

For Question,
Please Contact with WSCT
www.wsct-cert.com

TEST REPORT

FCC ID: 2AXYP-OTW-930-R

Product: True Wireless Earbuds

Model No.: OTW-930

Trade Mark: oraimo

Report No.: WSCT-A2LA-R&E240400020A-LE

Issued Date: 16 May 2024

Issued for:

ORAIMO TECHNOLOGY LIMITED

FLAT N 16/F BLOCK B UNIVERSAL INDUSTRIAL CENTRE 19-25 SHAN MEI

STREET FOTAN NT HONGKONG

Issued By:

World Standardization Certification & Testing Group(Shenzhen) Co.,Ltd.
Building A-B, Baoshi Science & Technology Park, Baoshi Road,
Bao'an District, Shenzhen, Guangdong, China

TEL: +86-755-26996192

FAX: +86-755-86376605

Note: The results contained in this report pertain only to the tested sample. This report shall not be reproduced, except in full, without written approval of World Standardization Certification & Testing Group(Shenzhen) Co., Ltd. This report must not be used by the client to claim product certification, approval, or any agency of the U.S. Government.

W5ET

10/1 * DI

世标检测认证股份 AD

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road,Baoan District, Shenzhen, Guangdong, China TEL:0086-755-26996192 26996053 FAX:0086-755-86376605 E-mail:fengbing.wang@wsct-cert.com Http://www.wsct-cert.com

Certificate #5768.01

For Question,
Please Contact with WSCT
www.wsct-cert.com

TABLE OF CONTENTS

1.	Test Certification		3
2.	Test Result Summary		4
3.	EUT Description	17797	5
4.	Genera Information	\sim	6
	4.1. TEST ENVIRONMENT AND MODE		6
/	4.2. DESCRIPTION OF SUPPORT UNITS	WSET AWS.	6
5.	Facilities and Accreditations		7
/	5.1. FACILITIES		7
	5.2. ACCREDITATIONS	AWSET	WSET 7
	5.3. MEASUREMENT UNCERTAINTY		8
	5.4. MEASUREMENT INSTRUMENTS		9
6.	Test Results and Measurement Da	ata	10 7
	6.1. ANTENNA REQUIREMENT		10
	6.2. CONDUCTED OUTPUT POWER		11
4	6.3. EMISSION BANDWIDTH	AVISTA	17
	6.4. POWER SPECTRAL DENSITY		23
	6.5. CONDUCTED BAND EDGE AND SPURIOUS EMISS	ION MEASUREMENT	29
,	6.6. CONDUCTED EMISSION		40
/	6.7. RADIATED SPURIOUS EMISSION MEASUREMENT		43

AVSIA

AVSIG

AVSTI

AV1514

dication & Testino G

WSET

WSET

WSET

111/1/11

W5E7 Go Emilian (Control of the Control of the Con

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992306 FAX-86-755-86376605 E-mail: Fengbing.Wang@wsci-cert.com Http://www.wsci-cert.com

47574

World Standardization Certification & Testing Group (Shenzhen) Co.,Ltd.

Certificate #5768.01

Please Contact with WSCT www.wsct-cert.com

Report No.: WSCT-A2LA-R&E240400020A-LE

Test Certification

True Wireless Earbuds **Product:**

OTW-930 Model No.:

oraimo **Trade Mark:**

ORAIMO TECHNOLOGY LIMITED Applicant:

FLAT N 16/F BLOCK B UNIVERSAL INDUSTRIAL CENTRE 19-25 Address:

SHAN MEI STREET FOTAN NT HONGKONG

ORAIMO TECHNOLOGY LIMITED Manufacturer:

FLAT N 16/F BLOCK B UNIVERSAL INDUSTRIAL CENTRE 19-25 Address:

SHAN MEI STREET FOTAN NT HONGKONG

25 April 2024 to 15 May 2024 Date of Test:

FCC CFR Title 47 Part 15 Subpart C Section 15.247 **Applicable**

KDB 558074 D01 DTS Meas Guidance v04 Standards:

The above equipment has been tested by World Standardization Certification & Testing Group(Shenzhen)Co., Ltd. and found compliance with the requirements set forth in the technical standards mentioned above. The results of testing in this report apply only to the product/system, which was tested. Other similar equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

WSG	Wary King	WSET	WATO	WSEI
Tested By: _		Checked By:	/ N/O resty	WIL
V ,	(Wang Xiang)	X	(Mo Peiyun)	X
	\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			significant & Testing
WSET W	SET WS	WSE	7° W	(3) Sept.
				SE WELT
× ×	1. Jugar	X	X	ig was
Approved By:		Date:	19 Non Joseph	
WSLT	(Liu Fuxin)	WSET	VASET	Mond * World
			/	

世标检测认证股份

10/1 * NO.

ADD:Building A-B.Baoshi Science & Technology Park Baoshi Road,Baoan District, Shenzhen, Guangdong, China TEL:0086-755-26996192 26996053 FAX:0086-755-86376605 E-mail:fengbing.wang@wscl-cert.com Http://www.wsct-cert.com

Certificate #5768.01

Please Contact with WSCT www.wsct-cert.com

2. Test Result Summary

	10244	WST	/ Link
7	Requirement	CFR 47 Section	Result
-	Antenna requirement	§15.203/§15.247 (c)	PASS
0	Conducted Peak Output Power	§15.247 (b)(3) §2.1046	PASS
1	6dB Emission Bandwidth	§15.247 (a)(2) §2.1049	PASS
	Power Spectral Density	§15.247 (e)	PASS
	Band Edge	1§5.247(d) §2.1051, §2.1057	PASS
7	Spurious Emission	§15.205/§15.209 §2.1053, §2.1057	PASS

Note:

- 1. PASS: Test item meets the requirement.
- 2. Fail: Test item does not meet the requirement.
- 3. N/A: Test case does not apply to the test object.
- 4. The test result judgment is decided by the limit of test standard.

WESTER	NYSIAI NYSIAI	TET WE THE	741 AVISTON	VETATA AVETATA	AVETER
	$\langle \rangle$		× `	75141	W-5/ar
WETER	W.ST at 1	WEIGH	WE THE	NIE TO A	
	$\langle \ \rangle$			X	X

世际检測认证股份 http:sroup (Shenzhen) Co., Ltd.

Certificate #5768.01

For Question,
Please Contact with WSCT
www.wsct-cert.com

3. **EUT Description**

	Product:	True Wireless Earbuds	ě
	Model No.:	OTW-930	
\	Trade Mark:	oraimo	
9	Operation Frequency:	2402MHz~2480MHz	
	Channel Separation:	2MHz	,
	Number of Channel:	40	
	Modulation Technology:	GFSK	
7	Antenna Type:	FPC Antenna	
	Antenna Gain:	-1.77 dBi	١
	AVE TO A	Charging Box: Model: OTW-930 Input:5V==500mA	,
		Output: 5V===200mA Capacity: 520mAh 3.85V,2.002Wh Charging Box Battery:	
7	Rechargeable Li-Polymer Battery:	Li-ion Battery: 801444 Voltage: 3.85V	
6	\times	Rated Capacity: 520mAh 2.002Wh Earphone Battery:	
	AVETER AN	Li-ion Battery : ZWD1054S3H Rated Voltage: 3.85V	-
/	Remark:	Rated Capacity: 50mAh 0.193Wh N/A.	
	110111011111		

Operation Frequency each of channel

Operation	n Frequenc	y each o	i Channei				
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
Zug 191	2404MHz	117	2424MHz	21	2444MHz	31	2464MHz
	X		X		\sim		
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz
Remark:	Channel 0, 1	9 & 39 ha	ave been tes	sted.	/	1	

Certificate #5768.01

For Question,
Please Contact with WSCT
www.wsct-cert.com

4. Genera Information

4.1. Test environment and mode

Operating Environment:	
Temperature:	25.0 °C
Humidity:	56 % RH
Atmospheric Pressure:	1010 mbar
Test Mode:	
Engineering mode:	Keep the EUT in continuous transmitting by select channel and modulations(The value of duty cycle is 98.46%) with Fully-charged battery.

The sample was placed (0.1m below 1GHz, 1.5m above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

4.2. Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

0	Equipment	Model No.	Serial No.	FCC ID	Trade Name
		1	1	1	/ /

Note:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.
- 3. For conducted measurements (Output Power, 6dB Emission Bandwidth, Power Spectral Density, Spurious Emissions), the antenna of EUT is connected to the test equipment via temporary antenna connector, the antenna connector is soldered on the antenna port of EUT, and the temporary antenna connector is listed in the Test Instruments.

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992308 FAX 86-755-86376605 E-mail: Fengbing Wang@wscl-cert.com Http://www.wscl-cert.com

Certificate #5768.01

For Question,
Please Contact with WSCT
www.wsct-cert.com

5. Facilities and Accreditations

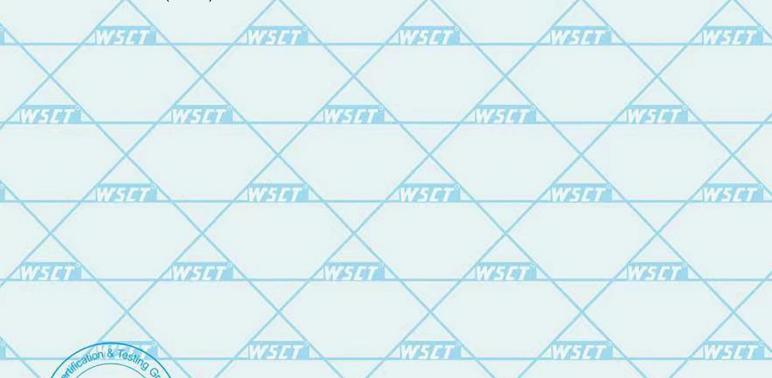
5.1. Facilities

All measurement facilities used to collect the measurement data are located at Building A-B, Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China of the World Standardization Certification & Testing Group(Shenzhen) CO., LTD

The sites are constructed in conformance with the requirements of ANSI C63.4 and CISPR Publication 32. All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

5.2. ACCREDITATIONS

CNAS - Registration Number: L3732


China National Accreditation Service for Conformity Assessment, The test firm Registration Number: L3732

FCC - Designation Number: CN1303

World Standardization Certification & Testing Group(Shenzhen) CO., LTD. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Designation Number: CN1303.

A2LA - Certificate Number: 5768.01

The EMC Laboratory has been accredited by the American Association for Laboratory Accreditation (A2LA). Certification Number: 5768.01

世标检测认证股份 Group (Shenzhen) Co., Ltd.

MOM * PI

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992306 FAX 86-755-86376605 E-mail: Fengbing.Wang@wsct-cert.com Http://www.wsct-cert.com

S NON * PIT

Report No.: WSCT-A2LA-R&E240400020A-LE

Certificate #5768.01

For Question,
Please Contact with WSCT
www.wsct-cert.com

5.3. Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

٠.	Corinae	nice of approximately 95 %.	X
2	No.	Item	MU
	1	Conducted Emission Test	±3.2dB
	2	RF power, conducted	±0.16dB
	3//5/	Spurious emissions, conducted	±0.21dB
	4	All emissions, radiated(<1GHz)	±4.7dB
/	5	All emissions, radiated(>1GHz)	±4.7dB
	6	Temperature	±0.5°C
	7 X	Humidity	±2.0%

W-341	Wisia	WHI	Wester	WESTER
	5141 NY			
Wister	WSDI	WST	W519	WEIGH
	E191			All State
WHI	WSTEE	WETH	Wester	WATER
	\times			
ostilication 8	Mo Group (Shen			

Page 8 of 49

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992308 FAX-66-755-86376605 E-mail: Fengbing Wang@wscl-cert.com Http://www.wscl-cert.com

5.4.MEASUREMENT INSTRUMENTS

Certificate #5768.01

For Question,
Please Contact with WSCT
www.wsct-cert.com

						www.wsc	1-0
	NAME OF EQUIPMENT	MANUFACTURER	MODEL	SERIAL NUMBER	Calibration Date	Calibration Due.	Z
(Test software		EZ-EMC	CON-03A	-	Χ-	
	Test software	6	MTS8310	MI A A	- 4	-	
4	EMI Test Receiver	R&S	ESCI	100005	11/05/2023	11/04/2024	
	LISN	AFJ	LS16	16010222119	11/05/2023	11/04/2024	
	LISN(EUT)	Mestec	AN3016	04/10040	11/05/2023	11/04/2024	7
(Universal Radio Communication Tester	R&S	CMU 200	1100.0008.02	11/05/2023	11/04/2024	
	Coaxial cable	Megalon	LMR400	N/A	11/05/2023	11/04/2024	
7	GPIB cable	Megalon	GPIB	N/A	11/05/2023	11/04/2024	
	Spectrum Analyzer	R&S	FSU	100114	11/05/2023	11/04/2024	
	Pre Amplifier	H.P.	HP8447E	2945A02715	11/05/2023	11/04/2024	7
,	Pre-Amplifier	CDSI	PAP-1G18-38	-	11/05/2023	11/04/2024	-
	Bi-log Antenna	SUNOL Sciences	JB3	A021907	11/05/2023	11/04/2024	
7	9*6*6 Anechoic		ET AL	(VZTE)	11/05/2023	11/04/2024	
	Horn Antenna	COMPLIANCE ENGINEERING	CE18000		11/05/2023	11/04/2024	1
	Horn Antenna	SCHWARZBECK	BBHA9120D	9120D-631	11/05/2023	11/04/2024	
	Cable	TIME MICROWAVE	LMR-400	N-TYPE04	11/05/2023	11/04/2024	2
1	System-Controller	ccs	N/A	N/A	N.C.R	N.C.R	
1	Turn Table	ccs	N/A	N/A	N.C.R	N.C.R	
r,	Antenna Tower	ccs	/5/ N/A	N/A	N.C.R	N.C.R	
	RF cable	Murata	MXHQ87WA300 0	-	11/05/2023	11/04/2024	\
	Loop Antenna	EMCO	6502	00042960	11/05/2023	11/04/2024	2
	Horn Antenna	SCHWARZBECK	BBHA 9170	1123	11/05/2023	11/04/2024	
(Power meter	Anritsu	ML2487A	6K00003613	11/05/2023	11/04/2024	
7	Power sensor	Anritsu	MX248XD	(123 B)	11/05/2023	11/04/2024	
	Spectrum Analyzer	Keysight	N9010B	MY60241089	11/05/2023	11/04/2024	-

Certificate #5768.01

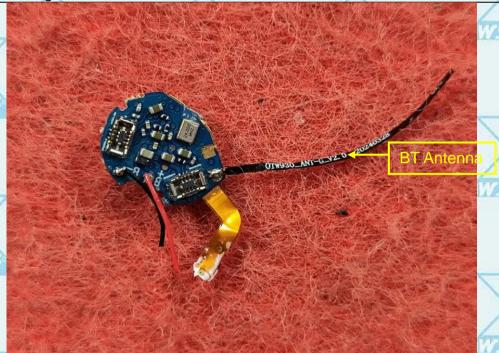
For Question,
Please Contact with WSCT
www.wsct-cert.com

6. Test Results and Measurement Data

6.1. Antenna requirement

Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:


An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The Bluetooth antenna is a FPC Antenna. it meets the standards, and the best case gain of the antenna is-1.77dBi.

Certificate #5768.01

For Question,
Please Contact with WSCT
www.wsct-cert.com

6.2. Conducted Output Power

6.2.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (b)(3)
Test Method:	KDB558074
Limit:	30dBm
Test Setup:	
	Spectrum Analyzer EUT
Test Mode:	Refer to item 4.1
Test Procedure:	 The testing follows the Measurement Procedure of FCC KDB No. 558074 DTS D01 Meas. Guidance v04. Set spectrum analyzer as following: a) Set the RBW ≥ DTS bandwidth. b) Set VBW ≥ 3 x RBW. c) Set span ≥ 3 x RBW d) Sweep time = auto couple. e) Detector = peak. f) Trace mode = max hold. g) Allow trace to fully stabilize. h) Use peak marker function to determine the peak amplitude level.
Test Result:	PASS

World Stark in Program & Pin Strong (She

AVISTO AVISTO

KUZTAR KUZTAR

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86:755-26996192 26992306 FAX:66-755-86376605 E-mail: Fengbing.Wang@wsct-cert.com Http://www.wsct-cert.com

Report No.: WSCT-A2LA-R&E240400020A-LE

Certificate #5768.01

For Question, Please Contact with WSCT www.wsct-cert.com

Member of the WSCT INC.

6.2.2. Test Data

,		BLE 1N	Л	
	Test channel	Maximum Conducted Output Power (dBm)	Limit (dBm)	Result
0	Lowest	-2.23	30.00	PASS
	Middle	-1.58	30.00	PASS
	Highest	-2.15	30.00	PASS

ATTITUTE	ATTENDED AND ADDRESS OF THE PARTY OF THE PAR	ATT	All the latest the lat		
BLE 2M					
Test channel	Maximum Conducted Output Power (dBm)	Limit (dBm)	Result		
Lowest	-2.2	30.00	PASS		
Middle	-1.56	30.00	PASS		
Highest	-2.17	30.00	PASS		

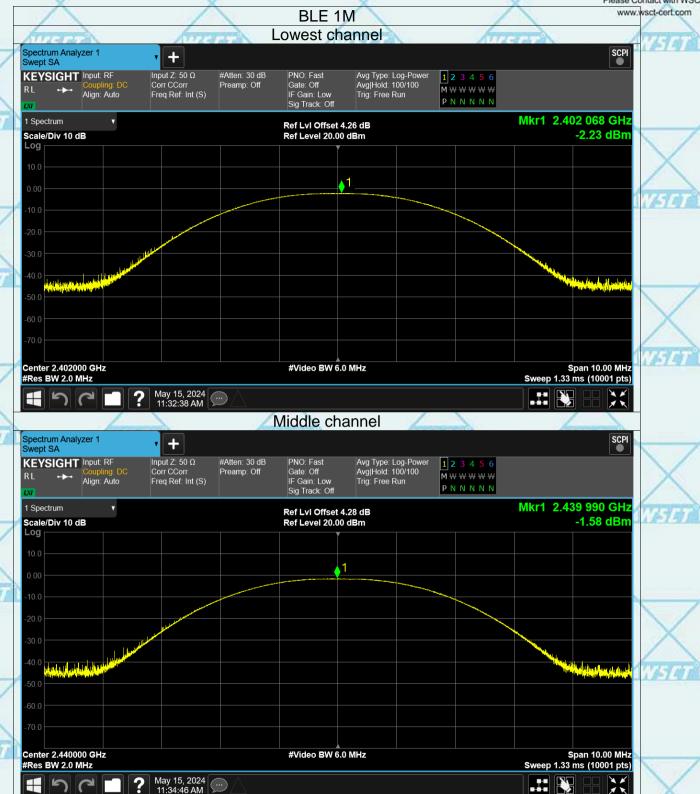
Test plots as follows:

世标检测认证股份

Duom * PIT

WEIGH	77634	WEIGH	WSIGI	Wister	
	\times			751416	17419
Wester	W-519	WETH	W5191	Wester	
	\times	\times		75147	WEIGH
NVET BY	WISTER	WETH	WET 19	WEG	
	\times			V5197	WEIGH
autication &	No C				

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992306 FAX-86-755-86376605 E-mail: Fengbing Wang@wscl-cert.com Http://www.wscl-cert.com Page 12 of 49



Report No.: WSCT-A2LA-R&E240400020A-LE

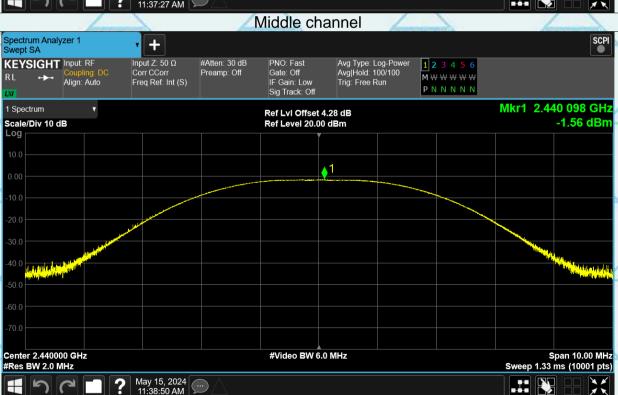
Certificate #5768.01 For Question,
Please Contact with WSCT

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992306 FAX:86-755-86376605 E-mail: Fengbing.Wang@wsct-cert.com Http://www.wsct-cert.com

Report No.: WSCT-A2LA-R&E240400020A-LE

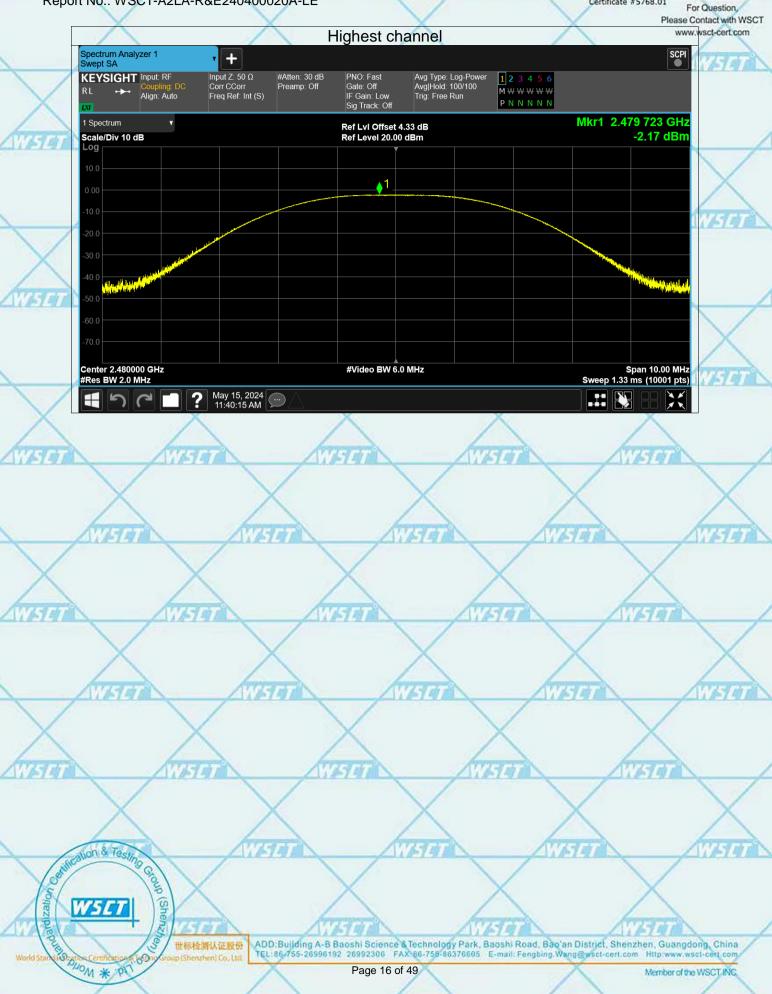
世标检测认证股份

Page 14 of 49



Report No.: WSCT-A2LA-R&E240400020A-LE

Certificate #5768.01



Report No.: WSCT-A2LA-R&E240400020A-LE

Certificate #5768.01

Certificate #5768.01

For Question,
Please Contact with WSCT
www.wsct-cert.com

6.3. Emission Bandwidth

6.3.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (a)(2)
Test Method:	KDB558074
Limit:	>500kHz
Test Setup:	
	Spectrum Analyzer EUT
Test Mode:	Refer to item 4.1
Test Procedure:	 The testing follows FCC KDB Publication No. 558074 DTS D01 Meas. Guidance v04. Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6dB bandwidth must be greater than 500 kHz. Measure and record the results in the test report.
Test Result:	PASS

Page 17 of 49

世标检测认证股份

SPON * PT

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992308 FAX-66-755-86376605 E-mail: Fengbing Wang@wsci-cert.com Http://www.wsci-cert.com/

Report No.: WSCT-A2LA-R&E240400020A-LE

Certificate #5768.01

For Question,
Please Contact with WSCT
www.wsct-cert.com

6.3.2. Test data

BLE	1	M
-----	---	---

	1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		44 100	
Test channel	6dB Emission Bandwidth (kHz)			
rest chamilei	BT LE mode	Limit	Result	
Lowest	0.655	>500k	N/SI II	
Middle	0.647	>500k	PASS	
Highest	0.651	>500k		

BLE 2M

And A St. St. Married St.		A Maria Company of the Company of th	THE RESERVE TO SERVE THE PARTY OF THE PARTY	
Test channel	6dB Emission Bandwidth (kHz)			
rest channel	BT LE mode	Limit	Result	
Lowest	1.123	>500k	WSET	
Middle	1.122	>500k	PASS	
Highest	1.122	>500k		

Test plots as follows:

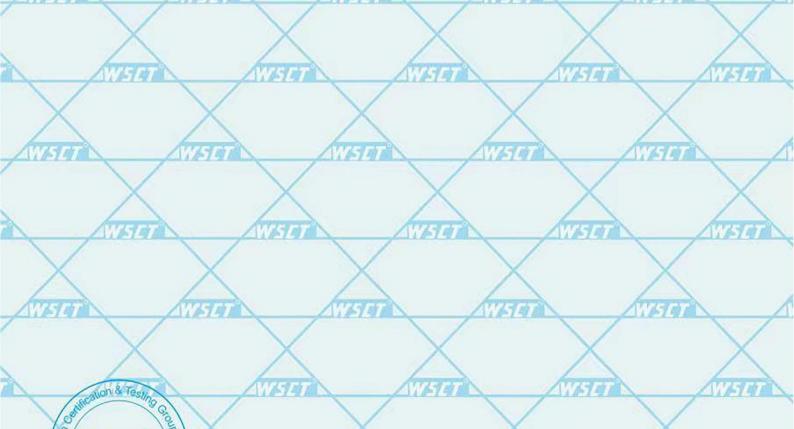
WEIGH	WHAT	Witte	WEIGH	WSIA	
	$\langle \ \rangle$		$\langle \ \rangle$		Water
WEIGH .	IV/5/0)	Wister	W5101	NATA A	
	191 W.	THE AVE	W.	X	17579
AVE 14 a	WETER	WEIGH	NV-14	NY STORE	
illication &	\times				William
AMICO	100				

世标检测从证股份 prysroup (Shenzhen) Co., Ltd.

S Phon * PIT

Report No.: WSCT-A2LA-R&E240400020A-LE

Certificate #5768.01



Report No.: WSCT-A2LA-R&E240400020A-LE

Certificate #5768.01 For Question, Please Contact with WSCT www.wsct-cert.com

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992306 FAX:86-755-86376605 E-mail: Fengbing.Wang@wsct-cert.com Http://www.wsct-cert.com Page 20 of 49

(Shenz

世标检测认证股份

TIG * MOULD WAR

Member of the WSCT INC.

Report No.: WSCT-A2LA-R&E240400020A-LE

Occupied Bandwidth

Transmit Freq Error

x dB Bandwidth

1.8314 MHz

May 15, 2024 11:37:47 AM

-6.245 kHz

1 122 MHz

Total Power

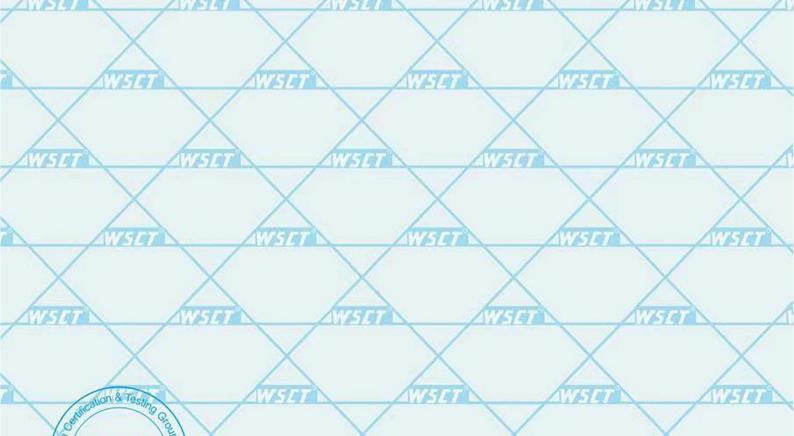
% of OBW Power

5.00 dBm

99.00 %

-6.00 dB

Report No.: WSCT-A2LA-R&E240400020A-LE


(Shenz

世标检测认证股份

TIG * MOULD WAR

Certificate #5768.01 For Question,
Please Contact with WSCT

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992306 FAX:86-755-86376605 E-mail: Fengbing.Wang@wsct-cert.com Http://www.wsct-cert.com

Certificate #5768.01

For Question,
Please Contact with WSCT
www.wsct-cert.com

6.4. Power Spectral Density

6.4.1. Test Specification

FCC Part15 C Section 15.247 (e)
KDB558074
The peak power spectral density shall not be greater than 8dBm in any 3kHz band at any time interval of continuous transmission.
Spectrum Analyzer EUT
Refer to item 4.1
 The testing follows Measurement Procedure 10.2 Method PKPSD of FCC KDB Publication No.558074 D01 DTS Meas. Guidance v04 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW): 3 kHz ≤ RBW ≤ 100 kHz. Video bandwidth VBW ≥ 3 x RBW. In order to make an accurate measurement, set the span to 1.5 times DTS Channel Bandwidth. (6dB BW) Detector = peak, Sweep time = auto couple, Trace mode = max hold, Allow trace to fully stabilize. Use the peak marker function to determine the maximum power level. Measure and record the results in the test report.
PASS

Report No.: WSCT-A2LA-R&E240400020A-LE

6.4.2. Test data

Certificate #5768.01

For Question, Please Contact with WSCT www.wsct-cert.com

Test channel	Power Spectral Density (dBm/3kHz)		
rest charmer	BLE 1M	Limit	Result
Lowest	<i>-</i> 17.81	8 dBm/3kHz	
Middle	-17.07	8 dBm/3kHz	PASS
Highest	-17.72	8 dBm/3kHz	

Toot channel	Power Spectral D	ensity (dBm/3kl	Hz)
Test channel	BLE 2M	Limit	Result
Lowest	-20.69	8 dBm/3kHz	
Middle	-20.21	8 dBm/3kHz	PASS
Highest	-20.64	8 dBm/3kHz	

Test plots as follows:

Noup (Shenz)

SIGNOW * DIT

世标检测认证股份

Wister	WST	WHITE	WETER	WSTOT	
	\times	THE AVE		$\langle \ \rangle$	
11/5141	WISTON	WESTER	W65191	V/5/197	
	\times	TO AVE		$\langle \ \rangle$	
WEIGH	WA-TER A	WET I	116-149	XV6393	
scation 8	\times				

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992306 FAX-86-755-86376605 E-mail: Fengbing.Wang@wsci-cert.com Http://www.wsci-cert.com Page 24 of 49

Report No.: WSCT-A2LA-R&E240400020A-LE

Report No.: WSCT-A2LA-R&E240400020A-LE

Certificate #5768.01

世标检测认证股份

Report No.: WSCT-A2LA-R&E240400020A-LE

MONON * DIT

世标检测认证股份

World Standardization Certification & Testing Group (Shenzhen) Co.,Ltd.

Report No.: WSCT-A2LA-R&E240400020A-LE

Certificate #5768.01

6.5. Conducted Band Edge and Spurious Emission Measurement

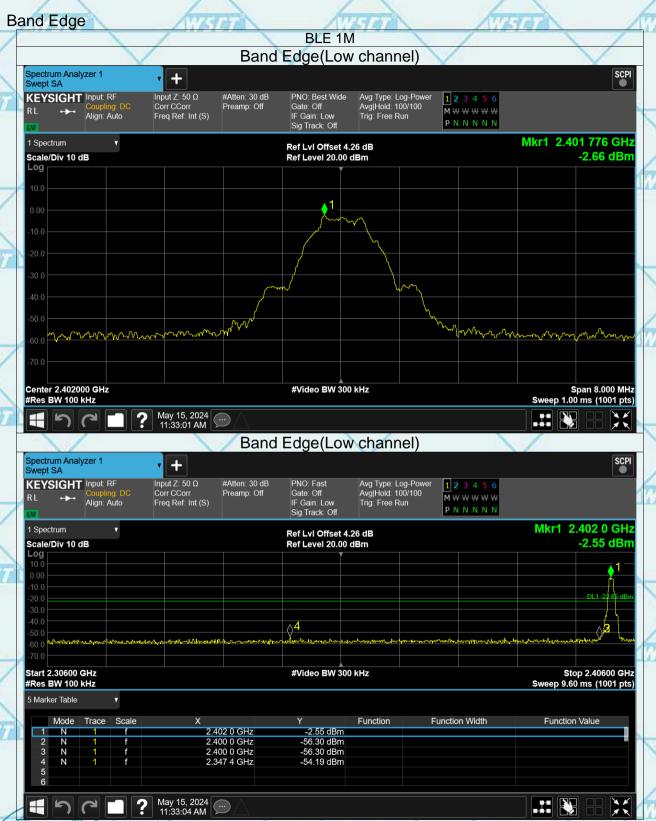
Report No.: WSCT-A2LA-R&E240400020A-LE

ertificate #5768.01

For Question, Please Contact with WSCT www.wsct-cert.com

6.5.1. Test Specification

.5.1. Test Specification	6198
Test Requirement:	FCC Part15 C Section 15.247 (d)
Test Method:	KDB558074
Limit:	In any 100 kHz bandwidth outside of the authorized frequency band, the emissions which fall in the non-restricted bands shall be attenuated at least 20 dB / 30dB relative to the maximum PSD level in 100 kHz by RF conducted measurement and radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Refer to item 4.1
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Set RBW = 100 kHz, VBW=300 kHz, Peak Detector. Unwanted Emissions measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when maximum peak conducted output power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB per 15.247(d). Measure and record the results in the test report. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.
Test Result:	PASS



Certificate #5768.01

For Question,
Please Contact with WSCT
www.wsct-cert.com

6.5.2. Test Data

TIG * MOULD WAR

S

世标检测认证股份

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992306 FAX-86-755-86376605 E-mail: Fengbing.Wang@wsct-cert.com Http://www.wsct-cert.com

Report No.: WSCT-A2LA-R&E240400020A-LE

Certificate #5768.01

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992306 FAX-66-755-86376605 E-mail: Fengbing, Wang@wsct-cert.com Http://www.wsct-cert.com

Report No.: WSCT-A2LA-R&E240400020A-LE

Certificate #5768.01

For Question,
Please Contact with WSCT

www.wsct-cert.com

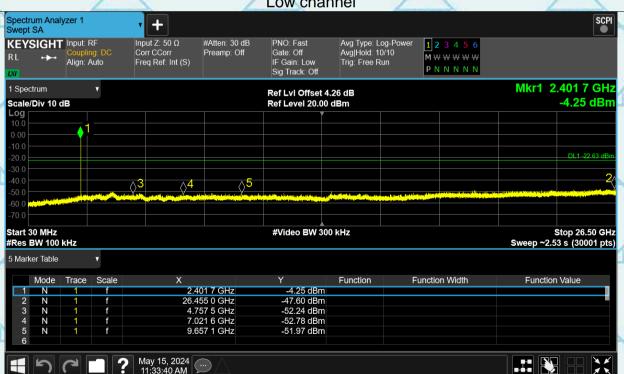
May 15, 2024 11:36:45 AM

> ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86/755-26996192-26992306 FAX:86-755-86376605 E-mail: Fengbing Wang@wsct-cert.com Http://www.wsct-cert.com

Report No.: WSCT-A2LA-R&E240400020A-LE

Certificate #5768.01 For Question, Please Contact with WSCT www.wsct-cert.com Band Edge(High channel) Spectrum Analyzer 1 + Input Z: 50 Ω #Atten: 30 dB Preamp: Off PNO: Best Wide Gate: Off Avg Type: Log-Power Avg|Hold: 100/100 KEYSIGHT Input: RF 1 2 3 4 5 6 Corr CCorr ____ M ₩ ₩ ₩ ₩ IF Gain: Low Sig Track: Off Align: Auto Freq Ref: Int (S) Trig: Free Run 1 Spectrum Mkr1 2.479 536 GHz Ref Lvl Offset 4.33 dB Scale/Div 10 dB Ref Level 20.00 dBm -2.76 dBm Why May May Center 2.480000 GHz #Res BW 100 kHz Span 8.000 MHz Sweep 1.00 ms (1001 pts) #Video BW 300 kHz May 15, 2024 11:39:32 AM Band Edge(High channel) Spectrum Analyzer 1 Swept SA SCPI + Input Z: 50 Ω #Atten: 30 dB PNO: Fast Avg Type: Log-Power Avg|Hold: 100/100 KEYSIGHT Input: RF Corr CCorr Freq Ref: Int (S) Gate: Off IF Gain: Low Sig Track: Off M ₩ ₩ ₩ ₩ Align: Auto Trig: Free Run PNNNNN Mkr1 2.480 0 GHz Ref LvI Offset 4.33 dB -2.79 dBm Scale/Div 10 dB Ref Level 20.00 dBm DL1-22.76 dl **∆**3 Start 2.47600 GHz #Video BW 300 kHz Stop 2.57600 GHz #Res BW 100 kHz Sweep 9.60 ms (1001 pts) 5 Marker Table Function Width Function Value Mode Scale Function 2.480 0 GHz -57.87 dBm -58.32 dBm 2.483 5 GHz 2.500 0 GHz 2.484 5 GHz Ν -51.40 dBm 5

May 15, 2024 11:39:35 AM



Report No.: WSCT-A2LA-R&E240400020A-LE Conducted RF Spurious Emission Certificate #5768.01

For Question,
Please Contact with WSCT

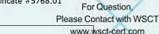
BLE 1M

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86/755-26996192 26992308 FAX-86-755-86376605 E-mail: Fengbing, Wang@wsct-cert.com Http://www.wsct-cert.com

Report No.: WSCT-A2LA-R&E240400020A-LE

Certificate #5768.01 For Question, Please Contact with WSCT www.wsct-cert.com

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992306 FAX-86-755-86376605 E-mail: Fengbing.Wang@wsct-cert.com Http://www.wsct-cert.com



Report No.: WSCT-A2LA-R&E240400020A-LE

Report No.: WSCT-A2LA-R&E240400020A-LE

Report No.: WSCT-A2LA-R&E240400020A-LE

Certificate #5768.01

For Question,
Please Contact with WSCT

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992308 FAX:86-755-86376605 E-mail: Fengbing.Wang@wsct-cert.com Http://www.wsct-cert.com

Report No.: WSCT-A2LA-R&E240400020A-LE

Certificate #5768.01

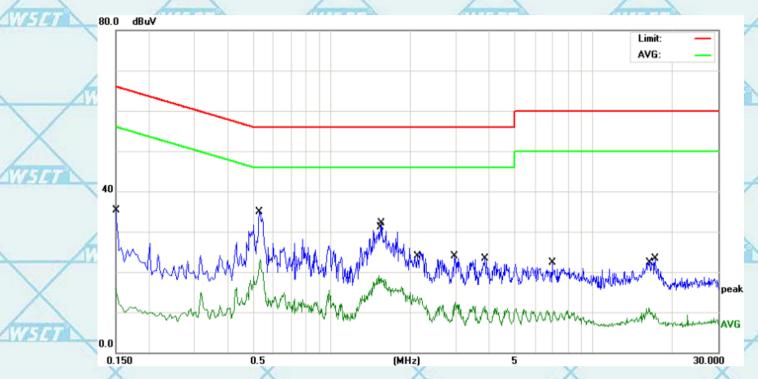
For Question, Please Contact with WSCT www.wsct-cert.com

Conducted Emission 6.6.

7	6.6.1. Test Specification	1519
	Test Requirement:	FCC Part15 C Section 15.207
0	Test Method:	ANSI C63.10:2014 W5.77 W5.77
	Frequency Range:	150 kHz to 30 MHz
	Receiver setup:	RBW=9 kHz, VBW=30 kHz, Sweep time=auto
	Limits:	Frequency range (MHz) Limit (dBuV) 0.15-0.5 66 to 56* 56 to 46* 0.5-5 56 46 5-30 60 50
	X	Reference Plane
7	WETO	40cm 80cm LISN Filter AC power
100	Test Setup:	Test table/Insulation plane Remark: E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Network
	Test Mode:	Refer to item 4.1 1. The E.U.T is connected to an adapter through a line
	Water	 impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main
	Test Procedure:	power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). 3. Both sides of A.C. line are checked for maximum
	Moni & Testin	conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10:2014 on conducted measurement.
MI	Test Result:	PASS

世标检测认证股份

DUOM * PIT


Certificate #5768.01

For Question,
Please Contact with WSCT
www.wsct-cert.com

6.6.2. Test data

Please refer to following diagram for individual

Conducted Emission on Line Terminal of the power line (150 kHz to 30MHz)

	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
(MHz	dBuV	dB	dBuV	dBuV	dB	Detector
	1		0.1500	24.90	10.45	35.35	65.99	-30.64	QP
1	2		0.1500	5.36	10.45	15.81	55.99	-40.18	AVG
V	3	*	0.5299	24.39	10.52	34.91	56.00	-21.09	QP
	4		0.5340	12.50	10.52	23.02	46.00	-22.98	AVG
	5		1.5220	8.41	10.63	19.04	46.00	-26.96	AVG
	6		1.5540	21.38	10.64	32.02	56.00	-23.98	QP
1	7		2.1420	3.17	10.71	13.88	46.00	-32.12	AVG
	8		2.9700	1.87	10.72	12.59	46.00	-33.41	AVG
/	9		3.8700	12.48	10.73	23.21	56.00	-32.79	QP
12	10		6.9540	11.44	10.78	22.22	60.00	-37.78	QP
	11		16.3540	0.00	11.16	11.16	50.00	-38.84	AVG
	12		17.2220	12.22	11.13	23.35	60.00	-36.65	QP

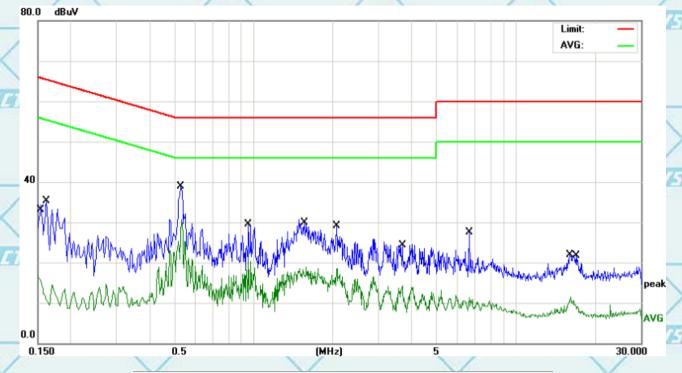
WSGI

DUOM * PT

oup (Shen

际检测认证股份 hearbent Co. Uni

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992308 FAX-86-755-86376605 E-mail: Fengbing, Wang@wsct-cert.com Http://www.wsct-cert.com



Certificate #5768.01

For Question www.wsct-cert.com

Conducted Emission on Neutral Terminal of the power line (150 kHz to 30MHz) Please Contact with WSCT

N	lo.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
I			MHz	dBuV	dB	dBuV	dBuV	dB	Detector
	1		0.1500	6.13	10.45	16.58	55.99	-39.41	AVG
	2		0.1620	24.77	10.45	35.22	65.36	-30.14	QP
	3		0.5260	28.39	10.52	38.91	56.00	-17.09	QP
7	4	*	0.5299	20.22	10.52	30.74	46.00	-15.26	AVG
	5		0.9580	10.75	10.55	21.30	46.00	-24.70	AVG
Γ	6		1.5660	19.28	10.64	29.92	56.00	-26.08	QP
1	7		2.0700	7.84	10.71	18.55	46.00	-27.45	AVG
	8		3.6940	3.54	10.73	14.27	46.00	-31.73	AVG
	9		6.6420	16.73	10.77	27.50	60.00	-32.50	QP
1	10		16.0419	9.62	11.17	20.79	60.00	-39.21	QP
1	11		16.1420	0.34	11.17	11.51	50.00	-38.49	AVG
1	12		17.1780	9.78	11.13	20.91	60.00	-39.09	QP

Note:

S DUOM * PIT

Freq. = Emission frequency in MHz

Reading level $(dB\mu V)$ = Receiver reading

Corr. Factor (dB) = Antenna factor + Cable loss

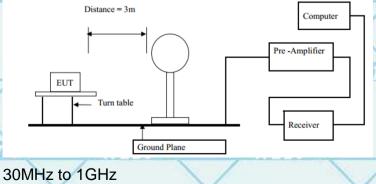
Measurement $(dB\mu V)$ = Reading level $(dB\mu V)$ + Corr. Factor (dB)

Limit $(dB\mu V) = Limit stated in standard$

Margin (dB) = Measurement (dB μ V) – Limits (dB μ V)

Q.P. =Quasi-Peak AVG =average

meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

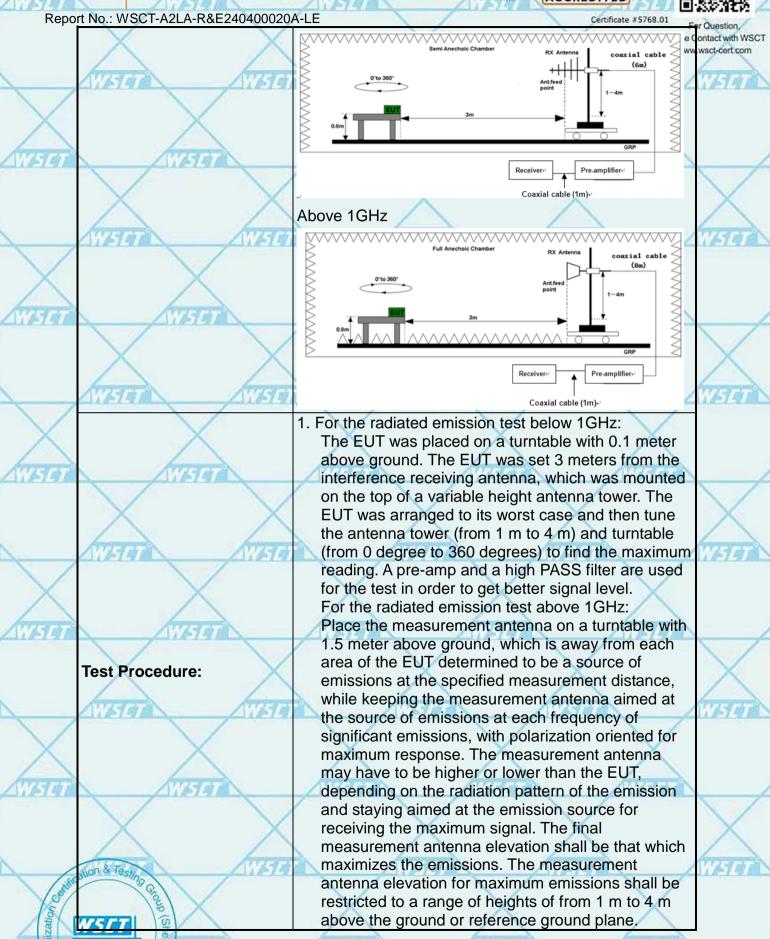

Certificate #5768.01

For Question, Please Contact with WSCT www.wsct-cert.com

6.7. Radiated Spurious Emission Measurement

.7.1. Test Specification	7		1	Z MELS				
Test Requirement:	FCC Part15	C Section	15.209		X			
Test Method:	ANSI C63.10	0:2014	WSG	1	AVES DE			
Frequency Range:	9 kHz to 25 (GHz						
Measurement Distance:	3 m	3 m						
Antenna Polarization:	Horizontal &	Horizontal & Vertical						
Operation mode:	Refer to item	Refer to item 4.1						
	Frequency	Detector	RBW	VBW	Remark			
MELLI	9kHz- 150kHz	Quasi-peak	200Hz	1kHz	Quasi-peak Value			
Receiver Setup:	150kHz- 30MHz	Quasi-peak	9kHz	30kHz	Quasi-peak Value			
X	30MHz-1GHz	Quasi-peak	100KHz	300KHz	Quasi-peak Value			
	Above 1CHz	Peak	1MHz	3MHz	Peak Value			
WSET	Above 1GHz	Peak	1MHz	10Hz	Average Value			
X	Frequer	псу	Field Stre	-	Measurement Distance (meters)			
	0.009-0.4	490	2400/F(k	300				
17674	0.490-1.7		24000/F(KHz)		30			
	1.705-3		30		30			
X	30-88		100		3			
Limit:	88-216 216-96		150 200		3			
AWS AVS	Above 9	- A 1 T T A 1 M - L M	500	17/59	3			
			\ /					
Wister	Frequency		l Strength volts/meter)	Measurer Distand (meter	ce Detector			
1	Above 1GH:	Z	500	3	Average			
		/	5000	3	Peak			
	For radiated	emissions	below 30	MHz				
AVETET		istance = 3m			Computer			
X	ł.	·						

Test setup:



DUOM * PIT

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992306 FAX:66-755-86376605 E-mail: Fengbing, Wang@wsci-cert.com Http://www.wsci-cert.com

Reno	ort No.: WSCT-A2LA-R&E240400020	A-I F	110148	Certificate #5768.01	el sod retai
Торо	THE THE PARTY OF T		ling: Antenna Fac	tor + Cable Loss	For Question, se Contact with WSCT
			reamp Factor = L		ww.wsct-cert.com
	(V)53 to 1			the emission level	17276
				ak detector is 3 dB	A. H. J. H. Hilliam
X	×			ne peak emission	
		·	oorted. Otherwise		in the second
AVISTAT	WSD			sing the quasi-peal	
Seed A.M. A. M. M.		detector and re		zar acttinga.	
	\times	4. Use the following	vide enough to fu		\times
			eing measured;	ily capture trie	
	WATER AVAILED	1777-	TOTAL A	NATIONAL SERVICE	17470
1				GHz; VBW ≥RBW;	
X	X		ito; Detector funct	ion = peak; Trace =	=
		max hold;	1 MHz, VBW= 3N	//Hz for f 1 GHz	
AWSET	17/5747	for peak me	State of the state	AINZ IOI I T GINZ	/
		·	easurement: VBV	V = 10 Hz, when	
	X			cent. VBW ≥ 1/T,	X
	AVISTOT AVISTO			percent where T is ion over which the	ZWF741
\/				ing at its maximum	
X	X			d mode of operation	1
	Test mode:	Refer to section 4.			
ATT THE		Z116711101	. I for details		
	Test results:	PASS	/		\/
	Note: Freq. = Emission frequency in MH	z		X	X
	Reading level (dBµV) = Receiver reading				

Note: Freq. = Emission frequency in MHz Reading level (dB μ V) = Receiver reading Corr. Factor (dB) = Attenuation factor + Cable loss Level (dB μ V) = Reading level (dB μ V) + Corr. Factor (dB) Limit (dB μ V) = Limit stated in standard Margin (dB) = Level (dB μ V) - Limits (dB μ V)

WETOT WETOT

WEIGHT WEIGHT

WEIGH WEIGH WEIGH

Warld Starkin Organia Committee (Son stroup (Shenzhen) Co. Ltd.

AVSET

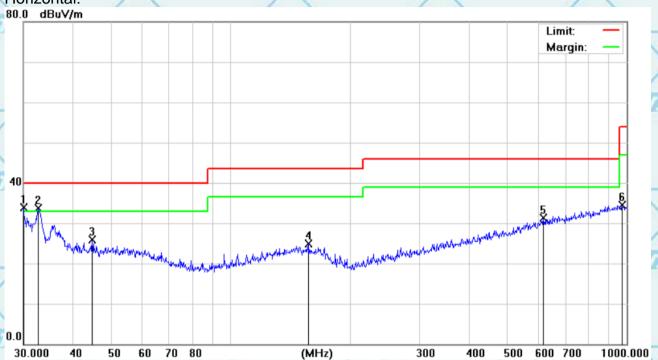
AWSET"

AWSET

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992308 FAX:86-756-86376605 E-mail: Fengbing. Wang@wsct-cert.com Http://www.wsct-cert.com

Certificate #5768.01

For Question, Please Contact with WSCT www.wsct-cert.com


6.7.2. Test Data

Please refer to following diagram for individual

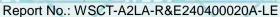
Below 1GHz

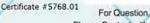
(the worst case)

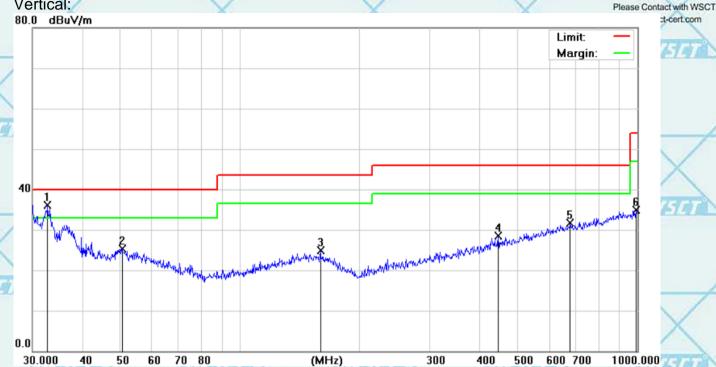
Horizontal:

3	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	THE STATE OF
Z.			MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
	1	*	30.0000	36.55	-2.60	33.95	40.00	-6.05	QP
	2	A	32.7486	36.21	-2.52	33.69	40.00	-6.31	QP
	3		44.7433	27.93	-1.95	25.98	40.00	-14.02	QP
×	4		157.5588	26.56	-1.73	24.83	43.50	-18.67	QP
3	5	4	616.3718	27.23	4.07	31.30	46.00	-14.70	QP
L	6		972.3374	26.30	8.29	34.59	54.00	-19.41	QP

S DUOM * PIT


ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992306 FAX-66-755-86376605 E-mail: Fengbing.Wang@wsci-cert.com Http://www.wsci-cert.com





	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	4
			MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
	1	* /	32.7486	38.66	-2.52	36.14	40.00	-3.86	QP
>	2	41	50.4089	27.53	-2.14	25.39	40.00	-14.61	QP
7	3		159.2251	26.55	-1.71	24.84	43.50	-18.66	QP
	4	4	146.4141	27.54	0.90	28.44	46.00	-17.56	QP
	5	76	677.5798	26.65	5.06	31.71	46.00	-14.29	QP
	6	9	993.0114	26.36	8.55	34.91	54.00	-19.09	QP

Note1:

Freq. = Emission frequency in MHz

Reading level (dBµV) = Receiver reading

Corr. Factor (dB) = Antenna factor + Cable loss - Amplifier factor.

Measurement ($dB\mu V$) = Reading level ($dB\mu V$) + Corr. Factor (dB)

Limit (dBµV) = Limit stated in standard

Margin (dB) = Measurement (dB μ V) - Limits (dB μ V)

Report No.: WSCT-A2LA-R&E240400020A-LE

Certificate #5768.01

For Question, Please Contact with WSCT www.wsct-cert.com

Above 1GHz

	Eroa		Low channel: 2402MHz							
4	Freq. (MHz)	Ant.Pol	Emission Level(dBuV)		Limit 3m(dBuV/m)		Over(dB)			
		H/V	PK	AV	PK	AV	PK	AV		
	4804	V	60.48	39.68	74	54	-13.52	-14.32		
X	7206	V	58.90	39.18	74	54	-15.10	-14.82		
	4804	TETAME	58.31	39.32	74	54	-15.69	-14.68		
	7206	Н	58.75	39.75	74	54	-15.25	-14.25		

	Eroa		Middle channel: 2440MHz							
_	Freq. (MHz)	Ant.Pol	Emission L	_evel(dBuV)	Limit 3m	(dBuV/m)	Ove	r(dB)		
	(IVIIIZ)	H/V	PK	AV	PK	AV	PK	AV		
	4880	V	58.56	40.04	74	54	-15.44	-13.96		
	7320	V	58.91	40.78	74	54	-15.09	-13.22		
	4880	WSHT	58.61	40.16	74	54	-15.39	-13.84		
	7320	H	59.68	40.68	74	54	-14.32	-13.32		

		V							
Erog		High channel: 2480 MHz							
Freq. (MHz)	Ant.Pol	Emission L	_evel(dBuV)	Limit 3m	(dBuV/m)	Ove	r(dB)		
(IVIHZ)	H/V	PK	AV	PK	AV	PK	AV		
4960	V	59.31	40.84	74	54	-14.69	-13.16		
7440	V	59.96	40.78	74	54	-14.04	-13.22		
4960		59.11	39.48	74	54	-14.89	-14.52		
7440		58.74	39.74	74	54	-15.26	-14.26		

Note:

- 1. All emissions not reported were more than 20dB below the specified limit or in the noise floor.
- Emission Level= Reading Level+ Probe Factor +Cable Loss.
 Data of measurement within this frequency range shown "--" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

NI-14	WSI	WSIA	W-19	AVE	
		X	X	X	X
ATTE	The state of the s	2191	AVE 191	WSIAT	AWSTOT
WETER	WHAT	VIII I	(TETA)	NV5	7
	\leq	X	\times	X	X

DUOM * PT

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992300 FAX-66-755-86376605 E-mail: Fengbing.Wang@wsci-cert.com Http://www.wsci-cert.com

Report No.: WSCT-A2LA-R&E240400020A-LE

Certificate #5768.01

Please Contact with WSCT www.wsct-cert.com

Restricted Bands Requirements

Catoup (Shenz)

Duom * pr

世标检测认证股份

Test result for GFSK Mode (the worst case)

1 est lesuit	IOI OI SIN IVI	oue (ine	WUISI Case			11124	nt all
Frequency	Reading	Correct Factor	Emission Level	Limit	Margin	Polar	Detector
(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	H/V	
	ATATION		Low Cha	nnel	17276		1025
2390	68.67	-8.73	59.94	74	-14.06	H	PK
2390	49.12	-8.73	40.39	54	-13.61	нХ	AV
2390	65.73	-8.73	57.00	74	-17.00	V	PK
2390	49.92	-8.73	41.19	54	-12.81	V	AV
			High Cha	nnel			
2483.5	68.72	-8.17	60.55	74	-13.45	Н	PK
2483.5	45.48	-8.17	37.31	54	-16.69	Н	AV
2483.5	65.99	-8.17	57.82	74	-16.18	V	PK
2483.5	47.16	-8.17	38.99	54	-15.01	V	AV

Page 49 of 49

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992306 FAX:86-755-86376605 E-mail: Fengbing.Wang@wsct-cert.com Http://www.wsct-cert.com

Member of the WSCT INC