	74.00	-15.88	PK	PASS
	V	2390.00	48.00	30.22	4.85	23.98	46.61	54.00	-7.39	AV	PASS
7	V	2400.00	62.95	30.22	4.85	23.98	61.56	74.00	-12.44	PK	PASS
802.11n	V	2400.00	46.35	30.22	4.85	23.98	44.96	54.00	-9.04	AV	PASS
40		High Channel 2452MHz									
	Н	2483.50	60.92	30.22	4.85	23.98	59.53	74.00	-14.47	PK	PASS
	Н	2483.50	46.58	30.22	4.85	23.98	45.19	54.00	-8.81	AV	PASS
i	Н	2500.00	61.26	30.22	4.85	23.98	59.87	74.00	-14.13	PK	PASS
	Н	2500.00	46.75	30.22	4.85	23.98	45.36	54.00	-8.64	AV	PASS
	V	2483.50	60.17	30.22	4.85	23.98	58.78	74.00	-15.22	PK	PASS
	V	2483.50	47.17	30.22	4.85	23.98	45.78	54.00	-8.22	AV	PASS
	V	2500.00	61.25	30.22	4.85	23.98	59.86	74.00	-14.14	PK	PASS
	V	2500.00	47.09	30.22	4.85	23.98	45.70	54.00	-8.30	AV	PASS

Remark:

^{1.} Emission Level = Meter Reading + Antenna Factor + Cable Loss - Pre-amplifier, Margin= Emission Level - Limit

Page 27 of 34

POWER SPECTRAL DENSITY TEST

Test Requirement:	FCC Part15 C Section 15.247 (e)
Test Method:	KDB558074 D0115.247 Meas Guidancev05r02

6.1 APPLIED PROCEDURES / LIMIT

	FCC Part15 (15.	247) , Subpart C		
Section	Test Item	Limit	Frequency Range (MHz)	Result
15.247	Power Spectral Density	8dBm/3kHz	2400-2483.5	PASS

6.2 TEST PROCEDURE

- 1. Set analyzer center frequency to DTS channel center frequency.
- 2. Set the span to 1.5 times the DTS bandwidth.
- 3. Set the RBW to: $3 \text{ kHz} \le \text{RBW} \le 100 \text{ kHz}$.
- 4. Set the VBW \geq 3 x RBW.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level within the RBW.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

6.3 DEVIATION FROM STANDARD

No deviation.

6.4 TEST SETUP

EUT	SPECTRUM
	ANALYZER

6.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.1 Unless otherwise a special operating condition is specified in the follows during the testing.

□ admin@zht-lab.cn,

matte://www.zht-lab.cn

Project No.: ZHT-230919001E-1 Page 28 of 34

Temperature :	25.9°C	Relative Humidity:	52%
Pressure :	101kPa	Test Voltage :	DC 20V

CHANNEL BANDWIDTH 7.

Test Requirement:	FCC Part15 C Section 15.247 (a)(2)
Test Method:	KDB558074 D0115.247 Meas Guidancev05r02

7.1 APPLIED PROCEDURES / LIMIT

FCC Part15 (15.247) , Subpart C				
Section	Test Item	Limit	Frequency Range (MHz)	Result
15.247(a)(2)	Bandwidth	>= 500KHz (6dB bandwidth)	2400-2483.5	PASS

7.2 TEST PROCEDURE

- 1. Set RBW = 100 kHz.
- 2. Set the video bandwidth (VBW) ≥ 3 xRBW.
- 3. Detector = Peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.
- 7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

7.3 DEVIATION FROM STANDARD

No deviation.

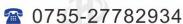
7.4 TEST SETUP

7.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

1 0755-27782934

admin@zht-lab.cn, http://www.zht-lab.cn



Project No.: ZHT-230919001E-1 Page 30 of 34

Temperature :	25.8℃	Relative Humidity:	52%
Pressure :	101kPa	Test Voltage :	DC 20V
Test Mode :	TX Mode		

Temperature :	25.8°C	Relative Humidity:	52%
Pressure :	101kPa	Test Voltage :	DC 20V
Test Mode :	TX Mode		

8. PEAK OUTPUT POWER TEST

Test Requirement:	FCC Part15 C Section 15.247 (b)(3)
Test Method:	KDB558074 D0115.247 Meas Guidancev05r02

8.1 APPLIED PROCEDURES/LIMIT

	FC	C Part15 (15.247) , Subp	part C	
Section	Test Item	Limit	Frequency Range (MHz)	Result
15.247(b)(3)	Peak Output Power	1 watt or 30dBm	2400-2483.5	PASS

8.2 TEST PROCEDURE

a. The EUT was directly connected to the Power meter

8.3 DEVIATION FROM STANDARD

No deviation.

8.4 TEST SETUP

POWER METER

8.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

8.6 TEST RESULT

Temperature :	25.3°C	Relative Humidity:	55%
Pressure :	101kPa	Test Voltage :	DC 20V

Please refer to APPENDIX A

2 0755-27782934

□ admin@zht-lab.cn,

Project No.: ZHT-230919001E-1 Page 32 of 34

CONDUCTED BAND EDGE AND SPURIOUS EMISSION

Test Requirement:	FCC Part15 C Section 15.247 (d)
Test Method:	KDB558074 D0115.247 Meas Guidancev05r02

9.1 APPLICABLE STANDARD

in any 100 kHz bandwidth outside the frequency bands in which the spread spectrum intentional radiator in operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, In addition, radiated emissions which fall in the restricted bands, as defined in \$15.205(a), must also comply with the radiated emission limits specified in15.209(a).

9.2 TEST PROCEDURE

Using the following spectrum analyzer setting:

- A) Set the RBW = 100KHz.
- B) Set the VBW = 300KHz.
- C) Sweep time = auto couple.
- D) Detector function = peak.
- E) Trace mode = max hold.
- F) Allow trace to fully stabilize.

9.3 DEVIATION FROM STANDARD

No deviation.

9.4 TEST SETUP

EUT	SPECTRUM
	ANALYZER

9.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

9.6 TEST RESULTS

Please refer to APPENDIX A

□ admin@zht-lab.cn,

Project No.: ZHT-230919001E-1 Page 33 of 34

10. ANTENNA REQUIREMENT

Standard requirement: FCC Part15 C Section 15.203 /247(b)(4)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is Internal Antenna, the best case gain of the antenna isAnt1:3.16dBi, Ant2:2.16dBi, reference to the appendix II for details

Project No.: ZHT-230919001E-1 Page 34 of 34

11. TEST SETUP PHOTO

Reference to the appendix I for details.

12. EUT CONSTRUCTIONAL DETAILS

Reference to the appendix II for details.

******** END OF REPORT *******

