

1F., Block A of Tongsheng Technology Building, Huahui Road, Dalang Street, Longhua District, Shenzhen, China

+86-755-26648640 Telephone: Fax: +86-755-26648637

Website: www.cga-cert.com

Report Template Revision Date: 2021-11-03

Report Template Version: V05

Test Report

Report No.: CQASZ20241102318E-02

Applicant: Shenzhen DO Intelligent Technology Co., Ltd

11th Floor, 3# Building, Guole Tech Park, Lirong Road, Dalang, Longhua District, **Address of Applicant:**

Shenzhen, China

Equipment Under Test (EUT):

Product: Smart Weight Scale Pro

Model No.: VF-SW01 **Test Model No.:** VF-SW01 **Brand Name:** veryfit

FCC ID: 2AHFT100002

Standards: 47 CFR Part 15, Subpart C

KDB558074 D01 15.247 Meas Guidance v05r02

ANSI C63.10:2013

Date of Receipt: 2024-11-1

Date of Test: 2024-11-1 to 2024-12-11

Date of Issue: 2024-12-31 PASS* **Test Result:**

*In the configuration tested, the EUT complied with the standards specified above

Tested By:

(Lewis Zhou)

Reviewed By: _

Approved By: (Jack Ai)

Report No.: CQASZ20241102318E-02

1 Version

Revision History Of Report

Report No.	Version	Description	Issue Date
CQASZ20241102318E-02	Rev.01	Initial report	2024-12-31

2 Test Summary

Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15.203	N/A	PASS
AC Power Line Conducted Emission	47 CFR Part 15.207	ANSI C63.10-2013	PASS
Conducted Peak & Average Output Power	47 CFR Part 15.247	ANSI C63.10-2013	PASS
6dB Occupied Bandwidth	47 CFR Part 15.247	ANSI C63.10-2013	PASS
Power Spectral Density	47 CFR Part 15.247	ANSI C63.10-2013	PASS
Band-edge for RF Conducted Emissions	47 CFR Part 15.247	ANSI C63.10-2013	PASS
RF Conducted Spurious Emissions	47 CFR Part 15.247	ANSI C63.10-2013	PASS
Radiated Spurious Emissions	47 CFR Part 15.209	ANSI C63.10-2013	PASS
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15.205/15.209	ANSI C63.10-2013	PASS

Remark:

The tested sample(s) and the sample information are provided by the client.

Tx: In this whole report Tx (or tx) means Transmitter.

Rx: In this whole report Rx (or rx) means Receiver.

RF: In this whole report RF means Radiated Frequency.

CH: In this whole report CH means channel.

Volt: In this whole report Volt means Voltage.

Temp: In this whole report Temp means Temperature.

Humid: In this whole report Humid means humidity.

Press: In this whole report Press means Pressure.

N/A: In this whole report not application

3 Contents

	Page
1 VERSION	2
2 TEST SUMMARY	3
3 CONTENTS	4
4 GENERAL INFORMATION	5
4.1 CLIENT INFORMATION	5
4.2 GENERAL DESCRIPTION OF EUT	
4.3 PRODUCT SPECIFICATION SUBJECTIVE TO THIS STANDARD	5
4.4 TEST ENVIRONMENT AND MODE	
4.5 DESCRIPTION OF SUPPORT UNITS	_
4.6 TEST LOCATION	
4.7 TEST FACILITY	
4.8 STATEMENT OF THE MEASUREMENT UNCERTAINTY	
4.10 ABNORMALITIES FROM STANDARD CONDITIONS	
4.11 OTHER INFORMATION REQUESTED BY THE CUSTOMER	
4.12 EQUIPMENT LIST	
5 TEST RESULTS AND MEASUREMENT DATA	11
5.1 ANTENNA REQUIREMENT	11
5.2 CONDUCTED EMISSIONS	
5.3 CONDUCTED PEAK & AVERAGE OUTPUT POWER	
Test Result	
Note:	
When Duty cycle >98%, D.C.F is not required	
Test Graphs	
5.4 6DB OCCUPIED BANDWIDTH	
Test Graphs	
5.5 Power Spectral Density	
Test Result	29
Test Graphs	
5.6 BAND-EDGE FOR RF CONDUCTED EMISSIONS	
Test Result	
Test Graphs5.7 RF Conducted Spurious Emissions	
Test Result	
Test Graphs	
5.8 RADIATED SPURIOUS EMISSIONS	
5.8.1 Radiated emission below 1GHz	
5.8.2 Transmitter emission above 1GHz	57
5.9 RESTRICTED BANDS AROUND FUNDAMENTAL FREQUENCY	63
6 PHOTOGRAPHS - EUT TEST SETUP	68
6.1 RADIATED SPURIOUS EMISSION	
6.2 CONDUCTED EMISSIONS TEST SETUP	69
7 PHOTOGRAPHS - EUT CONSTRUCTIONAL DETAILS	70

Report No.: CQASZ20241102318E-02

4 General Information

4.1 Client Information

Applicant:	Shenzhen DO Intelligent Technology Co., Ltd
Address of Applicant:	11th Floor, 3# Building, Guole Tech Park, Lirong Road, Dalang, Longhua District, Shenzhen, China
Manufacturer:	Shenzhen DO Intelligent Technology Co., Ltd
Address of Manufacturer:	11th Floor, 3# Building, Guole Tech Park, Lirong Road, Dalang, Longhua District, Shenzhen, China
Factory:	Shenzhen DO Intelligent Technology Co., Ltd
Address of Factory:	11th Floor, 3# Building, Guole Tech Park, Lirong Road, Dalang, Longhua District, Shenzhen, China

4.2 General Description of EUT

Product Name:	Smart Weight Scale Pro
Model No.:	VF-SW01
Test Model No.:	VF-SW01
Trade Mark:	veryfit
Software Version:	V023.000.001.000
Hardware Version:	V1.1
Power Supply:	Li-ion battery DC 3.7V 500mAh, Charge by DC 5V for adapter
EUT Supports Radios application:	BT: 2402-2480MHz 2.4GHz: Wi-Fi: 802.11b/g/n(HT20): 2412MHz~2462MHz;
Simultaneous Transmission	☐ Simultaneous TX is supported and evaluated in this report.☒ Simultaneous TX is not supported.

4.3 Product Specification subjective to this standard

Operation Frequency:	IEEE 802.11b/g/n(HT20): 2412MHz to 2462MHz			
Channel Numbers:	IEEE 802.11b/g, IEEE 802.11n HT20: 11 Channels			
Channel Separation:	5MHz			
Type of Modulation:	IEEE for 802.11b: DSSS(CCK,DQPSK,DBPSK)			
	IEEE for 802.11g: OFDM(64QAM, 16QAM, QPSK, BPSK)			
	IEEE for 802.11n(HT20): OFDM (64QAM, 16QAM, QPSK, BPSK)			
Transfer Rate:	IEEE for 802.11b:			
	1Mbps/2Mbps/5.5Mbps/11Mbps			
	IEEE for 802.11g:			
	6Mbps/9Mbps/12Mbps/18Mbps/24Mbps/36Mbps/48Mbps/54Mbps			
	IEEE for 802.11n(HT20):			
	6.5Mbps/13Mbps/19.5Mbps/26Mbps/39Mbps/52Mbps/58.5Mbps/65Mbps			
Product Type:	☐ Mobile ☐ Portable ☐ Fix Location			
Test Software of EUT:	EspRFTestTool			
Antenna Type:	PCB antenna			
Antenna Gain:	1.61dBi			

Report No.: CQASZ20241102318E-02

Operation Frequency each of channel(802.11b/g/n HT20)							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz
3	2422MHz	6	2437MHz	9	2452MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

For 802.11b/g/n (HT20):

Channel	Frequency
The Lowest channel	2412MHz
The Middle channel	2437MHz
The Highest channel	2462MHz

Note:

Software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel individually.

Report No.: CQASZ20241102318E-02

4.4 Test Environment and Mode

Radiated Emissions: Temperature:	
Temperature:	
	25.3 °C
Humidity:	55 % RH
Atmospheric Pressure:	1009 mbar
Conducted Emissions:	
Temperature:	25.6 °C
Humidity:	60 % RH
Atmospheric Pressure:	1009 mbar
Radio conducted item te	est (RF Conducted test room):
Temperature:	25.5 °C
Humidity:	52 % RH
Atmospheric Pressure:	1009 mbar
Test mode:	
Transmitting mode:	EUT is set in RF test mode in all supported modulation types, bandwi and data rate, etc.
EspRFTestTool Tool Help	- 0 X
Tool Help Manual Test ChipType [ESP32S3	sudRate 115200
Tool Help Manual Test ChipType ESP32S3 V COM COM5 V B	audRate 115200
Tool Help Manual Test ChipType [ESP32S3	audRate 115200

Report No.: CQASZ20241102318E-02

4.5 Description of Support Units

The EUT has been tested with associated equipment below.

1) Support equipment

Description	Manufacturer	Model No.	Certification	Supplied by
2) Cable				
Cable No.	Description	Manufacturer	Cable Type/Length	Supplied by
1	1	,	,	1

4.6 Test Location

All tests were performed at:

Shenzhen Huaxia Testing Technology Co., Ltd.

1F., Block A of Tongsheng Technology Building, Huahui Road, Dalang Street, Longhua New District, Shenzhen, Guangdong, China

4.7 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• A2LA (Certificate No. 4742.01)

Shenzhen Huaxia Testing Technology Co., Ltd., Shenzhen EMC Laboratory is accredited by the American Association for Laboratory Accreditation(A2LA). Certificate No. 4742.01.

• FCC Registration No.: 522263

Shenzhen Huaxia Testing Technology Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No.:522263

4.8 Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate.

The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities.

The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the **Shenzhen Huaxia Testing Technology Co., Ltd.** quality system acc. to DIN EN ISO/IEC 17025.

Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for CQA laboratory is reported:

No.	Item	Uncertainty	Notes
1	Radiated Emission (Below 1GHz)	5.12dB	(1)
2	Radiated Emission (Above 1GHz)	4.60dB	(1)
3	Conducted Disturbance (0.15~30MHz)	3.34dB	(1)
4	Radio Frequency	3×10 ⁻⁸	(1)
5	Duty cycle	0.6 %.	(1)
6	Occupied Bandwidth	1.1%	(1)
7	RF conducted power	0.86dB	(1)
8	RF power density	0.74	(1)
9	Conducted Spurious emissions	0.86dB	(1)
10	Temperature test	0.8℃	(1)
11	Humidity test	2.0%	(1)
12	Supply voltages	0.5 %.	(1)
13	Frequency Error	5.5 Hz	(1)

⁽¹⁾This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

4.9 Deviation from Standards

None.

4.10 Abnormalities from Standard Conditions

None.

4.11 Other Information Requested by the Customer

None.

4.12 Equipment List

Test Equipment	Manufacturer	Model No.	Instrument No.	Calibration Date	Calibration Due Date
EMI Test Receiver	R&S	ESR7	CQA-005	2024/9/2	2025/9/1
Spectrum analyzer	R&S	FSU26	CQA-038	2024/9/2	2025/9/1
Spectrum analyzer	R&S	FSU40	CQA-075	2024/9/2	2025/9/1
Preamplifier	MITEQ	AFS4-00010300-18- 10P-4	CQA-035	2024/9/2	2025/9/1
Preamplifier	MITEQ	AMF-6D-02001800- 29-20P	CQA-036	2024/9/2	2025/9/1
Preamplifier	EMCI	EMC184055SE	CQA-089	2024/9/2	2025/9/1
Loop antenna	Schwarzbeck	FMZB1516	CQA-060	2023/9/8	2026/9/7
Bilog Antenna	R&S	HL562	CQA-011	2023/11/01	2026/10/31
Horn Antenna	R&S	HF906	CQA-012	2023/11/01	2026/10/31
Horn Antenna	Schwarzbeck	BBHA 9170	CQA-088	2023/9/7	2026/9/6
Coaxial Cable (Above 1GHz)	CQA	N/A	C007	2024/9/2	2025/9/1
Coaxial Cable (Below 1GHz)	CQA	N/A	C013	2024/9/2	2025/9/1
Antenna Connector	CQA	RFC-01	CQA-080	2024/9/2	2025/9/1
RF cable(9KHz~40GHz)	CQA	RF-01	CQA-079	2024/9/2	2025/9/1
Power meter	R&S	NRVD	CQA-029	2024/9/2	2025/9/1
Power divider	MIDWEST	PWD-2533-02-SMA- 79	CQA-067	2024/9/2	2025/9/1
EMI Test Receiver	R&S	ESR7	CQA-005	2024/9/2	2025/9/1
LISN	R&S	ENV216	CQA-003	2024/9/2	2025/9/1
Coaxial cable	CQA	N/A	CQA-C009	2024/9/2	2025/9/1
DC power	KEYSIGHT	E3631A	CQA-028	2024/9/2	2025/9/1

Test software:

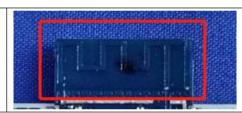
	Manufacturer	Software brand
Radiated Emissions test software	Tonscend	JS1120-3
Conducted Emissions test software	Audix	e3
RF Conducted test software	Audix	e3

Report No.: CQASZ20241102318E-02

5 Test results and Measurement Data

5.1 Antenna Requirement

Standard requirement: 47 CFR Part 15C Section 15.203 /247(c)


15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is PCB antenna.

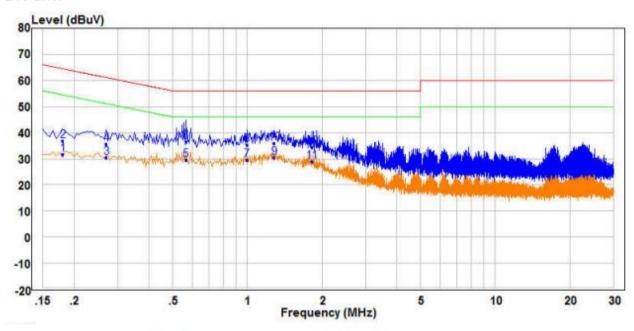
The connection/connection type between the antenna to the EUT's antenna port is: permanently attachment

This is either permanently attachment or a unique coupling that satisfies the requirement.

Report No.: CQASZ20241102318E-02

5.2 Conducted Emissions

Test Requirement:	47 CFR Part 15C Section 15.2	207			
Test Method:	ANSI C63.10: 2013				
Test Frequency Range:					
Limit:	Limit (dBuV)				
Limit	Frequency range (MHz)	Quasi-peak	Average		
	0.15-0.5	66 to 56*	56 to 46*		
	0.13-0.3	56	46		
	5-30 * Decreases with the logarithm	60	50		
Test Procedure:	1) The mains terminal disturb room. 2) The EUT was connected to Impedance Stabilization Not impedance. The power call connected to a second reference plane in the same way as the multiple socket outlet strip a single LISN provided the reasonable to the same way as the multiple socket outlet strip a single LISN provided the reasonable to the strip a ground reference plane. As placed on the horizontal ground reference plane. As placed on the horizontal ground reference plane to the EUT shall be 0.4 m for vertical ground reference preference plane. The LISN unit under test and bonded mounted on top of the ground the EUT and associated experience to the EUT and associated experience to find the maximum equipment and all of the in ANSI C63.10: 2013 on contract to the EUT and contract to the significant contract to the second contract to the se	pance voltage test was pance voltage test was pance voltage test was pance voltage test was pance voltage to AC power source through the LISN 2, which was the LISN 1 for the unit law was used to connect pating of the LISN was not panced upon a non-metallich of floor-standing and for floor-standing and the vertical ground reference plane, the vertical ground reference of the vertical ground reference plane. The total ground reference plane. The form the LISN 1 and the quipment was at least 0 terface cables must be	bugh a LISN 1 (Line a 50Ω/50μH + 5Ω line is a 50Ω/50μH + 5Ω line is the EUT were bonded to the grobeing measured. A multiple power cable not exceeded. In the case of the cas	near bund es to ne was ar e	
Test Setup:	Shielding Room EUT AC Mains LISN1	Ground Reference Plane	Test Receiver		



Exploratory Test Mode:	Transmitting with all kind of modulations, data rates at lowest, middle and highest channel.
Final Test Mode:	Through Pre-scan, find the 1Mbps of rate of 802.11b at middle channel is the worst case. Only the worst case is recorded in the report.
Test Voltage:	AC120V/60Hz
Test Results:	Pass

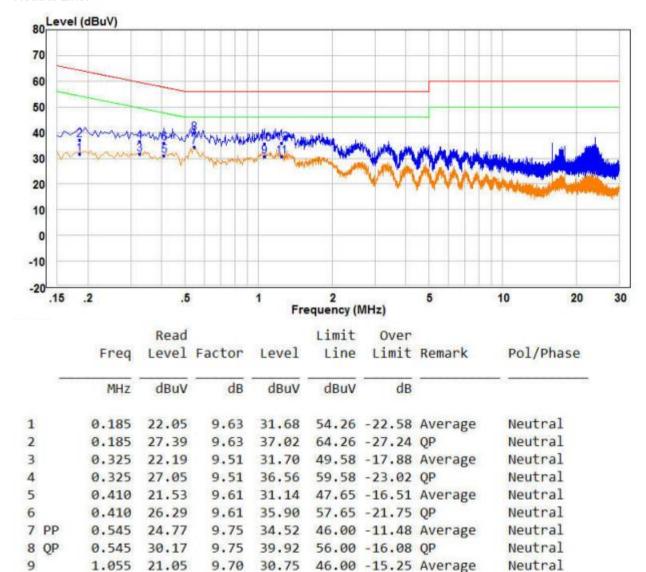
Measurement Data

Live Line:

	Freq	Read Level	Factor	Level	Limit	Over	Remark	Pol/Phase
-	MHz	dBuV	dB	dBuV	dBuV	dB	-	-
	0.180	21.97	9.64	31.61	54.49	-22.88	Average	Line
	0.180	27.07	9.64	36.71	64.49	-27.78	QP	Line
	0.270	20.96	9.52	30.48	51.12	-20.64	Average	Line
	0.270	26.14	9.52	35.66	61.12	-25.46	QP	Line
	0.565	19.87	9.77	29.64	46.00	-16.36	Average	Line
QP	0.565	26.66	9.77	36.43	56.00	-19.57	QP	Line
	0.995	19.96	9.70	29.66	46.00	-16.34	Average	Line
	0.995	25.62	9.70	35.32	56.00	-20.68	QP	Line
PP	1.285	20.05	10.40	30.45	46.00	-15.55	Average	Line
	1.285	25.55	10.40	35.95	56.00	-20.05	QP	Line
	1.820	17.43	11.38	28.81	46.00	-17.19	Average	Line
	1.820	23.04	11.38	34.42	56.00	-21.58	QP	Line
	QP PP	MHz 0.180 0.180 0.270 0.270 0.565 0.995 0.995 0.995 1.285 1.285 1.820	MHz dBuV 0.180 21.97 0.180 27.07 0.270 20.96 0.270 26.14 0.565 19.87 QP 0.565 26.66 0.995 19.96 0.995 25.62 PP 1.285 20.05 1.285 25.55 1.820 17.43	MHZ dBuV dB 0.180 21.97 9.64 0.180 27.07 9.64 0.270 20.96 9.52 0.270 26.14 9.52 0.565 19.87 9.77 QP 0.565 26.66 9.77 0.995 19.96 9.70 0.995 25.62 9.70 PP 1.285 20.05 10.40 1.285 25.55 10.40 1.820 17.43 11.38	MHZ dBuV dB dBuV 0.180 21.97 9.64 31.61 0.180 27.07 9.64 36.71 0.270 20.96 9.52 30.48 0.270 26.14 9.52 35.66 0.565 19.87 9.77 29.64 QP 0.565 26.66 9.77 36.43 0.995 19.96 9.70 29.66 0.995 25.62 9.70 35.32 PP 1.285 20.05 10.40 30.45 1.285 25.55 10.40 35.95 1.820 17.43 11.38 28.81	MHz dBuV dB dBuV dBuV 0.180 21.97 9.64 31.61 54.49 0.180 27.07 9.64 36.71 64.49 0.270 20.96 9.52 30.48 51.12 0.270 26.14 9.52 35.66 61.12 0.565 19.87 9.77 29.64 46.00 QP 0.565 26.66 9.77 36.43 56.00 0.995 19.96 9.70 29.66 46.00 0.995 25.62 9.70 35.32 56.00 PP 1.285 20.05 10.40 30.45 46.00 1.285 25.55 10.40 35.95 56.00 1.820 17.43 11.38 28.81 46.00	MHz dBuV dB dBuV dBuV dB 0.180 21.97 9.64 31.61 54.49 -22.88 0.180 27.07 9.64 36.71 64.49 -27.78 0.270 20.96 9.52 30.48 51.12 -20.64 0.270 26.14 9.52 35.66 61.12 -25.46 0.565 19.87 9.77 29.64 46.00 -16.36 QP 0.565 26.66 9.77 36.43 56.00 -19.57 0.995 19.96 9.70 29.66 46.00 -19.57 0.995 25.62 9.70 35.32 56.00 -20.68 PP 1.285 20.05 10.40 30.45 46.00 -15.55 1.285 25.55 10.40 35.95 56.00 -20.05 1.820 17.43 11.38 28.81 46.00 -17.19	### Remark Head Hea

Remark:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.



Neutral

Neutral

Neutral

Neutral Line:

9.70 35.58 56.00 -20.42 QP

9.71 36.04 56.00 -19.96 QP

9.71 30.91 46.00 -15.09 Average

Remark:

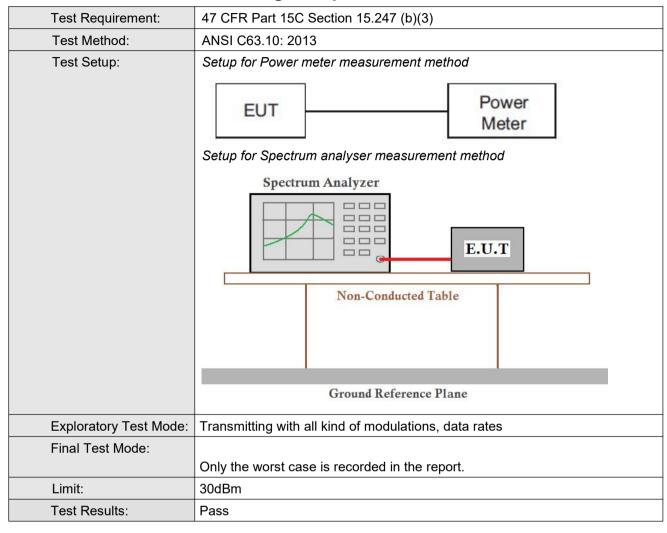
10

11 12

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

1.055 25.88

1.240 21.20


1.240 26.33

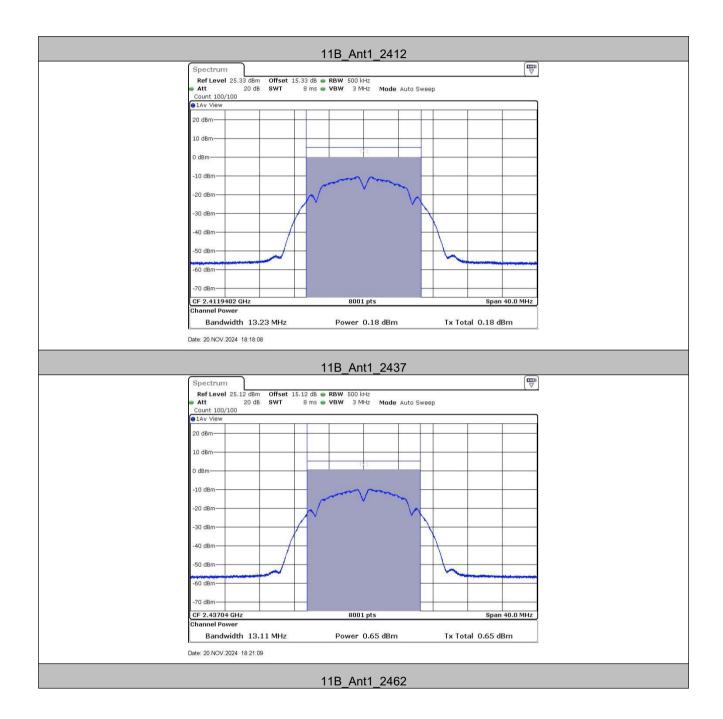
3. If the Peak value under Average limit, the Average value is not recorded in the report.

Report No.: CQASZ20241102318E-02

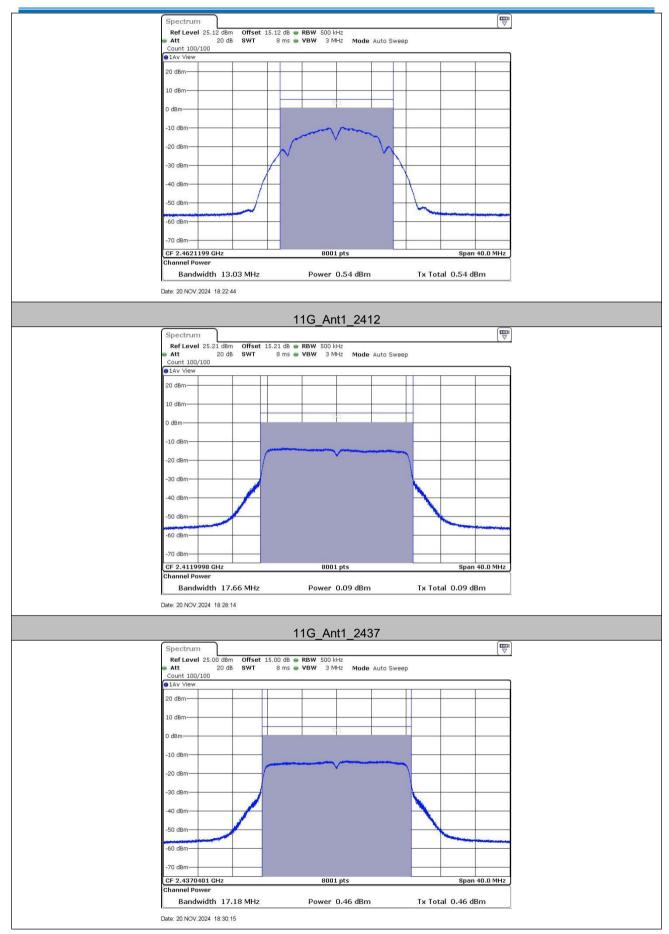
5.3 Conducted Peak & Average Output Power

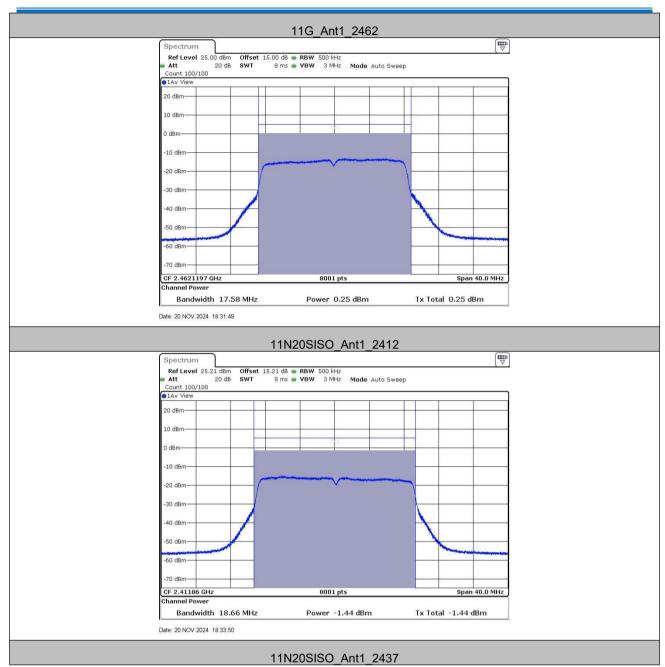
Report No.: CQASZ20241102318E-02

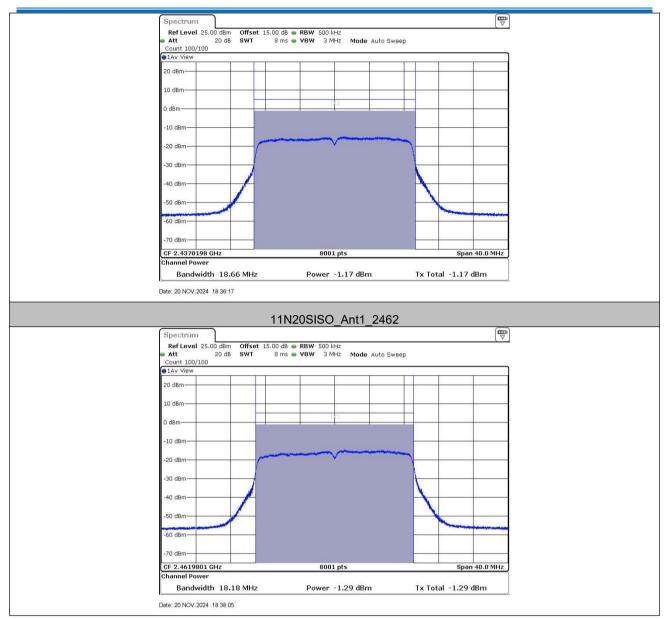
Test Result

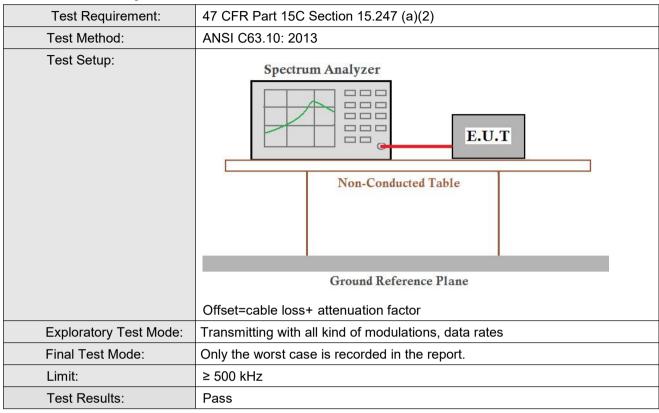

Test Mode	Frequency[MHz	Result [dBm]	Limit [dBm]	Verdict
	2412	0.18	≤30.00	PASS
11B	2437	0.65	≤30.00	PASS
	2462	0.54	≤30.00	PASS
	2412	0.09	≤30.00	PASS
11G	2437	0.46	≤30.00	PASS
	2462	0.25	≤30.00	PASS
	2412	-1.44	≤30.00	PASS
11N20SISO	2437	-1.17	≤30.00	PASS
	2462	-1.29	≤30.00	PASS

Note:


When Duty cycle >98%, D.C.F is not required.


Test Graphs

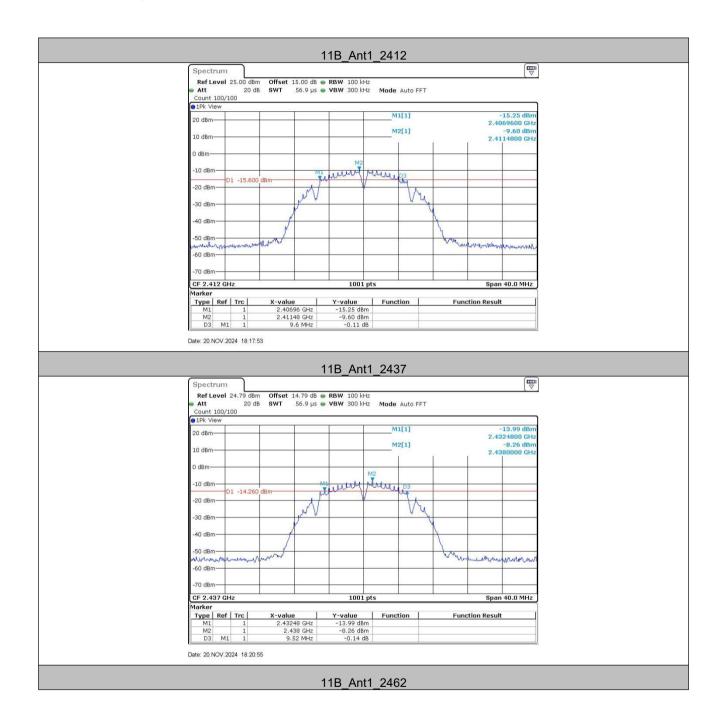




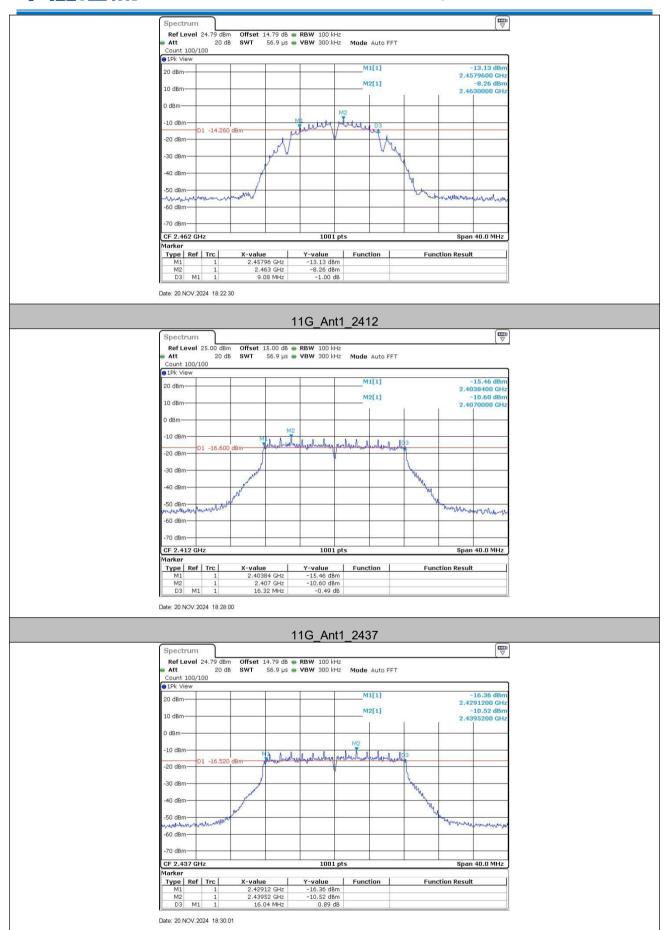
Report No.: CQASZ20241102318E-02

5.4 6dB Occupied Bandwidth

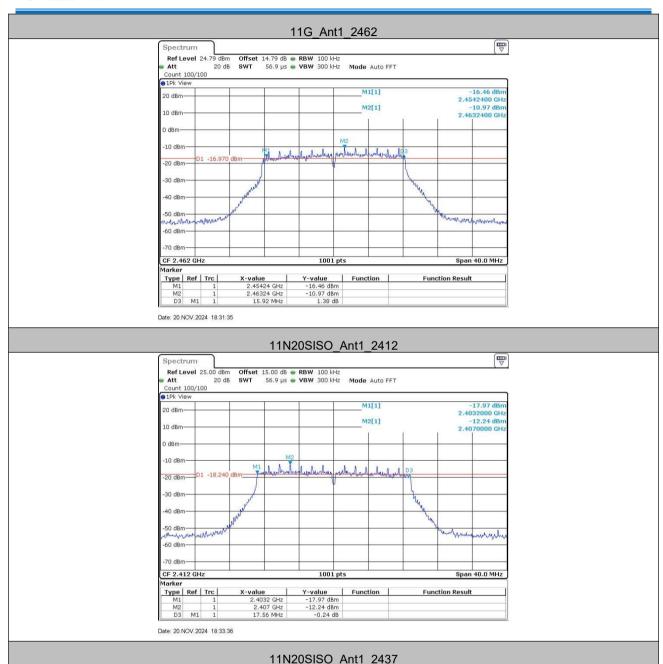
Report No.: CQASZ20241102318E-02

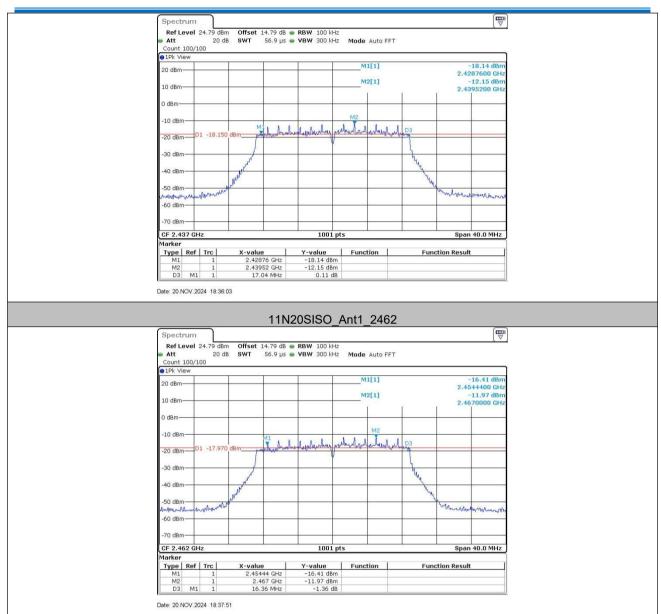

Test Result

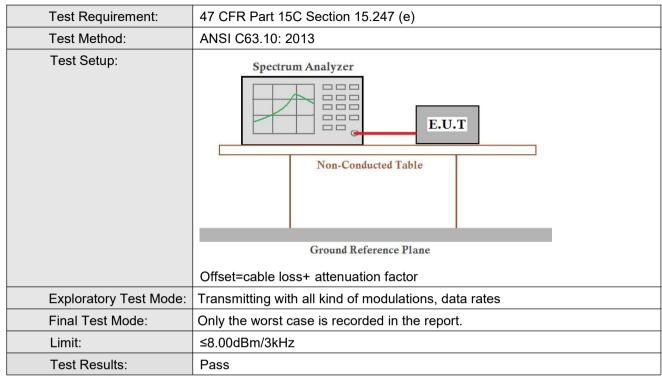
TestMode	Frequency[MHz]	DTS BW [MHz]	FL[MHz]	FH[MHz]	Limit[MHz]	Verdict
	2412	9.60	2406.96	2416.56	0.5	PASS
11B	2437	9.52	2432.48	2442.00	0.5	PASS
	2462	9.08	2457.96	2467.04	0.5	PASS
	2412	16.32	2403.84	2420.16	0.5	PASS
11G	2437	16.04	2429.12	2445.16	0.5	PASS
	2462	15.92	2454.24	2470.16	0.5	PASS
	2412	17.56	2403.20	2420.76	0.5	PASS
11N20SISO	2437	17.04	2428.76	2445.80	0.5	PASS
	2462	16.36	2454.44	2470.80	0.5	PASS



Report No.: CQASZ20241102318E-02


Test Graphs



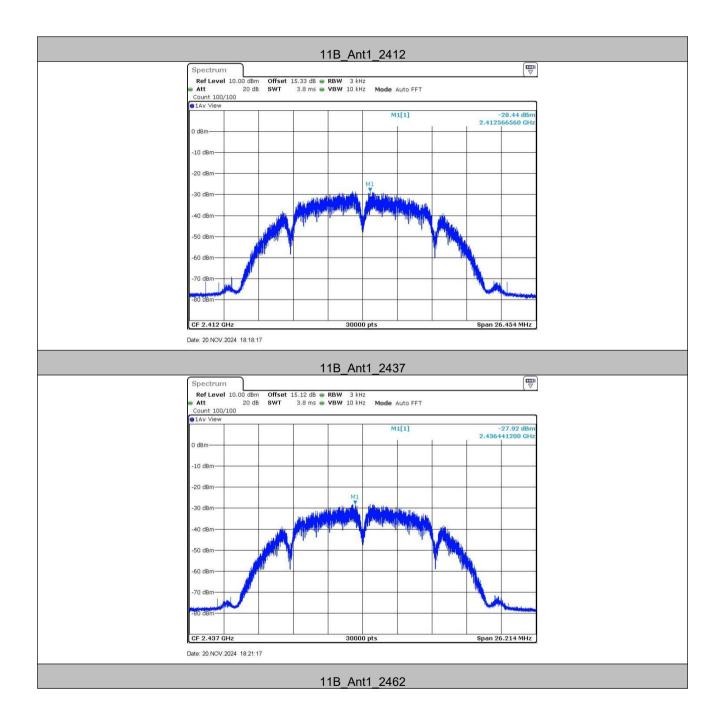


Report No.: CQASZ20241102318E-02

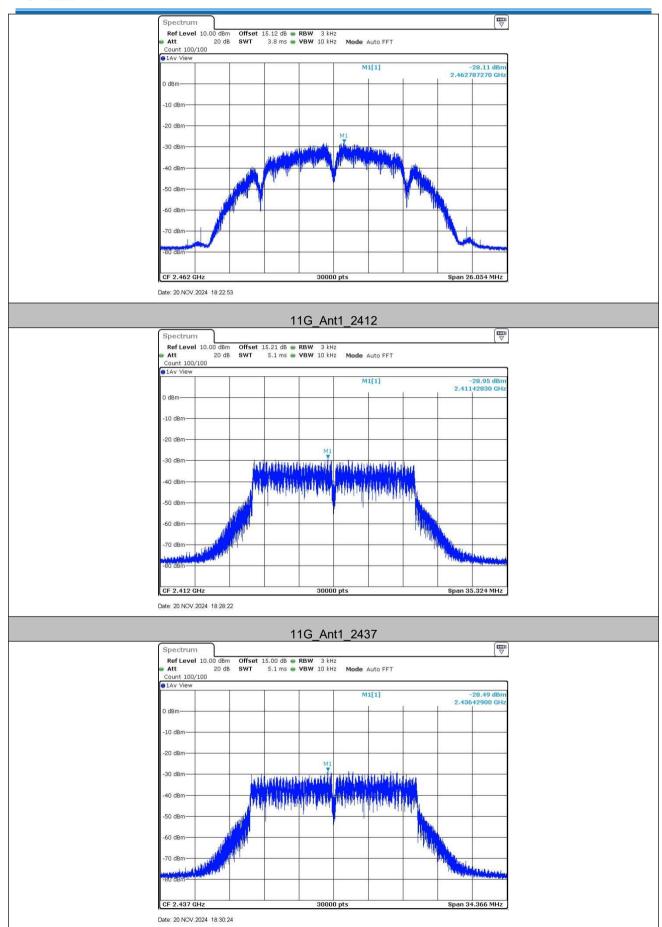
5.5 Power Spectral Density

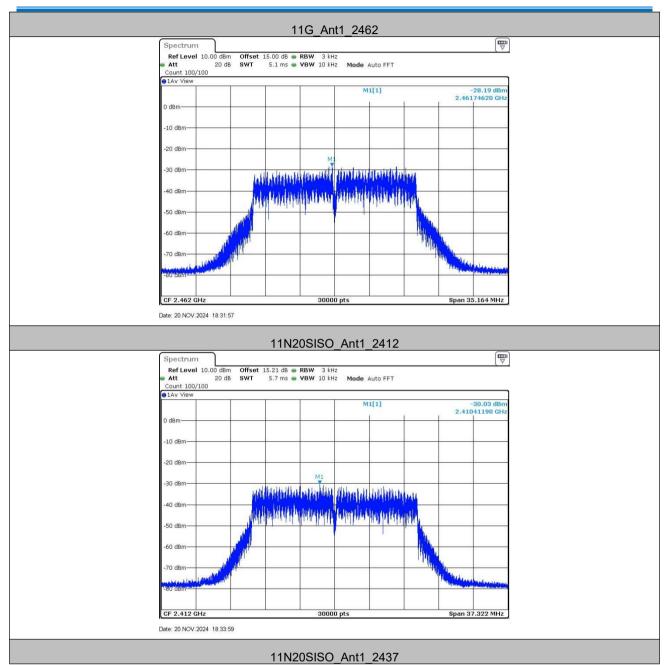
Report No.: CQASZ20241102318E-02

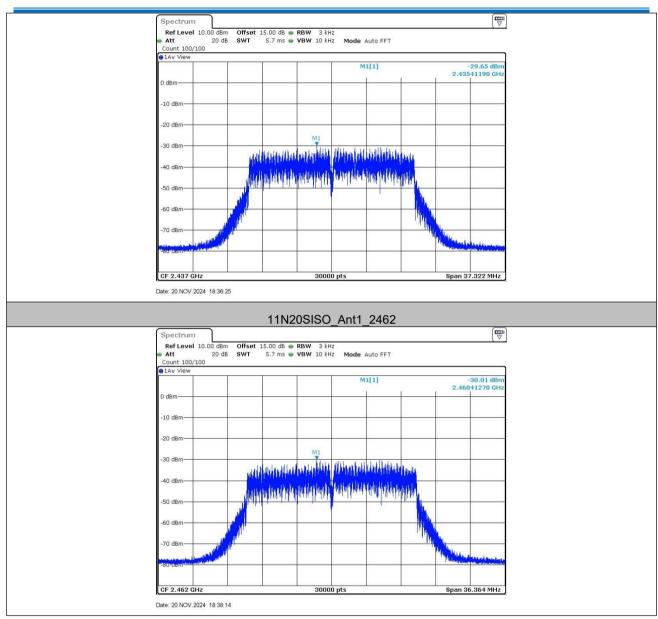
Test Result

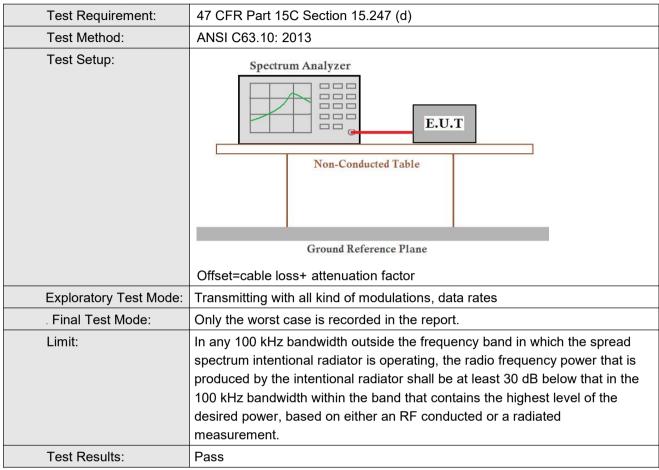

TestMode	Frequency[MHz]	Result[dBm/3-100kHz]	Limit[dBm/3kHz]	Verdict
	2412	-28.44	≤8.00	PASS
11B	2437	-27.92	≤8.00	PASS
	2462	-28.11	≤8.00	PASS
	2412	-28.95	≤8.00	PASS
11G	2437	-28.49	≤8.00	PASS
	2462	-28.19	≤8.00	PASS
	2412	-30.03	≤8.00	PASS
11N20SISO	2437	-29.65	≤8.00	PASS
	2462	-30.01	≤8.00	PASS

Note:


When Duty cycle >98%, D.C.F is not required.

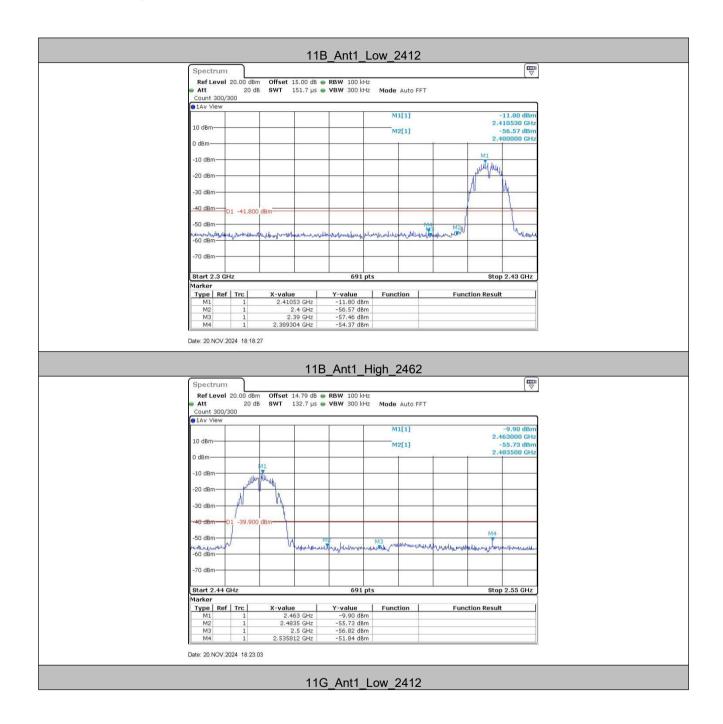

Test Graphs



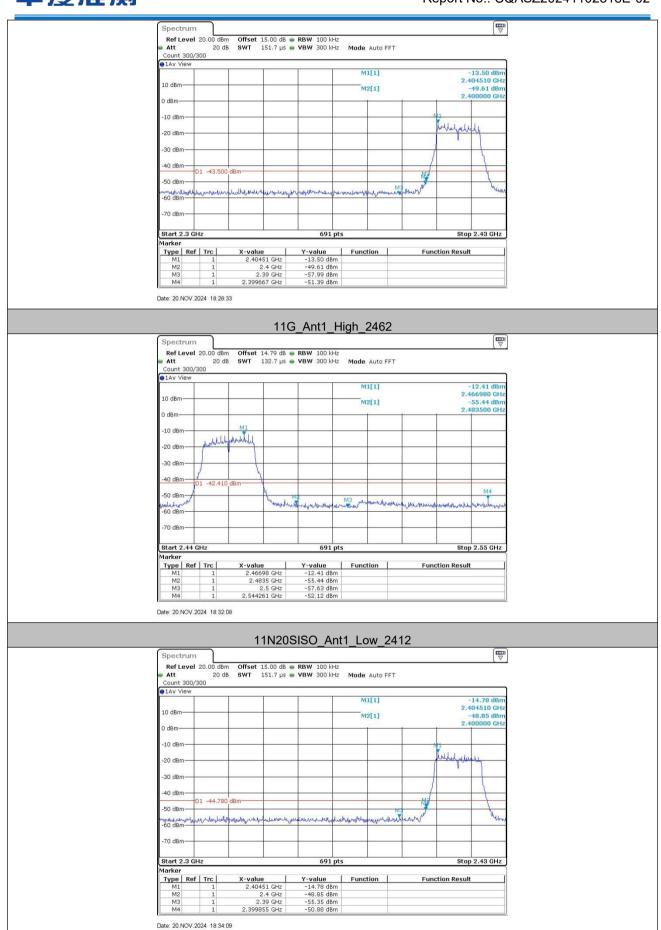


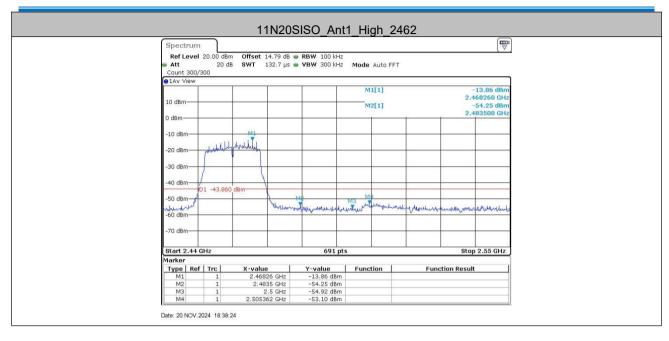
Report No.: CQASZ20241102318E-02

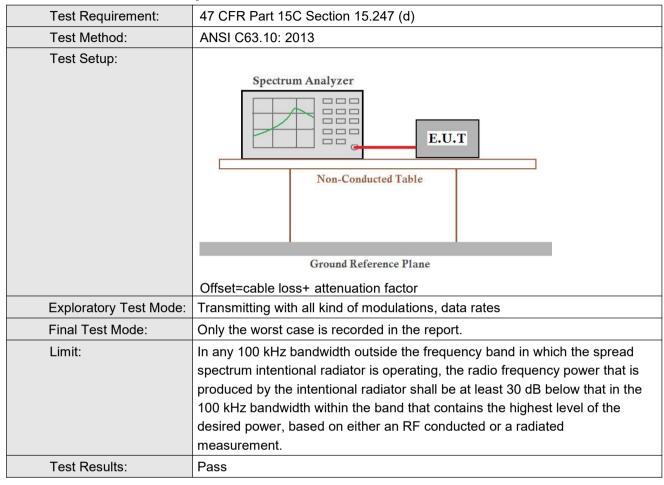
5.6 Band-edge for RF Conducted Emissions


Report No.: CQASZ20241102318E-02

Test Result


TestMode	ChName	Frequency[MHz]	RefLevel[dBm]	Result[dBm]	Limit[dBm]	Verdict
11B	Low	2412	-11.80	-54.37	≤-41.8	PASS
	High	2462	-9.90	-51.84	≤-39.9	PASS
	Low	2412	-13.50	-51.39	≤-43.5	PASS
11G	High	2462	-12.41	-52.12	≤-42.41	PASS
	Low	2412	-14.78	-50.88	≤-44.78	PASS
11N20SISO	High	2462	-13.86	-53.1	≤-43.86	PASS

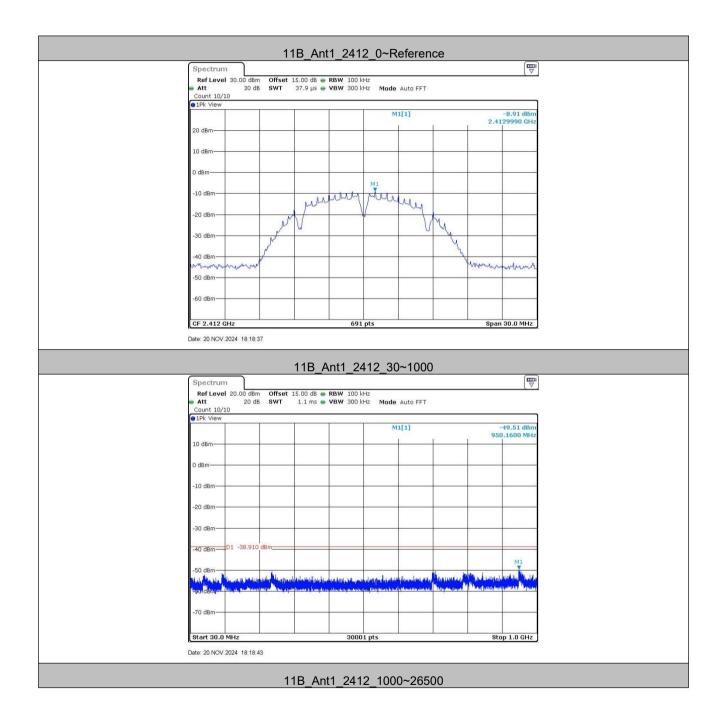

Test Graphs



Report No.: CQASZ20241102318E-02

5.7 RF Conducted Spurious Emissions

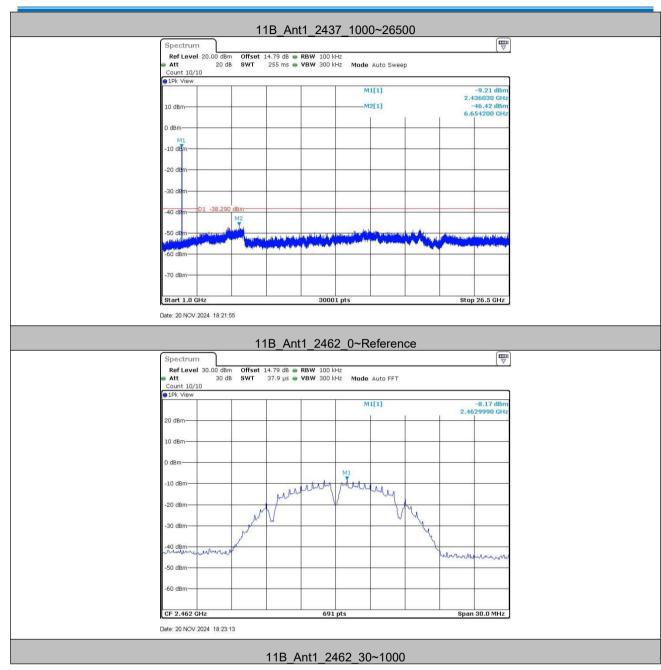
Report No.: CQASZ20241102318E-02

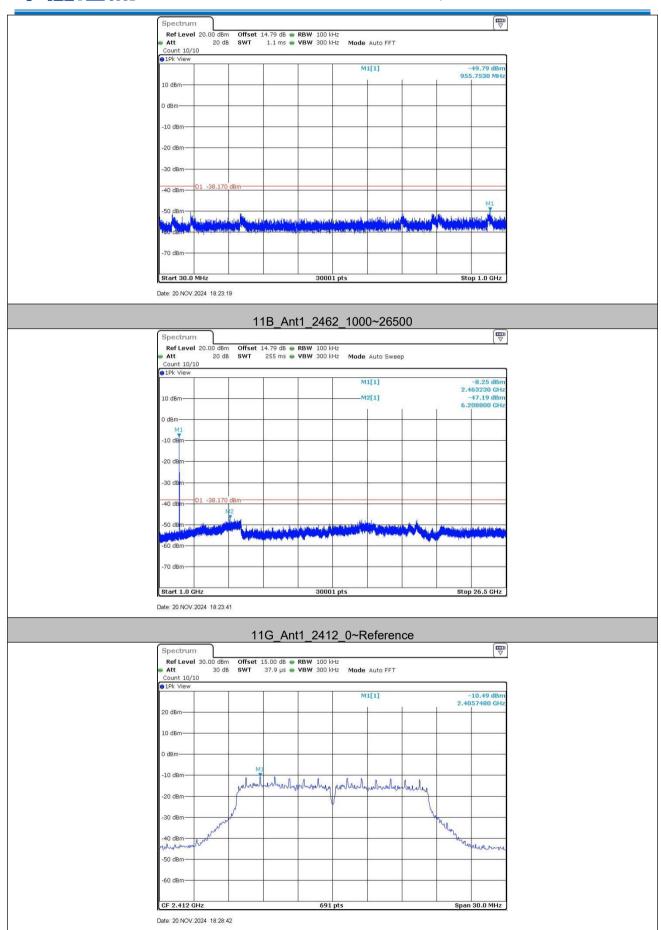

Test Result

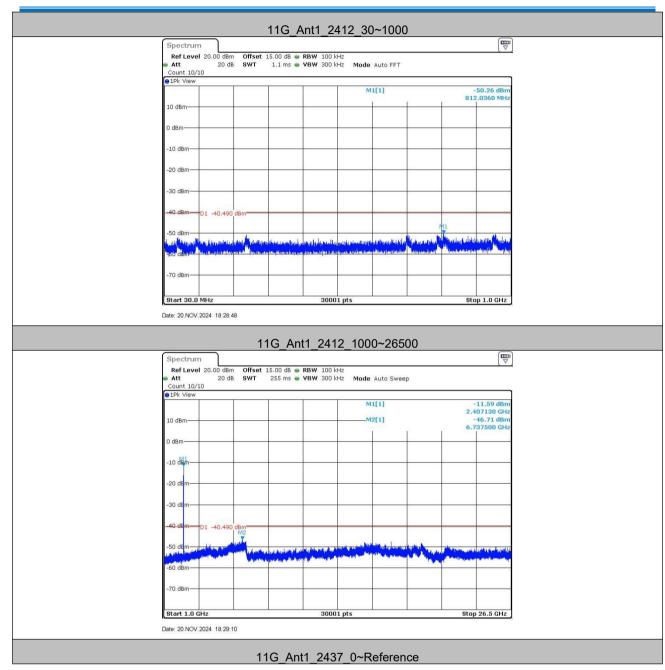
TestMode	Frequency[MHz]	FreqRange [Mhz]	RefLevel	Result	Limit [dBm]	Verdict
		Reference	-8.91	-8.91		PASS
	2412	30~1000	-8.91	-49.51	≤-38.91	PASS
		1000~26500	-8.91	-46.96	≤-38.91	PASS
		Reference	-8.29	-8.29		PASS
11B	2437	30~1000	-8.29	-49.71	≤-38.29	PASS
		1000~26500	-8.29	-46.42	≤-38.29	PASS
		Reference	-8.17	-8.17		PASS
	2462	30~1000	-8.17	-49.79	≤-38.17	PASS
		1000~26500	-8.17	-47.19	≤-38.17	PASS
		Reference	-10.49	-10.49		PASS
	2412	30~1000	-10.49	-50.26	≤-40.49	PASS
		1000~26500	-10.49	-46.71	≤-40.49	PASS
	2437	Reference	-10.36	-10.36		PASS
11G		30~1000	-10.36	-50.77	≤-40.36	PASS
		1000~26500	-10.36	-47.38	≤-40.36	PASS
	2462	Reference	-10.39	-10.39		PASS
		30~1000	-10.39	-50.24	≤-40.39	PASS
		1000~26500	-10.39	-47.07	≤-40.39	PASS
		Reference	-11.88	-11.88		PASS
	2412	30~1000	-11.88	-49.27	≤-41.88	PASS
		1000~26500	-11.88	-46.95	≤-41.88	PASS
		Reference	-12.02	-12.02		PASS
11N20SISO	2437	30~1000	-12.02	-49.17	≤-42.02	PASS
		1000~26500	-12.02	-46.96	≤-42.02	PASS
		Reference	-11.81	-11.81		PASS
	2462	30~1000	-11.81	-50.28	≤-41.81	PASS
		1000~26500	-11.81	-46.66	≤-41.81	PASS

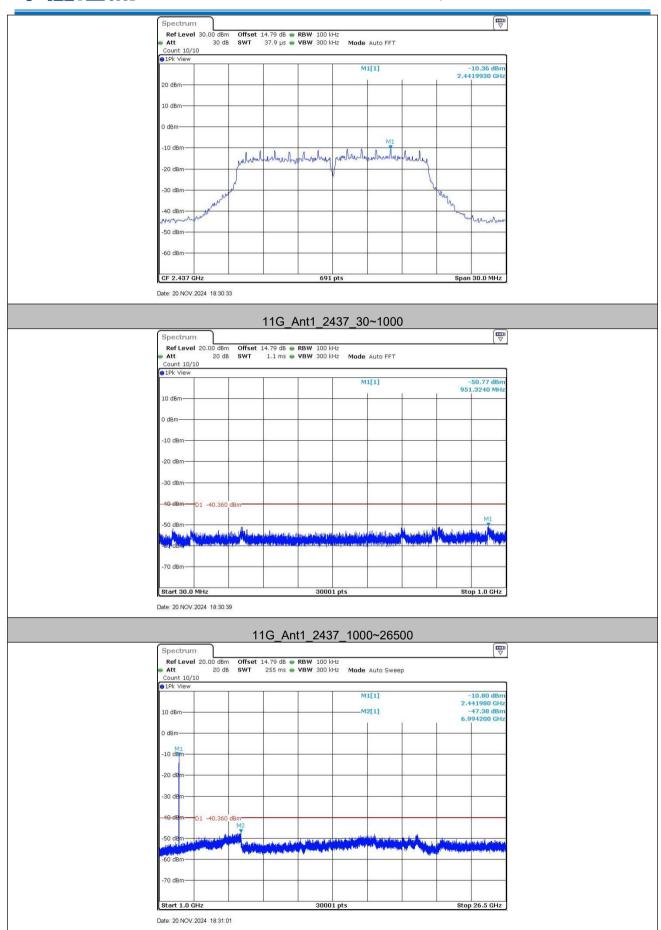


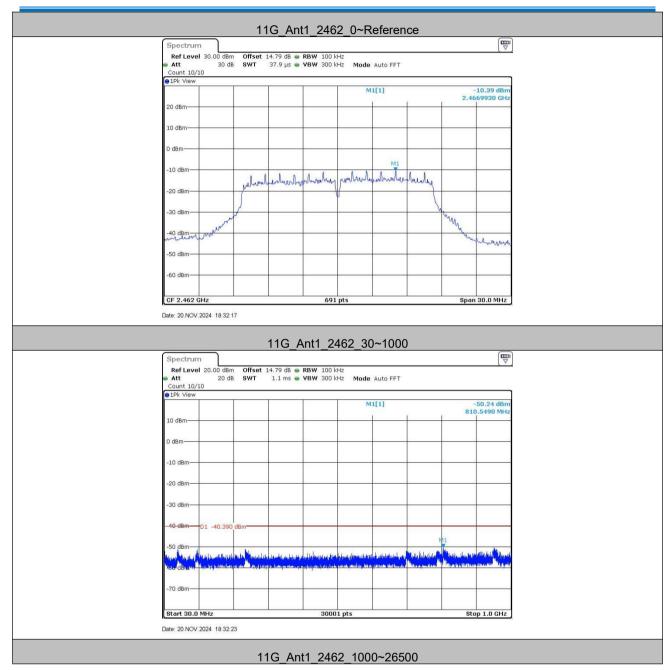
Report No.: CQASZ20241102318E-02

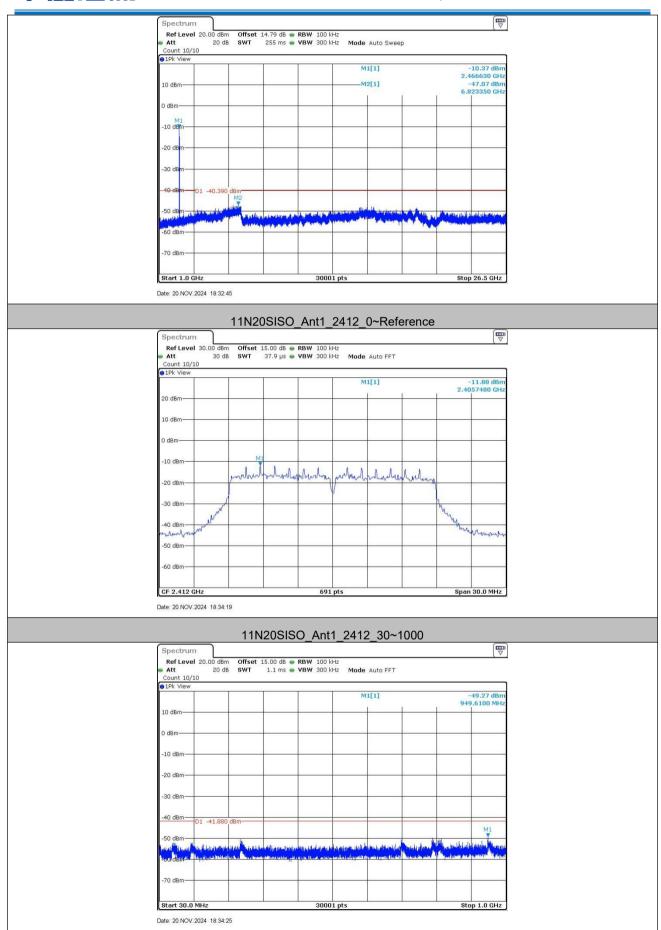

Test Graphs

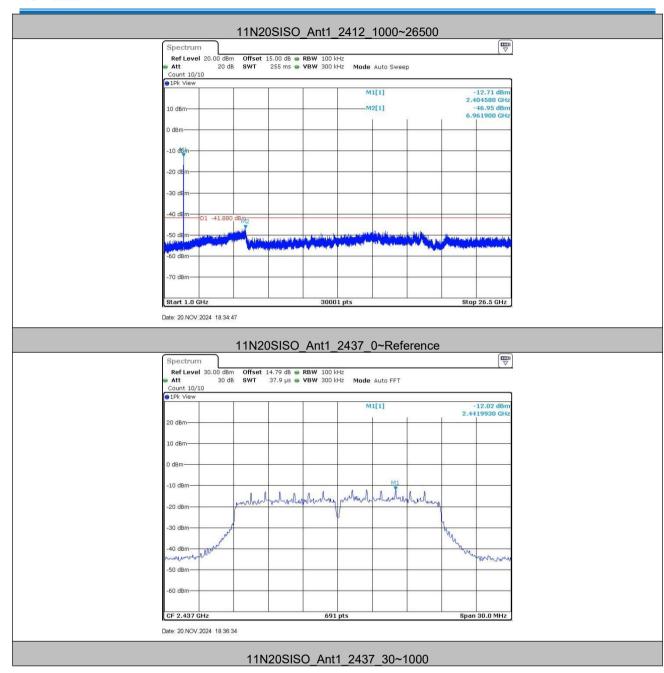


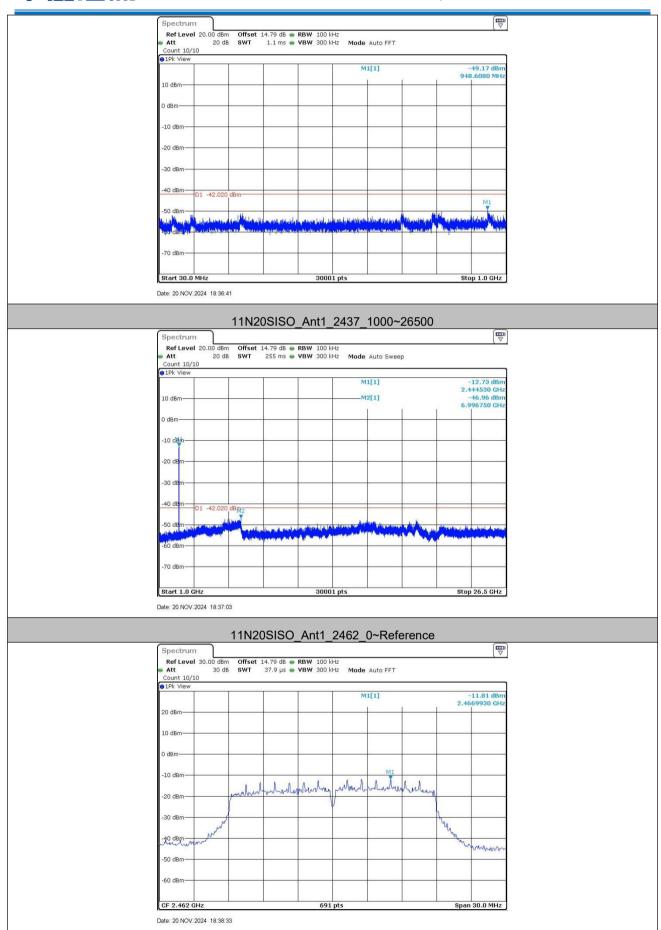


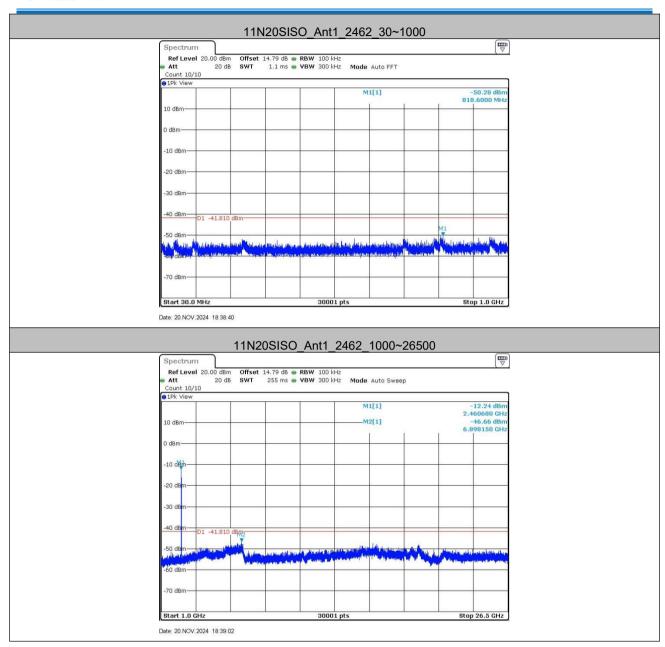












Report No.: CQASZ20241102318E-02

Remark:

Pretest 9kHz to 25GHz, find the highest point when testing, so only the worst data were shown in the test report. Per FCC Part 15.33 (a) and 15.31 (o) ,The amplitude of spurious emissions from intentional radiators which are attenuated more than 20 dB below the permissible value need not be reported unless specifically required elsewhere in this part.

Report No.: CQASZ20241102318E-02

5.8 Radiated Spurious Emissions

Test Requirement:	47 CFR Part 15C Section 15.209 and 15.205								
Test Method:	ANSI C63.10 2013								
Test Site:	Measurement Distance:	3m (Semi-Anechoi	c Chamber)						
Receiver Setup:	Frequency	Detector	RBW	VBW	Remark				
	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak				
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average				
	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak				
	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak				
	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average				
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak				
	30MHz-1GHz	Quasi-peak	100 kHz	300kHz	Quasi-peak				
	Above 1GHz	Peak	1MHz	3MHz	Peak				
	Above IGHZ	Peak	1MHz	10Hz	Average				
Limit:	Frequency	Field strength (microvolt/meter)	Limit (dBuV/m)	Remark	Measurement distance (m)				
	0.009MHz-0.490MHz	2400/F(kHz)	-	-	300				
	0.490MHz-1.705MHz	24000/F(kHz)	-	-	30				
	1.705MHz-30MHz	30	-	-	30				
	30MHz-88MHz	100	40.0	Quasi-peak	3				
	88MHz-216MHz	150	43.5	Quasi-peak	3				
	216MHz-960MHz	200	46.0	Quasi-peak	3				
	960MHz-1GHz	500	54.0	Quasi-peak	3				
	Above 1GHz	500	54.0	Average	3				
	Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total emission level radiated by the device.								

Report No.: CQASZ20241102318E-02

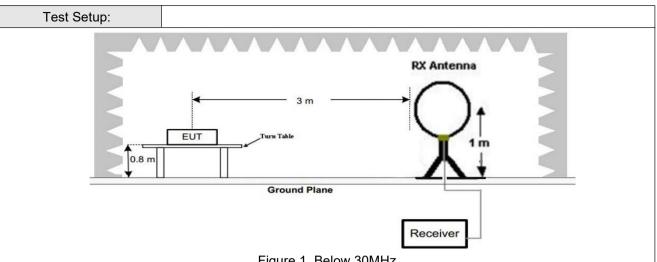


Figure 1. Below 30MHz

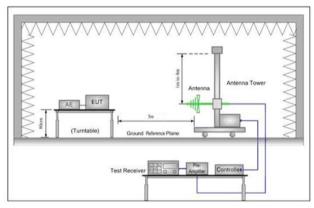


Figure 2. 30MHz to 1GHz

Figure 3. Above 1 GHz

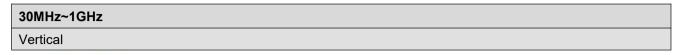
Test Procedure:

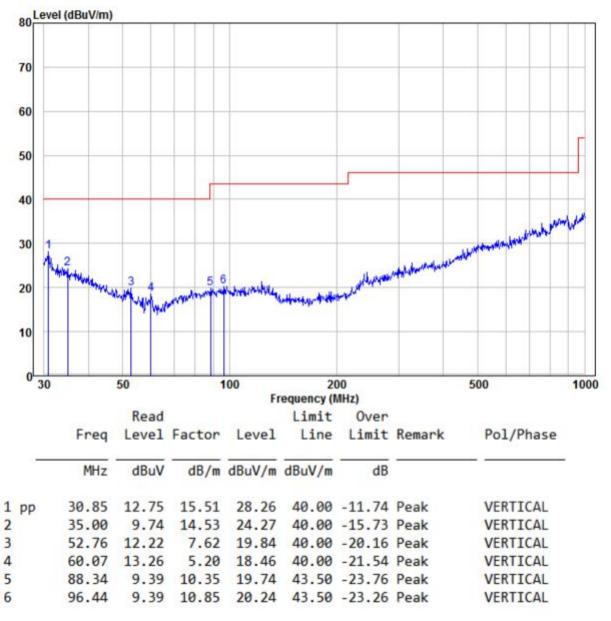
- 1) Below 1G: The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
 - 2) Above 1G: The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.

Note: For the radiated emission test above 1GHz:

Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.

- The EUT was set 3 meters away from the interference-receiving antenna. which was mounted on the top of a variable-height antenna tower.
- The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.




	d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters(for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
	e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
	g. Test the EUT in the lowest channel, the middle channel, the Highest channel.
	h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, And found the X axis positioning which it is worse case .
	i. Repeat above procedures until all frequencies measured was complete.
Exploratory Test Mode:	Transmitting with all kind of modulations, data rates at lowest, middle and highest channel.
Final Test Mode:	Only the worst case is recorded in the report.
Test Results:	Pass

Report No.: CQASZ20241102318E-02

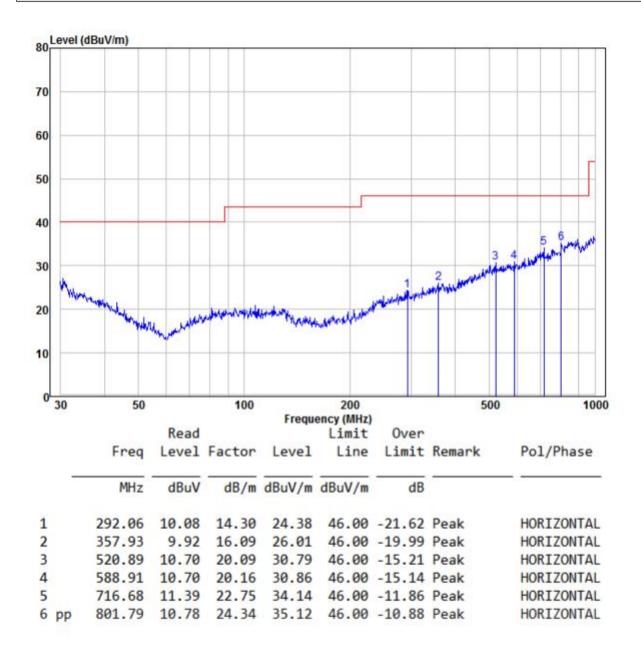
5.8.1 Radiated emission below 1GHz

Remark:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Factor = Antenna Factor + Cable Factor - Preamplifier Factor,

Level = Read Level + Factor,


Over Limit=Level-Limit Line.

Report No.: CQASZ20241102318E-02

Horizontal

Remark:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Factor = Antenna Factor + Cable Factor - Preamplifier Factor,

Level = Read Level + Factor,

Over Limit=Level-Limit Line.

Report No.: CQASZ20241102318E-02

5.8.2 Transmitter emission above 1GHz

Test mode:		802.11b(1	Mbps)	Test channel:		Lowest	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type	H/V
4824.000	52.85	-4.26	48.59	74	-25.41	peak	Н
4824.000	37.24	-4.26	32.98	54	-21.02	AVG	Н
7236.000	50.30	1.18	51.48	74	-22.52	peak	Н
7236.000	37.29	1.18	38.47	54	-15.53	AVG	Н
4824.000	55.39	-4.26	51.13	74	-22.87	peak	V
4824.000	38.23	-4.26	33.97	54	-20.03	AVG	V
7236.000	52.08	1.18	53.26	74	-20.74	peak	V
7236.000	35.86	1.18	37.04	54	-16.96	AVG	V

Test mode:		802.11b(1Mbps)		Test channel:		Middle	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type	H/V
4874.000	52.47	-4.12	48.35	74	-25.65	peak	Н
4874.000	36.58	-4.12	32.46	54	-21.54	AVG	Н
7311.000	49.98	1.46	51.44	74	-22.56	peak	Н
7311.000	36.18	1.46	37.64	54	-16.36	AVG	Н
4874.000	54.08	-4.12	49.96	74	-24.04	peak	V
4874.000	37.61	-4.12	33.49	54	-20.51	AVG	V
7311.000	49.07	1.46	50.53	74	-23.47	peak	V
7311.000	36.00	1.46	37.46	54	-16.54	AVG	V

Report No.: CQASZ20241102318E-02

Test mode:		802.11b(1Mbps)		Test channel:		Highest	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type	H/V
4924.000	52.07	-4.03	48.04	74	-25.96	peak	Н
4924.000	37.07	-4.03	33.04	54	-20.96	AVG	Н
7386.000	50.39	1.66	52.05	74	-21.95	peak	Н
7386.000	36.69	1.66	38.35	54	-15.65	AVG	Н
4924.000	53.85	-4.03	49.82	74	-24.18	peak	V
4924.000	38.96	-4.03	34.93	54	-19.07	AVG	V
7386.000	49.57	1.66	51.23	74	-22.77	peak	V
7386.000	36.15	1.66	37.81	54	-16.19	AVG	V

Remark:

- 1) The 1Mbps of rate of 802.11b is the worst case.
- 2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:
 - Final Test Level =Receiver Reading + Antenna Factor + Cable Factor Preamplifier Factor
- 3) Scan from 9kHz to 25GHz, The disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

Test mode:		802.11g(6I	Mbps)	Test channel:		Lowest	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type	H/V
4824.000	54.16	-4.26	49.90	74	-24.10	peak	Н
4824.000	37.90	-4.26	33.64	54	-20.36	AVG	Н
7236.000	51.96	1.18	53.14	74	-20.86	peak	Н
7236.000	38.88	1.18	40.06	54	-13.94	AVG	Н
4824.000	54.46	-4.26	50.20	74	-23.80	peak	V
4824.000	39.08	-4.26	34.82	54	-19.18	AVG	V
7236.000	51.42	1.18	52.60	74	-21.40	peak	V
7236.000	36.98	1.18	38.16	54	-15.84	AVG	V

Test mode:		802.11g(6Mbps)		Test channel:		Middle	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type	H/V
4874.000	52.57	-4.12	48.45	74	-25.55	peak	Н
4874.000	36.79	-4.12	32.67	54	-21.33	AVG	Н
7311.000	49.76	1.46	51.22	74	-22.78	peak	Н
7311.000	35.32	1.46	36.78	54	-17.22	AVG	Н
4874.000	52.58	-4.12	48.46	74	-25.54	peak	V
4874.000	36.94	-4.12	32.82	54	-21.18	AVG	V
7311.000	48.86	1.46	50.32	74	-23.68	peak	V
7311.000	36.16	1.46	37.62	54	-16.38	AVG	V

Report No.: CQASZ20241102318E-02

Test mode:		802.11g(6Mbps)		Test channel:		Highest	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type	H/V
4924.000	51.81	-4.03	47.78	74	-26.22	peak	Н
4924.000	37.11	-4.03	33.08	54	-20.92	AVG	Н
7386.000	49.89	1.66	51.55	74	-22.45	peak	Н
7386.000	37.97	1.66	39.63	54	-14.37	AVG	Н
4924.000	54.70	-4.03	50.67	74	-23.33	peak	V
4924.000	37.05	-4.03	33.02	54	-20.98	AVG	V
7386.000	50.98	1.66	52.64	74	-21.36	peak	V
7386.000	37.19	1.66	38.85	54	-15.15	AVG	V

Remark:

- 1) The 6Mbps of rate of 802.11g is the worst case.
- 2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:
 - Final Test Level =Receiver Reading + Antenna Factor + Cable Factor Preamplifier Factor
- 3) Scan from 9kHz to 25GHz, The disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.